ALGEBRAIC STRUCTURE OF MULTI-PARAMETER QUANTUM GROUPS

TIMOTHY J. HODGES, THIERRY LEVASSEUR, AND MARGARITA TORO

Introduction

Let G be a connected semi-simple complex Lie group. We define and study the multi-parameter quantum group $\mathbb{C}_{q,p}[G]$ in the case where q is a complex parameter that is not a root of unity. Using a method of twisting bigraded Hopf algebras by a cocycle, [2], we develop a unified approach to the construction of $\mathbb{C}_{q,p}[G]$ and of the multi-parameter Drinfeld double $D_{q,p}$. Using a general method of deforming bigraded pairs of Hopf algebras, we construct a Hopf pairing between these algebras from which we deduce a Peter-Weyl-type theorem for $\mathbb{C}_{q,p}[G]$. In particular the orbits in $\mathbb{C}_{q,p}[G]$ are indexed, as in the one-parameter case by the elements of the double Weyl group W. Unlike the one-parameter case there is not in general a bijection between $\text{Symp} G$ and $\text{Prim} \mathbb{C}_{q,p}[G]$. However in the case when the symplectic leaves are algebraic such a bijection does exist since the orbits corresponding to a given $w \in W \times W$ have the same dimension.

In the first section we discuss the Poisson structures on G defined by classical r-matrices of the form $r = a - u$ where $a = \sum_{\alpha \in \mathbb{R}} e_{\alpha} \wedge e_{-\alpha} \in \wedge^2 g$ and $u \in \wedge^2 h$. Given such an r one constructs a Manin triple of Lie groups $(G \times G, G, G_r)$. Unlike the one-parameter case (where $u = 0$), the dual group G_r will generally not be an algebraic subgroup of $G \times G$. In fact this happens if and only if $u \in \wedge^2 h_0$. Since the quantized universal enveloping algebra $U_q(g)$ is a deformation of the algebra of functions on the algebraic group G_r [11], this explains the difficulty in constructing multi-parameter versions of $U_q(g)$. From [22, 30], one has that the symplectic leaves are the connected components of $G \cap G_r x G_r$ where $x \in G$. Since r is H-invariant, the symplectic leaves are permuted by H with the orbits being contained in Bruhat cells in $G \times G$ indexed by $W \times W$. In the case where G_r is algebraic, the symplectic leaves are also algebraic and an explicit formula is given for their dimension.

The philosophy of [15, 16] was that, as in the case of enveloping algebras of algebraic solvable Lie algebras, the primitive ideals of $\mathbb{C}_{q}[G]$ should be in bijection with the symplectic leaves of G (in the case $u = 0$). Indeed, since the Lie bracket on $g_r = \text{Lie}(G_r)$ is the linearization of the Poisson structure on G, $\text{Prim} \mathbb{C}_{q,p}[G]$ should resemble $\text{Prim} U(g_r)$. The study of the multi-parameter versions $\mathbb{C}_{q,p}[G]$ is similar to the case of enveloping algebras of general solvable Lie algebras. In the general case $\text{Prim} U(g_r)$ is in bijection with the co-adjoint orbits in g_r^\ast under the action of the ‘adjoint algebraic group’ of g_r [12]. It is therefore natural that, only in the case where the symplectic leaves are algebraic, does one expect and obtain a bijection between the symplectic leaves and the primitive ideals.

In section 2 we define the notion of an \mathbf{L}-bigraded Hopf \mathbb{K}-algebra, where \mathbf{L} is an abelian group. When A is finitely generated such bigradings correspond bijectively to morphisms from the algebraic group \mathbf{L}^\vee to the (algebraic) group $R(A)$ of one-dimensional representations of A. For any antisymmetric bicharacter p on \mathbf{L}, the multiplication in A may be twisted to give a new Hopf algebra A_p. Moreover, given a pair of \mathbf{L}-bigraded Hopf algebras A and U equipped with an \mathbf{L}-compatible Hopf pairing $A \times U \rightarrow \mathbb{K}$, one can deform the pairing to get a new Hopf pairing between $A_{p^{-1}}$ and U_p. This deformation commutes

Date: June, 1994.

The first author was partially supported by grants from the National Security Agency and the C. P. Taft Memorial Fund.

The third author was partially supported by a grant from Colciencias.
with the formation of the Drinfeld double in the following sense. Suppose that \(A \) and \(U \) are bigraded Hopf algebras equipped with a compatible Hopf pairing \(A^{op} \times U \to \mathbb{K} \). Then the Drinfeld double \(A \ltimes U \) inherits a bigrading such that \((A \ltimes U)_p \cong A_p \ltimes U_p \).

Let \(C_q[G] \) denote the usual one-parameter quantum group (or quantum function algebra) and let \(U_q(\mathfrak{g}) \) the quantized enveloping algebra associated to the lattice \(L \) of weights of \(G \). Let \(U_q(\mathfrak{b}^+) \) and \(U_q(\mathfrak{b}^-) \) be the usual sub-Hopf algebras of \(U_q(\mathfrak{g}) \) corresponding to the Borel subalgebras \(\mathfrak{b}^+ \) and \(\mathfrak{b}^- \) respectively. Let \(D_q(\mathfrak{g}) = U_q(\mathfrak{b}^+) \ltimes U_q(\mathfrak{b}^-) \) be the Drinfeld double. Since the groups of one-dimensional representations of \(U_q(\mathfrak{b}^+) \), \(U_q(\mathfrak{b}^-) \), \(D_q(\mathfrak{g}) \) and \(C_q[G] \) are all isomorphic to \(H = L' \), these algebras are all equipped with \(L \)-bigradings. Moreover the Rosso-Tanisaki pairing is compatible with the bigradings on \(U_q(\mathfrak{b}^+) \) and \(U_q(\mathfrak{b}^-) \). For any anti-symmetric bicharacter \(p \) on \(L \) one may therefore twist simultaneously the Hopf algebras \(U_q(\mathfrak{b}^+) \), \(U_q(\mathfrak{b}^-) \) and \(D_q(\mathfrak{g}) \) in such a way that \(D_{q,p}(\mathfrak{g}) \cong U_{q,p}(\mathfrak{b}^+) \ltimes U_{q,p}(\mathfrak{b}^-) \). The algebra \(D_{q,p}(\mathfrak{g}) \) is the ‘multi-parameter quantized universal enveloping algebra’ constructed by Okado and Yamane [25] and previously in special cases in [9, 32]. The canonical pairing between \(C_q[G] \) and \(U_q(\mathfrak{g}) \) induces a \(L \)-compatible pairing between \(C_q[G] \) and \(D_q(\mathfrak{g}) \). Thus there is an induced pairing between the multi-parameter quantum group \(C_{q,p}[G] \) and the multi-parameter double \(D_{q,p^{-1}}(\mathfrak{g}) \). Recall that the Hopf algebra \(C_{q,p}[G] \) is defined as the restricted dual of \(U_q(\mathfrak{g}) \) with respect to a certain category \(C \) of modules over \(U_q(\mathfrak{g}) \). There is a natural deformation functor from this category to a category \(C_p \) of modules over \(D_{q,p^{-1}}(\mathfrak{g}) \) and \(C_{q,p}[G] \) turns out to be the restricted dual of \(D_{q,p^{-1}}(\mathfrak{g}) \) with respect to this category. This Peter-Weyl theorem for \(C_{q,p}[G] \) was also found by Andruskiewitsch and Enriquez in [1] using a different construction of the quantized universal enveloping algebra and in special cases in [5, 14].

The main theorem describing the primitive spectrum of \(C_{q,p}[G] \) is proved in the final section. Since \(C_{q,p}[G] \) inherits an \(L \)-bigrading, there is a natural action of \(H \) as automorphisms of \(C_{q,p}[G] \). For each \(w \in W \times W \), we construct an algebra \(A_w = (C_{q,p}[G]/I_w)_{L_w} \) which is a localization of a quotient of \(C_{q,p}[G] \). For each prime \(p \in \text{Spec} C_{q,p}[G] \) there is a unique \(w \in W \times W \) such that \(P \supset I_w \) and \(PA_w \) is proper. Thus \(\text{Spec} C_{q,p}[G] \cong \bigsqcup_{w \in W \times W} \text{Spec}_w C_{q,p}[G] \) where \(\text{Spec}_w C_{q,p}[G] \cong \text{Spec} A_w \) is the set of primes of type \(w \). The key results are then Theorems 4.14 and 4.15 which state that an ideal of \(A_w \) is generated by its intersection with the center and that \(H \) acts transitively on the maximal ideals of the center. From this it follows that the primitive ideals of \(C_{q,p}[G] \) of type \(w \) form an orbit under the action of \(H \).

An earlier version of our approach to the proof of Joseph’s theorem is contained in the unpublished article [17]. The approach presented here is a generalization of this proof to the multi-parameter case.

These results are algebraic analogs of results of Levendorskii [20, 21] on the irreducible representations of multi-parameter function algebras and compact quantum groups. The bijection between symplectic leaves of the compact Poisson group and irreducible *-representations of the compact quantum group found by Soibelman in the one-parameter case, breaks down in the multi-parameter case.

After this work was completed, the authors became aware of the work of Constantini and Varagnolo [7, 8] which has some overlap with the results in this paper.

1. Poisson Lie Groups

1.1. Notation. Let \(g \) be a complex semi-simple Lie algebra associated to a Cartan matrix \([a_{ij}]_{1 \leq i,j \leq n} \). Let \(\{d_i\}_{1 \leq i \leq n} \) be relatively prime positive integers such that \(|d_i a_{ij}|_{1 \leq i,j \leq n} \) is symmetric positive definite.

Let \(\mathfrak{h} \) be a Cartan subalgebra of \(\mathfrak{g} \), \(R \) the associated root system, \(B = \{\alpha_1, \ldots, \alpha_n\} \) a basis of \(R \), \(R_+ \) the set of positive roots and \(W \) the Weyl group. We denote by \(P \) and \(Q \) the lattices of weights and roots respectively. The fundamental weights are denoted by \(\varpi_1, \ldots, \varpi_n \) and the set of dominant integral weights by \(P^+ = \sum_{i=1}^{n} N\varpi_i \). Let \((-,-) \) be a non-degenerate \(\mathfrak{g} \)-invariant symmetric bilinear form on \(\mathfrak{g} \); it will identify \(\mathfrak{g} \), resp. \(\mathfrak{h} \), with its dual \(\mathfrak{g}^* \), resp. \(\mathfrak{h}^* \). The form \((-,-) \) can be chosen in order to induce a perfect pairing \(P \times Q \to \mathbb{Z} \) such that

\[
(\varpi_i, \alpha_j) = \delta_{ij} d_i, \quad (\alpha_i, \alpha_j) = d_i a_{ij}.
\]
Hence $d_i = (\alpha_i,\alpha_i)/2$ and $(\alpha,\alpha) \in 2\mathbb{Z}$ for all $\alpha \in \mathbb{R}$. For each α_j we denote by $h_j \in \mathfrak{h}$ the corresponding coroot: $\varpi_i(h_j) = \delta_{ij}$. We also set
\[n^\pm = \oplus_{\alpha \in \mathbb{R}_+} \mathfrak{h}_{\pm \alpha}, \quad \mathfrak{b} = \mathfrak{g} \times \mathfrak{g}, \quad t = \mathfrak{h} \times \mathfrak{h}, \quad u^\pm = n^\pm \times n^\mp.

Let G be a connected complex semi-simple algebraic group such that Lie$(G) = \mathfrak{g}$ and set $D = G \times G$. We identify (G) and (its subgroups) with the diagonal copy inside D. We denote by exp the exponential map from \mathfrak{d} to D. We shall in general denote a Lie subalgebra of \mathfrak{d} by a gothic symbol and the corresponding connected analytic subgroup of D by a capital letter.

1.2. Poisson Lie group structure on G. Let $a = \sum_{\alpha \in \mathbb{R}_+} c_\alpha \in \wedge^2 \mathfrak{g}$ where the c_α are root vectors such that $(\alpha,\alpha) = \delta_{\alpha,-\alpha}$. Let $u \in \wedge^2 \mathfrak{h}$ and set $r = a - u$. Then it is well known that r satisfies the modified Yang-Baxter equation [3, 20] and that therefore the tensor $\pi(g) = (l_g)_* r - (r_g)_* r$ furnishes G with the structure of a Poisson Lie group, see [13, 22, 30] ($(l_g)_*$ and $(r_g)_*$ are the differentials of the left and right translation by $g \in G$).

We may write $u = \sum_{1 \leq i,j \leq n} u_{ij} h_i \otimes h_j$ for a skew-symmetric $n \times n$ matrix $[u_{ij}]$. The element u can be considered either as an alternating form on \mathfrak{h}^* or a linear map $u \in \text{End} \mathfrak{h}$ by the formula
\[\forall x \in \mathfrak{h}, \quad u(x) = \sum_{i,j} u_{ij}(x,h_i)h_j. \]

The Manin triple associated to the Poisson Lie structure on G given by r is described as follows. Set $u_\pm = u \pm i I \in \text{End} \mathfrak{h}$ and define
\[\vartheta : \mathfrak{h} \leftrightarrow t, \quad \vartheta(x) = -(u_-(x),u_+(x)), \]
\[a = \vartheta(\mathfrak{h}), \quad g_r = a + u^+. \]

Following [30] one sees easily that the associated Manin triple is $(\mathfrak{d}, \mathfrak{g}, \mathfrak{g}_r)$ where \mathfrak{g} is identified with the diagonal copy inside \mathfrak{d}. Then the corresponding triple of Lie groups is (D, G, G_r), where $A = \exp(a)$ is an analytic torus and $G_r = AU^\perp$. Notice that g_r is a solvable, but not in general algebraic, Lie subalgebra of \mathfrak{d}.

The following is an easy consequence of the definition of a and the identities $u_+ + u_- = 2u, u_+ - u_- = 2I$:
\[(1.1) \quad a = \{(x,y) \in t \mid x + y = u(y - x)\} = \{(x,y) \in t \mid u_+(x) = u_-(y)\}. \]

Recall that $\exp : \mathfrak{h} \rightarrow H$ is surjective; let L_H be its kernel. We shall denote by $X(K)$ the group of characters of an algebraic torus K. Any $\chi \in X(H)$ is given by $\chi(\exp x) = \exp dx$, $x \in \mathfrak{h}$, where $dx \in \mathfrak{h}^*$ is the differential of χ. Then
\[X(H) \cong L = L_H^\circ := \{ \xi \in \mathfrak{h}^* \mid \xi(L_H) \subset 2i\pi \mathbb{Z} \}. \]

One can show that L has a basis consisting of dominant weights.

Recall that if \tilde{G} is a connected simply connected algebraic group with Lie algebra \mathfrak{g} and maximal torus \tilde{H}, we have
\[L_{\tilde{H}} = P^\circ = \oplus_{j=1}^n 2\pi \mathbb{Z} h_j, \quad X(\tilde{H}) \cong P, \]
\[Q \subseteq L \subseteq P, \quad \pi_1(G) = L_H/P^\circ \cong P/L. \]

Notice that L_H/P° is a finite group and $\exp u(L_{\tilde{H}})$ is a subgroup of H. We set
\[\Gamma_0 = \{(a,a) \in T \mid a^2 = 1\}, \quad \Delta = \{(a,a) \in T \mid a^2 \in \exp u(L_H)\}, \]
\[\Gamma = A \cap H = \{(a,a) \in T \mid a = \exp x = \exp y, \ x + y = u(y - x)\}. \]

It is easily seen that $\Gamma = G \cap G_r$.

Proposition 1.1. We have $\Delta = \Gamma \cdot \Gamma_0.$
Proof. We obviously have $\Gamma_0 \subset \Delta$. Let $(\exp h, \exp h) \in \Gamma$, $h \in \mathfrak{h}$. By definition there exist $(x, y) \in \mathfrak{a}$, $\ell_1, \ell_2 \in L_H$ such that

$$x = h + \ell_1, \quad y = h + \ell_2, \quad y + x = u(y - x).$$

Hence $y + x = 2h + \ell_1 + \ell_2 = u(\ell_2 - \ell_1)$ and $(\exp h)^2 = \exp 2h = \exp u(\ell_2 - \ell_1)$. This shows $(\exp h, \exp h) \in \Delta$. Thus $\Gamma_0 \subseteq \Delta$.

Let $(a, a) \in \Delta$, $a \in \exp h$, $h \in \mathfrak{h}$. From $a^2 \in \exp u L_H$ we get $\ell, \ell' \in L_H$ such that $2h = u(\ell') + \ell$. Set $x = h - \ell'/2 - \ell'/2$, $y = h + \ell'/2 - \ell/2$. Then $y + x = u(y - x)$ and we have $\exp(-\ell/2 - \ell'/2) = \exp(\ell'/2 - \ell/2)$, since $\ell' \in L_H$. If $b = \exp(-\ell'/2 + \ell/2)$ we obtain $\exp x = \exp y = ab^{-1}$, hence $(a, a) = (\exp x, \exp y)$. $(b, b) \in \Gamma_0$. Therefore $\Gamma_0 = \Delta$.

Remark. When u is “generic” Γ_0 is not contained in Γ. For example, take G to be $SL(3, \mathbb{C})$ and $u = \alpha(h_1 \otimes h_2 - h_2 \otimes h_1)$ with $\alpha \notin \mathbb{Q}$.

Considered as a Poisson variety, G decomposes as a disjoint union of symplectic leaves. Denote by $\text{Symp} G$ the set of these symplectic leaves. Since r is H-invariant, translation by an element of H is a Poisson morphism and hence there is an induced action of H on $\text{Symp} G$. The key to classifying the symplectic leaves is the following result, cf. [22, 30].

Theorem 1.2. The symplectic leaves of G are exactly the connected components of $G \cap G_r x G_r$ for $x \in G$.

Remark. A, Γ and G_r are in general not closed subgroups of D. This has for consequence that the analysis of Symp G made in [15, Appendix A] in the case $u = 0$ does not apply in the general case.

Set $Q = HG_r = T U^+$. Then Q is a Borel subgroup of D and, recalling that the Weyl group associated to the pair (G, T) is $W \times W$, the corresponding Bruhat decomposition yields $D = \bigsqcup_{w \in W \times W} Q w G_r$. Therefore any symplectic leaf is contained in a Bruhat cell $Q w G_r$ for some $w \in W \times W$.

Definition. A leaf A is said to be of type w if $A \subset Q w G_r$. The set of leaves of type w is denoted by $\text{Symp}_w G$.

For each $w \in W \times W$ set $w = (w_+, w_-), w_{\pm} \in W$, and fix a representative w in the normaliser of T. One shows as in [15, Appendix A] that $G \cap Q w G_r \neq \emptyset$, for all $w \in W \times W$; hence $\text{Symp}_w G \neq \emptyset$ and $G \cap G_r w G_r \neq \emptyset$, since $Q w G_r = \bigsqcup_{h \in H} h G_r w G_r$.

The adjoint action of D on itself is denoted by Ad. Set

$$U_w^{-} = \text{Ad} w(U) \cap U^+, \quad A'_w = \{a \in A \mid a w G_r = w G_r\},$$

$$T_w' = \{t \in T \mid t G_r w G_r = G_r w G_r\}, \quad H'_w = H \cap T_w'.$$

Recall that U_w^{-} is isomorphic to $\mathcal{C}(w)$ where $l(w) = l(w_+) + l(w_-)$ is the length of w. We set $s(w) = \dim H'_w$.

Lemma 1.3. (i) $A'_w = \text{Ad} w(A) \cap A$ and $T'_w = A \text{Ad} w(A) = AH'_w$.

(ii) We have $\text{Lie}(A'_w) = a'_w = \{\theta(x) \mid x \in \ker(w_- u_+ u_+ - u_+ w_- u_-)\}$ and $\dim a'_w = n - s(w)$.

Proof. (i) The first equality is obvious and the second is an easy consequence of the bijection, induced by multiplication, between $U_w^{-} \times T \times U^+$ and $Q w G_r$.

(ii) By definition we have $a'_w = \{\theta(x) \mid x \in h, w^{-1}(\theta(x)) \in \mathfrak{a}\}$. From (1.1) we deduce that $\theta(x) \in a'_w$ if and only if $u_+ w_-^{-1}(u_- x) = u_+ w_-^{-1}(u_- x)$. It follows from (i) that $\dim T'_w = n + \dim H'_w = 2n - \dim A'_w$, hence $\dim a'_w = n - s(w)$.

Recall that $u \in \text{End} \mathfrak{h}$ is an alternating bilinear form on \mathfrak{h}^*. It is easily seen that $\forall \lambda, \mu \in \mathfrak{h}^*$, $u(\lambda, \mu) = -\langle u(\lambda), \mu \rangle$, where $\langle \cdot \rangle u \in \text{End} \mathfrak{h}^*$ is the transpose of u.

Notation. Set $t u = -\Phi, \Phi_\pm = \Phi \pm I, \sigma(w) = \Phi_- w^{-1} \Phi_+ - \Phi_+ w_+ \Phi_-$, where $w_{\pm} \in W$ is considered as an element of $\text{End} \mathfrak{h}^*$.
Observe that \(t^* u_\pm = -\Phi_{\mp} \) and that
\[
(1.2) \quad w(\lambda, \mu) = (\Phi \lambda, \mu), \quad \text{for all } \lambda, \mu \in h^*.
\]
Furthermore, since the transpose of \(w_\pm \in \text{End } h^* \) is \(w^\pm_\pm \in \text{End } h \), we have \(t^* \sigma(w) = u^- w^- u_+ - u_+ w_+ u^- \). Hence by Lemma 1.3
\[
(1.3) \quad s(w) = \text{codim } \ker h^*_\lambda, \sigma(w), \quad \dim A'_w = \dim \ker h^*_\lambda, \sigma(w).
\]

1.3. The algebraic case. As explained in 1.1 the Lie algebra \(g_\gamma \) is in general not algebraic. We now describe its algebraic closure. Recall that a Lie subalgebra \(m \) of \(g \) is said to be algebraic if \(m \) is the Lie algebra of a closed (connected) algebraic subgroup of \(D \).

Definition. Let \(m \) be a Lie subalgebra of \(D \). The smallest algebraic Lie subalgebra of \(D \) containing \(m \) is called the algebraic closure of \(m \) and will be denoted by \(\overline{m} \).

Recall that \(g_\gamma = a \oplus u^+ \). Notice that \(u^+ \) is an algebraic Lie subalgebra of \(D \); hence it follows from [4, Corollary II.7.7] that \(g_\gamma = a \oplus u^+ \). Thus we only need to describe \(a \). Since \(t \) is algebraic we have \(\overline{a} \subseteq t \) and we are reduced to characterize the algebraic closure of a Lie subalgebra of \(t = \text{Lie}(T) \).

The group \(T = H \times H \) is an algebraic torus (of rank \(2n \)). The map \(\chi \mapsto d\chi \) identifies \(X(T) \) with \(L \times L \).

Let \(t \subset t \) be a subalgebra. We set
\[t^\perp = \{ \theta \in X(T) \mid t \subset \ker t \} \]
The following proposition is well known. It can for instance be deduced from the results in [4, II.8].

Proposition 1.4. Let \(t \) be a subalgebra of \(t \). Then \(\tilde{t} = \cap_{\theta \in t^\perp} \ker t \theta \) and \(\tilde{t} \) is the Lie algebra of the closed connected algebraic subgroup \(\overline{K} = \cap_{\theta \in t^\perp} \ker t \theta \).

Corollary 1.5. We have
\[
a^\perp = \{ (\lambda, \mu) \in X(T) \mid \Phi_+ \lambda + \Phi_- \mu = 0 \},
\]
\[\tilde{a} = \cap_{(\lambda, \mu) \in a^\perp} \ker t(\lambda, \mu), \quad \Lambda = \cap_{(\lambda, \mu) \in a^\perp} \ker t(\lambda, \mu). \]

Proof. From the definition of \(a = \phi(h) \) we obtain
\[
(\lambda, \mu) \in a^\perp \iff \forall x \in h, \lambda(-u_-(x)) + \mu(-u_+(x)) = 0.
\]
The first equality then follows from \(t^* u_\pm = -\Phi_{\mp} \). The remaining assertions are consequences of Proposition 1.4.

Set
\[
\begin{align*}
h_Q &= Q \otimes \mathbb{Z} P^\circ = \bigoplus_{i=1}^n Q h_i, \quad h^*_Q = Q \otimes \mathbb{P} = \bigoplus_{i=1}^n Q \omega_i, \\
a_Q^\perp &= Q \otimes \mathbb{Z} a^\perp = \{ (\lambda, \mu) \in h_Q^* \times h_Q^* \mid \Phi_+ \lambda + \Phi_- \mu = 0 \}.
\end{align*}
\]
Observe that \(\dim Q a_Q^\perp = \text{rk} \mathbb{Z} a^\perp \) and that, by Corollary 1.5,
\[
(1.4) \quad \dim \tilde{a} = 2n - \dim Q a_Q^\perp.
\]

Lemma 1.6. \(a_Q^\perp \cong \{ \nu \in h_Q^* \mid \Phi \nu \in h_Q^* \} \).

Proof. Define a \(\mathbb{Q} \)-linear map
\[
\{ \nu \in h_Q^* \mid \Phi \nu \in h_Q^* \} \longrightarrow a_Q^\perp, \quad \nu \mapsto (-\Phi_- \nu, \Phi_+ \nu),
\]
It is easily seen that this provides the desired isomorphism.
Theorem 1.7. The following assertions are equivalent:

(i) g_v is an algebraic Lie subalgebra of \mathfrak{g};
(ii) $u(P \times P) \subset \mathbb{Q}$;
(iii) $\exists m \in \mathbb{N}^*, \Phi(mP) \subset P$;
(iv) Γ is a finite subgroup of T.

Proof. Recall that g_v is algebraic if and only if $\mathfrak{a} = \mathfrak{a}, i.e. n = \dim \mathfrak{a} = \dim \mathfrak{a}$. By (1.4) and Lemma 1.6 this is equivalent to $\Phi(P) \subset \mathbb{Q} \otimes \mathbb{Z}P$. The equivalence of (i) to (iii) then follows from the definitions, (1.2) and the fact that $t_u = -\Phi$.

To prove the equivalence with (iv) we first observe that, by Proposition 1.1, Γ is finite if and only if $\exp u(L_H)$ is finite. Since L_H/\mathfrak{p}° is finite this is also equivalent to $\exp u(P^\circ)$ being finite. This holds if and only if $u(mP^\circ) \subset P^\circ$ for some $m \in \mathbb{N}^*$. Hence the result. \square

When the equivalent assertions of Theorem 1.7 hold, we shall say that we are in the algebraic case or that u is algebraic. In this case all the subgroups previously introduced are closed algebraic subgroups of D and we may define the algebraic quotient varieties D/G_r and $G = G/T$. Let p be the projection $G \to \hat{G}$. Observe that \hat{G} is open in in D/G_r and that the Poisson bracket of G passes to \hat{G}. We set

$$C_w = G_r w G_r/G_r, \quad C_w = Q w G_r/G_r = \cup_{h \in H} h C_{w}$$

$$B_w = C_w \cap \hat{G}, \quad B_w = C_w \cap \hat{G}, \quad A_w = p^{-1}(B_w).$$

The next theorem summarizes the description of the symplectic leaves in the algebraic case.

Theorem 1.8. 1. $\text{Symp}_w G \neq \emptyset$ for all $w \in W \times W$, $\text{Symp} G = \sqcup_{w \in W \times W} \text{Symp}_w G$.

2. Each symplectic leaf of \hat{G}, resp. G, is of the form hS_w, resp. hA_w, for some $h \in H$ and $w \in W \times W$, where A_w denotes a fixed connected component of $p^{-1}(B_w)$.

3. $C_w \cong A_w \times U_w^-$ where $A_w = A/A_w'$ is a torus of rank $s(w)$. Hence $\dim C_w = \dim B_w = \dim A_w = l(w) + s(w)$ and $H/\text{Stab}_H A_w$ is a torus of rank $n - s(w)$.

Proof. The proofs are similar to those given in [15, Appendix A] for the case $u = 0$. \square

2. Deformations of Bigraded Hopf Algebras

2.1. Bigraded Hopf Algebras and their deformations. Let L be an (additive) abelian group. We will say that a Hopf algebra $(A, i, m, \epsilon, \Delta, S)$ over a field \mathbb{k} is an L-bigraded Hopf algebra if it is equipped with an $L \times L$ grading

$$A = \bigoplus_{(\lambda, \mu) \in L \times L} A_{\lambda, \mu}$$

such that

(1) $\mathbb{k} \subset A_{0,0}$, $A_{\lambda, \mu} A_{\lambda', \mu'} \subset A_{\lambda + \lambda', \mu + \mu'}$ (i.e. A is a graded algebra)

(2) $\Delta(A_{\lambda, \mu}) \subset \sum_{\nu \in L} A_{\lambda, \nu} \otimes A_{-\nu, \mu}$

(3) $\lambda \neq -\mu$ implies $\epsilon(A_{\lambda, \mu}) = 0$

(4) $S(A_{\lambda, \mu}) \subset A_{\mu, \lambda}$.

For sake of simplicity we shall often make the following abuse of notation: If $a \in A_{\lambda, \mu}$ we will write $\Delta(a) = \sum_{\nu \in L} a_{\lambda, \nu} \otimes a_{-\nu, \mu}$. Let $\lambda, \mu \in A_{\lambda, \mu}$.

Let $p : L \times L \to \mathbb{k}^*$ be an antisymmetric bicharacter on L in the sense that p is multiplicative in both entries and that, for all $\lambda, \mu \in L$,

$$\begin{align*}
(1) & \quad p(\mu, \mu) = 1; \\
(2) & \quad p(\lambda, \mu) = p(\mu, -\lambda).
\end{align*}$$

Then the map $\tilde{p} : (L \times L) \times (L \times L) \to \mathbb{k}^*$ given by

$$\tilde{p}(\lambda, \mu, \lambda', \mu') = p(\lambda, \lambda') p(\mu, \mu')^{-1}$$

is a 2-cocycle on $L \times L$ such that $\tilde{p}(0,0) = 1$.
One may then define a new multiplication, m_p, on A by

$$\forall a \in A_{\lambda, \mu}, \ b \in A_{\lambda', \mu'}, \ a \cdot b = p(\lambda, \lambda')p(\mu, \mu')^{-1}ab.$$

\[\text{(2.1)}\]

Theorem 2.1. $A_p := (A, i, m_p, \epsilon, \Delta, S)$ is an L-bigraded Hopf algebra.

Proof. The proof is a slight generalization of that given in [2]. It is well known that $A_p = (A, i, m_p)$ is an associative algebra. Since Δ and ϵ are unchanged, (A, Δ, ϵ) is still a coalgebra. Thus it remains to check that ϵ, Δ are algebra morphisms and that S is an antipode.

Let $x \in A_{\lambda, \mu}$ and $y \in A_{\lambda', \mu'}$. Then

$$\epsilon(x \cdot y) = p(\lambda, \lambda')p(\mu, \mu')^{-1}\epsilon(xy)$$

$$= p(\lambda, \lambda')p(\mu, \mu')^{-1}\delta_{\lambda, -\lambda'}\delta_{\mu, -\mu'}\epsilon(x)\epsilon(y)$$

$$= p(\lambda, \lambda')p(-\lambda, -\lambda')^{-1}\epsilon(x)\epsilon(y)$$

$$= \epsilon(x)\epsilon(y)$$

So ϵ is a homomorphism. Now suppose that $\Delta(x) = \sum x_{\lambda, \nu} \otimes x_{-\nu, \mu}$ and $\Delta(y) = \sum y_{\lambda', \nu'} \otimes y_{-\nu', \mu'}$. Then

$$\Delta(x) \cdot \Delta(y) = \left(\sum x_{\lambda, \nu} \otimes x_{-\nu, \mu}\right) \cdot \left(\sum y_{\lambda', \nu'} \otimes y_{-\nu', \mu'}\right)$$

$$= \sum x_{\lambda, \nu} \cdot y_{\lambda', \nu'} \otimes x_{-\nu, \mu} \cdot y_{-\nu', \mu'}$$

$$= p(\lambda, \lambda')p(\mu, \mu')^{-1}\sum p(\nu, \nu')^{-1}p(-\nu, -\nu')x_{\lambda, \nu}y_{\lambda', \nu'} \otimes x_{-\nu, \mu}y_{-\nu', \mu'}$$

$$= p(\lambda, \lambda')p(\mu, \mu')^{-1}\Delta(xy)$$

So Δ is also a homomorphism. Finally notice that

$$\sum S(x_{(1)}) \cdot x_{(2)} = \sum S(x_{\lambda, \nu}) \cdot x_{-\nu, \mu}$$

$$= \sum p(\nu, -\nu)p(\lambda, \mu)^{-1}S(x_{\lambda, \nu})x_{-\nu, \mu}$$

$$= p(\lambda, \mu)^{-1}\sum S(x_{\lambda, \nu}) \cdot x_{-\nu, \mu}$$

$$= p(\lambda, \mu)^{-1}\epsilon(x)$$

$$= \epsilon(x)$$

A similar calculation shows that $\sum x_{(1)} \cdot S(x_{(2)}) = \epsilon(x)$. Hence S is indeed an antipode. \[\square\]

Remark. The isomorphism class of the algebra A_p depends only on the cohomology class $[\hat{p}] \in H^2(L \times L, \mathbb{K}^*)$, [2, §3].

Remark. Theorem 2.1 is a particular case of the following more general construction. Let (A, i, m) be a \mathbb{K}-algebra. Assume that $F \in GL_{\mathbb{K}}(A \otimes A)$ is given such that (with the usual notation)

1. $F(m \otimes 1) = (m \otimes 1)F_{23}F_{13}$; $F(1 \otimes m) = (1 \otimes m)F_{12}F_{13}$
2. $F(i \otimes 1) = i \otimes 1$; $F(1 \otimes i) = 1 \otimes i$
3. $F_{12}F_{13}F_{23} = F_{23}F_{13}F_{12}$, i.e. F satisfies the Quantum Yang-Baxter Equation.

Set $m_F = m \circ F$. Then (A, i, m_F) is a \mathbb{K}-algebra.

Assume furthermore that $(A, i, m, \epsilon, \Delta, S)$ is a Hopf algebra and that

1. $F : A \otimes A \to A \otimes A$ is morphism of coalgebras
2. $mF(S \otimes 1)\Delta = m(S \otimes 1)\Delta$; $mF(1 \otimes S)\Delta = m(1 \otimes S)\Delta$.

Then $A_F := (A, i, m_F, \epsilon, \Delta, S)$ is a Hopf algebra. The proofs are straightforward verifications and are left to the interested reader.
When A is an L-bigraded Hopf algebra and p is an antisymmetric bicharacter as above, we may define $F \in GL_K(A \otimes A)$ by

$$\forall a \in A_{\lambda, \mu}, \forall b \in A_{\lambda', \mu'}, \quad F(a \otimes b) = p(\lambda, \lambda')p(\mu, \mu')^{-1}a \otimes b.$$

It is easily checked that F satisfies the conditions (1) to (5) and that the Hopf algebras AF and A_p coincide.

A related construction of the quantization of a monoidal category is given in [24].

2.2. Diagonalizable subgroups of $R(A)$

In the case where L is a finitely generated group and A is a finitely generated algebra (which is the case for the multi-parameter quantum groups considered here), there is a simple geometric interpretation of L-bigradings. They correspond to algebraic group maps from the diagonalizable group L^\vee to the group of one dimensional representations of A.

Assume that K is algebraically closed. Let $(A, i, m, \epsilon, \Delta, S)$ be a Hopf K-algebra. Denote by $R(A)$ the multiplicative group of one dimensional representations of A, i.e. the character group of the algebra A. Notice that when A is a finitely generated K-algebra, $R(A)$ has the structure of an affine algebraic group over K, with algebra of regular functions given by $K[R(A)] = A/\mathfrak{J}$ where J is the semi-prime ideal $\cap_{h \in R(A)} \text{Ker } h$. Recall that there are two natural group homomorphisms $l, r : R(A) \rightarrow \text{Aut}_K(A)$ given by

$$l_h(x) = \sum h(S(x_{(1)})) x_{(2)} = \sum h^{-1}(x_{(1)}) x_{(2)}$$

$$r_h(x) = \sum x_{(1)} h(x_{(2)}).$$

Theorem 2.2. Let A be a finitely generated Hopf algebra and let L be a finitely generated abelian group. Then there is a natural bijection between:

1. L-bigradings on A;
2. Hopf algebra maps $A \rightarrow KL$ (where KL denotes the group algebra);
3. morphisms of algebraic groups $L^\vee \rightarrow R(A)$.

Proof. The bijection of the last two sets of maps is well-known. Given an L-bigrading on A, we may define a map $\phi : A \rightarrow KL$ by $\phi(a_{\lambda, \mu}) = \epsilon(a) u_\lambda$. It is easily verified that this is a Hopf algebra map. Conversely, given a map $L^\vee \rightarrow R(A)$ we may construct an L bigrading using the following result.

Theorem 2.3. Let $(A, i, m, \epsilon, \Delta, S)$ be a finitely generated Hopf algebra over K. Let H be a closed diagonalizable algebraic subgroup of $R(A)$. Denote by L the (additive) group of characters of H and by $\langle -, - \rangle : L \times H \rightarrow K^\ast$ the natural pairing. For $(\lambda, \mu) \in L \times L$ set

$$A_{\lambda, \mu} = \{ x \in A \mid \forall h \in H, \ l_h(x) = \langle \lambda, h \rangle x, \ r_h(x) = \langle \mu, h \rangle x \}.$$

Then $(A, i, m, \epsilon, \Delta, S)$ is an L-bigraded Hopf algebra.

Proof. Recall that any element of A is contained in a finite dimensional subcoalgebra of A. Therefore the actions of H via r and l are locally finite. Since they commute and H is diagonalizable, A is $L \times L$ diagonalizable. Thus the decomposition $A = \bigoplus_{(\lambda, \mu) \in L \times L} A_{\lambda, \mu}$ is a grading.

Now let C be a finite dimensional subcoalgebra of A and let $\{ c_1, \ldots, c_n \}$ be a basis of $H \times H$ weight vectors. Suppose that $\Delta(c_i) = \sum t_{ij} \otimes c_j$. Then since $c_i = \sum t_{ij} \epsilon(c_j)$, the t_{ij} span C and it is easily checked that $\Delta(t_{ij}) = \sum t_{ik} \otimes t_{kj}$. Since $l_h(c_i) = \sum h^{-1}(t_{ij}) c_j$ for all $h \in H$ and the c_i are weight vectors, we must have that $h(t_{ij}) = 0$ for $i \neq j$. This implies that

$$l_h(t_{ij}) = h^{-1}(t_{ii}) t_{ij}, \quad r_h(t_{ij}) = h(t_{jj}) t_{ij}$$

and that the map $\lambda(h) = h(t_{ii})$ is a character of H. Thus $t_{ij} \in A_{-\lambda_i, \lambda_j}$ and hence

$$\Delta(t_{ij}) = \sum t_{ik} \otimes t_{kj} \in \sum A_{-\lambda_i, \lambda_k} \otimes A_{-\lambda_j, \lambda_j}.$$
This gives the required condition on Δ. If $\lambda + \mu \neq 0$ then there exists $h \in H$ such that $\langle -\lambda, h \rangle \neq (\mu, h)$.

Let $x \in A_{\lambda, \mu}$. Then

$$\langle \mu, h \rangle e(x) = e(r_h(x)) = h(x) = e(l_{h^{-1}}(x)) = \langle -\lambda, h \rangle e(x).$$

Hence $e(x) = 0$. The assertion on S follows similarly. \hfill \qed

Remark. In particular, if G is any algebraic group and H is a diagonalizable subgroup with character group L, then we may deform the Hopf algebra $K[G]$ using an antisymmetric bicharacter on L. Such deformations are algebraic analogs of the deformations studied by Rieffel in [27].

2.3. Deformations of dual pairs. Let A and U be a dual pair of Hopf algebras. That is, there exists a bilinear pairing $\langle \ | \rangle : A \times U \to K$ such that:

1. $\langle a \mid 1 \rangle = \epsilon(a); \langle 1 \mid u \rangle = \epsilon(u)$
2. $\langle a \mid u_1 u_2 \rangle = \sum (a_{(1)} \langle a_{(2)} \mid u_2 \rangle)$
3. $\langle a_1 a_2 \mid u \rangle = \sum (a_1 \mid u_{(1)} \langle a_2 \mid u_{(2)} \rangle)$
4. $\langle S(a) \mid u \rangle = \langle a \mid S(u) \rangle.$

Assume that A is bigraded by L, U is bigraded by an abelian group Q and that there is a homomorphism $\gamma : Q \to L$ such that

$$\langle A_{\lambda, \mu} \mid U_{\gamma, \delta} \rangle \neq 0 \text{ only if } \lambda + \mu = \gamma + \delta.$$

In this case we will call the pair $\{A, U\}$ an L-bigraded dual pair. We shall be interested in §3 and §4 in the case where $Q = L$ and $\gamma = Id$.

Remark. Suppose that the bigradings above are induced from subgroups H and \tilde{H} of $R(A)$ and $R(U)$ respectively and that the map $Q \to L$ is induced from a map $h \mapsto \tilde{h}$ from H to \tilde{H}. Then the condition on the pairing may be restated as the fact that the form is ad-invariant in the sense that for all $a \in A$, $u \in U$ and $h \in H$,

$$\langle \text{ad}_h a \mid u \rangle = \langle a \mid \text{ad}_h u \rangle$$

where $\text{ad}_h a = r_h b_h(a)$.

Theorem 2.4. Let $\{A, U\}$ be the bigraded dual pair as described above. Let p be an antisymmetric bicharacter on L and let \tilde{p} be the induced bicharacter on Q. Define a bilinear form $\langle \ | \rangle_p : A_{\gamma, \delta} \times U_{\gamma, \delta} \to K$ by:

$$\langle a_{\lambda, \mu} \mid u_{\gamma, \delta} \rangle_p = p(\lambda, \gamma)^{-1}p(\mu, \delta)^{-1}\langle a_{\lambda, \mu} \mid u_{\gamma, \delta} \rangle.$$

Then $\langle \ | \rangle_p$ is a Hopf pairing and $\{A_{\gamma, \delta}, U_p\}$ is an L-bigraded dual pair.

Proof. Let $a \in A_{\lambda, \mu}$ and let $u_i \in U_{\gamma_i, \delta_i}, i = 1, 2$. Then

$$\langle a \mid u_1 u_2 \rangle_p = p(\gamma_1, \gamma_2)p(\delta_1, \delta_2)^{-1}p(\lambda, \gamma_1 + \gamma_2)^{-1}p(\mu, \delta_1 + \delta_2)^{-1}\langle a \mid u_1 u_2 \rangle.$$

Suppose that $\Delta(a) = \sum a_{\lambda, \mu} \otimes a_{-\nu, \mu}$. Then by the assumption on the pairing, the only possible value of ν for which $\langle a_{\lambda, \mu} \mid u_1 \rangle_{\nu, \mu} \langle a_{-\nu, \mu} \mid u_2 \rangle$ is non-zero is $\nu = \gamma_1 + \delta_1 - \lambda = \mu - \gamma_2 - \delta_2$. Therefore

$$\langle a_{(1)} \mid u_1 \rangle_{\gamma_1, \delta_1} \langle a_{(2)} \mid u_2 \rangle = p(\lambda, \gamma_1)^{-1}p(\nu, \delta_1)^{-1}p(-\nu, \gamma_2)^{-1}p(\lambda, \delta_1 + \delta_2)^{-1}\langle a_{(1)} \mid u_1 \rangle_{\gamma_1, \delta_1} \langle a_{(2)} \mid u_2 \rangle$$

$$= p(\lambda, \gamma_1)^{-1}p(\mu - \gamma_2 - \delta_2, \delta_1)^{-1}p(\lambda - \gamma_1 - \delta_1, \gamma_2)^{-1}p(\mu, \delta_1 + \delta_2)^{-1}\langle a_{(1)} \mid u_1 \rangle_{\gamma_1, \delta_1} \langle a_{(2)} \mid u_2 \rangle$$

$$= p(\gamma_1, \gamma_2)p(\delta_1, \delta_2)^{-1}p(\lambda, \gamma_1 + \gamma_2)^{-1}p(\mu, \delta_1 + \delta_2)^{-1}\langle a \mid u_1 u_2 \rangle = \langle a \mid u_1 u_2 \rangle_p.$$

This proves the first axiom. The others are verified similarly. \hfill \qed
Corollary 2.5. Let \(\{A, U, p\} \) be as in Theorem 2.4. Let \(M \) be a right \(A \)-comodule with structure map \(\rho : M \to M \otimes A \). Then \(M \) is naturally endowed with \(U \) and \(U_\rho \) left module structures, denoted by \((u, x) \mapsto ux \) and \((u, x) \mapsto u \cdot x \) respectively. Assume that \(M = \bigoplus_{\lambda \in \mathbb{L}} M_\lambda \) for some \(\mathbb{K} \)-subspaces such that \(\rho(M_\lambda) \subset \bigoplus_\nu M_{\nu} \otimes A_{\nu, \lambda} \). Then we have \(U_{\gamma, \delta} M_\lambda \subset M_{\lambda - \gamma, \delta} \) and the two structures are related by
\[
\forall u \in U_{\gamma, \delta}, \forall x \in M_\lambda, \quad u \cdot x = p(\lambda, \gamma - \delta) p(\gamma, \delta) ux.
\]

Proof. Notice that the coalgebras \(A \) and \(A_{p^{-1}} \) are the same. Set \(\rho(x) = \sum x_{(0)} \otimes x_{(1)} \) for all \(x \in M \). Then it is easily checked that the following formulas define the desired \(U \) and \(U_\rho \) module structures:
\[
\forall u \in U, \quad ux = \sum x_{(0)}(x_{(1)} \mid u), \quad u \cdot x = \sum x_{(0)}(x_{(1)} \mid u)_p.
\]
When \(x \in M_\lambda \) and \(u \in U_{\gamma, \delta} \) the additional condition yields
\[
u \cdot x = \sum x_{(0)}(\nu, -\gamma)p(\lambda, -\delta)(x_{(1)} \mid u).
\]
But \(\langle x_{(1)} \mid u \rangle \neq 0 \) forces \(-\nu = \lambda - \gamma - \delta \), hence \(u \cdot x = p(\lambda, \gamma - \delta)p(\gamma, \delta)\sum x_{(0)}(x_{(1)} \mid u) = p(\lambda, \gamma - \delta)p(\gamma, \delta)ux \).

Denote by \(A^{\text{op}} \) the opposite algebra of the \(\mathbb{K} \)-algebra \(A \). Let \(\{A^{\text{op}}, U, (\mid \mid)\} \) be a dual pair of Hopf algebras. The double \(A \ltimes U \) is defined as follows, \([10, 3.3]\). Let \(I \) be the ideal of the tensor algebra \(T(A \otimes U) \) generated by elements of type
\begin{align*}
(a) & \quad 1 - 1_A, \quad 1 - 1_U \\
(b) & \quad xx' - x \otimes x', \quad x, x' \in A, \quad yy' - y \otimes y', \quad y, y' \in U \\
(c) & \quad x_{(1)} \otimes y_{(1)}(x_{(2)} \mid y_{(2)}) - (x_{(1)} \mid y_{(1)})y_{(2)} \otimes x_{(2)}, \quad x \in A, \quad y \in U
\end{align*}
Then the algebra \(A \ltimes U := T(A \otimes U)/I \) is called the Drinfeld double of \(\{A, U\} \). It is a Hopf algebra in a natural way:
\[
\Delta(a \otimes u) = (a_{(1)} \otimes u_{(1)}) \otimes (a_{(2)} \otimes u_{(2)}), \quad
\epsilon(a \otimes u) = \epsilon(a)\epsilon(u), \quad S(a \otimes u) = (S(a) \otimes 1)(1 \otimes S(u)).
\]

Notice for further use that \(A \ltimes U \) can equally be defined by relations of type (a), (b), (c), (e, y, x) or (a), (b), (c, x, y), where we set
\begin{align*}
(c_{x,y}) & \quad x \otimes y = \langle x_{(1)} \mid y_{(1)} \rangle(x_{(3)} \mid S(y_{(3)}))y_{(2)} \otimes x_{(2)}, \quad x \in A, \quad y \in U \\
(c_{y,x}) & \quad y \otimes x = \langle x_{(1)} \mid S(y_{(1)}) \rangle(x_{(3)} \mid y_{(3)})x_{(2)} \otimes y_{(2)}, \quad x \in A, \quad y \in U
\end{align*}

Theorem 2.6. Let \(\{A^{\text{op}}, U\} \) be an \(\mathbb{L} \)-bigraded dual pair, \(p \) be an antisymmetric bicharacter on \(\mathbb{L} \) and \(\bar{p} \) be the induced bicharacter on \(\mathbb{Q} \). Then \(A \ltimes U \) inherits an \(\mathbb{L} \)-bigrading and there is a natural isomorphism of \(\mathbb{L} \)-bigraded Hopf algebras:
\[
(A \ltimes U)_p \cong A_p \ltimes U_{\bar{p}}.
\]

Proof. Recall that as a \(\mathbb{K} \)-vector space \(A \ltimes U \) identifies with \(A \otimes U \). Define an \(\mathbb{L} \)-bigrading on \(A \ltimes U \) by
\[
\forall \alpha, \beta \in \mathbb{L}, \quad (A \ltimes U)_{\alpha, \beta} = \sum_{\lambda - \gamma = \alpha, \mu - \delta = \beta} A_{\lambda, \mu} \otimes U_{\gamma, \delta}.
\]
To verify that this yields a structure of graded algebra on \(A \ltimes U \) it suffices to check that the defining relations of \(A \ltimes U \) are homogeneous. This is clear for relations of type (a) or (b). Let \(x_{\lambda, \mu} \in A_{\lambda, \mu} \) and \(y_{\gamma, \delta} \in U_{\gamma, \delta} \). Then the corresponding relation of type (c) becomes
\[
(*) \quad \sum_{\nu, \xi} x_{\lambda, \mu} y_{\gamma, \xi} \langle x_{-\nu, \mu} \mid y_{-\xi, \delta} \rangle = \langle x_{\lambda, \mu} \mid y_{\gamma, \xi} \rangle y_{-\xi, \delta} x_{-\nu, \mu}.
\]
Then it is clear that the matrix associated to \(\gamma \) is homogeneous. It is easy to see that the conditions (2), (3), (4) of 2.1 hold. Hence \(A \rtimes U \) is an \(L \)-bigraded Hopf algebra.

Notice that \((A_p)^{op} \cong (A^{op})_{p^{-1}} \), so that Theorem 2.4 defines a suitable pairing between \((A_p)^{op} \) and \(U_p \). Thus \(A_p \rtimes U_p \) is defined. Let \(\phi \) be the natural surjective homomorphism from \(T(A \otimes U) \) onto \(A_p \rtimes U_p \). To check that \(\phi \) induces an isomorphism it again suffices to check that \(\phi \) vanishes on the defining relations of \((A \rtimes U)_p \). Again, this is easy for relations of type (a) and (b). The relation (c) says that
\[
p(\lambda, \gamma)p(-\nu, \xi)(x_{-\nu, \mu} | y_{-\xi, \delta})x_{\lambda, \nu} \cdot y_{\gamma, \xi} = p(\xi, \nu)p(\delta, -\mu)(x_{\lambda, \mu} | y_{\gamma, \xi})y_{-\xi, \delta} \cdot x_{-\nu, \mu} = 0
\]
in \((A \rtimes U)_p \). Multiply the left hand side of this equation by \(p(\lambda, -\gamma)p(\mu, -\delta) \) and apply \(\phi \). We obtain the following expression in \(A_p \rtimes U_p \):
\[
p(-\nu, \xi)p(\mu, -\delta)(x_{-\nu, \mu} | y_{-\xi, \delta})x_{\lambda, \nu} \cdot y_{\gamma, \xi} = p(\lambda, -\gamma)p(\nu, -\xi)(x_{\lambda, \mu} | y_{\gamma, \xi})y_{-\xi, \delta} \cdot x_{-\nu, \mu}
\]
which is equal to
\[
(x_{-\nu, \mu} | y_{-\xi, \delta})p \cdot x_{\lambda, \nu} \cdot y_{\gamma, \xi} - (x_{\lambda, \mu} | y_{\gamma, \xi})p \cdot y_{-\xi, \delta} \cdot x_{-\nu, \mu}.
\]
But this is a defining relation of type (c) in \(A_p \rtimes U_p \), hence zero.

It remains to see that \(\phi \) induces an isomorphism of Hopf algebras, which is a straightforward consequence of the definitions. \(\square \)

2.4. Cocycles. Let \(L \) be, in this section, an arbitrary free abelian group with basis \(\{\omega_1, \ldots, \omega_n\} \) and set \(h^* = C \otimes_\mathbb{Z} L \). We freely use the terminology of [2]. Recall that \(H^2(L, \mathbb{C}^*) \) is in bijection with the set \(\mathcal{H} \) of multiplicatively antisymmetric \(n \times n \)-matrices \(\gamma = [\gamma_{ij}] \). This bijection maps the class \([e]\) onto the matrix defined by \(\gamma_{ij} = e(\omega_i, \omega_j)/e(\omega_j, \omega_i) \). Furthermore it is an isomorphism of groups with respect to component-wise multiplication of matrices.

Remark . The notation is as in 2.1. We recalled that the isomorphism class of the algebra \(A_p \) depends only on the cohomology class \([\tilde{p}]\) in \(H^2(L, \mathbb{C}^*) \). Let \(\gamma \in \mathcal{H} \) be the matrix associated to \(p \) and \(\gamma^{-1} \) its inverse in \(\mathcal{H} \). Notice that the multiplicative matrix associated to \([\tilde{p}]\) is then \(\tilde{\gamma} = [\gamma_{ij}^{-1}] \) in the basis given by the \((\omega_i, 0), (0, \omega_i) \in L \times L \). Therefore the isomorphism class of the algebra \(A_p \) depends only on the cohomology class \([\tilde{p}]\) in \(H^2(L, \mathbb{K}^*) \).

Let \(h \in C^* \). If \(x \in C \) we set \(q^x = \exp(-hx/2) \). In particular \(q = \exp(-h/2) \). Let \(u : L \times L \to C \) be a complex alternating \(Z \)-bilinear form. Define
\[
(2.3) \quad p : L \times L \to C^*, \quad p(\lambda, \mu) = \exp \left(-\frac{h}{4} u(\lambda, \mu) \right) = q^{\frac{1}{4} u(\lambda, \mu)}.
\]
Then it is clear that \(p \) is an antisymmetric bicharacter on \(L \).

Observe that, since \(h^* = C \otimes_\mathbb{Z} L \), there is a natural isomorphism of additive groups between \(\wedge^2 h \) and the group of complex alternating \(Z \)-bilinear forms on \(L \), where \(h \) is the \(C \)-dual of \(h^* \). Set \(Z_h = \{u \in \wedge^2 h \mid u(L \times L) \subseteq \frac{4\pi}{h} \mathbb{Z}\} \).

Theorem 2.7. There are isomorphisms of abelian groups:
\[
H^2(L, \mathbb{C}^*) \cong \mathcal{H} \cong \wedge^2 h / Z_h.
\]

Proof. The first isomorphism has been described above. Let \(\varphi = [\gamma_{ij}] \in \mathcal{H} \) and choose \(u_{ij} \), \(1 \leq i < j \leq n \) such that \(\gamma_{ij} = \exp(-\frac{h}{4} u_{ij}) \). We can define \(u \in \wedge^2 h \) by setting \(u(\omega_i, \omega_j) = u_{ij} \), \(1 \leq i < j \leq n \). It is then easily seen that one can define an injective morphism of abelian groups
\[
\varphi : H^2(L, \mathbb{C}^*) \cong \mathcal{H} \longrightarrow \wedge^2 h / Z_h, \quad \varphi(\gamma) = [u]
\]
where \([u]\) is the class of \(u \). If \(u \in \wedge^2 h \), define a 2-cocycle \(p \) by the formula (2.3). Then the multiplicative matrix associated to \([\tilde{p}]\) in \(H^2(L, \mathbb{C}^*) \) is given by
\[
\gamma_{ij} = p(\omega_i, \omega_j)/p(\omega_j, \omega_i) = p(\omega_i, \omega_j)^2 = \exp(-\frac{h}{2} u(\omega_i, \omega_j)).
\]
This shows that \([u] = \varphi([\gamma_0])\); thus \(\varphi\) is an isomorphism. \(\square\)

We list some consequences of Theorem 2.7. We denote by \([u]\) an element of \(\wedge^2 \mathfrak{h}/\mathbb{Z}_h\) and we set \([p] = \varphi^{-1}([u])\). We have seen that we can define a representative \(p\) by the formula (2.3).

1. \([p]\) of finite order in \(H^2(\mathbb{L}, \mathbb{C}^*) \leftrightarrow u(\mathbb{L} \times \mathbb{L}) \subseteq \frac{i\pi}{\hbar} \mathbb{Q}\), and \(q\) root of unity \(\leftrightarrow h \in i\pi \mathbb{Q}\).

2. Notice that \(u = 0\) is algebraic, whether \(q\) is a root of unity or not. Assume that \(q\) is a root of unity; then we get from 1 that

\(\boxed{[p]\text{ of finite order } \leftrightarrow u\text{ is algebraic.}}\)

3. Assume that \(q\) is not a root of unity and that \(u \neq 0\). Then \([p]\) of finite order implies \((0) \neq u(\mathbb{L} \times \mathbb{L}) \subseteq \frac{i\pi}{\hbar} \mathbb{Q}\). This shows that

\(0 \neq u\text{ algebraic } \Rightarrow [p]\text{ is not of finite order.}\)

Definition. The bicharacter \(p : (\lambda, \mu) \mapsto q^{\frac{1}{2}u(\lambda,\mu)}\) is called \(q\)-rational if \(u \in \wedge^2 \mathfrak{h}\) is algebraic.

The following technical result will be used in the next section. Recall the definition of \(\Phi_- = \Phi - I\) given in the Section 1.

Proposition 2.8. Let \(K = \{\lambda \in \mathbb{L} : (\Phi_- \lambda, \mathbb{L}) \subset 4\pi \mathbb{Z}\}\). If \(q\) is not a root of unity, then \(K = 0\).

Proof. Let \(\lambda \in K\). We can define \(z : \mathfrak{h}_Q^* \rightarrow \mathbb{Q}\), by

\(\forall \mu \in \mathfrak{h}_Q^*, \quad (\Phi_- \lambda, \mu) = \frac{4i\pi}{\hbar} z(\mu).\)

The map \(z\) is clearly \(\mathbb{Q}\)-linear. It follows, since \((\ ,\)\) is non-degenerate on \(\mathfrak{h}_Q^*\), that there exists \(\nu \in \mathfrak{h}_Q^*\) such that \(z(\mu) = (\nu, \mu)\) for all \(\mu \in \mathfrak{h}_Q^*\). Therefore \(\Phi_- \lambda = \frac{4i\pi}{\hbar} \nu\), and so \(\Phi \lambda = \lambda + \frac{4i\pi}{\hbar} \nu\).

Now, \((\Phi \lambda, \lambda) = u(\lambda, \lambda) = 0\) implies that

\(\frac{4i\pi}{\hbar} (\nu, \lambda) = -(\lambda, \lambda)\)

If \((\lambda, \lambda) \neq 0\) then \(h \in i\pi \mathbb{Q}\), contradicting the assumption that \(q\) is not a root of unity. Hence \((\lambda, \lambda) = 0\), which forces \(\lambda = 0\) since \(\lambda \in \mathbb{L} \subseteq \mathfrak{h}_Q^*\). \(\square\)

3. Multiparameter Quantum Groups

3.1. One-parameter quantized enveloping algebras

The notation is as in sections 1 and 2. In particular we fix a lattice \(\mathbb{L}\) such that \(\mathbb{Q} \subseteq \mathbb{L} \subseteq \mathbb{P}\) and we denote by \(G\) the connected semi-simple algebraic group with maximal torus \(H\) such that \(\text{Lie}(G) = \mathfrak{g}\) and \(\mathbf{X}(H) \cong \mathbb{L}\).

Let \(q \in \mathbb{C}^*\) and assume that \(q\) is not a root of unity. Let \(h \in \mathbb{C} \setminus i\pi \mathbb{Q}\) such that \(q = \exp(-h/2)\) as in 2.4. We set

\[q_i = q^{d_i}, \quad \hat{q}_i = (q_i - q_i^{-1})^{-1}, \quad 1 \leq i \leq n. \]

Denote by \(U^0\) the group algebra of \(\mathbf{X}(H)\), hence

\[U^0 = \mathbb{C}[k_\lambda; \lambda \in \mathbb{L}], \quad k_0 = 1, \quad k_\lambda k_\mu = k_{\lambda + \mu}. \]

Set \(k_i = k_{\alpha_i}, \quad 1 \leq i \leq n\). The one parameter quantized enveloping algebra associated to this data, cf. [33], is the Hopf algebra

\[U_q(\mathfrak{g}) = U^0[e_i, \hat{f}_i; \quad 1 \leq i \leq n] \]
with defining relations:

\[k_\lambda e_j k_\lambda^{-1} = q^{(\lambda, \alpha_j)} e_j, \quad k_\lambda f_j k_\lambda^{-1} = q^{-(\lambda, \alpha_j)} f_j \]
\[e_i f_j - f_j e_i = \delta_{ij} q_i (k_i - k_i^{-1}) \]
\[\sum_{k=0}^{1-a_{ij}} (-1)^k \left[\frac{1-a_{ij}}{k} \right] q_i^{1-a_{ij}-k} e_j e_i^k = 0, \text{ if } i \neq j \]
\[\sum_{k=0}^{1-a_{ij}} (-1)^k \left[\frac{1-a_{ij}}{k} \right] q_i^{1-a_{ij}-k} f_i f_j^k = 0, \text{ if } i \neq j \]

where \([m]_i = (t - t^{-1}) \ldots (t^m - t^{-m})\) and \([m]_k = \left[\frac{m}{k} \right] \). The Hopf algebra structure is given by

\[\Delta(k_\lambda) = k_\lambda \otimes k_\lambda, \quad \epsilon(k_\lambda) = 1, \quad S(k_\lambda) = k_\lambda^{-1} \]
\[\Delta(e_i) = e_i \otimes 1 + k_i \otimes e_i, \quad \Delta(f_i) = f_i \otimes k_i^{-1} + 1 \otimes f_i \]
\[\epsilon(e_i) = \epsilon(f_i) = 0, \quad S(e_i) = -k_i^{-1} e_i, \quad S(f_i) = -f_i k_i. \]

We define subalgebras of \(U_q(g) \) as follows

\[U_q(n^+) = \mathbb{C}[e_i; 1 \leq i \leq n], \quad U_q(n^-) = \mathbb{C}[f_i; 1 \leq i \leq n] \]
\[U_q(b^+)^o = U^0[e_i; 1 \leq i \leq n], \quad U_q(b^-)^o = U^0[f_i; 1 \leq i \leq n]. \]

For simplicity we shall set \(U^\pm = U_q(n^\pm) \). Notice that \(U^0 \) and \(U_q(b^\pm) \) are Hopf subalgebras of \(U_q(g) \).

Recall [23] that the multiplication in \(U_q(g) \) induces isomorphisms of vector spaces

\[U_q(g) \cong U^- \otimes U^0 \otimes U^+ \cong U^+ \otimes U^0 \otimes U^- . \]

Set \(Q_+ = \oplus_{i=1}^n \mathbb{N} \alpha_i \) and

\[\forall \beta \in Q_+, \quad U^\pm_{\beta} = \{ u \in U^\pm : \forall \lambda \in L, k_\lambda u k_\lambda^{-1} = q^{(\lambda, \beta)} u \}. \]

Then one gets: \(U^\pm = \oplus_{\beta \in Q_+} U^\pm_{\beta} \).

3.2. The Rosso-Tanisaki-Killing form. Recall the following result, [28, 33].

Theorem 3.1. There exists a unique non-degenerate Hopf pairing

\[\langle \ , \ \rangle : U_q(b^+)^o \otimes U_q(b^-) \longrightarrow \mathbb{C} \]

satisfying the following conditions:

(i) \(\langle k_\lambda \mid k_\mu \rangle = q^{-(\lambda, \mu)} \);
(ii) \(\forall \lambda \in L, 1 \leq i \leq n, \langle k_\lambda \mid f_i \rangle = \langle e_i \mid k_\lambda \rangle = 0 \);
(iii) \(\forall 1 \leq i, j \leq n, \langle e_i \mid f_j \rangle = -\delta_{ij} q_i \).

2. If \(\gamma, \eta \in Q_+ \), \(\langle U^+_{\gamma} \mid U^-_{-\eta} \rangle \neq 0 \) implies \(\gamma = \eta \).

The results of §2.3 then apply and we may define the associated double:

\[D_q(g) = U_q(b^+) \times U_q(b^-). \]

It is well known, e.g. [10], that

\[D_q(g) = \mathbb{C}[s_\lambda, t_\lambda; e_i, f_i; \lambda \in L, 1 \leq i \leq n] \]

where \(s_\lambda = k_\lambda \otimes 1, t_\lambda = 1 \otimes k_\lambda, e_i = e_i \otimes 1, f_i = 1 \otimes f_i \). The defining relations of the double given in §2.3 imply that

\[s_\lambda e_j s_\lambda^{-1} = q^{(\lambda, \alpha_j)} e_j, \quad t_\lambda e_j t_\lambda^{-1} = q^{(\lambda, \alpha_j)} e_j, \quad s_\lambda f_j s_\lambda^{-1} = q^{-(\lambda, \alpha_j)} f_j, \quad t_\lambda f_j t_\lambda^{-1} = q^{-(\lambda, \alpha_j)} f_j. \]
It follows that
\[D_q(\mathfrak{g})/(s_\lambda - t_\lambda; \lambda \in \mathcal{L}) \sim U_q(\mathfrak{g}), \quad e_i \mapsto e_i, \quad f_i \mapsto f_i, \quad s_\lambda \mapsto k_\lambda, \quad t_\lambda \mapsto k_\lambda. \]
Observe that this yields an isomorphism of Hopf algebras. The next proposition collects some well known elementary facts.

Proposition 3.2.
1. Any finite dimensional simple \(U_q(\mathfrak{b}^{\pm}) \)-module is one dimensional and \(R(U_q(\mathfrak{b}^{\pm})) \) identifies with \(H \) via
 \[\forall h \in H, \quad h(k_\lambda) = \langle \lambda, h \rangle, \quad h(e_i) = 0, \quad h(f_i) = 0. \]
2. \(R(D_q(\mathfrak{g})) \) identifies with \(H \) via
 \[\forall h \in H, \quad h(s_\lambda) = \langle \lambda, h \rangle, \quad h(t_\lambda) = \langle \lambda, h \rangle^{-1}, \quad h(e_i) = h(f_i) = 0. \]

Corollary 3.3.
1. \(\{U_q(\mathfrak{b}^+)^{op}, U_q(\mathfrak{b}^-)\} \) is an \(\mathcal{L} \)-bigraded dual pair. We have
 \[k_\lambda \in U_q(\mathfrak{b}^{\pm})_{-\lambda, \lambda}, \quad e_i \in U_q(\mathfrak{b}^+)_{-\alpha_i, 0}, \quad f_i \in U_q(\mathfrak{b}^-)_{0, -\alpha_i}. \]
2. \(D_q(\mathfrak{g}) \) is an \(\mathcal{L} \)-bigraded Hopf algebra where
 \[s_\lambda \in D_q(\mathfrak{g})_{-\lambda, \lambda}, \quad t_\lambda \in D_q(\mathfrak{g})_{\lambda, -\lambda}, \quad e_i \in D_q(\mathfrak{g})_{-\alpha_i, 0}, \quad f_i \in D_q(\mathfrak{g})_{0, -\alpha_i}. \]

Proof.
1. Observe that for all \(h \in H, \)
 \[l_h(k_\lambda) = h^{-1}(k_\lambda) = \langle -\lambda, h \rangle k_\lambda, \quad r_h(k_\lambda) = h(k_\lambda) = \langle \lambda, h \rangle k_\lambda, \]
 \[l_h(e_i) = h^{-1}(e_i) = (-\alpha_i, h)e_i, \quad r_h(e_i) = e_i, \]
 \[l_h(f_i) = f_i, \quad r_h(f_i) = h(k_\lambda^{-1})f_i = \langle -\alpha_i, h \rangle f_i. \]
 It is then clear that \(U_q^{+\gamma, 0} = U_q^{+} \) and \(U_q^{-\gamma} = U_q^{-\gamma} \) for all \(\gamma \in \mathcal{Q}_+. \) The claims then follow from these formulas, Theorem 2.3, Theorem 3.1, and the definitions.

2. The fact that \(D_q(\mathfrak{g}) \) is an \(\mathcal{L} \)-bigraded Hopf algebra follows from Theorem 2.3. The assertions about the \(\mathcal{L} \times \mathcal{L} \) degree of the generators is proved by direct computation using Proposition 3.2. \(\square \)

Remark. We have shown in Theorem 2.6 that, as a double, \(D_q(\mathfrak{g}) \) inherits an \(\mathcal{L} \)-bigrading given by:
\[D_q(\mathfrak{g})_{\alpha, \beta} = \sum_{\lambda, \gamma = -\alpha, \mu = -\beta} U_q(\mathfrak{b}^+)_{\lambda, \mu} \otimes U_q(\mathfrak{b}^-)_{\gamma, \delta}. \]
It is easily checked that this bigrading coincides with the bigrading obtained in the above corollary by means of Theorem 2.3.

3.3. One-parameter quantized function algebras
Let \(M \) be a left \(D_q(\mathfrak{g}) \)-module. The dual \(M^* \) will be considered in the usual way as a left \(D_q(\mathfrak{g}) \)-module by the rule: \((uf)(x) = f(S(u)x), \) \(x \in M, f \in M^*, u \in D_q(\mathfrak{g}). \) Assume that \(M \) is an \(U_q(\mathfrak{g}) \)-module. An element \(x \in M \) is said to have weight \(\mu \in \mathcal{L} \) if \(k_\lambda x = q^{\langle \lambda, \mu \rangle} x \) for all \(\lambda \in \mathcal{L}; \) we denote by \(M_\mu \) the subspace of elements of weight \(\mu. \)

It is known, [13], that the category of finite dimensional (left) \(U_q(\mathfrak{g}) \)-modules is a completely reducible braided rigid monoidal category. Set \(\mathcal{L}^+ = \mathcal{L} \cap \mathcal{P}^+ \) and recall that for each \(\Lambda \in \mathcal{L}^+ \) there exists a finite dimensional simple module of highest weight \(\Lambda, \) denoted by \(L(\Lambda), \) cf. [29] for instance. One has \(L(\Lambda)^* \cong L(u_0 \Lambda) \) where \(u_0 \) is the longest element of \(W. \) (Notice that the results quoted usually cover the case where \(\mathcal{L} = \mathbb{Q}. \) One defines the modules \(L(\Lambda) \) in the general case in the following way. Let us denote temporarily the algebra \(U_q(\mathfrak{g}) \) for a given choice of \(\mathcal{L} \) by \(U_q(\mathfrak{L}(\mathfrak{g})). \) Given a module \(L(\lambda) \) defined on \(U_q(\mathfrak{g}) \) we may define an action of \(U_q(\mathfrak{L}(\mathfrak{g})) \) by setting \(k_\lambda x = q^{\langle \lambda, \mu \rangle} x \) for all elements \(x \) of weight \(\mu, \) where \(q^{\langle \lambda, \mu \rangle} \) is as defined in section 2.4.)

Let \(\mathcal{C}_q \) be the subcategory of finite dimensional \(U_q(\mathfrak{g}) \)-modules consisting of finite direct sums of \(L(\Lambda), \) \(\Lambda \in \mathcal{L}^+. \) The category \(\mathcal{C}_q \) is closed under tensor products and the formation of duals. Notice that \(\mathcal{C}_q \) can...
be considered as a braided rigid monoidal category of $D_q(g)$-modules where s_λ, t_λ act as k_λ on an object of C_q.

Let $M \in \text{obj}(C_q)$, then $M = \oplus_{\mu \in L} M_\mu$. For $f \in M^*$, $v \in M$ we define the coordinate function $c_{f,v} \in U_q(g)^*$ by

$$\forall u \in U_q(g), \quad c_{f,v}(u) = \langle f, uv \rangle$$

where $\langle \cdot, \cdot \rangle$ is the duality pairing. Using the standard isomorphism $(M \otimes N)^* \cong N^* \otimes M^*$ one has the following formula for multiplication,

$$c_{f,v}c_{f',v'} = c_{f \otimes f', v \otimes v'}.$$

Definition. The quantized function algebra $C_q[G]$ is the restricted dual of C_q: that is to say

$$C_q[G] = C[c_{f,v}; v \in M, f \in M^*, M \in \text{obj}(C_q)].$$

The algebra $C_q[G]$ is a Hopf algebra; we denote by Δ, ϵ, S the comultiplication, counit and antipode on $C_q[G]$. If $\{v_1, \ldots, v_s; f_1, \ldots, f_t\}$ is a dual basis for $M \in \text{obj}(C_q)$ one has

$$\Delta(c_{f,v}) = \sum_i c_{f,v_i} \otimes c_{f,v_i}, \quad \epsilon(c_{f,v}) = \langle f, v \rangle, \quad S(c_{f,v}) = c_{v,f}.$$

Notice that we may assume that $v_j \in M_{v_j}, f_j \in M_{f_j}^*$. We set

$$C(M) = C(c_{f,v}; f \in M^*, v \in M), \quad C(M)_{\lambda, \mu} = C(c_{f,v}; f \in M_{\lambda}^*, v \in M_{\mu}).$$

Then $C(M)$ is a subalgebra of $C_q[G]$ such that $C(M) = \bigotimes_{(\lambda,\mu) \in L \times L} C(M)_{\lambda,\mu}$. When $M = L(\Lambda)$ we abbreviate the notation to $C(M) = C(\Lambda)$. It is then classical that

$$C_q[G] = \bigoplus_{\Lambda \in L^*} C(\Lambda).$$

Since $C_q[G] \subset U_q(g)^*$ we have a duality pairing

$$\langle \cdot, \cdot \rangle : C_q[G] \times D_q(g) \rightarrow \mathbb{C}.$$

Observe that there is a natural injective morphism of algebraic groups

$$H \rightarrow R(C_q[G]), \quad h(c_{f,v}) = \langle \mu, h \rangle \epsilon(c_{f,v}) \text{ for all } v \in M_\mu, M \in \text{obj}(C_q).$$

The associated automorphisms $r_h, l_h \in \text{Aut}(C_q[G])$ are then described by

$$\forall c_{f,v} \in C(M)_{\lambda,\mu}, \quad r_h(c_{f,v}) = \langle \mu, h \rangle c_{f,v}, \quad l_h(c_{f,v}) = \langle \lambda, h \rangle c_{f,v}.$$

Define

$$\forall (\lambda, \mu) \in L \times L, \quad C_q[G]_{\lambda,\mu} = \{ a \in C_q[G] \mid r_h(a) = \langle \mu, h \rangle a, l_h(a) = \langle \lambda, h \rangle a \}.$$

Theorem 3.4. The pair of Hopf algebras $\{C_q[G], D_q(g)\}$ is an L-bigraded dual pair.

Proof. It follows from (3.1) that $C_q[G]$ is an L-bigraded Hopf algebra. The axioms (1) to (4) of 2.3 are satisfied by definition of the Hopf algebra $C_q[G]$. We take \sim to be the identity map of L. The condition (2.2) is consequence of $D_q(g)_{\gamma,\delta} M_\mu \subset M_{\mu - \gamma - \delta}$ for all $M \in C_q$. To verify this inclusion, notice that

$$e_j \in D_q(g)_{-\alpha_j,0}, f_j \in D_q(g)_{0,\alpha_j}, \quad e_j M_\mu \subset M_{\mu + \alpha_j}, \quad f_j M_\mu \subset M_{\mu - \alpha_j}.$$

The result then follows easily.

Consider the algebras $D_q^{-1}(g)$ and $C_q^{-1}[G]$ and use \sim to distinguish elements, subalgebras, etc. of $D_q^{-1}(g)$ and $C_q^{-1}[G]$. It is easily verified that the map $\sigma : D_q(g) \rightarrow D_q^{-1}(g)$ given by

$$s_\lambda \mapsto \tilde{s}_\lambda, \quad t_\lambda \mapsto \tilde{t}_\lambda, \quad e_i \mapsto q_i^{1/2} \tilde{f}_i \tilde{\alpha}_i, \quad f_i \mapsto q_i^{-1/2} \tilde{e}_i \tilde{\alpha}_i^{-1}$$

is an isomorphism of Hopf algebras.
For each \(\Lambda \in \mathbb{L}^+ \), \(\sigma \) gives a bijection \(\sigma : L(-\lambda_0 \Lambda) \to \hat{L}(\Lambda) \) which sends \(v \in L(-\lambda_0 \Lambda) \) onto \(\hat{v} \in \hat{L}(\Lambda) \). Therefore we obtain an isomorphism \(\sigma : \mathbb{C}_{q^{-1}}[G] \to \mathbb{C}_q[G] \) such that

\[
\forall f \in L(-\lambda_0 \Lambda)_{-\lambda}, \, \forall v \in L(-\lambda_0 \Lambda)_{\mu}, \quad \sigma(f \cdot v) = c_{f,v}.
\]

Notice that

\[
\sigma(D_q(\mathfrak{g})_{\gamma, \delta}) = D_{q^{-1}}(\mathfrak{g})_{-\gamma, -\delta} \quad \text{and} \quad \sigma(C_{q^{-1}}[G]_{\lambda, \mu}) = C_q[G]_{-\lambda, -\mu}.
\]

3.4. Deformation of one-parameter quantum groups

We continue with the same notation. Let \([p] \in H^2(\mathbb{L}, \mathbb{C}^*)\). As seen in §2.4 we can, and we do, choose \(p \) to be an antisymmetric bicharacter such that

\[
\forall \lambda, \mu \in \mathbb{L}, \quad p(\lambda, \mu) = q^{\frac{1}{2}u(\lambda, \mu)}
\]

for some \(u \in \Lambda^2 \mathfrak{h} \). Recall that \(\hat{p} \in Z^2(\mathbb{L} \times \mathbb{L}, \mathbb{C}^*) \), cf. 2.1.

We now apply the results of §2.1 to \(D_q(\mathfrak{g}) \) and \(\mathbb{C}_q[G] \). Using Theorem 2.1 we can twist \(D_q(\mathfrak{g}) \) by \(\hat{p}^{-1} \) and \(\mathbb{C}_q[G] \) by \(\hat{p} \). The resulting \(\mathbb{L} \)-bigraded Hopf algebras will be denoted by \(D_{q,p^{-1}}(\mathfrak{g}) \) and \(\mathbb{C}_{q,p}[G] \). The algebra \(\mathbb{C}_{q,p}[G] \) will be referred to as the multi-parameter quantized function algebra. Versions of \(D_{q,p^{-1}}(\mathfrak{g}) \) can be referred to by authors as the multi-parameter quantized enveloping algebra. Alternatively, this name can be applied to the quotient of \(D_{q,p^{-1}}(\mathfrak{g}) \) by the radical of the pairing with \(\mathbb{C}_{q,p}[G] \).

Theorem 3.5. Let \(U_{q,p^{-1}}(\mathfrak{b}^+) \) and \(U_{q,p^{-1}}(\mathfrak{b}^-) \) be the deformations by \(p^{-1} \) of \(U_q(\mathfrak{b}^+) \) and \(U_q(\mathfrak{b}^-) \) respectively. Then the deformed pairing

\[
\langle p^{-1} : U_{q,p^{-1}}(\mathfrak{b}^+) \otimes U_{q,p^{-1}}(\mathfrak{b}^-) \to \mathbb{C}
\]

is a non-degenerate Hopf pairing satisfying:

\[
\forall x \in \mathfrak{u}^+, \, y \in \mathfrak{u}^-, \, \lambda, \mu \in \mathbb{L}, \quad \langle x \cdot k_\lambda \mid y \cdot k_\mu \rangle_{p^{-1}} = q^{(\Phi - \lambda, \mu)} \langle x \mid y \rangle.
\]

Moreover,

\[
U_{q,p^{-1}}(\mathfrak{b}^+) \ltimes U_{q,p^{-1}}(\mathfrak{b}^-) \cong (U_q(\mathfrak{b}^+) \ltimes U_q(\mathfrak{b}^-))_{p^{-1}} = D_{q,p^{-1}}(\mathfrak{g}).
\]

Proof. By Theorem 2.4 the deformed pairing is given by

\[
\langle a_{\lambda, \mu} \mid u_{\gamma, \delta} \rangle_{p^{-1}} = p(\lambda, \gamma)p(\mu, \delta)(a_{\lambda, \mu} \mid u_{\gamma, \delta}).
\]

To prove (3.4) we can assume that \(x \in U^+_{\gamma, \delta}, \, y \in U^-_{x, -\nu} \). Then we obtain

\[
\langle x \cdot k_\lambda \mid y \cdot k_\mu \rangle_{p^{-1}} = p(\lambda + \gamma, \mu)p(\lambda, \mu - \nu)(x \cdot k_\lambda \mid y \cdot k_\mu) = p(\lambda, 2\mu)p(\lambda - \mu, \gamma - \nu)q_{-\lambda, \mu}^{-1} \langle x \mid y \rangle
\]

by the definition of the product \(\cdot \) and [33, 2.1.3]. But \((x \mid y) = 0 \) unless \(\gamma = \nu \), hence the result. Observe in particular that \((x \mid y)_{p^{-1}} = (x \mid y) \). Therefore [33, 2.1.4] shows that \(\langle p^{-1} \rangle \) is non-degenerate on \(U^+_{\gamma} \times U^-_{\gamma} \). It then follows from (3.4) and Proposition 2.8 that \(\langle p^{-1} \rangle \) is non-degenerate. The remaining isomorphism follows from Theorem 2.6.

Many authors have defined multi-parameter quantized enveloping algebras. In [14, 25] a definition is given using explicit generators and relations, and in [1] the construction is made by twisting the comultiplication, following [26]. It can be easily verified that these algebras and the algebras \(D_{q,p^{-1}}(\mathfrak{g}) \) coincide. The construction of a multi-parameter quantized function algebra by twisting the multiplication was first performed in the \(GL(n) \)-case in [2].

The fact that \(D_{q,p^{-1}}(\mathfrak{g}) \) and \(\mathbb{C}_{q,p}[G] \) form a Hopf dual pair has already been observed in particular cases, see e.g. [14]. We will now deduce from the previous results that this phenomenon holds for an arbitrary semi-simple group.

Theorem 3.6. \(\{ \mathbb{C}_{q,p}[G], D_{q,p^{-1}}(\mathfrak{g}) \} \) is an \(\mathbb{L} \)-bigraded dual pair. The associated pairing is given by

\[
\forall a \in \mathbb{C}_{q,p}[G]_{\lambda, \mu}, \forall u \in D_{q,p^{-1}}(\mathfrak{g})_{\gamma, \delta}, \quad (a, u)_p = p(\lambda, \gamma)p(\mu, \delta)(a, u).
\]
Proof. This follows from Theorem 2.4 applied to the pair \(\{A, U\} = \{\mathbb{C}q[G], D_q(g)\}\) and the bicharacter \(p^{-1}\) (recall that the map \(\gamma\) is the identity).

Let \(M \in \text{obj}(\mathbb{C}_q)\). The left \(D_q(g)\)-module structure on \(M\) yields a right \(\mathbb{C}q[G]\)-comodule structure in the usual way. Let \(\{v_1, \ldots, v_s; f_1, \ldots, f_s\}\) be a dual basis for \(M\). The structure map \(\rho : M \to M \otimes \mathbb{C}q[G]\), is given by \(\rho(x) = \sum_j v_j \otimes c_{f_j} x\) for \(x \in M\). Using this comodule structure on \(M\), one can check that \(M_{\mu} = \{x \in M \mid \forall h \in H, r_h(x) = (\mu, h)x\}\).

Proposition 3.7. Let \(M \in \text{obj}(\mathbb{C}_q)\). Then \(M\) has a natural structure of left \(D_{q,p^{-1}}(g)\) module. Denote by \(M^\ast\) this module and by \((u, x) \mapsto u \cdot x\) the action of \(D_{q,p^{-1}}(g)\). Then \(\forall u \in D_q(g)_{\mu, \delta}, \forall x \in M_{\mu}, \ u \cdot x = p(\lambda, \delta - \gamma)p(\delta, \gamma)ux\).

Proof. The proposition is a translation in this particular setting of Corollary 2.5.

Denote by \(\mathbb{C}_{q,p}\) the subcategory of finite dimensional left \(D_{q,p^{-1}}(g)\)-modules whose objects are the \(M^\ast, M \in \text{obj}(\mathbb{C}_q)\). It follows from Proposition 3.7 that if \(M \in \text{obj}(\mathbb{C}_q)\), then \(M^\ast = \mathbb{C}q[y]d_{\mu, \mu}\), where \(M_{\mu} = \{x \in M \mid \forall \alpha \in \mathbb{L}, s_{\alpha} \cdot x = p(\mu, 2\alpha)q^{(\mu, \alpha)}x, t_{\alpha} \cdot x = p(\mu, -2\alpha)q^{(\mu, \alpha)}x\}\).

Notice that \(p(\mu, \pm 2\alpha)q^{(\mu, \alpha)} = q^{(\Phi_{\mu}, \mu)}\).

Theorem 3.8. 1. The functor \(M \to M^\ast\) from \(\mathbb{C}_q\) to \(\mathbb{C}_{q,p}\) is an equivalence of rigid monoidal categories.

2. The Hopf pairing \(\langle \cdot, \cdot \rangle_p\) identifies the Hopf algebra \(\mathbb{C}_{q,p}[G]\) with the restricted dual of \(\mathbb{C}_{q,p}\), i.e. the Hopf algebra of coordinate functions on the objects of \(\mathbb{C}_{q,p}\).

Proof. 1. One needs in particular to prove that, for \(M, N \in \text{obj}(\mathbb{C}_q)\), \(\varphi_{M,N} : (M \otimes N)^\ast \to M^\ast \otimes N^\ast\) are natural isomorphisms of \(D_{q,p^{-1}}(g)\)-modules: \(\varphi_{M,N} : (M \otimes N)^\ast \to M^\ast \otimes N^\ast\). These isomorphisms are given by \(x \otimes y \mapsto p(\lambda, \mu)x \otimes y\) for all \(x \in M_{\lambda}, y \in N_{\mu}\). The other verifications are elementary.

2. We have to show that if \(M \in \text{obj}(\mathbb{C}_q)\), \(f \in M^\ast, v \in M\) and \(u \in D_{q,p^{-1}}(g)\), then \(\langle c_{f,v}, u \rangle_p = \langle f, u \cdot v \rangle\). It suffices to prove the result in the case where \(f \in M_{\mu}^\ast, v \in M_{\mu}\) and \(u \in D_{q,p^{-1}}(g)\) and \(\gamma\).

Then \(\langle f, u \cdot v \rangle = p(\mu, \delta - \gamma)p(\delta, \gamma)\langle f, uv \rangle = \delta_{-\lambda + \gamma + \delta, \mu}p(-\lambda + \gamma + \delta, \delta - \gamma)p(\delta, \gamma)\langle f, uv \rangle = p(\lambda, \gamma)p(\mu, \delta)\langle f, uv \rangle = \langle c_{f,v}, u \rangle_p\) by Theorem 3.6.

Recall that we introduced in §3.3 isomorphisms \(\sigma : D_q(g) \to D_{q^{-1}}(g)\) and \(\sigma : \mathbb{C}q[G] \to \mathbb{C}_{q^{-1}}[G]\). From (3.3) it follows that, after twisting by \(\tilde{p}^{-1}\) or \(\tilde{p}\), \(\sigma\) induces isomorphisms

\(D_{q,p^{-1}}(g) \xrightarrow{\sim} D_{q^{-1},p^{-1}}(g), \quad \mathbb{C}_{q^{-1},p}[G] \xrightarrow{\sim} \mathbb{C}_{q,p}[G]\)

which satisfy (3.2).

3.5. Braiding isomorphisms

We remarked above that the categories \(\mathbb{C}_{q,p}\) are braided. In the one parameter case this braiding is well-known. Let \(M\) and \(N\) be objects of \(\mathbb{C}_q\). Let \(E : M \otimes N \to M \otimes N\) be the operator given by

\[E(m \otimes n) = q^{(\lambda, \mu)}m \otimes n\]

for \(m \in M_{\lambda}\) and \(n \in N_{\mu}\). Let \(\tau : M \otimes N \to N \otimes M\) be the usual twist operator. Finally let \(C\) be the operator given by left multiplication by

\[C = \sum_{\beta \in \mathbb{Q}_p} C_{\beta}\]
where C_β is the canonical element of $D_q(\mathfrak{g})$ associated to the non-degenerate pairing $U^+_{\beta} \otimes U^-_{-\beta} \rightarrow \mathbb{C}$ described above. Then one deduces from [33, 4.3] that the operators

$$\theta_{M,N} = \tau \circ C \circ E^{-1} : M \otimes N \rightarrow N \otimes M$$

define the braiding on \mathcal{C}_q.

As mentioned above, the category $\mathcal{C}_{q,p}$ inherits a braiding given by

$$\psi_{M,N} = \varphi_{N,M} \circ \theta_{M,N} \circ \varphi_{M,N}^{-1}$$

where $\varphi_{M,N}$ is the isomorphism $(M \otimes N)^{-} \xrightarrow{\sim} M^{-} \otimes N^{-}$ introduced in the proof of Theorem 3.8 (the same formula can be found in [1, §10] and in a more general situation in [24]). We now note that these general operators are of the same form as those in the one parameter case. Let M and N be objects of $\mathcal{C}_{q,p}$ and let $E : M \otimes N \rightarrow M \otimes N$ be the operator given by

$$E(m \otimes n) = q^{(\Phi_+ \lambda, \mu)}_{m \otimes n}$$

for $m \in M_\lambda$ and $n \in N_\mu$. Denote by C_β the canonical element of $D_{q,p^{-1}}(\mathfrak{g})$ associated to the nondegenerate pairing $U_{q,p^{-1}}(\mathfrak{b}^+)_{-\beta} \otimes U_{q,p^{-1}}(\mathfrak{b}^-)_{0,-\beta} \rightarrow \mathbb{C}$ and let $C : M \otimes N \rightarrow M \otimes N$ be the operator given by left multiplication by

$$C = \sum_{\beta \in \mathfrak{g}_+} C_\beta.$$

Theorem 3.9. The braiding operators $\psi_{M,N}$ are given by

$$\psi_{M,N} = \tau \circ C \circ E^{-1}.$$

Moreover $(\psi_{M,N})^* = \psi_{M^*,N^*}$.

Proof. The assertions follow easily from the analogous assertions for $\theta_{M,N}$.

The following commutation relations are well known [31], [21, 4.2.2]. We include a proof for completeness.

Corollary 3.10. Let $\Lambda, \Lambda' \in \mathbf{L}^+$, let $g \in L(\Lambda')^*_{-\mu}$ and $f \in L(\Lambda)^*_{-\mu}$ and let $v_{\Lambda} \in L(\Lambda)_{\Lambda}$. Then for any $v \in L(\Lambda)_{\gamma}$,

$$c_{g,v} \cdot c_{f,v} = q^{(\Phi_+ \lambda, \gamma)-(\Phi_+ \mu, \eta)} c_{f,v} \cdot c_{g,v} + q^{(\Phi_+ \lambda, \gamma)-(\Phi_+ \mu, \eta)} \sum_{v' \in \mathfrak{g}_+} c_{f,v} \cdot c_{g,v}$$

where $f_v \in (U_{q,p^{-1}}(\mathfrak{b}^+)_{-\mu+v} \otimes U_{q,p^{-1}}(\mathfrak{b}^-)_{-\eta-v}$ are such that $\sum_{\nu} f_{\nu} \otimes g_{v} = \sum_{\beta \in \mathfrak{g}_+} C_\beta(f \otimes g)$.

Proof. Let $\psi = \psi_{L(\Lambda), L(\Lambda')}$. Notice that

$$c_{f \otimes g, \psi(v_{\Lambda} \otimes v)} = c_{\psi^*(f \otimes g), v_{\Lambda} \otimes v}.$$

Using the theorem above we obtain

$$\psi^*(f \otimes g) = q^{-\Phi_+ \lambda, \eta}(g \otimes f + \sum g_{\nu} \otimes f_{\nu})$$

and

$$\psi(v_{\Lambda} \otimes v) = q^{-\Phi_+ \lambda, \eta}(v \otimes v_{\Lambda}).$$

Combining these formulae yields the required relations.

\square
4. Prime and Primitive Spectrum of $\mathbb{C}_{q,p}[G]$

In this section we prove our main result on the primitive spectrum of $\mathbb{C}_{q,p}[G]$; namely that the H orbits inside $\text{Prim}_q \mathbb{C}_{q,p}[G]$ are parameterized by the double Weyl group. For completeness we have attempted to make the proof more or less self-contained. The overall structure of the proof is similar to that used in [16] except that the proof of the key 4.12 (and the lemmas leading up to it) form a modified and abbreviated version of Joseph’s proof of this result in the one-parameter case [18]. One of the main differences with the approach of [18] is the use of the Rosso-Tanisaki form introduced in 3.2 which simplifies the analysis of the adjoint action of $\mathbb{C}_{q,p}[G]$. The ideas behind the first few results of this section go back to Soibelman’s work in the one-parameter ‘compact’ case [31]. These ideas were adapted to the multi-parameter case by Levendorskii [20].

4.1. Parameterization of the prime spectrum. Let q, p be as in §3.4. For simplicity we set

$$A = \mathbb{C}_{q,p}[G]$$

and the product $a \cdot b$ as defined in (2.1) will be denoted by ab.

For each $\Lambda \in \mathbf{L}^+$ choose weight vectors

$$v_{\Lambda} \in L(\Lambda)_{\Lambda}, \quad v_{\Lambda}w_{\Lambda} = L(\Lambda)_{w_{\Lambda}}, \quad f_{-\Lambda} \in L(\Lambda)_{-\Lambda}, \quad f_{-w_{\Lambda}} \in L(\Lambda)_{-w_{\Lambda}}$$

such that $\langle f_{-\Lambda}, v_{\Lambda} \rangle = \langle f_{-w_{\Lambda}}, v_{w_{\Lambda}} \rangle = 1$. Set

$$A^+ = \sum_{\mu \in \mathbf{L}^+} \sum_{f \in L(\mu)^*} C_{f,v_{\mu}} \quad A^- = \sum_{\mu \in \mathbf{L}^+} \sum_{f \in L(\mu)^*} C_{f,v_{\mu}}.$$

Recall the following result.

Theorem 4.1. The multiplication map $A^+ \otimes A^- \to A$ is surjective.

Proof. Clearly it is enough to prove the theorem in the one-parameter case. When $\mathbf{L} = \mathbf{P}$ the result is proved in [31, 3.1] and [18, Theorem 3.7].

The general case can be deduced from the simply-connected case as follows. One first observes that $\mathcal{C}_q[G] \subset \mathbb{C}_q[G] = \bigoplus_{\Lambda \in \mathbf{P}^+} C(\Lambda)$. Therefore any $a \in \mathcal{C}_q[G]$ can be written in the form $a = \sum_{\Lambda, \Lambda' \in \mathbf{P}^+} c_{f,v_{\Lambda},v'_{\Lambda'}}$ where $\Lambda' - \Lambda'' \in \mathbf{L}$. Let $\Lambda \in \mathbf{P}$ and $\{v_i; f_i\}$ be a dual basis of $L(\Lambda)$. Then we have

$$1 = e(c_{v_{\Lambda}, f_{-\Lambda}}) = \sum_{i} c_{f_i, v_{\Lambda}} c_{v_i, f_{-\Lambda}}.$$

Let $\Lambda' = \Lambda + \Lambda'' \in \mathbf{L}^+$. Then, for all i, $c_{f_i, v_{\Lambda}} c_{f_i, v_{\Lambda}} \in C(\Lambda + \Lambda') \cap A^+$ and $c_{v_i, f_{-\Lambda'}} c_{v_i, f_{-\Lambda''}} \in C(-w_{\Lambda}(\Lambda + \Lambda'')) \cap A^-$. The result then follows by inserting 1 between the terms $c_{f_i, v_{\Lambda'}}$ and $c_{v_i, f_{-\Lambda''}}$.

Remark. The algebra A is a Noetherian domain (this result will not be used in the sequel). The fact that A is a domain follows from the same result in [18, Lemma 3.1]. The fact that A is Noetherian is consequence of [18, Proposition 4.1] and [6, Theorem 3.7].

For each $y \in W$ define the following ideals of A

$$I^+_y = \langle c_{f,v_{\Lambda}} \mid f \in (U_{q,p}^{-1}(b^+)L(\Lambda)_{y\Lambda})^{\perp}, \Lambda \in \mathbf{L}^+ \rangle,$$

$$I^-_y = \langle c_{f,v_{\Lambda}} \mid f \in (U_{q,p}^{-1}(b^-)L(\Lambda)_{y\Lambda})^{\perp}, \Lambda \in \mathbf{L}^+ \rangle$$

where $(\cdot)^\perp$ denotes the orthogonal in $L(\Lambda)^*$. Notice that $I^+_y = \sigma(I^-_y)$, σ as in §3.4, and that I^+_y is an $\mathbf{L} \times \mathbf{L}$ homogeneous ideal of A.

Notation. For $w = (w_+, w_-) \in W \times W$ set $I_w = I^+_{w_+} + I^-_{w_-}$. For $\Lambda \in \mathbf{L}^+$ set $c_{w_{\Lambda}} = c_{f_{-w_{\Lambda}}; v_{\Lambda}} \in C(\Lambda)_{w_{\Lambda}}$ and $\tilde{c}_{w_{\Lambda}} = c_{v_{\Lambda}; f_{-\Lambda}} \in C(-w_{\Lambda})_{w_{\Lambda}}$.
Lemma 4.2. Let $\Lambda \in \mathbf{L}^+$ and $a \in A_{-\eta, \gamma}$. Then
\[
c_{w\Lambda} a \equiv q^{(\Phi_+, \Lambda, \eta, \gamma)_{a}} c_{w\Lambda} \mod I^+_w,
\]
\[
\tilde{c}_{w\Lambda} a \equiv q^{(\Phi_-, \Lambda, \gamma, \eta)_{a}} \tilde{c}_{w\Lambda} \mod I^-_w.
\]

Proof. The first identity follows from Corollary 3.10 and the definition of I^+_w. The second identity can be deduced from the first one by applying σ.

We continue to denote by $c_{w\Lambda}$ and $\tilde{c}_{w\Lambda}$ the images of these elements in A/I_w. It follows from Lemma 4.2 that the sets
\[
\mathcal{E}_{w, +} = \{ \alpha c_{w\Lambda} \mid \alpha \in \mathbb{C}^+, \Lambda \in \mathbf{L}^+ \}, \quad \mathcal{E}_{w, -} = \{ \alpha \tilde{c}_{w\Lambda} \mid \alpha \in \mathbb{C}^+, \Lambda \in \mathbf{L}^+ \},
\]
are multiplicatively closed sets of normal elements in A/I_w. Thus \mathcal{E}_w is an Ore set in A/I_w. Define\[
A_w = (A/I_w)_{\mathcal{E}_w}.
\]

Notice that σ extends to an isomorphism $\hat{A}_w : A_w \to A_w$, where $\hat{w} = (w_-, w_+)$.\[\]

Proposition 4.3. For all $w \in W \times W$, $A_w \neq (0)$.\[\]

Proof. Notice first that since the generators of A_w and the elements of \mathcal{E}_w are $\mathbf{L} \times \mathbf{L}$ homogeneous, it suffices to work in the one-parameter case. The proof is then similar to that of [15, Theorem 2.2.3] (written in the $SL(n)$-case). For completeness we recall the steps of this proof. The technical details are straightforward generalizations to the general case of [15, loc. cit.].

For $1 \leq i \leq n$ denote by $U_q(\mathfrak{sl}(2))$ the Hopf subalgebra of $U_q(\mathfrak{g})$ generated by $e_i, f_i, k^\pm 1$. The associated quantized function algebra $A_q \cong \mathbb{C}_q[SL(2)]$ is naturally a quotient of A. Let σ_i be the reflection associated to the root α_i. It is easily seen that there exist M^+_i and M^-_i, non-zero $(A_i)_{(\sigma, \epsilon)}$ and $(A_i)_{(\epsilon, \sigma)}$ modules respectively. These modules can then be viewed as non-zero A-modules.

Let $w_+ = \sigma_{i_1} \ldots \sigma_{i_k}$ and $w_- = \sigma_{j_1} \ldots \sigma_{j_m}$ be reduced expressions for w_\pm. Then\[
M^+_{i_1} \otimes \cdots \otimes M^+_{i_k} \otimes M^-_{j_1} \otimes \cdots \otimes M^-_{j_m}
\]
is a non-zero A_w-module. □

In the one-parameter case the proof of the following result was found independently by the authors in [16, 1.2] and Joseph in [18, 6.2].

Theorem 4.4. Let $P \in \text{Spec} \mathbb{C}_q[\mu](G)$. There exists a unique $w \in W \times W$ such that $P \supset I_w$ and $(P/I_w) \cap \mathcal{E}_w = \emptyset$.

Proof. Fix a dominant weight Λ. Define an ordering on the weight vectors of $L(\Lambda)^*$ by $f \preceq f'$ if $f' \in U_q, b^{-1} (b^+)^* f$. This is a preordering which induces a partial ordering on the set of one dimensional weight spaces. Consider the set:
\[
\mathcal{F}(\Lambda) = \{ f \in L(\Lambda)^*_\mu \mid c_{f, v, \Lambda} \notin P \}.
\]

Let f be an element of $\mathcal{F}(\Lambda)$ which is maximal for the above ordering. Suppose that f' has the same property and that f and f' have weights μ and μ' respectively. By Corollary 3.10 the two elements $c_{f, v, \Lambda}$ and $c_{f', v, \Lambda}$ are normal modulo P. Therefore we have, modulo P,
\[
c_{f, v, \Lambda} c_{f', v, \Lambda} = q^{(\Phi_+, \Lambda, \mu, \gamma)_{c_{f, v, \Lambda}}} c_{f', v, \Lambda} c_{f, v, \Lambda} = q^{2(\Phi_+, \Lambda, \gamma)_{c_{f, v, \Lambda}}} c_{f, v, \Lambda} c_{f', v, \Lambda}.
\]

But, since w is alternating, $2(\Phi_+, \Lambda, \mu, \gamma) = 2(\Phi_+, \mu, \gamma, \mu) = 2(\Phi_+, \Lambda, \gamma, \mu) = 2(\Lambda, \Lambda, \gamma) = 2(\mu, \mu')$. Since P is prime and q is not a root of unity we can deduce that $\langle A, \Lambda \rangle = \langle A, \Lambda \rangle$. This forces $\mu = \mu' \in W(-\Lambda)$. In conclusion, we have shown that for all dominant Λ there exists a unique (up to scalar multiplication) maximal element $g_{\Lambda} \in \mathcal{F}(\Lambda)$ with weight $-\omega_\Lambda$, $\omega_\Lambda \in W$. Applying the argument above to a pair of such elements, $c_{g_{\Lambda}, v, \Lambda}$
and $c_{\mu,\nu}/c_{\mu,\nu}$ yields that $(w_\Lambda, w_\Lambda') = (\Lambda, \Lambda')$ for all $\Lambda, \Lambda' \in L^+$. Then it is not difficult to show that this furnishes a unique $w_+ \in W$ such that $w_+ \Lambda = w_\Lambda \Lambda$ for all $\Lambda \in L^+$. Thus for each $\Lambda \in L^+$,
\[c_{\nu,v} \in P \iff g \notin \mathcal{I}_{w_+ \Lambda}. \]
Hence $P \supset \mathcal{I}_{w_+}$ and $P \cap \mathcal{E}_{w_+} = \emptyset$. It is easily checked that such a w_+ must be unique. Using σ one deduces the existence and uniqueness of w_-.

Definition. A prime ideal P such that $P \supset \mathcal{I}_{w}$ and $P \cap \mathcal{E}_{w} = \emptyset$ will be called a prime ideal of type w. We denote by $\text{Spec}_w C_{q,p}[G]$, resp. $\text{Prim}_w C_{q,p}[G]$, the subset of $\text{Spec} C_{q,p}[G]$ consisting of prime, resp. primitive, ideals of type w.

Clearly $\text{Spec}_w C_{q,p}[G] \cong \text{Spec} A_w$ and $\sigma(\text{Spec} \overline{C_{q^{-1},p}}[G]) = \text{Spec}_w C_{q,p}[G]$. The following corollary is therefore clear.

Corollary 4.5. One has
\[\text{Spec} C_{q,p}[G] = \sqcup_{w \in W \times W} \text{Spec}_w C_{q,p}[G], \quad \text{Prim} C_{q,p}[G] = \sqcup_{w \in W \times W} \text{Prim}_w C_{q,p}[G]. \]

We end this section by a result which is the key idea in [18] for analyzing the adjoint action of A on A_w. It says that in the one parameter case the quantized function algebra $C_q[B^-]$ identifies with $U_q(b^*)$ through the Rosso-Tanisaki-Killing form, [10, 17, 18]. Evidently this continues to hold in the multi-parameter case. For completeness we include a proof of that result.

Set $C_{q,p}[B^-] = A/I_{(w_0,c)}$. The embedding $U_{q,p-1}(b^-) \to D_{q,p-1}(g)$ induces a Hopf algebra map $\phi : A \to U_{q,p-1}(b^-)^\text{op}$, where $U_{q,p-1}(b^-)^\text{op}$ denotes the cofinite dual. On the other hand the non-degenerate Hopf algebra pairing $(\langle, \rangle)_{p-1}$ furnishes an injective morphism $\theta : U_{q,p-1}(b^+)^\text{op} \to U_{q,p-1}(b^-)^*$.

Proposition 4.6. 1. $C_{q,p}[B^-]$ is an L-bigraded Hopf algebra.
2. The map $\gamma = \theta^{-1}\phi : C_{q,p}[B^-] \to U_{q,p-1}(b^+)^\text{op}$ is an isomorphism of Hopf algebras.

Proof. 1. It is easy to check that $I_{(w_0,c)}$ is an $L \times L$ graded bi-ideal of the bialgebra A. Let $\mu \in L^+$ and fix a dual basis $\{v_{\nu}; f_{-\nu}\}_\nu$ of $L(\mu)$ (with the usual abuse of notation). Then
\[\sum_{\nu} c_{\nu,f_{-\nu}} c_{f_{-\nu},v_{\nu}} = \sum_{\nu} S(c_{f_{-\nu},v_{\nu}}) c_{f_{-\nu},v_{\nu}} = c(\gamma_{\mu,\nu}). \]
Taking $\gamma = \eta = \mu$ yields $c_{\mu,\nu} = 1$ modulo $I_{(w_0,c)}$. If $\gamma = w_0\mu$ and $\eta \neq w_0\mu$, the above relation shows that $S(c_{f_{-\nu},v_{\mu}}) c_{\mu,\nu} \in I_{(w_0,c)}$. Thus $I_{(w_0,c)}$ is a Hopf ideal.

2. We first show that
\[\forall \Lambda \in L^+, c_{f_{-\nu},v_{\Lambda}} \in C(\Lambda)_{-\Lambda}, \exists! x_\Lambda \in U_{\Lambda}^+, \phi(c_{f_{-\nu},v_{\Lambda}}) = \theta(x_\Lambda \cdot k_{-\Lambda}). \]
Set $c = c_{f_{-\nu},v_{\Lambda}}$. Then $c(U_{-\eta}^+ \eta^*) = 0$ unless $\eta = \Lambda - \Lambda$; denote by \bar{c} the restriction of c to U^-. By the non-degeneracy of the pairing on $U_{\Lambda}^+ \times U_{-\Lambda}$ we know that there exists a unique $x_\Lambda \in U_{\Lambda}^+$ such that $\bar{c} = \theta(x_\Lambda)$. Then, for all $g \in U_{-\Lambda}^+$, we have
\[c(y \cdot k_{\mu}) = \langle f_{-\mu} \cdot x_\Lambda \cdot y \rangle = q^{-\langle \Phi_{-\Lambda} \mu \rangle} \bar{c}(y) = q^{-\langle \Phi_{-\Lambda} \mu \rangle} \langle x_\Lambda \cdot f_{-\mu} \cdot y \rangle = \langle x_\Lambda \cdot k_{-\Lambda} \cdot f_{-\mu} \cdot y \rangle \]
by (3.4). This proves (4.1).

We now show that ϕ is injective on A^+. Suppose that $c = c_{f_{-\nu},v_{\Lambda}} \in C(\Lambda)_{-\Lambda} \cap \text{Ker} \phi$, hence $c = 0$ on $U_{q,p-1}(b^-)$. Since $L(\Lambda) = U_{q,p-1}(b^-) v_{\Lambda} = D_{q,p-1}(g) v_{\Lambda}$ it follows that $c = 0$. An easy weight argument using (4.1) shows then that ϕ is injective on A^+.

It is clear that $\text{Ker} \phi \supset I_{(w_0,c)}$, and that $A^+A^* = A$ implies $\phi(A) = \phi(A^+\bar{c}_\mu)$, where $c_\mu \in L^+$. Since $\bar{c}_\mu = c_\mu^\text{op}$ modulo $I_{(w_0,c)}$ by part 1, if $a \in A$ there exists $\nu \in L^+$ such that $\phi(\bar{c}_\mu) \phi(a) = \phi(a^+)$.

The inclusion $\text{Ker} \phi \subset I_{(w_0,c)}$ follows easily. Therefore γ is a well defined Hopf algebra morphism.
If \(\alpha_j \in B \), there exists \(\Lambda \in \mathbf{L}^+ \) such that \(L(\Lambda)_{-\alpha_j} \neq 0 \). Pick \(0 \neq f \in L(\Lambda)_{-\alpha_j}^* \). Then (4.1) shows that, up to some scalar, \(\phi(cf,v) = \theta(e_j, k_{-\Lambda}) \). If \(\lambda \in \mathbf{L} \), there exists \(\Lambda \in \mathbf{W} \cap \mathbf{L}^+ \); in particular \(L(\Lambda)_{\lambda} \neq 0 \). Let \(v \in L(\Lambda)_{\lambda} \) and \(f \in L(\Lambda)_{-\lambda}^* \) such that \((f,v) = 1 \). Then it is easily verified that \(\phi(cf,v) = \theta(1-\Lambda) \). This proves that \(\gamma \) is surjective, and the proposition.

4.2. The adjoint action. Recall that if \(M \) is an arbitrary \(A \)-bimodule one defines the adjoint action of \(A \) on \(M \) by

\[
\forall a \in A, \ x \in M, \ \text{ad}(a)x = \sum a_{(1)}xS(a_{(2)}).
\]

Then it is well known that the subspace of ad-invariant elements \(M^{\text{ad}} = \{ x \in M \ | \ \forall a \in A, \ \text{ad}(a)x = \epsilon(a)x \} \) is equal to \(\{ x \in M \ | \ \forall a \in A, \ ax = xa \} \). Henceforth we fix \(w \in W \times W \) and work inside \(A_w \). For \(\Lambda \in \mathbf{L}^+, \ f \in L(\Lambda)^* \) and \(v \in L(\Lambda) \) we set

\[
z_f^w = c_{w^\Lambda}f, z_w^\Lambda = \overline{c_{w^\Lambda}}v, \ d_\Lambda = (c_{w^\Lambda}c_{w^\Lambda})^{-1}.
\]

Notice then that, for \(\Lambda \in \mathbf{L}^+ \), the "new" \(c_{w^\Lambda} \) belongs to \(C^*c_{\Lambda,w^\Lambda} \) (similarly for \(\overline{c_{w^\Lambda}} \)). Define subalgebras of \(A_w \) by

\[
C_w = \mathbb{C}[z_f^w, z_v^\Lambda, c_{w^\Lambda} ; f \in L(\Lambda)^*, v \in L(\Lambda), \Lambda \in \mathbf{L}^+, \Lambda \in \mathbf{L}] \quad \text{and} \quad C_w^+ = \mathbb{C}[z_f^w ; f \in L(\Lambda)^*, \Lambda \in \mathbf{L}^+].
\]

Recall that the torus \(H \) acts on \(A_{\Lambda,\mu} \) by \(r_h(a) = \mu(h)a \), where \(\mu(h) = \langle \mu, h \rangle \). Since the generators of \(I_w \) and the elements of \(E_w \) are eigenvectors for \(H \), the action of \(H \) extends to an action on \(A_w \). The algebras \(C_w \) and \(C_w^+ \) are obviously \(H \)-stable.

Theorem 4.7. 1. \(C_w^H = \mathbb{C}[z_f^w, z_v^\Lambda ; f \in L(\Lambda)^*, v \in L(\Lambda), \Lambda \in \mathbf{L}^+] \).

2. The set \(\mathcal{D} = \{ d_\Lambda ; \Lambda \in \mathbf{L}^+ \} \) is an Ore subset of \(C_w^H \). Furthermore \(A_w = (C_w)_{\mathcal{D}} \) and \(A_w^H = (C_w^H)_{\mathcal{D}} \).

3. For each \(\Lambda \in \mathbf{L} \), let \((A_w)_{\Lambda} = \{ a \in A_w \ | \ r_h(a) = \lambda(h)a \} \). Then \(A_w = \bigoplus_{\Lambda \in \mathbf{L}} (A_w)_{\Lambda} \) and \((A_w)_{\Lambda} = A_w c_{w^\Lambda} \). Moreover each \((A_w)_{\Lambda} \) is an ad-invariant subspace.

Proof. Assertion 1 follows from

\[
\forall h \in H, \ r_h(z_f^w) = z_{f^w h}, \ r_h(c_{w^\Lambda}) = \lambda(h)c_{w^\Lambda}, \ r_h(\overline{c_{w^\Lambda}}) = \lambda(h)^{-1}\overline{c_{w^\Lambda}}.
\]

Let \(\{ v_i ; f_i \} \) be a dual basis for \(L(\Lambda) \). Then

\[
1 = \epsilon(c_{\Lambda-w^\Lambda}, v) = \sum S(c_{\Lambda-w^\Lambda}, v) c_{f_i, v} = \sum_\Lambda c_{v_i, f_i} c_{f_i, v}.
\]

Multiplying both sides of the equation by \(d_\Lambda \) and using the normality of \(c_{w^\Lambda} \) and \(\overline{c_{w^\Lambda}} \) yields \(d_\Lambda = \sum a_i z_{f_i}^w \) for some \(a_i \in \mathbb{C} \). Thus \(\mathcal{D} \subset C_w^H \). Now by Theorem 4.1 any element of \(A_w \) can be written in the form \(c_{f_1, v_1} c_{f_2, v_2} d_\Lambda^{-1} \) where \(v_1 = v_{\Lambda_1}, \ v_2 = v_{\Lambda_2} \) and \(\Lambda_1, \Lambda_2, \Lambda \in \mathbf{L}^+ \). This element lies in \((A_w)_{\Lambda} \) if and only if \(\Lambda_1 - \Lambda_2 = \lambda \). In this case \(c_{f_1, v_1} c_{f_2, v_2} d_\Lambda^{-1} \) is equal, up to a scalar, to the element \(z_{f_i}^w z_{f_i}^w d_\Lambda^{-1} c_{w^\Lambda} \in (C_w^H)_{\mathcal{D}} c_{w^\Lambda} \). Since the adjoint action commutes with the right action of \(H, (A_w)_{\Lambda} \) is an ad-invariant subspace. The remaining assertions then follow.

We now study the adjoint action of \(\mathbb{C}_{q,p}[G] \) on \(A_w \). The key result is Theorem 4.12.

Lemma 4.8. Let \(T_\Lambda = \{ z_f^w \ | \ f \in L(\Lambda)^* \} \). Then \(C_w^+ = \bigcup_{\Lambda \in \mathbf{L}} T_\Lambda \).
Proof. It suffices to prove that if $\Lambda, \Lambda' \in \mathbf{L}^+$ and $f \in L(\Lambda)^*$, then there exists a $g \in L(\Lambda + \Lambda')^*$ such that $z_g^+ = z_f^+$. Clearly we may assume that f is a weight vector. Let $i : L(\Lambda + \Lambda') \to L(\Lambda) \otimes L(\Lambda')$ be the canonical map. Then

$$c_{f,v_A}c_{f_{-w_A},v_A'} = c_{f_{-w_A},v_A} \otimes f_{-w_A} = c_{f,v_A}$$

where $g = i^*(f_{-w_A} \otimes f)$. Multiplying the images of these elements in A_w by the inverse of $c_{w(\Lambda + \Lambda')} \in \mathbb{C}^*$ yields the desired result. \hfill \square

Proposition 4.9. Let E be an object of $\mathcal{C}_{q,p}$ and let $\Lambda \in \mathbf{L}^+$. Let $\sigma : L(\Lambda) \to E \otimes L(\Lambda) \otimes E^*$ be the map $(1 \otimes \psi^{-1})(i \otimes 1)$ where $i : C \to E \otimes E^*$ is the canonical embedding and $\psi^{-1} : E^* \otimes L(\Lambda) \to L(\Lambda) \otimes E^*$ is the inverse of the braiding map described in §3.5. Then for any $c = c_{g,v} \in C(E)_{-\gamma}$ and $f \in L(\Lambda)^*$

$$\text{ad}(c).z_f^+ = q(\Phi_{w,A,n})z_{g,v}^+(v \otimes f \otimes g)$$

In particular C_w^+ is a locally finite $\mathcal{C}_{q,p}[G]$-module for the adjoint action.

Proof. Let $\{v_i; g_i\}$ be a dual basis of E where $v_i \in E_{v_i}$, $g_i \in E^*_{v_i}$. Then $i(1) = \sum v_i \otimes g_i$. By (3.5) we have

$$\psi^{-1}(g_i \otimes v_{A}) = a_i(v_{A} \otimes g_i)$$

where $a_i = q^{-}(\Phi_{w,A}) = q^{(\Phi_{w,A})}$. On the other hand the commutation relations given in Corollary 3.10 imply that $c_{g,v}c_{v_A}^{-1} = b_{c_{w}(C_{g,v})}$, where $b = q^{(\Phi_{w,A})}$. Therefore

$$\text{ad}(c).z_f^+ = \sum b_{c_{w}(C_{g,v})}c_{f,v_A}c_{v,g,i} = bc_{w}(C_{g,v},c_{v,g,i}) = bc_{w}(C_{g,v},c_{v,g,i})$$

Since the map σ is a morphism of $D_{q,p-1}(G)$-modules it is easy to see that $c_{v \otimes g,\sigma(v)} = c_{\sigma(v) \otimes g,\sigma(v)}$. \hfill \square

Let $\gamma : \mathcal{C}_{q,p}[G] \to U_{q,p-1}(\mathbf{b}^+)$ be the algebra anti-isomorphism given in Proposition 4.6.

Lemma 4.10. Let $c = c_{g,v} \in \mathcal{C}_{q,p}[G]_{-\gamma}$, $f \in L(\Lambda)^*$ be as in the previous theorem and $x \in U_{q,p-1}(\mathbf{b}^+)$ be such that $\gamma(c) = x$. Then

$$c_{S^{-1}(x),f,v_A} = c_{\sigma^*(v) \otimes g,\sigma^*(v)}$$

Proof. Notice that it suffices to show that

$$c_{S^{-1}(x),f,v_A}(y) = c_{\sigma^*(v) \otimes g,\sigma^*(v)}(y)$$

for all $y \in U_{q,p-1}(\mathbf{b}^-)$. Denote by $\langle \cdot | \cdot \rangle$ the Hopf pairing $\langle \cdot | \cdot \rangle_{p^{-1}}$ between $U_{q,p-1}(\mathbf{b}^+)^{op}$ and $U_{q,p-1}(\mathbf{b}^-)$ as in §3.4. Let χ be the one dimensional representation of $U_{q,p-1}(\mathbf{b}^+)$ associated to v, and let $\tilde{\chi} = \chi \cdot \gamma$. Notice that $\chi(x) = \langle x | \cdot \rangle_{p^{-1}}$; so $\tilde{\chi}(c) = c(\cdot _{\Lambda})$. Recalling that γ is a morphism of coalgebras and using the relation (cxy) of §2.3 in the double $U_{q,p-1}(\mathbf{b}^+)$ \times $U_{q,p-1}(\mathbf{b}^-)$, we obtain

$$c_{S^{-1}(x),f,v_A}(y) = \langle f(xyv) \rangle = \sum \langle x_{(1)} | y_{(1)} \rangle | x_{(2)} \rangle S(y_{(3)}) f(y_{(2)}v_{A})$$

$$= \sum \langle x_{(1)} | y_{(1)} \rangle | x_{(2)} \rangle S(y_{(3)}) \chi(x_{(2)}) f(y_{(2)}v_{A})$$

$$= \sum \langle x_{(1)} \chi(x_{(2)}) | y_{(1)} \rangle | x_{(2)} \rangle S(y_{(3)}) f(y_{(2)}v_{A})$$

$$= \sum \langle c_{1} \chi(c_{2}) \rangle | y_{(1)} \rangle c_{3} S(y_{(3)}) f(y_{(2)}v_{A})$$

$$= \sum r_{\tilde{\chi}}(c_{1}) | y_{(1)} \rangle c_{f,v_{A}}(y_{(2)}) S(c_{2}) | y_{(3)} \rangle.$$

Since $r_{\tilde{\chi}}(c_{g,v}) = q^{(\Phi_{-\nu} - \Lambda)}c_{g,v}$, one shows as in the proof of Proposition 4.9 that

$$c_{S^{-1}(x),f,v_A}(y) = \sum r_{\tilde{\chi}}(c_{1}) | y_{(1)} \rangle c_{f,v_{A}}(y_{(2)}) S(c_{2}) | y_{(3)} \rangle = \sum q^{(\Phi_{-\nu} - \Lambda)}(c_{g,v}c_{f,v_{A}}c_{x,g})(y) = c_{\sigma^*(v) \otimes g,\sigma^*(v)}(y),$$
Theorem 4.11. Consider C_w^+ as a $C_{q,p}[G]$-module via the adjoint action. Then

1. $\text{Soc } C_w^+ = \mathbb{C}$.
2. $\text{Ann } C_w^+ \supset I_{(w_0,e)}$.
3. The elements $c_{f-\mu,v_\mu}$, $\mu \in \mathbf{L}^+$, act diagonalizably on C_w^+.
4. $\text{Soc } C_w^+ = \{ z \in C_w^+ \mid \text{Ann } z \supset I_{(e,e)} \}$.

Proof. For $\Lambda \in \mathbf{L}^+$, define a $U_{q,p}^{-1}(b^+)$-module by

$$S_\Lambda = (U_{q,p}^{-1}(b^+)v_{w_+\Lambda})^* = L(\Lambda)^*/((U_{q,p}^{-1}(b^+)v_{w_+\Lambda})^\perp).$$

It is easily checked that $\text{Soc } S_\Lambda = \mathbb{C}f_{-w_+\Lambda}$ (see [18, 7.3]). Let $\delta : S_\Lambda \to T_\Lambda$ be the linear map given by $f \mapsto z_f^\perp$. Denote by ζ the one-dimensional representation of $C_{q,p}[G]$ given by $\zeta(c) = c(t_{-w_+\Lambda})$. Let $e = e_{g,v} \in C(E)_{-\eta}$. Then $l_\zeta(c) = q^{(\Phi_{-\eta}, w_4, \Lambda)}c = q^{-(\Phi_{+w_4, \eta, \Lambda})}c$. Then, using Proposition 4.9 and Lemma 4.10 we obtain,

$$\text{ad}(l_\zeta(c)) \delta(f) = q^{-\Phi_{-\eta, w_4, \Lambda}} \text{ad}(c). z_f^\perp = z_{S^\perp(z(c))}^\perp = \delta(S^{-1}(\gamma(c))f).$$

Hence, $\text{ad}(l_\zeta(c)) \delta(f) = \delta(S^{-1}(\gamma(c))f)$ for all $c \in A$. This immediately implies part (2) since $\text{Ker } \gamma \supset I_{(w_0,e)}$ and $l_\zeta(I_{(w_0,e)}) = I_{(w_0,e)}$. If S_Λ is given the structure of an A-module via $S^{-1}\gamma$, then δ is a homomorphism from S_Λ to the module T_Λ twisted by the automorphism l_ζ. Since $\delta(f_{-w_+\Lambda}) = 1$ it follows that δ is bijective and that $\text{Soc } T_\Lambda = \delta(\text{Soc } S_\Lambda) = \mathbb{C}$. Part (1) then follows from Lemma 4.8. Part (3) follows from the above formula and the fact that $\gamma(c_{f-\mu,v_\mu}) = s_{-\mu}$. Since $A/I_{(e,e)}$ is generated by the images of the elements $c_{f-\mu,v_\mu}$, (4) is a consequence of the definitions.

Theorem 4.12. Consider C_w^H as a $C_{q,p}[G]$-module via the adjoint action. Then

$$\text{Soc } C_w^H = \mathbb{C}.$$

Proof. By Theorem 4.11 we have that $\text{Soc } C_w^H = \mathbb{C}$. Using the map σ, one obtains analogous results for C_w^-. The map $C_w^+ \otimes C_w^- \to C_w^H$ is a module map for the adjoint action which is surjective by Theorem 4.1. So it suffices to show that $\text{Soc } C_w^+ \otimes C_w^- = \mathbb{C}$. The following argument is taken from [18].

By the analog of Theorem 4.11 for C_w^- we have that the elements $c_{f-\Lambda,v_\Lambda}$ act as commuting diagonalizable operators on C_w^-. Therefore an element of $C_w^+ \otimes C_w^-$ may be written as $\sum a_i \otimes b_i$ where the b_i are linearly independent weight vectors. Let c_{f,v_Λ} be a generator of I_{ei}^+. Suppose that $\sum a_i \otimes b_i \in \text{Soc } (C_w^+ \otimes C_w^-)$. Then

$$0 = \text{ad}(c_{f,v_\Lambda})(\sum a_i \otimes b_i) = \sum_{i,j} \text{ad}(c_{f,v_\Lambda}). a_i \otimes \text{ad}(c_{f,v_\Lambda}). b_i = \sum_i \text{ad}(c_{f,v_\Lambda}). a_i \otimes \text{ad}(c_{f,v_\Lambda}). b_i = \sum_i \text{ad}(c_{f,v_\Lambda}). a_i \otimes a_i b_i$$

for some $a_i \in \mathbb{C}^*$. Thus $\text{ad}(c_{f,v_\Lambda}). a_i = 0$ for all i. Thus the a_i are annihilated by the left ideal generated by the c_{f,v_Λ}. But this left ideal is two-sided modulo $I_{(w_0,e)}$ and $\text{Ann } C_w^+ \supset I_{(w_0,e)}$. Thus the a_i are annihilated by $I_{(e,e)}$ and so lie in $\text{Soc } C_w^H$ by Theorem 4.11. Thus $\sum a_i \otimes b_i \in \text{Soc } (C \otimes C^-) = \mathbb{C} \otimes \mathbb{C}$. □

Corollary 4.13. The algebra A_w^H contains no nontrivial ad-invariant ideals. Furthermore, $(A_w^H)^{ad} = \mathbb{C}$.

Proof. Notice that Theorem 4.12 implies that C_w^H contains no nontrivial ad-invariant ideals. Since A_w^H is a localization of C_w^H the same must be true for A_w^H. Let $a \in (A_w^H)^{ad} \setminus \mathbb{C}$. Then a is central and so for any $\alpha \in \mathbb{C}$, $(a - \alpha)$ is a non-zero ad-invariant ideal of A_w^H. This implies that $a - \alpha$ is invertible in A_w^H for any $\alpha \in \mathbb{C}$. This contradicts the fact that A_w^H has countable dimension over \mathbb{C}. □
Theorem 4.14. Let Z_w be the center of A_w. Then

1. $Z_w = A_w^{ad}$;
2. $Z_w = \bigoplus_{\lambda \in \text{L}} Z_{\lambda}$ where $Z_{\lambda} = Z_w \cap A_w^{H} c_{w,\lambda}$;
3. If $Z_{\lambda} \neq (0)$, then $Z_{\lambda} = Cu_{\lambda}$ for some unit u_{λ};
4. The group H acts transitively on the maximal ideals of Z_w.

Proof. The proof of (1) is standard. Assertion (2) follows from Theorem 4.7. Let u_{λ} be a non-zero element of Z_{λ}. Then $u_{\lambda} = ac_{w,\lambda}$ for some $a \in A_w$. This implies that a is normal and hence a generates an ad-invariant ideal of A_w^{H}. Thus a (and hence also u_{λ}) is a unit by Theorem 4.13. Since $Z_0 = \mathbb{C}$, it follows that $Z_{\lambda} = Cu_{\lambda}$. Since the action of H is given by $\eta(h)u_{\lambda} = \lambda(h)u_{\lambda}$, it is clear that H acts transitively on the maximal ideals of Z_w. \qed

Theorem 4.15. The ideals of A_w are generated by their intersection with the center, Z_w.

Proof. Any element $f \in A_w$ may be written uniquely in the form $f = \sum a_{\lambda} c_{w,\lambda}$ where $a_{\lambda} \in A_w^{H}$. Define $\pi : A_w \to A_w^{H}$ to be the projection given by $\pi(\sum a_{\lambda} c_{w,\lambda}) = a_0$ and notice that π is a module map for the adjoint action. Define the support of f to be $\text{Supp}(f) = \{\lambda \in \text{L} \mid a_\lambda \neq 0\}$. Let I be an ideal of A_w. For any set $Y \subseteq \text{L}$ such that $0 \in Y$ define

$I_Y = \{b \in A_w^{H} \mid b = \pi(f) \text{ for some } f \in I \text{ such that } \text{Supp}(f) \subseteq Y\}$

If I is ad-invariant then I_Y is an ad-invariant ideal of A_w^{H} and hence is either (0) or A_w^{H}.

Now let $I' = (I \cap Z_w)A_w$ and suppose that $I \neq I'$. Choose an element $f = \sum a_{\lambda} c_{w,\lambda} \in I' \setminus I'$ whose support S has the smallest cardinality. We may assume without loss of generality that $0 \in S$. Suppose that there exists $g \in I'$ with $\text{Supp}(g) \subseteq S$. Then there exists a $g' \in I'$ with $\text{Supp}(g') \subseteq S$ and $\pi(g') = 1$. But then $f - a_0 g'$ is an element of I' with smaller support than F. Thus there can be no elements in I' whose support is contained in S. So we may assume that $\pi(f) = a_0 = 1$. For any $c \in \mathbb{C}_{q,p}[G]$, set $f_c = \text{ad}(c).f - \epsilon(c).f$. Since $\pi(f_c) = 0$ it follows that $|\text{Supp}(f_c)| < |\text{Supp}(f)|$ and hence that $f_c = 0$. Thus $f \in I \cap A_w^{ad} = I \cap Z_w$, a contradiction. \qed

Putting these results together yields the main theorem of this section, which completes Corollary 4.5 by describing the set of primitive ideals of type w.

Theorem 4.16. For $w \in W \times W$ the subsets $\text{Prim}_w \mathbb{C}_{q,p}[G]$ are precisely the H-orbits inside $\text{Prim} \mathbb{C}_{q,p}[G]$.

Finally we calculate the size of these orbits in the algebraic case. Set $L_w = \{\lambda \in \text{L} \mid Z_{\lambda} \neq (0)\}$. Recall the definition of $s(w)$ from (1.3) and that p is called q-rational if u is algebraic. In this case we know by Theorem 1.7 that there exists $m \in \mathbb{N}^*$ such that $\Phi(mL) \subseteq L$.

Proposition 4.17. Suppose that p is q-rational. Let $\lambda \in \text{L}$ and $y_{\lambda} = c_{w,\Phi_{-} m,\lambda} c_{w,\Phi_{+} m,\lambda}$. Then

1. y_{λ} is ad-semi-invariant. In fact, for any $c \in A_{-\eta,\gamma}$,
 $$\text{ad}(c).y_{\lambda} = q^{(m \sigma(w)\lambda, \eta)} \epsilon(c)y_{\lambda}.$$
 where $\sigma(w) = \Phi_{-} w, \Phi_{+} - \Phi_{-} w, \Phi_{-}$
2. $L_w \cap 2mL = 2 \ker \sigma(w) \cap mL$
3. $\dim Z_{\lambda} = n - s(w)$

Proof. Using Lemma 4.2, we have that for $c \in A_{-\eta,\gamma}$

$$cy_{\lambda} = q^{(\Phi_{+} w, \Phi_{-} m \lambda, -\gamma)}q^{(\Phi_{+} \Phi_{-} m \lambda, \eta)}q^{(\Phi_{-} w, \Phi_{+} m \lambda, -\gamma)}y_{\lambda}c = q^{(m \sigma(w)\lambda, \eta)} y_{\lambda}c.$$

From this it follows easily that

$$\text{ad}(c).y_{\lambda} = q^{(m \sigma(w)\lambda, \eta)} \epsilon(c)y_{\lambda}.$$
Since (up to some scalar) \(y_{\lambda} = d^{-1}e^{-1}x_{m\lambda}^{-2} \), it follows from Theorem 4.7 that \(y_{\lambda} \in (A_w)_{2m\lambda} \). However, as a \((q,p)[G] \)-module via the adjoint action, \(A_w y_{\lambda} \cong A_w^H \cong C y_{\lambda} \) and hence \(\text{Soc} A_w^H y_{\lambda} = C y_{\lambda} \). Thus \(Z_{2m\lambda} \neq \{0\} \) if and only if \(y_{\lambda} \) is ad-invariant; that is, if and only if \(m\sigma(w)\lambda = 0 \). Hence

\[
\dim Z_w = \text{rk} L_w = \text{rk}(L_w \cap 2mL) = \text{rk} \ker_n \sigma(w) = \dim \ker_{n} \sigma(w) = n - s(w)
\]
as required.

Finally, we may deduce that in the algebraic case the size of the of the \(H \)-orbits \(\text{Soc}_{\mu} G \) and \(\text{Prim}_{\mu} C_{q,p}[G] \) are the same, cf. Theorem 1.8.

Theorem 4.18. Suppose that \(p \) is \(q \)-rational and let \(w \in W \times W \). Then

\[
\forall P \in \text{Prim}_{\mu} C_{q,p}[G], \quad \dim(H/\text{Stab}_H P) = n - s(w).
\]

Proof. This follows easily from theorems 4.15, 4.16 and Proposition 4.17.

References

