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Abstract

The primitive ideals of the quantum group Cq[SL(n)] are classified in the case
where q is a non-zero complex number which is not a root of unity. It is shown that
the orbits in Prim Cq[SL(n)] under the action of the character group H ∼= (C∗)n−1

are parameterized naturally by W × W where W is the associated Weyl group.
It is shown that there is a natural one-to-one correspondence between primitive
ideals of Cq[SL(n)] and symplectic leaves of the associated Poisson algebraic group
SL(n,C).

Let q be a non-zero complex number which is not a root of unity. In [3] the authors
classified the primitive ideals of the quantum group Cq[SL(3)], showing that there is a
natural bijection between the primitive ideals of Cq[SL(3)] and the symplectic leaves of
SL(3,C) for the associated Poisson group structure. Here we generalize this result to
the quantum group Cq[SL(n)]. Denote by W the associated Weyl group and let l(w)
be the length of the element w ∈ W . Let H be the usual maximal torus of SL(n).
Then SL(n) has a natural H-invariant Poisson structure and H acts by left translation
on the set SympSL(n) of symplectic leaves of SL(n). The H-orbits in SympSL(n) are
parameterized by the double Weyl group W ×W . For more details the reader is referred
to the appendix of [3] where a complete description of the symplectic leaves is given using
results of Semenov-Tian-Shansky and Lu and Weinstein (see section four for a definition
of s(w)).

Theorem 1) Symp SL(n) ∼=
⊔
w∈W×W SympwSL(n).
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2) For each w ∈ W×W , SympwSL(n) is a non-empty H-orbit. If Aẇ ∈ SympwSL(n),
then H/StabHAẇ is a torus of rank equal to n− 1− s(w).

3) The dimension of Aẇ is l(w) + s(w).

The group H occurs again in the quantum case as the character group which acts naturally
as automorphisms on Cq[G]n. The primitive spectrum PrimCq[SL(n)] therefore decom-
poses into a union of H-orbits. Following ideas of Soibelman [7, 8], we define for each
w ∈ W ×W a locally closed H-invariant subset Primw Cq[SL(n)] of PrimCq[SL(n)].
The main result of this paper is the following theorem which was conjectured in [3].

Theorem 4.2 1) Prim Cq[SL(n)] ∼=
⊔
w∈W×W Prim wCq[SL(n)].

2) For each w ∈ W×W , Prim wCq[SL(n)] is a non-empty H-orbit. If Pẇ ∈ Prim wCq[SL(n)],
then H/StabHPẇ is a torus of rank equal to n− 1− s(w).

3) The Gelfand-Kirillov dimension of Cq[SL(n)]/Pẇ is l(w) + s(w).

Since the proof follows the geometry closely, it is useful for the reader to understand
in a little more detail the d escription of the symplectic leaves of G = SL(n,C). Let
D = G × G, identify G with the diagonal subgroup of D and let Gr be the dual group.
Denote by p the natural projection G→ D/Gr. The symplectic leaves of G are precisely
the connected components of the inverse images of the left Gr-orbits in D/Gr. Set Γ =
ker p and Ḡ = p(G). Then Γ is a finite subgroup of H and Ḡ = G/Γ is an open subset
of D/Gr. For each w ∈ W ×W , let Cw be the image of the corresponding Bruhat cell
of D in D/Gr. Let Bw = Cw ∩ Ḡ and let Aw = p−1(Cw). Since the Gr-orbits in Cw form
a single H-orbit, it follows that the symplectic leaves in Aw also form a single H-orbit.
The algebras Aw, Bw and Cw defined below may be considered as quantizations of the
algebras of functions on Aw, Bw and Cw respectively. The role of the hamiltonian vector
fields in the quantized situation is played by the adjoint action of Cq[SL(n)] on itself. For
this reason, the key result is the description of the adjoint action given in section three.

Much of the inspiration for this work came from work of Soibelman [7, 8]. When q is
real, q 6= 1, the quantum group Cq[G] together wit h a natural involution * can be viewed
as a deformation of C[K], the algebra of functions on a maximal compact subgroup K of
G. Soibelman showed that the irreducible unitary representations of Cq[K] correspond to
the symplectic leaves of K. A number of key definitions and results are taken from these
papers.

These results were first announced at the Symposium on Noncommutative Rings in
Durham in July 1992. More recently Joseph has generalized the main result to the case
of an arbitrary simply connected semi-simple group.

1 Preliminaries

Denote by g and G the Lie algebra sl(n,C) and the Lie group SL(n,C) respectively. Let
q be a non-zero complex number which is not a root of unity and let Q be the subgroup
of C∗ generated by q. Denote by Cq[G] the usual quantization of C[G] and by Uq(g) the
quantized enveloping algebra. The notation used for the weights and roots of g is as in
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Bourbaki [1]. All other undefined notation will be as in [3]. The Weyl group W can be
identified in a standard way with the symmetric group Sn and we shall often make this
identification.

Let L($i) be the finite dimensional simple Uq(g)-module corresponding to the funda-
mental weight $i. Then L($i) has a basis of the form {vw$i}w∈W where each vw$i has
weight w$i. Let l−w$i be a dual basis of L($i)

∗. For y, t ∈ W , the elements c$i−y$i,t$i of
Cq[G] are defined by:

∀u ∈ Uq(g), c$i−y$i,t$i(u) = l−y$i(uvt$i).

We set c+
i,y = c$i−y$i,$i and c−i,y = c

$n−i
−yw0$n−i,w0$n−i where w0 is the longest element of W .

For each i ∈ {1, . . . , n − 1}, we define a relation on W by y ≤i w if and only if
y$i ≥ w$i. We say y =i w if and only if y−1w$i = $i. If we identify W with Sn
then this partial order has the following interpretation. If I = {1, . . . , i}, then y ≤i w
if and only if yI ≤ wI (where yI ≤ wI means that if yI = {y1 < . . . < yi} and
wI = {w1 < . . . < wi}, then yi ≤ wi for all i). Set Wi = StabW ($i).

The following proposition is proved as in [8, Proposition 3.2]. It is a consequence of
the isomorphism L($i)⊗ L($j) ∼= L($j)⊗ L($i) given by the universal R-matrix.

Proposition 1.1 Let $i, $j be fundamental weights and x, y, t ∈ W.Then

c$i−y$i,t$ic
$j
−x$j ,$j = (q2)(t$i,$j)−(x$j ,y$i)c

$j
−x$j ,$jc

$i
−y$i,t$i+

∑
u∈W

x<jux,uy<iy

gu(q)c
$j
−ux$j ,$jc

$i
−uy$i,t$i

for some gu(q) ∈ C.

Definition Let w = (w+, w−) ∈ W × W . Set Iw = 〈cεi,y | y 6≤i wε〉 and let Ew =
{c+
i,w+

, c−i,w− | i = 1, . . . , n− 1}.

Theorem 1.2 Let P ∈ Spec Cq[G]. Then there exists a unique w ∈ W ×W such that
P ⊇ Iw and P ∩ Ew = ∅.

Proof. First observe that for all i = 1, . . . , n−1, there exists a wi ∈ W such that c+
i,wi 6∈ P

but c+
i,y ∈ P for all y 6≤i wi. To see this let w and w′ be two distinct elements of

{y ∈ W | c+
i,y 6∈ P} which are maximal for ≤i. Suppose that w 6=i w

′. It follows from
Proposition 1.1 that c+

i,w and c+
i,w′ are normal and regular modulo P . Apply Proposition

1.1 to these elements and notice that the exponent of q2 is symmetric in w and w′. This
implies that ($i, $i) = (w$i, w

′$i). Hence w =i w
′. Thus we may take wi to be any

maximal element of {y ∈ W | c+
i,y 6∈ P}.

The same remark as above concerning the symmetry in wi and wj in Proposition 1.1
shows that

($i, $j) = (wi$i, wj$j), for all 1 ≤ i, j ≤ n− 1.

It is easy to see that this condition is equivalent to the existence of a unique element
w+ ∈ W such that w+ =i wi for all i.
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A similar argument produces an analogous element w−. The element w = (w+, w−) is
then the unique element such that P ⊇ Iw and P ∩ Ew = ∅. 2

Corollary 1.3 Let SpecwCq[G] = {P ∈ Spec Cq[G] | P ⊇ Iw and P ∩ Ew = ∅}. Then
Spec Cq[G] =

⊔
w∈W×W SpecwCq[G].

Let Ew be the multiplicatively closed set generated by the images of the elements of
Ew in Cq[G]/Iw. Since the elements of Ew are normal we may localise with respect to
these elements. Denote by Aw the localised algebra (Cq[G]/Iw)Ew . The analysis of Spec
Cq[G] reduces to the analysis of Spec Aw. Recall that Aw 6= 0 for all w ∈ W ×W [3,
Theorem 2.2.2].

Another important relation between the c+
i,y’s is the following.

Lemma 1.4 Let y, y′ ∈ W and i, j ∈ {1, . . . , n − 1} such that yWi ∩ y′Wj = ∅. Then
there exist scalars au,u′ such that

c+
i,yc

+
j,y′ =

∑
u,u′∈W

au,u′c
+
i,uc

+
j,u′

and au,u′ 6= 0 only if u$i + u′$j = y$i + y′$j and either u >i y or u′ >j y
′.

Proof. This is a consequence of the Plucker relations [5, 1.2]. Suppose that i ≤ j. Then
the hypothesis yWi ∩ y′Wj = ∅ is equivalent to yI 6⊆ y′J where I = {1, . . . , i} and
J = {1, . . . , j}. Let t ∈ yI\y′J . Apply [5, 1.2] in the following situation:

I1 = I, I2 = J, J1 = yI\{t}, J2 = ∅, K = y′J ∪ {t}.

In the notation of that paper, we conclude that:∑
K′∪K′′=K

sgnq(J1, K
′)sgnq(K

′, K ′′)sgnq(K
′′, J2)ξJ1∪K

′

I ξK
′′

J = 0

where #(K ′) = 1 and #(K ′′) = j. We may pick u, u′ ∈ W such that J1 ∪K ′ = uI and
K ′′ = u′J . In this case ξJ1∪K

′

I = c+
i,u and ξK

′′
J = c+

j,u′ . It is easily verified that if K ′ = {t′},
then t′ > t⇒ u >i y, t = t′ ⇒ u =i y, u

′ =i y
′ and t′ < t⇒ u′ >j y

′. 2

2 The Structure of CH
w

Recall some of the notation and basic results from section 2 of [3]. Denote by H the group
of one dimensional representations of Cq[G]. Notice that H identifies naturally with the
usual maximal torus of SL(n,C) via χ 7→ (χ(Xij)). The group H acts naturally on Cq[G]
by aχ =

∑
a(1)χ(a(2)). The elements cεi,y are eigenvectors for this action and hence there

is an induced action of H on Aw for all w. Denote by Γ the subgroup of H consisting of
representations χ such that χ(Xii) = ±1. Set Bw = AΓ

w. Then Bw contains the elements:

zεi,y = cεi,y(c
ε
i,wε)

−1, ti = c−i,w−(c+
i,w+

)−1.
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We define Cw to be the algebra

Cw = C[t±1
i , zεi,y | ε = ±, y <i wε, i = 1, . . . , n− 1].

It is shown in [3, 2.6] that there exists a normal element d ∈ Cw such that Bw = Cw[d−1].
The action of H restricts to an action on Cw and the fixed ring is the subalgebra generated
by the z’s. That is

CH
w = C[zεi,y | ε = ±, y <i wε, i = 1, . . . , n− 1].

The monomials in the t±1
i form a basis for Cw over CH

w . Hence Cw is an iterated skew
Laurent extension of CH

w .

Definition Set R+(w) = {α ∈ R | α > 0, w+(α) < 0}, R−(w) = {α ∈ R | α <
0, w−(α) > 0} and set R(w) = R+(w) ∪R−(w). For α ∈ R define jα = min{i | (α,$i) 6=
0} and lα = 1 + max{i | (α,$i) 6= 0}. For α ∈ Rε(w) set zα = zεjα,wεsα . Notice that α is
completely determined by ε, jα and lα and that #R(w) = l(w).

Theorem 2.1 Assume that 1 ≤ j ≤ n− 1, y ≤j wε. Then for ε = ±,

zεj,y ∈ C[zα | α ∈ Rε(w) and jα < j or jα = j and wεsα ≥j y].

Hence CH
w = C[zα | α ∈ R(w)].

Proof. We prove the assertion for z+
j,y, the proof in the other case being similar. The result

is trivially true in the case z+
1,w+

= 1. By induction we may assume that the result is true
for all z+

i,y′ where i < j or i = j and y <j y
′ ≤j w+. First suppose that there exists an

i < j such that w+Wi ∩ yWj = ∅. Then Lemma 1.4 implies that

z+
j,y =

∑
u,u′

au,u′z
+
i,uz

+
j,u′

where y <j u
′ ≤j w+ and au,u′ ∈ C. The result then follows by induction. On the other

hand suppose that w+Wi∩yWj 6= ∅ for all i < j. In this case we may assume that y =i w+

for all i < j. But then it is easily verified that

w+$j − y$j = εw+(j) − εy(j) = w+(γ)

where γ = εj − εw−1
+ y(j) ∈ R+(w). Thus y =j w+sγ and jγ = j. Hence z+

j,y = zγ. 2

Definition Define a total ordering ≺ on R(w) by the following rule: if α ∈ Rε(w) and
β ∈ Rη(w) then

β ≺ α if


jβ < jα, or
jβ = jα, η = +, ε = −, or
jβ = jα, ε = η, wεsβ >jα wεsα.

Notice that when jβ = jα, the condition wεsβ >jα wεsα is equivalent to wε(lβ) > wε(lα).
(This is not quite the same order as that defined in [3, Definition 3.3].)
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Theorem 2.2 Let α � β ∈ R(w). Then there exists an a ∈ Q such that zαzβ − azβzα ∈
C[zγ | γ ≺ α].

Proof. Let j = jα, i = jβ. First consider the case when α, β ∈ R+(w). If i = j, then it
follows from the Plucker relations that zα and zβ quasi-commute. Suppose on the other
hand that i < j. Set x = w+sα and y = w+sβ. It follows from Proposition 1.1 that there
exist a ∈ Q, and bu ∈ C such that

zαzβ − azβzα =
∑

x<jux≤jw
uy<iy

buz
+
j,uxz

+
i,uy.

From the previous theorem we have that

z+
j,ux ∈ C[zγ | γ ∈ R+(w) and jγ < j or jγ = j and wsγ ≥j ux],

and z+
i,uy ∈ C[zγ | jγ ≤ i]. Since jγ = j and wsγ ≥j ux >j x = wsα implies that γ ≺ α,

the result follows in this case. The proof in the case when α and β belong to R−(w) is
similar. Now consider the case α ∈ R−(w) and β ∈ R+(w). Set x = w−sβ and y = w+sα.
From Proposition 1.1, we have that :

zαzβ − azβzα =
∑

x<iux,uyw0<n−jyw0

buz
+
i,uxz

−
j,uy.

From the previous theorem, we deduce that

z+
i,ux ∈ C[zγ | γ ∈ R+(w), γ < β], z−j,ux ∈ C[zγ | γ ∈ R−(w), γ < α].

Hence the result follows easily when α and β belong to distinct Rε(w). 2

3 The Adjoint Action

Denote by Xij the usual generators for Cq[G]; that is, Xij = c$1

−(1,i)$1,(1,j)$1
. For J ⊂ Z

and k ∈ Z, define δk,J =
{

1 if k ∈ J ,
0 if k 6∈ J ;

and set q̂ = q2 − q−2.

Lemma 3.1 Let k, l ∈ {1, . . . , n}, j ∈ {1, . . . , n− 1} and y ∈ W . Set J = {1, . . . , j}.

Xklc
+
j,y = (q2)δl,J [(q2)−δk,yJ c+

j,yXkl + (δk,yJ − 1)
∑

a<k,a∈yJ
q̂(−q2)d(a,y,k)c+

j,(a,k)yXal]

where d(a, y, k) = #{x ∈ yJ | a < x < k}.

Proof. This follows from the identities [6, 4.5.1,5.1.2]. Let Cq[M(m)] be the usual quan-
tized algebra of functions on m×m matrices and let Dij be the quantum minor obtained
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by deleting the i-th row and the j-th column. Then the formulae in [6, 4.5.1,5.1.2] may
be combined to give:

XklDrm = (q2)1−δl,m [(q2)δk,r−1DrmXkl − δk,r
k−1∑
a=1

q̂(−q2)k−a−1DalXal].

Interpreting this formula for the c+
j,y yields the desired result. 2

The adjoint action of an element a ∈ Cq[G] on b ∈ Aw is given by (ad a)b =∑
a(1)bS(a(2)) where S is the antipode. We denote adXkl by adk,l. It follows from the

description of the action of Γ that Bw is invariant under the adjoint action. The following
results imply in particular that Cw and CH

w are also invariant and that the adjoint action
on Cw is locally finite.

Theorem 3.2 a) Let α ∈ R+(w), j = jα, l = lα, and y = w+sα. Then

adk,mzα =

 (q2)δk,w+J
−δk,yJzα if k = m

ak,m,yz
+
j,(m,k)y if w+(l) ≤ m < k ≤ w+(j), k 6∈ yJ, m ∈ yJ

0 otherwise

where ak,m,y ∈ C∗. In particular adw+(j),w+(l) zα ∈ C∗.

b) Let β ∈ R−(w), j = jβ, l = lβ, and y = w−sβ. Then

adk,mzβ =

 (q2)δm,w−J−δm,yJzβ if k = m
bk,m,yz

−
j,(m,k)y if w−(l) ≤ k < m ≤ w−(j), k ∈ yJ, m 6∈ yJ

0 otherwise

where bk,m,y ∈ C∗. In particular adw−(l),w−(j) zβ ∈ C∗.

Proof. a) Lemma 3.1 implies that

c+
j,w+

Xkl = (q2)−δl,J+δk,w+JXklc
+
j,w+

modulo Iw. Therefore we deduce from the lemma that

Xklz
+
j,y = (q2)δk,w+J [(q2)−δk,yJz+

j,yXkl + (δk,yJ − 1)
∑

a<k,a∈yJ
q̂(−q2)d(a,y,k)z+

j,(a,k)yXal]

Since adk,mz
+
j,y =

∑
lXklz

+
j,yS(Xlm) and

∑
bXabS(Xbd) = δa,d we deduce that

adk,mz
+
j,y =


(q2)δk,w+J

−δk,yJz+
j,y if k = m

−q̂(q2)δk,w+J (−q2)d(m,y,k)z+
j,(m,k)y if m < k,m ∈ yJ, k 6∈ yJ, (m, k)y ≤j w+

0 otherwise.

In the case where y = wsα and j = jα, it is easily seen that the condition w+(l) ≤ m <
k ≤ w+(j), k 6∈ yJ, m ∈ yJ is equivalent to m < k,m ∈ yJ, k 6∈ yJ, (m, k)y ≤j w+. A
similar argument proves part (b). 2
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Corollary 3.3 Let r ∈ N.
1. If α ∈ R+(w) and y = w+sα, then

adk,mz
r
α =


azrα if k = m
a′zr−1

α if k = w+(jα) and m = w+(lα)
0 unless w+(lα) ≤ m < k ≤ w+(jα), k 6∈ yJ, m ∈ yJ

or k = m

where a ∈ Q and a′ ∈ C∗.
2. If β ∈ R−(w) and y = w−sβ, then

adk,mz
r
β =


bzrβ if k = m

b′zr−1
β if k = w−(lβ) and m = w−(jβ)

0 unless w−(lβ) ≤ k < m ≤ w−(jβ), k ∈ yJ, m 6∈ yJ
or k = m

where b ∈ Q and b′ ∈ C∗.

Proof. The proof is analogous to that of [3, 3.9.2]. 2

It follows from Theorem 2.2 that the algebra CH
w is generated by monomials of the

form
z =

∏
γ∈R+(w)

zmγγ
∏

β∈R−(w)

z
mβ
β

where the product is taken over the γ’s according to the inverse ordering given by ≺
on R+(w) and the second product is taken over the β’s according to the ordering ≺ on
R−(w). Such monomials will be called standard monomials. In order to define an ordering
on such expressions we define a new ordering on R(w).

Definition. Define a new total ordering ≺′ in the following way: if α ∈ Rε(w) and
β ∈ Rη(w), then

α �′ β if


ε = − η = + or
ε = η, wε(lα) < wε(lβ), or
ε = η, wε(lα) = wε(lβ), jα < jβ.

The following proposition follows easily from the definition.

Proposition 3.4 Suppose α, β ∈ Rε(w).
1. If α �′ β and α � β, then jα ≥ jβ and wε(lα) < wε(lβ).
2. If α �′ β and α ≺ β, then jα < jβ and wε(lα) ≤ wε(lβ).

For a standard monomial z =
∏
α∈R(w) z

mα
α of the form given above, we define

Supp(z) = {α ∈ R(w) | mα 6= 0}

and MSupp(z) to be the largest element of Supp(z) under the ordering ≺′. Define the
degree of a non-zero standard monomial, deg(z) to be the element (mα)α of NR(w) and
define eα by (eα)β = δα,β.

8



Proposition 3.5 Let α ∈ R(w). Set (k,m) = (w+(jα), w+(lα)) if α ∈ R+(w), (k,m) =
(w−(lα), w−(jα)) if α ∈ R−(w).

1. If MSupp(z) = α, then adk,mz is a scalar multiple of a standard monomial and
deg(adk,mz) = deg(z)− eα.

2. If MSupp(z) ≺′ α, then adk,mz = 0.

Proof. Let z be a monomial such that MSupp(z) �′ α. Then we may write

z =

(∏
γ

zmγγ

)
zmαα

∏
β

z
mβ
β


where the products are ordered as described above. We prove the result by induction on
e(z) = #(Supp(z)\{α}). We first consider the case where α ∈ R−(w). We prove that if
k′ ≤ k then

adk′,mz = δk′,k

(∏
γ

adk,kz
mγ
γ

)
adk,mz

mα
α

∏
β

adm,mz
mβ
β


Suppose that e(z) = 0. Then z = zmαα and the result is true by Corollary 3.3. Now

assume that the proposition is true for all monomials y such that MSupp(y) �′ α and
e(y) < e(z). We consider three cases.
(1) Suppose that z = ξy, where ξ = zmγγ and γ ∈ R+(w). Write adk′,mz =

∑
s adk′,sξads,my.

Suppose that adk′,sξ and ads,my are non-zero for some s. From adk′,sξ 6= 0 it follows that
s ≤ k′ ≤ k. By induction we conclude from ads,my 6= 0 that s = k = k′.
(2) Suppose that z = ξy, ξ = zmγγ where γ ∈ R−(w) and γ ≺ α. Proposition 3.4
implies that jγ ≤ jα and k = w−(lα) < w−(lγ). Write adk′,mz =

∑
s adk′,sξads,my. Sup-

pose that adk′,sξ and ads,my are nonzero for some s. Then k′ ≤ s. If s 6= k′, we have
w−(lγ) ≤ k′ < s ≤ w−(jγ). Hence w−(lγ) ≤ k′ ≤ k, a contradiction. Thus s = k′ ≤ k and
by induction k ≤ k′ = s ≤ m. Hence k′ = s = k.
(3) Suppose that z = yξ where ξ = z

mβ
β where β ∈ R−(w) and β � α. Then Proposition

3.4 implies that jβ > jα and k = w−(lα) ≤ w−(lβ). Write adk′,mz = adk′,syads,mξ and
suppose that adk′,sy 6= 0 and ads,mξ 6= 0. Then s ≤ m. If s < m, we must have

w−(jα) = m 6∈ yJ = {w−(1), . . . , w−(jβ − 1), w−(lβ}.

But this contradicts jα < jβ. Hence s = m. Then adk′,my 6= 0 and induction yields the
result. The case when α ∈ R+(w) is similar. 2

Using induction on the degree of a standard monomial we then obtain:

Theorem 3.6 Let z be a standard monomial. Then there exists a monomial f in the Xij

such that
1. (adf)z ∈ C∗;
2. (adf)z′ = 0 if z′ is a standard monomial with deg z′ ≺′ deg z.
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The theorem implies in particular that the standard monomials are linearly indepen-
dent. This fact together with the commutation relations of Theorem 2.2 implies the
following.

Corollary 3.7 The algebra CH
w is an iterated skew polynomial ring in l(w) variables.

As we noted above, Cw is a skew Laurent extension of CH
w in rk G variables. Thus Cw

is a deformation of the algebra of functions on the variety Cw ∼= Cl(w)× (C∗)rk G described
in [3, A.2]. Similarly the algebra Bw = Cw[d−1] is a deformation of the algebra of functions
on the open subset Bw of Cw.

Lemma 3.8 Let k, l ∈ {1, . . . , n} and let j ∈ {1, . . . , n− 1}. Then

adk,ltj = δklq
2ψkj tj

where ψkj = δk,w+(J) − δk,w−(J).

Proof. It follows from Lemma 3.1 that Xklc
+
j,w+

= (q2)δl,J−δk,w+(J)c+
j,w+

Xkl. Similarly

Xklc
−
j,w− = (q2)δl,J−δk,w−(J)c−j,w−Xkl. The result is then clear. 2

Denote by Ψ the n× (n− 1) matrix (ψkj). It induces a map Ψ : Zn−1 → Zn.

Theorem 3.9 The subalgebra C[t±1
i | i = 1, . . . n − 1] is invariant and diagonalisable

under the adjoint action. The subalgebra of ad-invariant elements is

C[t±1
i | i = 1, . . . n− 1]ad = C[tm | Ψm = 0]

which is the algebra of functions on a (commutative) torus with rank dim kerh∗(w+w
−1
− −

Id).

Proof. It is clear from the lemma that adi,it
m = q2(Ψm)itm. Thus the subalgebra of

ad-invariants is the linear span of the monomials tm for m ∈ ker Ψ. Identify h∗ with
the usual subspace of V = 〈ε1, . . . , εn〉C. Let Φ be the linear map on V given by the
matrix [Ψ : 0] with respect to this basis. Then Φ(εi) = (w+ − w−)(ε1 + · · · + εi). Hence
rank(ker Ψ) = dim(ker Φ)− 1 = dim(kerh∗(w+ − w−)) = dim(kerh∗(w+w

−1
− − Id)). 2

4 Primitive Spectrum of Cq[G]

We are now able to deduce the main result.

Definition. Let K be a subgroup of Zn−1 such that Zn−1 = ker Ψ⊕K. Set

Cẇ = CH
w [tm |m ∈ K]

and let Bẇ = Cẇ[d−1].
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It follows from [3, 2.7] and Corollary 3.7 that Cẇ is a localization of an iterated skew
polynomial ring. Hence Cẇ and Bẇ are integral domains. Furthermore Cw ∼= Cẇ ⊗ Cad

w ,
Bw
∼= Bẇ⊗Cad

w as Cq[G]-module algebras and Cad
w = C[t±1

i | i = 1, . . . n−1]ad as described
in Theorem 3.9.

Set s(w) = codim(kerh∗(w+w
−1
− − Id)), (c.f. [3, A.2]).

Theorem 4.1 Bw
∼= Bẇ ⊗Cad

w and Bẇ is a simple algebra. The center of Bw is Cad
w and

the ideals of Bw are generated by their intersection with the center. Thus Spec Bw
∼= Spec

Cad
w and Prim Bw

∼= Prim Cad
w . The primitive ideals of Bw are maximal and form an

H-orbit. If P ∈ Prim Bw, then H/StabHP is a torus of rank equal to rank G− s(w) and
the Gelfand-Kirillov dimension of Bw/P is l(w) + s(w).

Proof. Let Pe be the ideal of Bw generated by {tm − 1 | m ∈ ker Ψ}. Then Pe is an ad-
invariant ideal andBẇ

∼= Bw/Pe as Cq[G]-module algebras. Suppose thatBẇ is not simple.
Then by ‘going up’ [4, 10.5.15] Bẇ contains a proper non-zero ad-invariant ideal, I. In this
case I∩Cẇ is a proper non-zero ad-invariant ideal of Cẇ. Let CK = C[tm |m ∈ K]. Since
CK is diagonalizable under the adjoint action and Cẇ ∼= CH

w ⊗CK as Cq[G]-modules, it
follows that the socle of Cẇ under the adjoint action is given by

SocCẇ ∼= SocCH
w ⊗CK ∼= C⊗CK.

Thus SocCẇ is a direct sum of distinct one-dimensional submodules each generated by a
unit. Since I ∩Cẇ must intersect nontrivially at least one summand of the socle, it must
contain a unit, a contradiction. Thus Bẇ is simple.

Let σ : H → H/Γ be the map σ(h) = h2Γ. Then the action of H on C[t±1
i | i =

1, . . . n − 1] factors through σ and the induced action of H/Γ is the natural action of a
torus on its algebra of functions. This, together with Theorem 3.9 implies the assertions
concerning the H-action. The assertion concerning the Gelfand-Kirillov dimension follows
from a slight generalization of [4, 8.2.10]. 2

Notice that Theorem 4.1 implies that all prime ideals of Cq[G]Γ are completely prime.
This result may also be deduced from [2] where it is proved that all prime ideals of Cq[G]
are completely prime.

Recall that a Noetherian C-algebra A is said to satisfy the Dixmier-Moeglin condition
if the following are equivalent for P ∈ SpecA: a) P is primitive; b) P is rational (the
center of the ring of fractions of A/P is C); c) P is locally closed in SpecA.

Theorem 4.2 1) Prim Cq[G] ∼=
⊔
w∈W×W PrimwCq[G].

2) For each w ∈ W ×W , PrimwCq[G] is a non-empty H-orbit. If Pẇ ∈ PrimwCq[G],
then H/StabHPẇ is a torus of rank equal to rank G− s(w).

3) The Gelfand-Kirillov dimension of Cq[G]/Pẇ is l(w) + s(w).
4) Cq[G] satisfies the Dixmier-Moeglin condition.

Proof. Notice first that Cq[G] satisies the nullstellensatz, [4, 9.1.8]. Therefore a)⇒ b) and

c)⇒ a) for any P ∈ SpecCq[G]. Let P ∈ SpecwCq[G] be rational and let Q = P ∩Cq[G]Γ.
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Since Cad
w is central in Aw, PAw ∩ Cad

w must be a maximal ideal of Cad
w . Thus QBw is

maximal by Theorem 4.1. It then follows from ‘going up’ [4, 10.5.15] that any prime ideal
strictly containing P must contain the product of the elements of Ew. Hence P is locally
closed and primitive. Thus Cq[G] satisfies the Dixmier-Moeglin condition. Since Γ acts
transitively on the primitive ideals of Cq[G] lying over Q and H acts transitively on the
maximal ideals of Bw, it follows easily that H acts transitively on Primw Cq[G]. Since
the action of H is algebraic H/StabHP must be a torus whose rank is rk G − s(w) by
Theorem 4.1. The assertion concerning the Gelfand-Kirillov dimension follows from [4,
8.2.9]. 2

Comparing this result with Theorem A.3.2 of [3], we see that there exists an H-
equivariant bijection β : Prim Cq[G] −→ Symp G such that β(PrimwCq[G]) = SympwG
for all w ∈ W ×W and such that dim β(P ) = GKdim Cq[G]/P for all P ∈ Prim Cq[G].
Thus Conjecture 1 of [3] is true.
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