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Abstract

For the subshift of finite type Σ = {0, 1, 2}N we study the convergence and the selection at
temperature zero of the Gibbs measure associated to a non-locally constant Hölder potential
which admits exactly two maximizing ergodic measures. These measures are Dirac measures
at two different fixed points and the potential is flattest at one of these two fixed points.

We prove that there always is convergence but not necessarily to the Dirac measure at the
point where the potential is the flattest. This is contrary to what was expected in the light of
the analogous problem in Aubry-Mather theory [1]. This is also contrary to the finite range
case where the equilibrium state converges to the equi-barycentre of the two Dirac measures.

Moreover we emphasize the strange behavior of the Gibbs measure: the eigenmeasure
selects one Dirac measure ( at the point where the potential is the flattest) and the eigen-
function selects the other one (at the point where the potential is the sharpest).

Keywords: selection of measures, transfer operator, Gibbs measures, equilibrium state,
ergodic optimization.
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1 Introduction

1.1 optimization and selection

In this paper we are interested in studying the problem of selection for convergence of Gibbs
measures at temperature zero. For a dynamical system (X,T ), it is usually very difficult to
describe all the orbits x ∈ X,T (x), T 2(x), . . .. The idea of Ergodic Theory is thus to describe
orbits for almost all points, where almost all means with respect to some T -invariant probability
measure. Again, usual dynamical systems have a lot of invariant probabilities, and the question
is to find a way to emphasize some of them.
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Fixing A : X → R, the thermodynamic formalism provides such a way: A measure µ is an
equilibrium state for A if it satisfies

hµ(T ) +
∫
Adµ = sup

ν T−inv

{
hν(T ) +

∫
Adν

}
,

where hν(T ) is the usual Kolmogorov entropy. The supremum is taken over the set of T -
invariant probabilities.This theory was deeply inspired by statistical mechanics, where the quan-

tity hµ(T )+
∫
Adµ is (up to a sign) the free energy per site of a one-dimensional crystal. It was

developed during the 70’s essentially by Bowen, Ruelle and Sinai. We remind that for uniformly
hyperbolic dynamics and “regular” potentials (eg, Hölder continuous), there is existence and
uniqueness of the equilibrium state (see eg [2, 20, 21]).

For the last 10 years, a growing number of people have been studying a new way to distinguish
T -invariant probabilities: instead of considering measures which maximize the free energy one
focuses on measures which maximize the integral of the potential A; namely an A-maximizing
measure is a T -invariant probability measure µ such that∫

Adµ = max
ν T−inv

{∫
Adν

}
.

Clearly, the set of A-maximizing measures is compact and convex.

We recall that existence of maximizing measures is ensured, for instance, as soon as X is
compact and Hausdorff, and T and A are continuous. Existence of Equilibrium State is also
ensured under the same hypotheses plus the upper semicontinuity of the metric entropy with
respect to the weak star topology on the set of invariant probability measures.

There is a relation between these two approaches: for β > 0, let µβ denotes an equilibrium
state for βA and P(β) denotes the pressure

hµβ + β

∫
Adµβ.

Then, under weak assumptions1, the graph of P(β) admits an asymptote2 as β goes to +∞
whose slope is sup

{∫
Adν

}
. Moreover, any accumulation point for the equilibrium state µβ

as β goes to +∞ is an A-maximizing measure (see [7]).
Historically, the first study of that kind was done by Georgii in [12] for the Ising model

in Statistical mechanics. We refer the reader to section 3.2 in [12] for the relation of the one-
dimensional Ising model with the setting of equilibrium measures in Thermodynamic Formalism.
Georgii’s work was more recently generalized in [18], and we refer the reader to [10] (Appendix
B2) for a survey of the problem in statistical mechanics. In statistical mechanics, the parameter
β is the inverse of the temperature and maximizing measure are called ground states. The term
b in the asymptote is called the residual entropy.

Roughly speaking, when the system is frozen3, the equilibrium states go to ground states.
Then, the problem of selection deals with the study of this “limit” at temperature zero:

1e.g. X compact Hausdorff, A and T continuous, metric entropy u.s.c..

2Namely limβ→+∞ P(β)− aβ − b = 0; a = sup

Z
Adν

ff
.

3i.e. when the temperature goes to zero, or equivalently, when β goes to +∞
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1. Does the/one equilibrium state µβ converge as β goes to +∞ ?

2. If yes, what distinguishes the limit among the A-maximizing measures ?

In this paper we want to focus on that second question: what are the mechanisms or the
parameters involved in the selection of the limit (if it does exist)?

For example, it is known that, in a subshift of finite and if A is locally constant, then µβ
always converges (see [4, 14, 6]) and the selection is well identified (see [14, 6]). In that case the
locus of maximizing measures is again a subshift of finite type. The limit measure is a convex
combination of the finitely many ergodic measures with maximal entropy. Contrarily to what
could be expected, not every component of this subshift with maximal entropy has positive limit
measure, but only components with maximal entropy and which are the most “isolated”. These
are the vice-maximizing periodic orbits between clusters which determine the selection. See also
[13] (section 9) for an explicit computation.

For the non-finite range case, it is proved in [3] that for the C0-norm, generically, there exists
a unique maximizing measure. Therefore convergence occurs ! It is conjectured that generically
for the Lipschitz norm, there is a unique maximizing measure and its support is a periodic orbit.
On the opposite way, examples of non-convergence are also known (see [11, 5]).

Nevertheless, beyond generic results and examples of non-convergence, and as far as we
know, no examples of convergence and selection for infinite range case are known. We believe
that this lack of example is prejudicial for a better understanding of the selection. In particular,
we have no ideas on what are the parameters which determine the selection (arguments from
the finite-range case can not be extended to the infinite range case).

On the other hand, a very similar theory was also developed for Hamiltonian and Lagrangian
dynamics (see [16, 17]). It is noteworthy that some tools are very similar for the two theories
(see e.g. the Mañé-Conze-Guivarc’h lemma in [8, 15]). There, the setting is different from here
and the parameter going to zero is not the temperature but the viscosity denoted ε. Even if the
setting is different, people usually believe that these two theories of optimization (for iterations
of map or for Hamiltonian/Lagrangian flow) are so similar that any result in one topic should
get its dual version in the other one.

Inspired by a result of selection for Hamiltonian/Lagrangian setting in [1], our principal
motivation for this paper was to study if flatness of the potential plays a role in the selection
(as it does in [1]): considering the Lipschitz continuous potential on Σ := {0, 1, 2}N given by

A(x) =


−d(x, 0∞) if x ∈ [0]
−3d(x, 1∞) if x ∈ [1]
−α otherwise

,

(the metric is the usual one in the shift and is recalled later). Note that A clearly admits only
two maximizing and ergodic measures, the two Dirac measures δ0∞ and δ1∞ respectively at 0∞

and 1∞; it is also reasonable to say that the potential A is flatter at 0∞ than in 1∞. Hence, in
this situation, we wanted to prove that the unique equilibrium state associated to βA converges
to the Dirac measure at 0∞ as β goes to +∞. The term “3” in A was chosen randomly (anything
bigger than 1) and the full shift with 3 symbols (0,1 and 2) was the simplest case with not only
two symbols.
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Figure 1: Potential A

The fact that flatness of the potential is expected to be determinant for the selection is
meaningful (in addition of the fact that it appears in [1]). When the potential is locally constant,
and as we said above, this is the isolation rate of a component which determines if it has positive
limit-measure or not. This isolation rate is computed by estimating the cost for a periodic orbit
to leave the component and to visit other maximizing components and then to come back (to
“close” the periodic orbit). Replacing the locally constant potential by our A, it is meaningful
to expect that this new isolation rate would depend on the slope of the potential close to the
two maximizing fixed-points 0∞ and 1∞.

It finally turns out that even if µβ always converges, it does not always select δ0∞ . Moreover,
we recall that with our setting, µβ is unique and is actually a Gibbs measure: there is an operator
Lβ naturally associated to the problem and µβ is the product of specific eigenmeasure and
eigenfunction of that operator (see [19] and Subsection 1.3 here for definitions). A very curious
phenomena is that the eigenmeasure and the eigenfunction have opposite behavior. When the
system is frozen, the eigenmeasure becomes exponentially bigger around 0∞ than around 1∞

(see Cor. 3.8). For the eigenfunction the opposite happens (see Prop. 2.4). In some sense, the
eigenmeasure selects one maximizing measure and the eigenfunction selects the other one.

To show the difference between the finite range case and the infinite range case, we mention
that for the finite range case, in the same situation (only two maximizing measures with the

same residual entropy) and with the same notations, then µβ converges to
1
2
δ0∞ +

1
2
δ1∞ .

A first consequence of our work is that the existence of a dictionary between the vanishing
viscosity limit in Hamiltonian dynamics on the one hand and the zero temperature limit in
thermodynamical formalism on the other hand is far from perfect.

A second consequence is that the theory of selection is extremely wild: examples of non-
convergence were already showing wildness, but even in a very apparently simple situation with
convergence, selection seems to be unpredictable.

These consequences certainly forbids a general theory. Before going further in abstract
results, we should probably get more explicit examples. Hence, this example is not only a toy
model but, on the contrary, a first step to better understand what is involved (or not) in the
selection at temperature zero.
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We also show here that selection does not appear at the exponential scale (see below). This
is a consequence of the opposite behavior of the eigenmeasure and the eigenfunction. Hence,
a third consequence of our work is that new tools have to be defined. As a first step in a
better understanding of selection, we believe it is possible to generalize our proofs concerning
selection by the eigenmeasure and the eigenfunction. In other words, our work raises a new and
interesting question: can one always prove and determine the convergence of eigenmeasures and
eigenfunctions ?

1.2 Statement of result

We work here with a full shift Σ over the alphabet {0, 1, 2}: points in Σ are sequences x =
(x0, x1, . . .) with xi ∈ {0, 1, 2}. We will consider the usual terminology and the usual product
topology in Σ (see e.g. [19], chapter 1). Hence, we recall that a cylinder [X0, . . . Xk] is the set
of points x = (xn) such that xi = Xi for every i ∈ J0, kK := {1, . . . , k}. We equip Σ with the
distance between x = (xn) and y = (yn) is defined by

d(x, y) =
1

2min{n, xn 6=yn}
.

This distance is compatible with the product topology. It is non-canonical, and
1
2

could be

exchanged by any other real number θ in (0, 1). However, we emphasize that the value of θ does
not influence the Thermodynamic formalism.

We recall that the dynamics is given by the shift σ : (x0, x1, x2, . . .) 7→ (x1, x2, . . .). The two
special points 0∞ and 1∞ respectively denote the points (0, 0, . . .) and (1, 1, . . .). They are fixed
points for the shift σ over Σ.

As we said above, we consider over this shift the Lipschitz potential A defined as follows:

A(x) =


−d(x, 0∞) if x ∈ [0]
−3d(x, 1∞) if x ∈ [1]
−α otherwise

for some α > 0. This potential is always non-positive. There are only two maximizing measures,
the two Dirac measures δ0∞ and δ1∞ , respectively at 0∞ and 1∞. Only these measures give zero
integral for A. We point out that the potential is flatter4 close to 0∞.

It is well-known (see e.g. [2]) that there exists a unique equilibrium state for βA (for all
β ∈ R). As we said above, it is a Gibbs measure (see also Subsection 1.3).

Our main result is:

Theorem Let (Σ, σ) be the full 3-shift ({0, 1, 2}N, σ) and A be the Hölder potential
−d(x, 0∞) if x ∈ [0]
−3d(x, 1∞) if x ∈ [1]
−α otherwise

Let µβ be the unique Gibbs measure associated to βA, β ∈ R. Let ρ be the golden mean ρ :=
1 +
√

5
2

. Then

4more precisely A is sharper close to 1∞.
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1. for α > 1, µβ converges to 1
2(δ0∞ + δ1∞) as β goes to +∞,

2. for α = 1, µβ converges to 1
1+ρ2

(ρ2δ0∞ + δ1∞) as β goes to +∞,

3. for 0 < α < 1, µβ converges to δ0∞ as β goes to +∞.

In our mind the importance of the result does not rest on the values but on the diversity of
the values. This clearly means that flatness is not a determinant argument in the selection,
contrarily to what was expected. Nevertheless, important by-products are in the proof. In
particular we get that the eigenmeasure and the eigenfunction select different Dirac measures.
Moreover, the proof shows that the selection is not done at the exponential scale, even if all the
quantities go exponential fast to ∞ or 0 as β goes to +∞.

The presence of the Golden mean is (probably) not due to some “universal” constant, but is
more surely an accident. Nevertheless we are not completely sure on where it exactly comes
from. Ph. Thieullen pointed out it could be related to the fact that there are 2 maxima. We
believe this is also related to the special values we chose (the “3” for A and the “2” for the
distance). We are convinced that the same kind of result holds if we replace −3d(x, 1∞) with

some −Γd(x, 1∞), with Γ > 1, and the
1
2

in the distance by some θ ∈ (0, 1). Nevertheless, the
computation for more general case would be a little bit more complicated and the formulas less
convenient to be used. Transition could also happen for another value of α than 1.

As we said above, we are aware that the choice of the metric and the definition of flatness
can be discussed. We point out that the metric we used is the most usual (exchanging 1

2 with
another θ ∈ (0, 1) would not change anything), and is thus the most natural to study in first.
Concerning flatness, there is a wide range of possibilities. Nevertheless, our proof shows that
what is important is that the sums over the “rings” close to 0∞ and 1∞ of the potential are here
convergent and both sums are different (see function F in Subsection 3.1). We believe that any
choice of flatness for which these two properties hold would give the same kind of result.

1.3 More notations- plan of the proof

If y = (y1, y2, . . .) is a point in Σ and if a = 0, 1, 2, we denote the point (a, y1, y2, . . .) in Σ by ay.
The main tool is the transfer operator defined as follows:

Lβϕ(x) =
∑

y∈σ−1(x)

eβA(y)ϕ(y)

= e−βd(0x,0∞)ϕ(0x) + e−βd(1x,1∞)ϕ(1x) + e−αβϕ(2x).

where β is the inverse of the temperature. We recall here some of its properties (see e.g. [2]). It
acts on continuous functions and its dual operator, denoted by L∗β, acts on probability measures.

We know that there exists some function Hβ and some probability measure νβ such that
Lβ(Hβ) = eP (β)Hβ and L∗β(νβ) = eP (β)νβ. Then, the Gibbs measure is defined by dµβ = Hβdνβ;
it is σ−invariant and is the unique equilibrium state associated to βA.

Throughout, they will be referred to as the eigenmeasure and the eigenfunction. Most of the
time we will omit the subscript β.

The plan of the proof of the main result of the paper is the following:
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In Section 2 we give the exponential asymptotics for the eigenfunction (obtaining what is
called a calibrated subaction) and the pressure.

In Section 3 we prove the convergence of the eigenmeasure to δ0∞ . For this we give precise
values for the ν-measures of rings [0n] \ [0n+1] and [1n] \ [1n+1].

In Section 4 we compute the exact values of the eigenfunction on the same rings considered
before in Section 3.

In Section 5 we finish the proof of our Theorem.

2 Exponential asymptotic for the pressure and the eigenfunc-
tion

We first recall some tools introduced to study Thermodynamic formalism at temperature zero
(see e.g. [9]). In the following, m(A) denotes sup

{∫
Adµ

}
(which is zero in our case).

Definition 2.1. We say that u : Σ → R is a calibrated subaction for A if for any y in Σ we
have

u(y) = sup
σ(x)=y

{A(x) + u(x)−m(A)}.

The functions
1
β

logHβ are all uniformly bounded and equi-continuous (in function of β); we

denote by V any accumulation point for
1
β

logHβ as β goes to +∞. It is a calibrated subaction,

see [7]. If we add a constant to a calibrated subaction, it will be also a calibrated subaction.
We recall that the Peierls’ barrier is given by

h(x, y) = lim
ε→0

lim sup
n


n−1∑
j=0

(
A(σj(z))−m(A)

)
, n ≥ 0, σn(z) = y, d(z, x) < ε

 .

Remark 1. We leave it to the reader to check that for every x 6= 0∞, 1∞ both numbers h(0∞, x)
and h(1∞, x) are negative.

Let Ω be the Aubry set of A (i.e. the locus of every maximizing measures, see [7]). Then, it
is proved in [9] ( see Theorem 10), that every calibrated subaction u satisfies

u(y) = sup
x∈Ω

[h(x, y) + u(x)],

In the present case the Aubry set is the union of the two fixed points p = 0∞ and q = 1∞.
In this way, any calibrated subaction is determined by its values on p and q.

Lemma 2.2. The functions defined by u0(x) = −d(x, 0∞) and u1(x) = −3d(x, 1∞) are both
calibrated subactions.

Proof. The proof is only done for u0, the other case being similar. We consider y ∈ Σ and we
want to prove

−d(0∞, y) =: u0(y) = max{A(0y) + u0(0y), A(1y) + u0(1y), A(2y) + u0(2y)}. (1)
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We set y = (y0, y1, y2, . . .). We first assume that y0 6= 0. Note that both A(1y) and A(2y) are
non-positive and u0(1y) = u0(2y) = −1. Hence u0(y) = −1 is bigger than (or equal to) both
terms A(1y) + u0(1y) and A(2y) + u0(2y). Now A(0y) = −1

2 and u0(y) = −1
2 . Hence (1) holds

in that case. Assume now that y belong to the cylinder 0n and yn+1 6= 0. Then u0(y) = −1
2n .

Again, note that u0(y) is bigger than both terms A(1y) + u0(1y) and A(2y) + u0(2y). We also
get

−1
2n

=
−1

2n+1
+
−1

2n+1
= A(0y) + u0(0y).

Hence, (1) holds in that case too.

Using Lemma 2.2 we can get a more simple formulation for V .

Lemma 2.3.
V (x) = sup{[V (0∞)− d(0∞, x)], [V (1∞)− 3 d(1∞, x)]}

Proof. This follows from the fact that such V is calibrated and from the expression of the Peierls
barrier. Indeed, we claim that

h(0∞, y) = u0(y) and h(1∞, y) = u1(y).

Again, we only prove that h(0∞, x) = u0(x) = −d(x, 0∞), the other equality being similar.
Let x = (x0, x1, . . .) be in Σ. We get

u0(x) = max(h(0∞, x) + u0(0∞), h(1∞, x) + u0(1∞)) = max(h(0∞, x), h(1∞, x)− 1).

Note that u0(x) ≥ −1 and by Remark 1 the Peierls barriers are both negative. Hence we obtain

u0(x) = h(0∞, x).

Now, we use properties of the eigenfunction Hβ to obtain some relations satisfied by V . A
calibrated subaction, in the present situation, is determined by its values 0∞ and 1∞. We just
need the relative values of V at these points.

Proposition 2.4. For α > 1, we get V (1∞) = V (0∞) + 1 and lim
β→+∞

1
β

logP (β) = −2.

For 0 < α ≤ 1, we get V (1∞) = V (0∞) + α and lim
β→+∞

1
β

logP (β) = −(1 + α).

Proof. Up to the fact that we consider a sub-family of β’s we assume that lim
β→+∞

1
β

logP (β)

exists and is equal to some real number γ.
From the equation for the eigenfunction we get the pair of equations

(eP (β) − 1)Hβ(0∞) = e−αβHβ(2) + e−
3
2
β Hβ(1 0∞), (2a)

(eP (β) − 1)Hβ(1∞) = e−αβHβ(2) + e−
1
2
β Hβ(0 1∞). (2b)
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Remember that V is an accumulation point for 1
β logHβ and by Lemma 2.2

V (10∞) = max{[V (0∞)− 1], [V (1∞)− 3
2

]},
V (2x1 x2..) = max{[V (0∞)− 1], [V (1∞)− 1]},

V (01∞) = max{[V (0∞)− 1
2

], [V (1∞)− 3 ]}.

Then, taking 1
β log in Equation (2a) and making β go to +∞ we get

γ + V (0∞) = max{[V (0∞)− 1− α], [V (1∞)− 3− α], [V (0∞)− 1− 3
2

], [V (1∞)− 3
2
− 3

2
]}

= max{[V (0∞)− 1− α], [V (1∞)− 3− α], [V (0∞)− 5
2

], [V (1∞)− 3]}

= max{[V (0∞)− 1− α], [V (0∞)− 5
2

], [V (1∞)− 3]}. (3)

Similarly, from (2b) we finally get

γ + V (1∞) = max{[V (0∞)− 1], [V (1∞)− 7/2], [V (1∞)− 3− α]}. (4)

We first deal with the case α > 1. We will show that V (1∞) = V (0∞) + 1. We divide
the analysis in two cases:

1) if α > 3/2, then, we have to solve

γ + V (0∞) = max{[V (0∞)− 5
2

], [V (1∞)− 3]}, (5a)

γ + V (1∞) = max{[V (0∞)− 1], [V (1∞)− 7/2]}. (5b)

Now, we show that this system of equation is solvable if and only if V (0∞) − 5
2 ≤ V (1∞) − 3

and V (0∞)− 1 ≥ V (1∞)− 7/2.
Suppose that V (0∞)− 5

2 > V (1∞)−3. Then, we get γ+V (0∞) = V (0∞)−5/2, which shows
that we have γ = −5/2. Thus, we must have V (0∞)− 1 ≥ V (1∞)− 7/2 (otherwise (5b) would
give γ = −7

2), and we get

V (0∞)− 1 = γ + V (1∞) = −5/2 + V (1∞).

From this follows that V (1∞) = 3/2 + V (0∞). This yields

V (1∞)− 3 = (3/2 + V (0∞))− 3 = V (0∞)− 3
2
> V (0∞)− 5

2
,

which produces a contradiction.
Then, we have

γ + V (0∞) = V (1∞)− 3 (6)

An important consequence is that we must get γ ≥ −5
2 . If V (0∞)− 1 ≤ V (1∞)− 7/2, then (5b)

shows that γ is equal to −7
2 which is impossible. Hence

γ + V (1∞) = V (0∞)− 1. (7)
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Finally, (6) and (7) yield γ = −2, and V (1∞) = V (0∞) + 1.
2) The case 1 < α ≤ 3

2 . The proof is similar. It is explicitly reproduced here, but the reader
can skip it in a first reading.

The new system to solve is

γ + V (0∞) = max{[V (0∞)− (1 + α)], [V (1∞)− 3]}, (8a)
γ + V (1∞) = max{[V (0∞)− 1], [V (1∞)− 7/2]}. (8b)

Again, we show that this system of equation is solvable if, and only if, V (0∞)−(1+α) ≤ V (1∞)−3
and V (0∞)− 1 ≥ V (1∞)− 7/2.

Suppose that V (0∞)− (1 + α) > V (1∞)− 3. Then, we get γ + V (0∞) = V (0∞)− (1 + α),
which shows that we have γ = −(1 + α) > −5

2 . Thus, we must have V (0∞)− 1 ≥ V (1∞)− 7/2
(otherwise (8b) would give γ = −7

2), and we get

V (0∞)− 1 = γ + V (1∞) = −(1 + α) + V (1∞).

From this follows that V (1∞) = α+ V (0∞). This yields

V (1∞)− 3 = (α+ V (0∞))− 3 = V (0∞)− 2 > V (0∞)− 5
2
,

which produces a contradiction.
Then, we have

γ + V (0∞) = V (1∞)− 3 (9)

An important consequence is that γ ≥ −(1 + α) > −5
2 . If V (0∞)− 1 ≤ V (1∞)− 7/2, then (8b)

shows that γ is equal to −7
2 which is impossible. Hence

γ + V (1∞) = V (0∞)− 1. (10)

Finally, (9) and (10) yield γ = −2, and V (1∞) = V (0∞) + 1.
We point out here that the above discussion can be done for every sub-family of β’s. In

particular, this shows that
1
β

logP (β) can have only one accumulation point. In other words, it

converges to γ = −2.

Now, we deal with the case α ≤ 1. We will show that V (1∞) = V (0∞) +α. The system
we have to solve is

γ + V (0∞) = max{[V (0∞)− (1 + α)], [V (1∞)− 3]}, (11a)
γ + V (1∞) = max{[V (0∞)− 1], [V (1∞)− 7/2], [V (1∞)− 3− α]}. (11b)

We show that, whatever is the case α ≤ 1
2 or α ≥ 1

2 , the system can be solved if, and only if,
V (0∞)− (1 + α) ≥ V (1∞)− 3 and V (0∞)− 1 ≥ V (1∞)− 7/2, V (1∞)− 3− α.

Let us proceed by contradiction and assume we get V (0∞)− (1 + α) < V (1∞)− 3. In that
case, if we assume that we get V (0∞) − 1 ≥ V (1∞) − 7/2, V (1∞) − 3 − α, then the system to
solve is exactly given by equations (6) and (7). This yields γ = −2, and V (1∞) = V (0∞) + 1.

Then, we get V (1∞) − 3 = V (0∞) − 2 ≤ V (0∞) − (1 + α) which produced a contradiction
with our assumption V (0∞)− (1 + α) < V (1∞)− 3.
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This means that V (0∞)−1 ≤ V (1∞)−7/2, V (1∞)−3−α, and the bigger term only depends

on the relative position of α with respect to 1
2 . Depending of this position, we get γ = −7

2
or

γ = −3− α. Then (11a) would give in both case

V (0∞)− γ > V (0∞)− (1 + α),

which produces a contradiction. Hence, we must get V (0∞)− (1 + α) ≥ V (1∞)− 3 and

γ = −(1 + α). (12)

If V (0∞) − 1 ≥ V (1∞) − 7/2, V (1∞) − 3 − α does not hold, then we would get γ = −7
2

or

γ = −3− α, which is impossible. Thus we must get V (0∞)− 1 ≥ V (1∞)− 7/2, V (1∞)− 3− α
and we finally get

V (1∞) + γ = V (1∞)− (1 + α) = V (0∞)− 1. (13)

This finishes the proof of the proposition (again γ is the unique possible accumulation point for
1
β

logP (β)).

3 The eigenmeasure ν

In this section we study the eigenmeasure νβA. We prove that it converges to the Dirac measure
δ0∞ . We also estimate the limit ratio of measures on rings of the form [0n]\[0n+1] and [1n]\[1n+1].

3.1 A useful function

We define and study a function F depending on the pressure P (β) and on the parameter β.

Definition 3.1. For Z ≥ 0 and β ≥ 0 F (Z, β) :=
∞∑
k=0

e−kZe
β

2k+1 and its partial sums Fn(Z, β) :=

n∑
k=0

e−kZe
β

2k+1 .

Clearly, Fn(Z, β)→ F (Z, β) when n→∞.
We recall that as β goes to +∞, P goes exponentially fast to 0. The asymptotic behavior

of F (for β very large) can be obtained as follows:

Lemma 3.2. For every β > 2 ln 2 we get∣∣∣∣F (P, β)− 1
P

∣∣∣∣ ≤ βeβ/2

2 ln 2
(2 +

∑
n≥1

(
P

ln 2
)n).

Proof. Let us consider a positive Z. Note that the function x 7→ −Zx +
β

2.2x
is decreasing on

R+. We can thus compare the sum and the integral:∫ +∞

0
Ze−xZe

β
2

1
2x dx ≤ ZF (Z, β) ≤

∫ +∞

0
Ze−xZe

β
2

1
2x dx+ Ze

β
2 .

11



Let us study the integral. We get∫ +∞

0
Ze−xZe

β
2

1
2x dx =

[
−e−xZeβ2 1

2x

]+∞

0
−
∫ +∞

0

β

2
e−xZ

ln 2
2x

e
β
2

1
2x dx.

= e
β
2 −

∫ +∞

0

β

2
e−xZ

ln 2
2x

e
β
2

1
2x dx.

Let us set u = 1
2x in this last integral. We get∫ +∞

0
Ze−xZe

β
2

1
2x dx = e

β
2 −

∫ 1

0

β

2
e−Z

lnu
ln 2 e

β
2
u du.

Writing e−Z
lnu
ln 2 =

+∞∑
n=0

1
n!

(
−Z lnu

ln 2

)n
we get

∫ +∞

0
Ze−xZe

β
2

1
2x dx = e

β
2 −

∫ 1

0

β

2

+∞∑
n=0

1
n!

(
−Z lnu

ln 2

)n
e
β
2
u du.

To get the inverse of the two sums we remind that
∫ 1

0
| lnu|n du =

∫ +∞

0
vne−v dv = n!. Then

for Z < ln 2 we get

∫ +∞

0
Ze−xZe

β
2

1
2x dx = e

β
2 −

+∞∑
n=0

1
n!

(−Z
ln 2

)n ∫ 1

0

β

2
(lnu)ne

β
2
u du

= 1−
+∞∑
n=1

1
n!

(−Z
ln 2

)n ∫ 1

0

β

2
(lnu)ne

β
2
u du.

Now, note that∣∣∣∣ 1
n!

(−Z
ln 2

)n ∫ 1

0

β

2
(lnu)ne

β
2
u du

∣∣∣∣ ≤ 1
n!

(
Z

ln 2

)n β
2
e
β
2

∫ 1

0
| lnu|n du =

(
Z

ln 2

)n β
2
e
β
2 .

We also recall that for positive β, the pressure is strictly smaller than the topological entropy
ln 2. This shows the lemma.

3.2 The eigenmeasure on the cylinders [0] and [1]

We remind that the eigen-probability for βA, νβ, is a conformal measure: for any cylinder set
B where σ is injective

νβ(σ(B)) =
∫
B
eP (β)−βA(x)d νβ(x).

We shall use this simple relation to compute exact values for νβ of some special cylinders.
For simplicity we drop the subscribe β in νβ and simply write ν. We shall also use the

notation ∗0 for the pair of symbols which are not 0 and ∗1 for the pair of symbols which are not
1. Then

[0∗0] = [01] t [02] and [1∗1] = [10] t [12]

(and the unions are disjoint).
We can now estimate the measures of the cylinders [0] and [1].
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Lemma 3.3.
ν[0] = e−

β
2 F (P, β) ν[0∗0]

ν[1] = e−
3β
2 F (P, 3β) ν[1∗1]

Proof. Conformality yields

ν[0∗0] = ν[σ(00∗0)] = eP+ β

22 ν[00∗0] = e2P+ β

23
+ β

23 ν[000∗0],

and so on. By induction we get

ν[0∗0] = e(n−1)P+β ( 1
22

+...+ 1
2n

) ν[00 . . . 0︸ ︷︷ ︸
n

∗0]. (14)

Hence, we get

ν[0] =
∞∑
n=1

ν[00 . . . 0︸ ︷︷ ︸
n

∗0] =
∞∑
n=1

e−(n−1)P e−
β
2 e

β
2n ν[0∗0] = e−

β
2 F (P, β) ν[0∗0].

Similarly we get ν[1] = e−
3 β
2 F (P, 3β) ν[1∗1].

Using [0∗0] = [01]t [02] and[1∗1] = [10]t [12] and the conformal property of ν we obtain the
following system:

ν[1∗1] = ν[2] e−P−
3β
2 + ν[0]e−P−

3β
2 . (15a)

ν[0∗0] = ν[2] e−P−
β
2 + ν[1]e−P−

β
2 . (15b)

This system is the key point to determine the convergence of the eigenmeasure.

Proposition 3.4. The ratio
ν[0]
ν[1]

goes exponentially fast to +∞ as β goes to +∞.

Proof. By Lemma 3.3 the system (15) can be transformed into a system in ν[0], ν[1], and ν[2]:

ν[0] = e−β/2 F (P, β) {ν[2] e−P−
β
2 + ν[1]e−P−

β
2 }

ν[1] = e−(3β)/2 F (P, 3β) {ν[2] e−P−
3β
2 + ν[0]e−P−

3β
2 }

This yields

ν[0]
ν[1]

= e2β F (P, β) ( 1 + e−P−3β F (P, 3β) )
F (P, 3β) ( 1 + e−P−β F (P, β) )

(16)

Finally, when β →∞, Proposition 2.4 and Lemma 3.2 show that
ν[0]
ν[1]

goes to +∞ exponen-

tially fast. The exponential speed is larger than 1− ε for every positive ε.
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We point out that Lemma 3.3 also allow to transform the system (15) into a system in
ν([0∗0]), ν([1∗1]), and ν(2). From this system we get

ν[0∗0]
ν[1∗1]

= eβ
( 1 + e−P−3β F (P, 3β) )
( 1 + e−P−β F (P, β) )

. (17)

Nevertheless, at this point of the proof we do not have enough information on P to compute

the limit of the ratio. Proposition 2.4 and Lemma 3.2 just ensure that
1
β

log
ν[0∗0]
ν[1∗1]

goes to 0.

However, we can get ratios for other rings:

Corollary 3.5. For every n ≥ 2,

ν[0n∗0]
ν[1n∗1]

= eβ(1− 1
2n−1 ) ν[0∗0]

ν[1∗1]
.

For every positive ε, the ratio
ν[0n∗0]
ν[1n∗1]

goes to +∞ as β goes to +∞ faster than eβ(1− 1
2n−1−ε).

3.3 Convergence of the eigenmeasure

In this subsection we get a finer estimate for P (β) and conclude that ν goes to the Dirac measure
δ0∞ .

The conformal property yields

ν([2]) = ν([20]) + ν([21]) + ν([22]) = e−P−αβ(ν[0] + ν[1] + ν[2]) = e−P−αβ. (18)

On the other hand the solution of the system obtained in the proof of Proposition 3.4 shows
that

ν([0]) =
1 + e−P−3βF (P, 3β)

1− e−2PF (P, β)F (P, 3β)e−4β
F (P, β)e−P−βν([2]),

ν([1]) =
1 + e−P−βF (P, β)

1− e−2PF (P, β)F (P, 3β)e−4β
F (P, 3β)e−P−3βν([2]).

Using the formula ν([0]) + ν([1]) + ν([2]) = 1 we get another expression for ν([2]):

1 = ν([2])
(

1 +
1 + e−P−3βF (P, 3β)

1− e−2PF (P, β)F (P, 3β)e−4β
F (P, β)e−P−β+

1 + e−P−βF (P, β)
1− e−2PF (P, β)F (P, 3β)e−4β

F (P, 3β)e−P−3β

)
= ν([2])

(
1 + e−P−βF (P, β) + e−P−3βF (P, 3β) + e−2P−4βF (P, β)F (P, 3β)

1− e−2PF (P, β)F (P, 3β)e−4β

)
. (19)

Lemma 3.2 and Proposition 2.4 show that whatever the value of α is, e−P−3βF (P, 3β) goes to
0 as β goes to +∞. On the other hand, e−P−βF (P, β) is exponentially big (of order eβ if α is
bigger than 1 and eαβ if α is smaller than 1). Remember that Equation (18) shows that ν([2])
goes exponentially fast to 0 with exponential speed −αβ.

Lemma 3.6. If α > 1, we get lim
β→+∞

P (β)e2β = 1. For α = 1, P (β)e2β goes to 1+
√

5
2 .
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Proof. We first do the case α > 1. As we said above, the numerator in the right hand side of
(19) has order eβ. On the other hand ν([2]) has order e−αβ. Therefore, the denominator of the
right hand side of (19) goes to 0 with exponential speed e(1−α)β. Then, Lemma 3.2 shows that
P (β)e−2β goes to 1.

Let us now deal with the case α = 1. Copying what we did above we get

eP =
e−2β

P

1 + ε1(β)

1− e−2P
(
e−2β

P

)2
(1 + ε2(β))

,

with εi(β) going to 0 as β goes to +∞. Let l be any accumulation point for Pe2β. Thus the
above expression yields

1 =
1
l

1− 1
l2

=
l

l2 − 1
.

This yields l = 1+
√

5
2 .

Corollary 3.7. As β goes to +∞, the ratio
ν[0∗0]
ν[1∗1]

goes to 1 for α > 1 to
√

5+1
2 for α = 1 and

to +∞ for α < 1. The convergence is non-exponential for α ≥ 1 and has exponential speed 1−α
if α < 1.

Proof. We remind that Equation (17) gives

ν[0∗0]
ν[1∗1]

= eβ
( 1 + e−P−3β F (P, 3β) )
( 1 + e−P−β F (P, β) )

.

We already know that e−3βF (P, 3β) goes to 0 as β goes to +∞. The denominator has for

dominating term e−β

P . For α < 1 we directly get that
ν[0∗0]
ν[1∗1]

goes to +∞. For α ≥ 1 we use

Lemma 3.6.

Equation 18 shows that ν([2]) goes to 0 as β goes to +∞. Then Proposition 3.4 yields:

Corollary 3.8. The measure ν goes to the Dirac measure δ0∞ as β goes to +∞.

4 The eigenfunction H

In this section we get estimates at the non-exponential scale for the asymptotics behavior of the
eigenfunction Hβ. In what follows, for simplicity, we will drop the subscriptβ.

4.1 The exponential scale is not deterministic

We know that

H(x) = lim
N→∞

1
N

N−1∑
k=0

Lk(1I)(x)
ekP

(20)

where L is the transfer operator (see Subsection 1.3). We recall that ∗0 (resp. ∗1) denotes any
symbol different to 0 (resp. to 1). We start with the following result.
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Lemma 4.1. The eigenfunction is constant on cylinders [0n∗0], [1n∗1] and [2].

Proof. Owing to Equation 20, it is sufficient to prove that for every k, Lk(1I) is constant on
cylinders [0n∗0], [1n∗1] and [2]. For x in Σ, we get

Lkβ(1I)(x) =
∑

z∈{0,1,2}k
eβ.Sk(A)(zx),

where Sk(A) is the Birkhoff sum A + A ◦ σ + . . . + A ◦k−1 σ. Now, note that the potential is
constant on the cylinders [0m∗0], [1m∗1] (whatever m ≥ 1 is) and [2]. This finishes the proof of
the lemma.

We emphasize here that the information we get on the subaction (namely the exponential
asymptotic for H) and on the eigenmeasure are not yet sufficient to conclude the proof. Indeed,
one important fact is that the eigenmeasure and the eigenfunction have opposite behavior:
the eigenmeasure is exponentially bigger close to 0∞ than close to 1∞; on the contrary, the
eigenfunction is exponentially bigger close to1∞ than close to 0∞. The convergence and the
study of selection for µ cannot be obtained at the exponential scale:

Lemma 4.2. For α ≥ 1 and for every integer n ≥ 1, lim
β→+∞

1
β

log
µ([0n∗0])
µ([1n∗1])

= 0.

Proof. By definition we get
µ([0n∗0])
µ([1n∗1])

=
H(0n∗0)ν([0n∗0])
H(1n∗1)ν([1n∗1])

. Using Corollaries 3.5 and 3.7, we

get that
1
β

log
ν([0n∗0])
ν([1n∗1])

goes to 1− 1
2n−1

as β goes to +∞.

On the other hand, Lemma 2.3 and Proposition 2.4 shows that
1
β

log
H(0n∗0)
H(1n∗1)

goes to −1 +

1
2n−1

as β goes to +∞. Both terms balance themselves.

Remark 2. For α < 1 it is also possible to show, following the same procedure, that lim
β→+∞

1
β

log
µ([0n∗0])
µ([1n∗1])

=

2− 2α.

As the convergence and the study of selection for µ cannot be obtained at the exponential
scale we must get more precise estimates.

4.2 Estimation at the non-exponential scale

We recall that the functions F (P, β) and Fn(P, β) were defined in Definition 3.1.

Lemma 4.3. For every n ≥ 1 we get

H(0n∗0) = e(n−1)P− β
2n

(eP − 1)
eP + e−αβ

[
eP+βH(1∞)−

(
Fn−2(P, β)(1 + e−P−αβ) + e(1−α)β

)
H(0∞)

]
,

(21)

H(1n∗1) = e(n−1)P− 3β
2n

(eP − 1)
eP + e−αβ

[
eP+3βH(0∞)−

(
Fn−2(P, 3β)(1 + e−P−αβ) + e(3−α)β

)
H(1∞)

]
,

(22)

where F−1 ≡ 0.
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Proof. Using the equality L(H) = ePH we get the following system of equations
e−

β
2H(0∗0) +e−αβH(2) = (eP − 1)H(1∞),

e−
3β
2 H(1∗1) +e−αβH(2) = (eP − 1)H(0∞),

e−
β
2H(0∗0) +e−

3β
2 H(1∗1) +(e−αβ − eP )H(2) = 0.

(23)

Solving this system in terms of H(1∞) and H(0∞) we find:

H(0∗0) = e
β
2

(eP − 1)
eP + e−αβ

[
ePH(1∞)− e−αβH(0∞)

]
(24)

H(1∗1) = e
3β
2

(eP − 1)
eP + e−αβ

[
ePH(0∞)− e−αβH(1∞)

]
(25)

Again, the equality L(H) = epH yields

ePH(0n∗0) = e−
β

2n+1H(0n+1∗0) + e−
3β
2 H(1∗1) + e−αβH(2).

Introducing the second equation in (23), we get

H(0n+1∗0) = eP+ β

2n+1H(0n∗0) + e
β

2n+1 (eP − 1)H(0∞).

By induction, we get for every n ≥ 2 an expression of H(0n∗0) in function of H(0∞) and H(0∗0).
Then, introducing (24) in this expression, we let the reader check that we get (21). The proof
of (22) is similar.

As we said above, the exponential scale is not sufficient to determine the limit and the
selection for the Gibbs measure. Due to the values of the subactions, the good parameter to

estimate is eβ
H(0∞)
H(1∞)

. Lemma 4.3 allows us to solve that problem.

Proposition 4.4. As β goes to +∞ we get the following limits:

(i) if α > 1, then, lim
β→+∞

eβ
H(0∞)
H(1∞)

= 1,

(ii) if α = 1, then, lim
β→+∞

eβ
H(0∞)
H(1∞)

=
1 +
√

5
2

,

(iii) if 0 < α < 1, then, lim
β→+∞

eβ
H(0∞)
H(1∞)

= +∞.

Proof. Equalities (21) and (22) yield for any fixed n

eβ−
β

2n−1
H(0n∗0)
H(1n∗1)

=
eP − [Fn−2(P, β) (1 + e−P−αβ) e−2β + e−(1+α)β ] (eβ H(0)

H(1))

eP (eβ H(0)
H(1)) − [Fn−2(P, 3β) (1 + e−P−αβ) e−2β + e(1−α)β ]

. (26)

For, β fixed, we set x = xβ = eβ H(0)
H(1) . Then, taking the limit as n goes to +∞ we get

x =
eP − [F (P, β) (1 + e−P−αβ) e−2β + e−(1+α)β ]x
eP x − [F (P, 3β) (1 + e−P−αβ) e−2β + e(1−α)β ]

,
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(the eigenfunction is continuous). Let us set a = d = eP and

b = − [F (P, β) (1 + e−P−αβ) e−2β + e−(1+α)β ],

c = − [F (P, 3β) (1 + e−P−αβ) e−2β + e(1−α)β ].

We can write the above equation in the form

x =
a+ b x

d x+ c
.

As x is positive we can solve this equation and we get

x =
(b− c) +

√
(c− b)2 + 4 a d
2 d

. (27)

Note that

(b− c) = (F (P, 3β)− F (P, β) ) e−2β (1 + e−P−αβ) + e−αβ (eβ − e−β).

Now, Lemma 3.2 shows that e− 2β (F (P, 3β)−F (P, β) )→ 0 when β goes to +∞. On the other
hand we get,

for α > 1, e−αβ (eβ − e−β)→ 0.

for α < 1, e−αβ (eβ − e−β)→ +∞,

for α = 1, e−αβ (eβ − e−β)→ 1,

these three limits hold as β goes to +∞. From this, we get that for the three cases of possible
values of α, the corresponding limits for (b− c) are the same:

for α > 1, b− c→ 0.

for α < 1, b− c→ +∞,

for α = 1, b− c→ 1.

Finally, from this we get that for α > 1,

lim
β→+∞

eβ
H(0∞)
H(1∞)

= 1,

for α = 1,

lim
β→+∞

eβ
H(0∞)
H(1∞)

=
1 +
√

5
2

,

and for 0 < α < 1,

lim
β→+∞

eβ
H(0∞)
H(1∞)

= +∞.
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5 End of the proof of the Theorem

Now, we can finish the proof of our Main Theorem. We recall that any accumulation point for
µβ is a A-maximizing measure. Hence, such an accumulation point is a convex combination
of the two Dirac measures δ0∞ and δ1∞ . This convex combination can be found if we get an

estimate for lim
β→+∞

µ([0])
µ([1])

. We get

µ([0])
µ([1])

=
∑+∞

n=1 µ([0n∗0])∑+∞
n=1 µ([1n∗1])

=
∑+∞

n=1H(0n∗0)ν([0n∗0])∑+∞
n=1H(1n∗1)ν([1n∗1])

=
∑+∞

n=1H(0n∗0)e−(n−1)P−β ( 1
22

+...+ 1
2n

)∑+∞
n=1H(1n∗1)e−(n−1)P−3β ( 1

22
+...+ 1

2n
)

ν([0∗0])
ν([1∗1])

=

∑+∞
n=1 e

β(1− 1
2n−1 )H(0n∗0)

H(1n∗1)µ([1n∗1])∑+∞
n=1 µ([1n∗1])

ν([0∗0])
ν([1∗1])

. (28)

The proof will follow from the next technical lemma:

Lemma 5.1. There exists β0 such that for every n ≥ 3, for every β ≥ β0 and for every α∣∣∣∣∣∣eβ(1− 1
2n−1 )H(0n∗0)

H(1n∗1)
× 1

eβ H(0∞)
H(1∞)

− 1

∣∣∣∣∣∣ ≤ e−β8 .
Proof. We re-employ notations from the proof of Proposition 4.4. We denote by Rn−1(1) the
tail

Rn−1(1) = F (P, β)− Fn−2(P, β) =
∞∑

k=n−1

e
−k P + β

2k+1 ,

Rn−1(3) the tail

Rn−1(3) = F (P, 3β)− Fn−2(P, 3β) =
∞∑

k=n−1

e
−k P + 3β

2k+1

and
∆n−1 = Rn−1(1)−Rn−1(3) = e−(n−1)P (e

β
2n − e 3 β

2n ) + ... .

Then,

eβ−
β

2n−1
H(0n∗0)
H(1n∗1)

=
a+ bx+ x∆n−1e

−2β(1 + e−P−αβ) + xRn−1(3)e−2β(1 + e−P−αβ)
c+ dx+Rn−1(3)e−2β(1 + e−P−αβ)

= x+
x∆n−1e

−2β(1 + e−P−αβ)
c+ dx+Rn−1(3) e−2β(1 + e−P−αβ)

. (29)

Remember that by definition we have x = eβ
H(0∞)
H(1∞)

. Now Equation (22) yields

H(1n∗1)
H(1∞)

eP + e−αβ

(eP − 1)
e−(n−1)P+ 3β

2n
−2β = dx+ c+Rn−1(3)e−2β(1 + e−P−αβ).
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If n goes to +∞ the right hand side term of this equality goes to c+ dx. On the other side it is
always non-negative. This shows that c+ dx is always non-negative. Therefore (29) yields∣∣∣∣∣∣eβ(1− 1

2n−1 )H(0n∗0)
H(1n∗1)

× 1

eβ H(0∞)
H(1∞)

− 1

∣∣∣∣∣∣ ≤ |∆n−1|
Rn−1(3)

.

Now, note that Rn−1(1) = F (P, β
2n−1 ) and Rn−1(3) = F (P, 3β

2n−1 ). Then, Lemma 3.2 shows that
|∆n−1|
Rn−1(3)

is of order P (β)
β

2n
e

3β

2n−1 . Remember that P converges to 0 at least in e−β. For n ≥ 3

and for β sufficiently big, P (β)
β

2n
e

3β

2n−1 is less than e−
β
8 .

Now Equation (28) and Lemma 5.1 show that we get for every β ≥ β0

eβ
H(0∞)
H(1∞)

(1− e−β8 )
ν([0∗0])
ν([1 ∗ 1])

≤ µ([0])
µ([1])

≤ eβH(0∞)
H(1∞)

(1 + e−
β
8 )
ν([0∗0])
ν([1 ∗ 1])

,

(for β big the terms µ([0k∗0]) and µ([1k∗1]), k = 1, 2 are very small since µβ “goes” to a
combination of δ0∞ and δ1∞). Then Corollary 3.7 and Proposition 4.4 conclude.
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