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Abstract. We study the renormalization for potentials defined by

R(V ) := V ◦ T ◦H + V ◦H,
where T : X 	 is the dynamics, H : X → X is one-to-one and V : X → R is a
potential. We explain how this operator is obtained from the usual renormalization
operator for maps and why it has a fixed point.

For the Manneville-Pomeau map, f : [0, 1] 	, close to the fixed and indifferent
point 0 we have, H(x) = x

2 and V*:=log f ′ is a fixed point forR. We are interested
in characterizing potentials V such that Rn(V ) converges to log f ′. We recover
here the importance of the germ close to the fixed indifferent point.

For the shift σ in Σ = {0, 1}N we prove that under mild assumptions there
exists a unique kind of H. Consequently, there is a unique kind of fixed potentials
for R. These are the“ Hofbauer-like” potentials.

In the last part, we construct a two-parameters family of potentials defined on
Σ related to this renormalization procedure. We show they are less regular than
the class R(X) introduced in [35]. We study the thermodynamic formalism for
these potentials and exhibit phase transitions.

1. Introduction

1.1. General presentation. Renormalization can have in general different mean-
ings in Mathematics or in Physics. From the mathematical point of view, it is
usually associated to the period doubling renormalization operator as introduced by
M. Feigenbaum and by P. Coullet and C. Tresser (see [6] [10] [11] [30] [31] [14]). We
recall that for f : [0, 1] 	, the renormalization of f is defined by

(1) R̃(f)(x) = h−1 ◦ f 2 ◦ h(x),

where h is an affine map defined on [0, 1]. This defines an operator R̃ acting on

dynamical transformations f and the point is to study the hyperbolicity of R̃ at
fixed points. As far as we know, renormalization from the mathematical point
of view essentially studies class of one-dimensional dynamical systems which are
associated to critical points (see [17] [21] [13] [38] [25] [24]). Nevertheless, we point
out here that, what is usually called renormalization in the mathematical setting is
mathematical rigorous (of course), but not related— in our point of view— to the
real physical meaning of the term.
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The Renormalization in the physical world is associated to phase transitions and
polynomial decay of correlation (see [12], [16] [18],[36], [37]). As far as we know,
using the mathematical vocabulary, this is associated to ”indifferent fixed points”
and not to ”critical points”. Moreover, it acts on potentials and not on maps (see
for instance [12], [8] or [15]). Renormalization in Physics is also sometimes presented
as a way to rescale the action of a potential.

We want here to explore this “potential” point of view (and associated to indif-
ferent fixed points) of the renormalization. Our main and first motivation is chapter
5 of the book [26], where the renormalization is associated to transformations with
a weakly expanding fixed point. There, the reasoning of several of the results which
are presented are difficult to be understood from the pure mathematical point of
view.

In a first step (and following [26]) we define the renormalization operator R for
potentials and for a given Manneville-Pomeau-like map f . By construction, if f
satisfies (1), the potential log f ′ is a fixed point for R. Then, we are interested in
studying the “stable set” of this fixed point: what are the potentials V such that
Rn(V ) converges to log f ′.

Our first result (Theorem A) recovers the importance of the germ of these dynam-
ics close to the indifferent fixed points: only the germ of the potential determines if
Rn(V ) converges or not to the fixed point.

The Mannevile-Pomeau-like maps are (semi)-conjugated to the full 2-shift Σ :=
{0, 1}N. We are thus naturally led to study the renormalization operator for poten-
tials in Σ. This case is closer to the problems which arise in Statistical Mechanics
of the one-dimensional lattice (see [12] [36]): one can see 0 as + (positive spin) and
1 as − (negative spin).

Moreover, we point out that, if we may consider several dynamics (see e.g. the
ft’s with different t below) in the interval [0, 1], this is not the case in Σ. This means
that in Σ, the potential point of view has an even more important place.

Indeed, our second result (Theorem B) explains why the potential of Hofbauer in
the shift is so important for Statistical Mechanics (see [13][21]).

In the last part, we are interested in thermodynamic formalism in Σ for “less
regular” potentials. Sufficient conditions yielding existence and uniqueness of equi-
librium state in Σ are well-known: following notations from [35], it is sufficient that
the potential is Hölder continue, or satisfies the Walters condition (hence belongs
to W (X,T )) or the Bowen’s condition (hence belongs to Bow(X,T )) to ensure ex-
istence and uniqueness of the equilibrium state (see [33, 34]). Nevertheless, these
conditions are only sufficient conditions, and for several reasons people are now in-
terested in studying the thermodynamic formalism for less regular potentials. One
of these reasons is to exhibit phase transition.

In [35], P. Walters defined a new class of potentials for which mains properties of
the thermodynamic formalism holds. This class contains the Hofbauer potential, and
more generally all the Hofbauer-like potentials that arise from our Theorem B. It is
known that they have phase transition. Nevertheless, potentials defined in [35] must
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satisfy a quite strong condition regarding the dynamics and the renormalization. We
explain better this point later.

With this background, our last result (Theorem C) deals with thermodynamic
formalism for potentials which do not satisfy the strong condition on [35].

1.2. Statement of results. Consider for t > 0,
ft(x) =

x

(1− xt)1/t
= (

xt

1− xt
)1/t, if 0 ≤ x ≤ 1

21/t
,

ft(x) = (2− 1

xt
)1/t, if

1

21/t
< x ≤ 1,

For this map the fixed points are x = 0 and x = 1. In these points the derivative is
equal to one. For any x 6= 0, 1, f ′t(x) > 1. These maps are thus weakly expanding.

Definition 1.1. The renormalization operator Rt acts on the set of potentials V by
means of

Rt(V ) (x) = V ( ft(
x

21/t
) ) + V (

x

21/t
).

Our definition of the renormalization operator Rt is based on the following obser-
vation. Let us set h(x) = x

21/t . Then, taking derivative in (1), and keeping in mind
that h is affine, we get

f ′t(ft ◦ h(x))f ′t ◦ h(x) = f ′t(x).

Then, taking the logarithm in this last equation and setting V ∗t (x) := log f ′t(x), we
finally get

(2) V ∗t (f(h(x))) + V ∗t (h(x)) = V ∗t (x).

Definition 1.2. For a given value t > 0 we denote Ft the set of non-negative

continuous functions V : [0, 1]→ R such that V (x) = (1 +
1

t
)xt + o(xt).

For this setting, we have the following result on the action of the renormalization
operator:

Theorem A. For any V ∈ Ft and for every x in [0, 1
21/t [ we have

lim
n→∞

Rt
n(V )(x) = V ∗t (x).

Remark 1. Note that Rt is linear, hence for every λ, λV ∗t is also a fixed point.
Moreover, if V (x) = λxt + o(x) then Rn

t (V )(x) converges to λ
1+ 1

t

V ∗t (x) as n goes to

+∞.

The proof of Theorem A is presented in the proof of Theorem 2.1. We remind
that we are doing renormalization close to the fixed point 0. The same could be
done close to the other fixed indifferent point 1.

It is well-known that for each value t, the nature of the germ of the dynamics
close to the fixed and weakly hyperbolic point (see [38, 23, 27, 28, 29]) determines,
on one hand, the existence or non-existence of an absolutely continuous invariant
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measure with respect to Lebesgue measure and, on the other hand, the different
power laws of decay of correlation (when the SRB-measure does exist [38]). We
remind that this SRB-measure is the measure associated to the potential − log f ′t .
We claim that Theorem A recovers the importance of the germ of these dynamics
close to the fixed indifferent points.

Owing to the dynamics we are studying, we are naturally led to study the lifted
equation of (2) in Σ. We shall (in a first step) set

H((0, . . . , 0︸ ︷︷ ︸
c1

, 1, . . . , 1︸ ︷︷ ︸
c2

0, . . . , 0︸ ︷︷ ︸
c3

, 1, . . .)) = (0, . . . , 0︸ ︷︷ ︸
2c1

, 1, . . . , 1︸ ︷︷ ︸
c2

0, . . . , 0︸ ︷︷ ︸
c3

, 1, . . .),

and then consider:

(3) V (σ(H(x))) + V (H(x)) = V (x).

In Section 2 we state and prove results similar to Theorem A but for the one-sided
or two-sided shift (see Subsections 2.2 and 2.3). There, we show that the fixed
potential for the renormalization is the Hofbauer potential defined by

V (x) = log
n+ 1

n

if x belong to [000 . . . 00︸ ︷︷ ︸
n

1] (and n > 0).

Note that H is defined above only on the cylinder [0]. This corresponds to the
fact that x 7→ x

2
has [0, 11

2
] for image (ad not the hole interval [0, 1]). Our definition,

for the case of the Bernoulli space, is very much similar to the one described for
the two dimensional lattice in Statistical Mechanics (see for instance [8]), where one
takes a square box, and then consider a new renormalized box such that each side
is scaled by a factor of 2. The old potential is also rescaled in the new box. This
is a local procedure and we believe this is a mathematical way to understand why
physicists consider renormalization on potential as a way integrate (or rescale) it.

In the shift Σ the dynamics is fixed and one can ask if other kind of renormalization
operators (with a different H) could be considered (giving similar results). We
address this question now.

Theorem B. Let H be an increasing function on the shift Σ (for the lexicographic
order), such that

(1) for every x = (1, x2, x3, . . .), H(x) = (0, . . . , 0︸ ︷︷ ︸
a terms

, 1, x2, x3, . . .), where a ≥ 1;

(2) H−1 ◦ σ2 ◦H = σ,
(3) H(0∞) = 0∞

Then, for every x = (0, . . . , 0︸ ︷︷ ︸
n0 terms

, 1, xn0+2 . . .), we have H(x) = ( 0, . . . , 0︸ ︷︷ ︸
2n0+a terms

, 1, xn0+2, . . .).

In other words, Theorem B shows that there exists a unique type of maps H : Σ 	,
and (as a consequence) a unique type of “good” potential V which satisfy the fixed
point equation (3). There appears the special importance of the Hofbauer potential.
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We want here to emphasize that the assumptions on H are very natural if we con-
sider the rescaling procedure described above. The lexicographic order is a good way
(and may be the unique one) to consider blocks at different scales. The assumption
“H([1]) = [0a1]” is a good way to send blocks on blocks.

The last part of the paper deals with thermodynamic formalism. We recall that,
given a function φ, a probability measure µ is said to be φ-conformal if there exists
a positive real number λφ such that every Borel1 set A satisfying that σ : A→ σ(A)
is an homeomorphism, then

µ(σ(A)) = λφ

∫
A

e−φ dµ.

If φ is continuous, there necessarily exists a φ-conformal measure. Indeed the Trans-
fer Operator

P(ψ)(x) :=
∑

y, σ(y)=x

eφ(y)ψ(y)

acts on continuous functions, hence its adjoint acts on measures. We then use
the Schauder-Tychonoff theorem to get some eigen-measure. This measure is a φ-
conformal measure. The question is then to study existence (and uniqueness) of
a σ-invariant probability measure equivalent to the φ-conformal measure. Such a
measure is said to be φ-quasi-conformal. We shall simply say quasi-conformal when
the function φ is clearly understandable.

We denote by hµ the Kolmogorov entropy of the invariant probability µ. We recall
that given a function φ : Σ → R, an invariant probability measure µ is called an
equilibrium state for the potential φ if it satisfies

hµ +

∫
φ dµ = sup

ν

{
hν +

∫
φ dν

}
.

In “good” cases, given a potential φ, there exists a unique φ-quasi-conformal invari-
ant probability which is also the unique equilibrium state for φ. This however does
not hold in any case, in particular the intermittent maps furnish counter-examples.
Our last theorem studies this question for a special two-parameters family of poten-
tials γ.φβ.

Potentials in the class R(X) defined in [35] are “good cases”. Nevertheless they
are constant on cylinders of the form [0n1] or [10n1] or [1n0] or [01n0]. This means
they only takes account one fixed indifferent point and then do not distinguish points
in function of the time their orbit spend in the second laminar regime.

More precisely, a typical orbit is an infinite alternation of sequence of 0’s and
sequences of 1’s. We would like to study the thermodynamic formalism for potentials
which take account all these alternations and not only the first string of 0’s or of
1’s. These potentials cannot be constant on the cylinders of the form [0n1] or [10n1]
or [1n0] or [01n0].

1The set Σ is a compact and metric space with d((xn), (yn)) = 2−min(xn 6=yn)
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The family of potentials we are considering is defined as follows. We consider real
numbers, α in [1,+∞[, β in ]0, 1], and a natural number a ≥ 0. We assume that
these parameters satisfy

1(
3
2

)β − 1
− 1

2β − 1
= (1 +

1

a+ 1
)α − 1. (4a)

1

α
= 2β − 1. (4b)

This system of conditions is referred to as (4). We shall prove in Lemma 4.4 that for
each choice of one parameter, (4) gives a unique value for the two others parameters
(except that a may not be integer). Hence, for each positive integer value of a
we have the corresponding values αa and βa. In this way, several renormalization
operators, with different values a ∈ N, can be considered as in Theorem B. In the
following, we however prefer to keep β as parameter.

Given x̄ = (0, . . . , 0︸ ︷︷ ︸
n0

, 1, . . . , 1︸ ︷︷ ︸
n1

, 0, . . . , 0︸ ︷︷ ︸
n2

, 1, . . .) ∈ Σ = {0, 1}N we define a real number

in the following way:

θβ(x̄) =
1

(n0 + 1)β

(n0 + 2)β − (n0 + 1)β
+

1

(n1 + a)α

(n1 + a+ 1)α − (n1 + a)α
+

1

nβ2

(n2 + 1)β − nβ2
+

1

(n3 + a)α

(n3 + a+ 1)α − (n3 + a)α
+ ...

With these notations, the potential φβ is defined by:

φβ(x) = −2 log

(
θβ ◦ σ(x)

θβ(x)

)
if x ∈ [0],

φβ(x) = −2 log

(
2β − 1− θβ ◦ σ(x)

2β − 1− θβ(x)

)
if x ∈ [1].

Heuristically speaking, the potential φβ should be seen as what one should expect

to be the − log of the derivative of a ”global” Manneville-Pomeau map f̂β defined for
the Bernoulli space after the ”change of coordinates” θβ. We are studying existence
of γ-conformal measures for our virtual Manneville-Pomeau maps:

Theorem C. For any γ ∈]0, 1
2
] and for any β there exist a unique γφβ-conformal

measure and an unique quasi-conformal and σ-invariant probability measure.
For γ ∈]1

2
, 1], there exists a critical value βc := βc(γ) > 0, which is maximal with

this property, such that for any β < βc there exist an unique γφβ-conformal measure
and an unique equivalent quasi-conformal σ-invariant probability measure.
In both cases the invariant quasi-conformal probability is the unique equilibrium state
associated to the potential γφβ.

The definition of the family of potentials results from the next series of observa-
tions: for γ = 1 and β = α = 1 (and a = 0), θ1 is the usual continuous fraction and
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is also the conjugacy of Σ with the Manneville-Pomeau map f1 (see [21]):

Σ
σ−→ Σ

θ1 ↓ 	 ↓ θ1(0n01n10n2 . . .) = 1
1+n0+ 1

n1+ 1
n2+...

[0, 1]
f−→ [0, 1].

In other words the virtual Manneville-Pomeau maps f̂1 is, in that case, the true
Manneville-Pomeau map f1 and the potential is − log f ′1.

It is noteworthy that θ1 has the same germ than the Hofbauer potential close to
0∞. Moreover, it takes account the two competitive laminar regimes of the map f ;
θ1 seems to be a way to consider for x ∈ Σ how all the whole orbit approaches the
two fixed and indifferent points.

Let us set V0(x) = log
n0 + 1

n0

if x = 0n0 . . . with n0 > 0 and V1(y) = log
n1 + 1

n1
if y = 1n1 . . . with n1 > 0. These are the two Hofbauer potentials associated to the
two fixed and indifferent points 0∞ and 1∞. Note that

n =
n

(n+ 1)− n
,

and that for any β and α, βV0 and αV1 are also fixed point for the renormalization
operators associated to 0∞ and 1∞.

Then, the function θβ is just an extension of θ1, considering, in the one hand,
close to 0∞ a potential of the form βV0 and a renormalization associated to a = 1
(in Theorem B), and in the other hand, close to 1∞ a renormalization associated to
a = a and a potential “multiplied by α”. And finally, the relations (4) ensure that
θβ is onto the interval [0, 2β − 1](this proof is left to the reader and uses properties
of the function gγ defined in Subsection 4.1).

It is well known that f1 has no absolutely continuous invariant probability (with
respect to the Lebesgue measure). Then, the fact that for γ = 1 and for sufficiently
small β we again get a finite quasi-conformal measure is thus non-obvious and non-
intuitive. This proves existence of a phase transition when β increases.

Regarding to this problem of phase transition, several questions are still unsolved.
This work is a first step to study phase transitions on our setting.

The case β = γ = 1 should indicate that for γ > 1
2
, there exists another crit-

ical value β̄c = β̄c(γ) such that for β > β̄c there exists no γφβ-quasi-conformal
probability.

Similarly and probably consequently, it is expected that for fixed β, the one family
of potentials γ.φβ presents a phase transition: for γ sufficiently big, the pressure of
γ.φβ is affine.

1.3. Structure of the paper. This paper can be separated in three parts.
The first part is the entire Section 2. There, we study the renormalization for the

Manneville-Pomeau maps, and also for the full 2-shift. Both studies are restricted
to the basin of backward-attraction of a weakly expanding fixed point. This is what
we call the local point of view.
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In Subsection 2.1 we show the fixed point property for the renormalization op-
erator associated to Manneville-Pomeau transformations and also Theorem A. In
Subsection 2.2 we consider the one-sided shift and we define there the natural renor-
malization operator with respect to the class of dynamics we are considering. As a
by-product we extend the operator to the 2-side case in Subsection 2.3, and then
consider a kind of two dimensional bijective Baker Manneville-Pomeau map in Sub-
section 2.4.

In the second part of the paper (Section 3), we prove Theorem B , that is, there
exits a unique renormalization operator (up to an integer positive parameter a)
for the shift which respects the class of dynamics we are considering (two coupled
laminar regimes with two fixed and weakly repelling points).

The third part is the proof of Theorem C. In section 4, we prove properties on θβ,
discuss the motivation for the relation of the parameters. Section 5 is devoted to the
strict proof of Theorem C, namely to the existence of Gibbs measures associated to
the potential in function of the values of the parameters.

This part contains very long and perhaps unpleasant computations. They are
however simple and necessary to get complete mathematical proofs. Nevertheless
we indicate to the reader that almost all the computations from the proofs of Section
4 should be omitted in a first reading. In Section 5, the reader is supposed to be
familiar with some basic knowledge of the transfer operator theory, even if we tried
to make the paper as self-contained as possible. We refer the reader to [1] to basic
notions on this theory.

2. The local renormalization operator

2.1. The Manneville-Pomeau model. We set{
f(x) = x

1−x , if , 0 ≤ x ≤ 1
2
,

f(x) = 2− 1
x
, if , 1

2
< x ≤ 1,

Note that one branch above is obtained from the other by the change of coordinate
x→ (1− x).

We remind that we get for t ≥ 0,
ft(x) =

x

(1− xt)1/t
= (

xt

1− xt
)1/t, if 0 ≤ x ≤ 1

21/t
,

ft(x) = (2− 1

xt
)1/t, if

1

21/t
< x ≤ 1,

Let us set ht(x) = xt. Then, for every x in [0, 1
21/t [ we have ft = h−1

t ◦f ◦ht. Using

x→ 1− x we get the same kind of result for x ≥ 1
21/t . Therefore, in all this section

we shall only state and prove results for the map f .
Note that f1(x) = x

1−x can be considered as a translation by −1 in the variable
s = 1/x. Seeing it as a shift helps to understand the partition and other things that
come later.
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In this way we have a natural partition by fundamental domains for the branch
of f in (0, (1/n)) by (1

3
, 1

2
), ..., ( 1

k
, 1

(k+1)
), ... (see also page 153 in [21]).

For a given y , the two inverse branches by f are x1(y) =
y

(1 + y)
and x2(y) =

( 1
2−y ).

The image of x1 is in [0 , (0.5)] and the image of x2 is [(0.5) , 1].
Note that f ′(x) = 1

(1−x)2
for x ∈ (0, 0.5) and f ′(x) = 1

x2 for x ∈ (0.5, 1)

We point out the main property of f :

(5) f 2(
x

2
) = (f ◦ f) (

x

2
) =

1

2
f(x).

One can see by induction that

(6) f j(x) =
1

( 1
x
− j)

.

We remind that we set R(V )(x) := V (f(x
2
)) + V (x

2
). And we consider V in F1, i.e.

V (x) = x+ o(x).

This is meaningful only close to 0. We also set V ∗(x) = − log(1 − x). Taking
derivative of both sides of (5) one can see that V ∗ is a fixed point for R.

By recurrence and using (5) one can easily see that

Rn(V ) (x) = [S2n(V )] (
x

2n
) =

2n∑
j=0

V (f j(
x

2n
)).

From (6) this yields

(7) Rn(V ) (x) =
2n∑
j=0

V (
1

(2n

x
− j)

).

Our main interest is on universality type properties for the renormalization oper-
ator.

Theorem 2.1. For any V ∈ F1 and for very x in [0, 1
2
[ we have

lim
n→∞

Rn(V )(x) = V ∗(x).

Proof. Let x be in

[
1

(m+ 1)
,

1

m

]
, with m ≥ 2.

Then,
x

2
belongs to

[
1

2n(m+ 1)
,

1

2nm

]
.

Hence, the smallest value for (2n

x
− j), j = 0, 1, . . . , 2n is obtained when j = 2n,

and is larger than 2n(2 − 1). Therefore each term
1

2n

x
− j

is very close to 0, and it

makes sense to approximate V
(
f j( x

2n
)
)
. Hence we have
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Rn(V ) (x) =
2n∑
j=0

V

(
1

(2n

x
− j)

)
(8)

=
2n∑
j=0

1

(2n

x
− j)

+ o(
1

(2n

x
− j)

)

=
1

2n

2n∑
j=0

1

( 1
x
− j

2n
)

+ o

(
1

2n

2n∑
j=0

1

( 1
x
− j

2n
)

)
.(9)

For a fixed x,
1

2n

2n∑
j=0

1

( 1
x
− j

2n
)

converges to

∫ 1

0

1

( 1
x
− r)

dr = −[log(
1

xt
− r)]10 = − log(1− x) = V ∗(x),

as n goes to +∞. Hence, o( 1
2n

∑2n

j=0
1

( 1
x
− j

2n
)
) is in o(1) and then converges to 0 as n

goes to +∞.
This finishes the proof of the theorem. �

Note that if V (x) = c.xt + o(xt) with t 6= 1, then, assuming c > 0, the same kind
of commutation than above yields that

Rn(V )→ +∞ if t < 1 or Rn(V )→ 0 if t > 1.

Therefore, only potentials V in F1 can converge to the fixed point V ∗.

Remark 2. Let us now assume that V belongs to Ft. Let us set g : [0, 1] ←↩ such
that V = log g′. Then RnV → V ∗ is the expression that says that g belongs to

the ”stable set” of f for the action of R̃ (this expression, “stable set”, has a clear
meaning but we do not have here the ambition to say something rigorous about the

general set of maps g, satifying R̃n(g)→ f). As we said, this exactly means that g
has the same germ than f .

The bottom line is: the results described in [26] (for maps) are now obtained
for the potential point of view (and, in a rigorous way). The fixed point for R is
V ∗1 (x) = log f ′.

2.2. The one-side shift Σ. We consider here the Bernoulli space Σ = {0, 1}N and
the shift acting on Σ.

We denote by Mn ⊂ Σ, for n ≥ 1, the cylinder set [000 . . . 00︸ ︷︷ ︸
n

1] and by M0 the

cylinder set [1]. The ordered collection (Mn)∞n=0 is a partition of Σ.

Definition 2.1. Consider F the set of non-negative continuous functions V : Σ→ R
which are constant in the set Mn, for all n ≥ 1. We denote by an the value of V on

each Mn. We further assume that an =
1

n
+ o(

1

n
).
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Definition 2.2. We define the renormalization operator in the following way:
For x := (0, . . . , 0︸ ︷︷ ︸

c1

, 1, . . . , 1︸ ︷︷ ︸
c2

0, . . . , 0︸ ︷︷ ︸
c3

, 1, . . .) we set

R(V )(x) = V ((0, . . . , 0︸ ︷︷ ︸
2c1

, 1, . . . , 1︸ ︷︷ ︸
c2

0, . . . , 0︸ ︷︷ ︸
c3

, 1, . . .))+

V ((0, . . . , 0︸ ︷︷ ︸
2c1+1

, 1, . . . , 1︸ ︷︷ ︸
c2

0, . . . , 0︸ ︷︷ ︸
c3

, 1, . . .)).

Note that the potential V ∗, with value log k+1
k

in Mk, is invariant by R. Indeed
we have

log
k + 1

k
= log

2k + 1

2k
+ log

2k + 1 + 1

2k + 1
.

Theorem 2.2. Each V ∈ F and for every x in Σ, Rn(V )(x) goes to V ∗(x) as n
goes to +∞.

Proof. An easy computation, by induction, gives the formula

(10) Rn(V )(x) = S2n(V )(xn)

where xn = ( 0, . . . , 0︸ ︷︷ ︸
2nc1+2n−1

, 1, . . . , 1︸ ︷︷ ︸
c2

0, . . . , 0︸ ︷︷ ︸
c3

, 1, . . .) and Sk(V ) is the Birkhoff sum V (.) +

V ◦ σ(.) + . . .+ V ◦ σk−1(.).
Equation (10) yields for x ∈Mc1

R(V )(x) =
2n−1∑
j=0

a2nc1+j =
2n−1∑
j=0

1

(2nc1 + j)
+ o

(
1

(2nc1 + j)

)

=
1

2n

2n−1∑
j=0

1

(c1 + j
2n

)
+ o(

1

2n

2n−1∑
j=0

1

(c1 + j
2n

)
)

The first term in the right hand side is a Riemann sum, and converges, as n→∞,

to

∫ 1

0

1

(c1 + r)
dr. Again the second term goes to zero.

Note that the integral

∫ 1

0

1

(c1 + r)
dr is the same as − log c1+1

c1
. Thus, and in the

same way as before , if the potential V satisfies the condition

ak =
1

k
+ o(

1

k
),

we have convergence of Rn(V )(x) to V ∗(x) when n goes to +∞.
�

2.3. The two-sided shift Σ̂. We denote Σ̂ = {0, 1}Z and also denote each point
in this set by < y|x >=< ...y2, y1|x0, x1, x2.. > where x is future and y is past. The
shift σ̂ is defined by

σ̂(< ...y2, y1|x0, x1, x2.. >) =< ...y2, y1, x0|x1, x2.. > .
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Definition 2.3. Consider F the set of non-negative continuous functions V : Σ→
R, which are constant in the sets of the form

Mm|Mn = {< y, x >, x ∈Mn, y ∈Mm},
for each pair m,n ≥ 1. We denote by am,n = V (m,n) the value of V on each

Mm ×Mn. We further assume that am,n =
m+ n

(m− 1)n
+ o

(
1

m

)
+ o

(
1

n

)
.

Definition 2.4. We define the renormalization operator in the following way:
For

z := (0, . . . , 0︸ ︷︷ ︸
d3

, 1, . . . , 1︸ ︷︷ ︸
d2

0, . . . , 0︸ ︷︷ ︸
ζ

) | (0, . . . , 0︸ ︷︷ ︸
c1

, 1, . . . , 1︸ ︷︷ ︸
c2

0, . . . , 0︸ ︷︷ ︸
c3

, 1, . . .) ∈Mζ ×Mc1 ,

we set

R(V )(z) = V (0, . . . , 0︸ ︷︷ ︸
d3

, 1, . . . , 1︸ ︷︷ ︸
d2

0, . . . , 0︸ ︷︷ ︸
2 ζ−1

) | (0, . . . , 0︸ ︷︷ ︸
2 c1+1

, 1, . . . , 1︸ ︷︷ ︸
c2

0, . . . , 0︸ ︷︷ ︸
c3

, 1, . . .))+

V (0, . . . , 0︸ ︷︷ ︸
d3

, 1, . . . , 1︸ ︷︷ ︸
d2

0, . . . , 0︸ ︷︷ ︸
2 ζ

) | (0, . . . , 0︸ ︷︷ ︸
2 c1

, 1, . . . , 1︸ ︷︷ ︸
c2

0, . . . , 0︸ ︷︷ ︸
c3

, 1, . . .)).

In order to simplify the notation we write

R(V )(z) = V (2ζ − 1, 2c1 + 1) + V (2 ζ, 2c1).

One can show that for V ∈ F , and z ∈Mm|Mn, we have that

Rn(V )(z) =
2n−1∑
k=0

V (2nζ − 2n + 1 + k, 2nc1 + 2n − 1− k).

It is easy to see that the potential given by: for each z ∈Mj|Mk

V ∗(z) = log
j (k + 1)

(j − 1) k
,

defines a fixed point potential for R.

Theorem 2.3. Each V ∈ F is attracted, in the pointwise sense, by the renormal-
ization operator R to the fixed point V ∗.

Proof. Given V ∈ F , we have

Rn(V )(z) =
2n−1∑
k=0

V (2nζ − 2n + 1 + k, 2nc1 + 2n − 1− k)

=
2n−1∑
k=0

(
2n(c1 + ζ)

(2nζ − 2n + k) (2nc1 + 2n − 1− k)
+ o

(
1

(2nζ − 2n + k + 1)

)
+ o

(
1

(2nc1 + 2n − 1− k)

))
=

1

2n

2n−1∑
k=0

(c1 + ζ)

((ζ − 1) + k
2n

) ( (c1 + 1)− k+1
2n

)
+ o(1),
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where we use
1

(2nζ − 2n + k + 1)
→n→+∞

∫ 1

0

1

ζ − 1 + x
dx and

1

(2nc1 + 2n − 1− k)
→n→+∞∫ 1

0

1

c1 +−x
dx.

Taking n large we get

lim
n→+∞

1

2n

2n−1∑
k=0

(c1 + ζ)

((ζ − 1) + k
2n

) ( (c1 + 1)− k+1
2n

)
=

∫ 1

0

(c1 + ζ)

((ζ − 1) + x ) ( (c1 + 1)− x)
dx =

(c1 + ζ)

∫ 1

0

1

(ζ − 1 + x )
+

1

(c1 + 1− x)
dx =

[
log

ζ − 1 + x

c1 + 1− x

]1

0

=

log (
ζ (c1 + 1)

(ζ − 1) c1

) = V ∗(z).

�

2.4. The Baker Manneville-Pomeau bijective transformation. Using the no-
tation of the first section, for a fixed value of t, consider

Ft : [0, 1]× [0, 1]→ [0, 1]× [0, 1],

a bijective transformation such that satisfies for each x and y

Ft(x, ft(y)) = (ft(x), y).

In order to simplify the notation we consider here only the case t = 1. Similar
results will be true for the general case t > 0. We use the notation F1 = F .

Definition 2.5. We denote F the set of non-negative continuous functions V :
[0, 1]× [0, 1]→ R such that V (x, y) = log(1+x

1−y ) + o(x) + o(y) when (x, y) is close to

(0, 0).

Definition 2.6. The renormalization operator R acts on the set of functions V on
F by means of

R(V ) (x, y) = V (
2

2 + x
,

y

2− y
) + V (

x

2
,
y

2
)

In the same way as before one can show that

V ∗(x, y) = log(
1 + x

1− y
),

is a fixed point for R.
We leave for the reader the proof of the theorem:

Theorem 2.4. Each V ∈ F is attracted, in the pointwise sense, by the renormal-
ization operator R to the fixed point V ∗.
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3. Proof of Theorem B

Bellow we consider X1, X2 metric spaces, T1 : X1 → X1, T2 : X2 → X2, H1 :
X1 → X1, H2 : X2 → X2, are continuous transformations, and V1 : X1 → R,
V2 : X1 → R are also continuous. We first state a simple lemma:

Lemma 3.1. Let (X1, T1) and (X2, T2) be two conjugated dynamical systems. Let
θ : X1 → X2 be the continuous conjugacy. If H1 satisfies H−1

1 ◦ T 2
1 ◦H1 = T1, then

H2 := θ ◦H1 ◦ θ−1 satisfies

H−1
2 ◦ T 2

2 ◦H2 = T2.

Moreover if V1 satisfies V1(T1(H1(x))) + V1(H1(x)) = V1(x), then V2 := V1 ◦ θ−1

satisfies

V2(T2(H2(x))) + V2(H2(x)) = V2(x).

The proof follows just by taking the compositions.

In view of those results, it’s meaningful to study maps H on the shift which satisfy
the property H−1 ◦ σ2 ◦ H = σ. More assumptions are necessary, if one wants to
respect some other properties of the map x 7→ x/2 in the interval. If 0̄∞ in the
shift represents the 0 of the interval, then H(0∞) = 0∞ needs to hold. Moreover the
map H has to “increase”, which can be translated into “H respect the lexicographic
order in Σ”.

We can now prove Theorem B.
Let H be an increasing function on the shift Σ2 (for the lexicographic order), such

that

(1) for every x = (1, x2, x3, . . .), H(x) = (0, . . . , 0︸ ︷︷ ︸
a terms

, 1, x2, x3, . . .), where a ≥ 1;

(2) H−1 ◦ σ2 ◦H = σ,
(3) H(0∞) = 0∞

We want to prove that for every x = (0, . . . , 0︸ ︷︷ ︸
n0 terms

, 1, xn0+2 . . .), we have

H(x) = ( 0, . . . , 0︸ ︷︷ ︸
2n0+a terms

, 1, xn0+2, . . .).

Note that by assumption, this is already proved for every x on the form (1, . . .).
We first consider the case where a ≥ 2. Note that we took a = 1 in a previous

section where we considered the shift.
Let us pick some x, which necessarily has to be of the form x = (0, . . . , 0︸ ︷︷ ︸

n0 terms

, 1, xn0+2 . . .).

We assume n0 > 1. We point out that σ(x) ≥ x, because a “1” appears sooner in
σ(x) than in x. Therefore we must have

(11) H(σ(x)) > H(x), if x 6= 0∞, 1∞.

Now, σn0(x) belongs to the cylinder [1], hence H(σn0(x)) = [ax], where a is the finite
word 0, . . . , 0︸ ︷︷ ︸

a terms

, and [ ] is the concatenation of words in the shift. As we said before,
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in the moment we are considering such a ≥ 2. The constraint H−1 ◦ σ2 ◦ H = σ,
yields σ2n0 ◦H = H ◦ σn0 . Therefore

(12) H(x) = (?, . . . , ?︸ ︷︷ ︸
2n0 terms

, 0, . . . , 0︸ ︷︷ ︸
a terms

, 1, xn0+2, . . .),

where the first 2n0 digits are unknown.
As H has the increasing property, its image is in the cylinder [0], and the first

digit in (12) is 0. The property H−1 ◦ σ2 ◦ H = σ, also means σ2 ◦ H = H ◦ σ.
Therefore, each odd unknown digit in (12) is 0.

Now, we prove that no even unknown digit can be 1. Let us assume that the
second digit is 1. Doing the same work for σ(x) (here we use n0 > 1), we have

(13) H ◦ σ(x) = (0, ?, . . . , 0, ?︸ ︷︷ ︸
2n0−2 terms

, 0, . . . , 0︸ ︷︷ ︸
a terms

, 1, xn0+2, . . .),

where each unknown digit at position 2p is the same digit than the digit in position
2p+ 2 in (12). To get these equalities, we again used σ2 ◦H = H ◦ σ.

If the second digit in (12) is a “1”, then to respect (11), the second digit in (13)
must be a “1” too. Therefore, the cascade rule yields that each even unknown digit
must be 1, in (12) and in (13). In that case, and as we assume a ≥ 2, there will be
a “1” in H(x) in position 2n0, and a “0” for H ◦ σ(x), and the two words coincide
before that position. Hence, H(σ(x)) < H(x), which is impossible by (11). This
proves that the assumption is false, and the second unknown digit in (12) must be
a “0”.

Note that this also holds if n0 = 1. Indeed, in that case we completely know
H ◦ σ(x), by assumption (1) in the proposition. Therefore the above discussion
means that for every ξ = (0, . . .), H(ξ) starts with 3 “0”. Here again, the cascade
rule between (12) and (13) yields that every even unknown digit is “0”.

To complete the proof of Theorem B, we have to deal with the case a = 1. In
that case, the assumption “the second unknown digit in (12) in 1” yields to

H(x) = (0, 1, . . . , 0, 1, 0, 1︸ ︷︷ ︸
2n0 terms

,
↓a
0 , 1, xn0+2, . . .),

H ◦ σ(x) = (0, 1, . . . , 0, 1︸ ︷︷ ︸
2n0−2 terms

,
↓a
0 , 1, xn0+2, . . .).

Hence, the unique possibility to respect the increasing property for H would be
to alternate “0” and “1” for the tail of x. But even in that case, this will be in
contradiction with (11). This finishes the proof.

The conclusion is that each renormalization operator has to be of the form: take a
fixed a ∈ N, then given V : {0, 1}N → R, for any x : = (0, ..., 0︸ ︷︷ ︸

c1

, 1, ..., 1︸ ︷︷ ︸
c2

0, ..., 0︸ ︷︷ ︸
c3

, 1, ...),

we set

R(V )(x) = V ((0, ..., 0︸ ︷︷ ︸
2c1+a

, 1, ..., 1︸ ︷︷ ︸
c2

0, ..., 0︸ ︷︷ ︸
c3

, 1, ...)) + V ((0, ..., 0︸ ︷︷ ︸
2c1+a−1

, 1, ..., 1︸ ︷︷ ︸
c2

0, ..., 0︸ ︷︷ ︸
c3

, 1, ...)).
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In that case, the potential defined by log
k + a

k + a− 1
on Mk (k ≥ 1) is invariant by

R. It is a “Hofbauer-like” potential.

4. Properties for θβ, parameters and virtual Manneville-Pomeau
maps

In this section, we state and prove the main properties for the function θβ. We
explain where the condition (4) comes from: it yields the compatibility of the two
regimes associated to different local renormalizations.

4.1. Main properties for θβ.

4.1.1. Convergence of the continued fraction expansion defined by θβ. Here,
we define a generalization of the continued fraction expansion. We consider real
numbers, α in [1,+∞[, β in ]0, 1], and the natural number a ≥ 0. These parameters
are not supposed to satisfy (4)

Lemma 4.1. Let (ak)k∈N be a sequence of real numbers such that a0 = 0, each
a2k+1 is larger than 1, and all the even terms a2k, k > 0, are positive and uniformly
bounded away from zero. Then, the sequence of real numbers (rk) defined by

rk =
1

a1 +
1

a2 +
1

. . . +
1

ak

,

converges to a real number denoted by [0, a1, a2, a3, . . .], and we have

[0, a1, a2, a3, . . .] =
1

a1 +
1

a2 +
1

. . . +
1

ak +
1

. . .

.

Proof. Let (ak)k∈N be as in the assumptions. We define two new sequences (pk)k∈N
and (qk)k∈N, by induction:

p0 = 0, p1 = 1, q0 = 1, q1 = a1

∀k ∈ N, pk+2 = ak+2pk+1 + pk, qk+2 = ak+2qk+1 + qk.

It’s easy to see, by induction, that for every k > 0, qk ≥ 1. Using a2k+1 ≥ 1, we
easily get q2k+1 ≥ k, and then q2k ≥ A.k, where A is a positive lower bound for all
the a2j’s. Therefore, qk goes to +∞ as k increases to +∞.

If we set uk = pk+1qk − pkqk+1, then uk+1 = −uk for every k. We claim that

rk =
pk
qk

. Then, the two subsequences (r2k) and (r2k+1) are mutually adjacent and

converge to the same limit. We leave the reader check that the even sequence (r2k)
increases and the odd sequence (r2k+1) decreases. �
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Let γ > 0 be a real number. We define g : (0,∞)→ R, given by

gγ(z) = g(z) =
1

(1 + 1
z
)γ − 1

.

For a fixed γ, and when the meaning is clear, we omit the subscribe γ in gγ, in order
to make the formulas simpler.

We have for every z ∈ (0,+∞), g′(z) =
γ

z2

1

((1 + 1
z
)γ − 1)2

(1 +
1

z
)γ−1, hence g is

increasing. Moreover, limz→0 g(z) = 0 and limz→+∞ g(z) = +∞. Therefore, for any
given y ∈ (0,∞), there exists a ny ∈ N, such that

(14) g(ny) ≤ y < g(ny + 1).

Moreover, g(z) = zγ + o(zγ) when z is close to 0, and, g(z) =
z

γ
− γ − 1

2
+O(

1

z
),

when z is close to +∞.

Lemma 4.2. The map gγ is convex for γ > 1, and is concave for γ < 1.

Proof. To prove this lemma, first note that g′(z) =
γ

z2 + z

(
g(z) + g2(z)

)
. This

yields

g′′(z) = −γ 2z + 1

(z2 + z)2

(
g(z) + g2(z)

)
+

γ

z2 + z
(g′(z) + 2g′(z)g(z)) .

If we replace in this last expression the value of g′(z) in function of z and g(z), we
get

g′′(z) = γ2 g(z) + g2(z)

(z2 + z)2

(
g(z)−

(
z

γ
− γ − 1

2

))
.

Note that z
γ
− γ−1

2
is the asymptote of g close to +∞. Then, the convexity of the

map depends on the position of the graph with respect to the asymptote. It’s convex
when the graph is above the asymptote, and it’s concave when the graph is below
the asymptote. Now, recall that a convex map has a non-decreasing derivative, and
a concave map has a non-increasing derivative. Therefore, easy considerations on
the relative position of the graph with respect to the asymptote prove that the graph
cannot cross the asymptote. Hence the map is convex for γ > 1, and concave for
γ < 1. �

Note that gα(1) = 1
2α−1

. Therefore, gα(1) < 1, for α > 1, and gβ(1) > 1, for
β < 1.

Given x̄ = (0, . . . , 0︸ ︷︷ ︸
n0

, 1, . . . , 1︸ ︷︷ ︸
n1

, 0, . . . , 0︸ ︷︷ ︸
n2

, 1, . . .) ∈ Σ = {0, 1}N, we claim (and let the

reader check) that the sequence defined by a2k = gα(n2k−1 + a) and a2k+1 = gβ(n2k)
satisfies the properties of Lemma 4.1. Therefore the real number [0, a1, a2, . . .] is
well-defined.
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This allows to define

θα,β,a(x̄) =
1

(n0 + 1)β

(n0 + 2)β − (n0 + 1)β
+

1

(n1 + a)α

(n1 + a+ 1)α − (n1 + a)α
+

1

nβ2

(n2 + 1)β − nβ2
+

1

(n3 + a)α

(n3 + a+ 1)α − (n3 + a)α
+ ...

We now claim that θα,β,a(x̄) belongs to [0, 2β − 1]. Indeed, the odd subsequence
(r2k+1) decreases and the even subsequence (r2k) increases. To minimize the value
of θα,β,a(x̄), it is necessary and sufficient to maximize n0. On the other hand, to
maximize the value of θα,β,a(x̄), it is necessary and sufficient to minimize n0 and to
maximize n1. Therefore, for every x̄,

0 = θα,β,a(0̄
∞) ≤ θα,β,a(x̄) ≤ θα,β,a(1̄

∞) = 2β − 1.

Remark 3. The number a does not need to be in N to define θα,β,a, but in R+. This
restriction is due to the fact we want to see a as a parameter of the renormalization.

4.1.2. Lexicographic order and values for θβ. We now present a technical Lemma
which gives inequalities with respect to the lexicographic order in Σ. For this, we
introduce a new notation: from now until the end, the term 0n1m shall denote the
cylinder

(0, . . . , 0︸ ︷︷ ︸
n terms

, 1, . . . , 1︸ ︷︷ ︸
m terms

).

We shall also extend it in the natural way to describe more complicated cylinders
and in particular use it with n or m equal to +∞, and also

Lemma 4.3. We have the following inequalities for n0 ≥ 0:

θ(0n01n1 . . . 0n2p , 1, 0∞) ≤ θ(0n01n1 . . . 0n2p1n2p+1 , 0, . . .) ≤ θ(0n01n1 . . . 0n2p , 1∞)

θ(0n01n1 . . . 0n2p1n2p+10∞) ≤ θ(0n01n1 . . . 0n2p1n2p+1 , 0, . . .) ≤ θ(0n01n1 . . . 0n2p1n2p+1 , 0, 1∞).

Let us set an = an(β) := −2 log
gβ(n+ 1)

gβ(n)
and bn = bn(β) := −2 log

gβ(n+1)+(1+ 1
1+a)

α
−1

gβ(n)+(1+ 1
1+a)

α
−1

.

Then for (00...00︸ ︷︷ ︸
n

1 0∞) ≤ w < (00...00︸ ︷︷ ︸
n

1∞) and n > 0 we have

an ≤ φβ(w) ≤ bn.

Let us set um = um(β) := −2 log
gα(m+ a) + 2β − 1

gα(m− 1 + a) + 2β − 1
and vm = vm(β) :=

−2 log gα(m+a)+2(2β−1)
gα(m−1+a)+2(2β−1)

. Then for (11...11︸ ︷︷ ︸
m

0∞) ≤ w < (11...11︸ ︷︷ ︸
n

0, 1∞) and m > 1

we have
um ≤ φβ(w) ≤ vm.

If m = 1 we have

u1 := −2 log

(
1 +

(
3
2

)β − 1

2β −
(

3
2

)β
)
≤ φβ(w) ≤ −2 log

((
2 +

(
3
2

)β − 1

2β −
(

3
2

)β
)(

2β −
(

3
2

)β
2β − 1

))
=: v1.
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Proof. For w satisfying (00...00︸ ︷︷ ︸
n

1 0∞) ≤ w < (00...00︸ ︷︷ ︸
n

1∞) and n > 0, we have

φβ(w) = −2 log
θβ ◦ σ(w)

θβ(w)
.

We set θ(w) =
1

gβ(n+ 1) + r
and we have θ ◦σ(w) =

1

gβ(n) + r
. Here we use n > 0.

We thus have to give bounds for
1

gβ(n+1)+r

gβ(n) + r
= 1 +

gβ(n+ 1)− gβ(n)

gβ(n) + r
.

A bound from above is obtained when r = 0 and a bound from below is obtained
for r =

(
1 + 1

1+a

)α − 1.
For w satisfying (11...11︸ ︷︷ ︸

m

0∞) ≤ w < (11...11︸ ︷︷ ︸
m

0, 1∞) and m > 1 we first recall

that we have θ(w) =
1

1
2β−1

+ 1
gα(m+a)+r

. Then a simple computation gives

2β − 1− θ(w) =
1
1

2β−1

− θ(w) =
(2β − 1)2

gα(m+ a) + r + 2β − 1
.

�

4.2. Parameters.

4.2.1. Choices for parameters α, β and a. We first check that conditions (4) are
compatible with our assumptions α ≥ 1 and β ≤ 1. Remember that (4) means:

1(
3
2

)β − 1
− 1

2β − 1
= (1 +

1

a+ 1
)α − 1. (4a)

1

α
= 2β − 1. (4b)

Note that β ≤ 1 yields 2β − 1 ≤ 1, and, then, we indeed have α ≥ 1.
We now want to solve a (from the two equations) as a function of β. For this we

have to consider the map

β 7→ a(β) + 1 :=
1(

1
(3/2)β−1

− 1
2β−1

+ 1
)2β−1

− 1

.

Lemma 4.4. The map A : x → 1(
1

(3/2)x−1
− 1

2x−1
+ 1
)2x−1

− 1
− 1 is a decreasing

bijection from ]0, 1[ onto ]1,+∞].

Proof. We first prove that the function A is one-to-one.
Let us pick some a > 0, and set C := 1+ 1

1+a
. Note that C belongs to the interval

]1, 2[.
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We set ϕ(x) = C
1

2x−1 − 1− 1

( 3
2)
x
−1
− 1

2x−1
. Hence we have

A(x) = a ⇐⇒ ϕ(x) = 0.

We thus want to prove that there exists a unique x in ]0, 1[ such that ϕ(x) = 0.
Note that ϕ(1) = C − 2 < 0. Moreover 1

2x−1
= log 2

x
+ o( 1

x
) close to 0.

Therefore for x close to 0 we have ϕ(x) = elogC( log 2
x

+o( 1
x

))−1−
log
(

3
2

)
x

+
log 2

x
+o(

1

x
).

This yields that

lim
x→0+

ϕ(x) = +∞.

As the function is continuous on the interval ]0, 1], there exists at least one x such
that ϕ(x) = 0. We thus want to prove the uniqueness of this solution.
Claim 1. The function ϕ is either decreasing on ]0, 1] or the exists c ∈]0, 1[ such that
ϕ is decreasing on ]0, c[ and increasing on ]c, 1[.

We first explain why Claim 1 gives our result: indeed, the variations of ϕ and the
fact that ϕ(1) < 0 imply that there can be at most one solution for the equation

ϕ(x) = 0.

We now prove Claim 1. Note that ϕ is C∞ and we have

ϕ′(x) =
log
(

3
2

) (
3
2

)x(
1

(3/2)x−1

)2 −
log 2 2x

( 1
2x−1

)2

(
1 + logCe

1
2x−1

logC
)
.

We thus want to know where we have

(15)
log
(

3
2

)
(2x − 1)2

(
3
2

)x
log 2

((
3
2

)β − 1
)2

2x
≤ 1 + logCe

1
2x−1

logC .

Claim 2. The function x 7→ 1 + logCe
1

2x−1
logC is decreasing.

Indeed, x 7→ 1

2x − 1
is decreasing and x 7→ ex is increasing and C is larger than 1.

Claim 3. The function x 7→
(2x − 1)2

(
3
2

)x((
3
2

)β − 1
)2

2x
is increasing.

We first explain how these two claims proves that Claim 1 is correct. Note that
for x = 1

(2x − 1)2
(

3
2

)x((
3
2

)β − 1
)2

2x
= 3.

On the other hand note, note that 1 + logCe
1

2x−1
logC ∼ logCe

logC log 2
x close to 0 and

then

lim
x→0+

1 + logCe
1

2x−1
logC = +∞.
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We remind that ∼ means that the quotient goes to 1. Hence, Claims 2 and 3 yield
that there exists at most one real number c ∈]0, 1] such that for x = c we have

log
(

3
2

)
(2x − 1)2

(
3
2

)x
log 2

((
3
2

)β − 1
)2

2x
= 1 + logCe

1
2x−1

logC .

Moreover, for x < c, (15) holds and it does not hold for any x > c. If the real c
does not exists, (15) holds for every x ∈]0, 1]. This prove that Claim 1 is correct.

We now prove Claim 3. It is sufficient to prove that ψ := x 7→ log
(2x − 1)2

(
3
2

)x((
3
2

)β − 1
)2

2x

increases. Equivalently, we want to prove that ψ′ is positive on ]0, 1]. We have

ψ′(x) =
2 log 2 2x

2x − 1
−

2 log
(

3
2

) (
3
2

)x(
3
2

)β − 1
− log 2 + log

(
3

2

)
.

Hence ψ′(x) > 0 is equivalent to

log 2

(
2 2x

2x − 1
− 1

)
> log

(
3

2

)(
2
(

3
2

)x(
3
2

)β − 1
− 1

)

log 2
2x + 1

2x − 1
> log

(
3

2

) (3
2

)x
+ 1(

3
2

)β − 1

x log 2

2

(
ex log 2 + 1

ex log 2 − 1

)
>

x log
(

3
2

)
2

(
ex log( 3

2) + 1

ex log( 3
2) − 1

)

x log 2

2

(
e
x log 2

2 + e−
x log 2

2

e
x log 2

2 − e−x log 2
2

)
>

x log
(

3
2

)
2

ex log( 3
2)

2 + e−
x log( 3

2)
2

e
x log( 3

2)
2 − e−

x log( 3
2)

2


x log 2

2
coth

x log 2

2
>

x log
(

3
2

)
2

coth
x log

(
3
2

)
2

.(16)

We now let the reader check that the function x 7→ x cothx is increasing on R+.
Therefore (16) holds and Claim 3 is correct. This finish to prove that the function
A is one-to one.

We let the reader check that, close to 1 we have A(x) = (x−1)(2 log 2−4 log2(2)−
6 log

3

2
) +O((x− 1)2).

In the other hand, close to 0 we have A(x) =

1
log 3

2

− 1
log 2

x log x log 2
[1 + κ.

1

log x
] +O(1).

The function A is one-to-one and the limits on the boundaries yield it is a de-
creasing bijection from ]0, 1[ on its image ]0,+∞[.

�
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From the lemma above we get the property that each positive integer value of a
can be reached. In this way, several renormalization operators, with different values
a ∈ N, can be considered in our future reasoning. For each such value a, we have the
corresponding values αa and βa. We point out, however, that it also has meaning
to consider real values of a (any positive real is possible) in several of our results
(which are not related to the renormalization operator for the shift).

5. Proof of Theorem C

The proof has 3 main steps. In the first subsection we give an important result on
the control of the variation of the potential on cylinders. In the second subsection
we recall the construction of Gibbs states obtained by induction on a cylinder. We
recall and use the method that was introduced in [19]. In particular, we introduce a
one-family parameter of Transfer Operator, introduced the critical parameter Sc and
we show that existence of Gibbs state is dependent of the fact that the operator has
spectral radius larger than 1 or not close to the critical value Sc. In the last section
we study the realization of this condition for our family of potentials in function of
the parameters.

5.1. Distortion on cylinders. We recall that the potential φβ is defined as follows:

φβ(x) = −2 log

(
θβ ◦ σ(x)

θβ(x)

)
if x ∈ [0],

φ(x)β = −2 log

(
2β − 1− θβ ◦ σ(x)

2β − 1− θβ(x)

)
if x ∈ [1].

The theory of equilibrium state has been developed for various type of dynamics
and various potentials. It is however noteworthy that in every case, one of the main
point is to control the distortion of Birkhoff sum of the potential on cylinders.

Proposition 5.1. There exists a positive real number A such that for every k in
N∗, for every w and w′ in 01m10n11m20n2 . . . 1mk0nk1 (with 0 < mi, ni < +∞) we
have ∣∣S|~m|+|~n|(φβ)(w)− S|~m+~n|(φβ)(w′)

∣∣ ≤ A,

where |~m|+ |~n| :=
∑

imi + ni.

Proof. The proof has three steps. In the first step we recall some simple facts on
analysis. In the second step we do explicit computations for k = 2. In particular
we emphasize a general form of the difference of the two Birkhoff sums that can be
used to estimate it by induction. In the last step we give the value for A.

Some usual analysis arguments. Given A0 > 0, R1 and R2 non-negatives, then∣∣∣∣ 1

A0 +R1

− 1

A0 +R2

∣∣∣∣ ≤ |R2 −R1|
A2

0

The repeated use of this fact yields
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(17)

∣∣∣∣∣∣ 1

A0 + 1
A1+···+ 1

An+R1

− 1

A0 + 1
A1+···+ 1

An+R2

∣∣∣∣∣∣ ≤ 1

A2
0A

2
1 · · ·A2

n

|R2 −R1|

We shall use several times estimates of the form

(18)

∣∣∣∣log
A

B

∣∣∣∣ = |logA− logB| ≤ 1

min(A,B)
|A−B|.

In particular, to get abound from above for (18) we need to get a bound from below
for A and B.

The case k = 2. We set

w = (0, 1, . . . , 1︸ ︷︷ ︸
m1

, 0, . . . , 0︸ ︷︷ ︸
n1

, 1, . . . , 1︸ ︷︷ ︸
m2

, 0, . . . , 0︸ ︷︷ ︸
n2

, 1,W, . . .).

and

w′ = (0, 1, . . . , 1︸ ︷︷ ︸
m1

, 0, . . . , 0︸ ︷︷ ︸
n1

, 1, . . . , 1︸ ︷︷ ︸
m2

, 0, . . . , 0︸ ︷︷ ︸
n2

, 1,W ′, . . .).

We want to estimate |Sm1+n1+m2+n2(φβ)(w)− Sm1+n1+m2+n2(φβ)(w′)|. For simplicity
we drop the indexes β. Note that we have

Sm1+n1+m2+n2(φ)(w) = φ(w) + Sm1(φ)(σ(w)) + Sn1(φ)(σm1+1(w))

+Sm2(φ)(σm1+n1+1(w)) + Sn2−1(φ)(σm1+n1+m2+1(w)).

Owing to the definition of φ we thus get

Sm1+n1+m2+n2(φ)(w) = 2 log
θ ◦ σ(w)

θ(w)
+ 2 log

2β − 1− θ ◦ σm1+1(w)

2β − 1− θ ◦ σ(w)

+2 log
θ ◦ σm1+n1+1(w)

θ ◦ σm1+1(w)
+ 2 log

2β − 1− θ ◦ σm1+n1+m2+1(w)

2β − 1− θ ◦ σm1+n1+1(w)

+2 log
θ ◦ σm1+n1+m2+n2(w)

θ ◦ σm1+n1+n2+1(w)
.

We shall thus get bounds for the 10 terms of the form log θ◦σ . . . (w)−log θ◦σ . . . (w)
or log(2β − 1− θ . . . (w))− log(2β − 1− θ . . . (w′)).

• Estimation for log θ(w) − log θ(w′). Using (18) we need to get a lower bound
for θ(w) and θ(w′). Lemma 4.3 gives

θ(w), θ(w′) ≥ θ(010∞) =
1

gβ(2) + 1
gα(1+a)

=
1

1
(3/2)β−1

+ 1
(3/2)β−1

− 1
2β−1

.
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Now, w and w′ coincides for the first 1 + m1 + n1 + m2 + n2 symbols. Then (17)
gives

|θ(w)− θ(w′)| =

∣∣∣∣∣ 1

gβ(2) + 1
gα(m1+a)+···

− 1

gβ(2) + 1
gα(m1+a)+···

∣∣∣∣∣ ≤
1

gβ(2)2

1

gα(m1 + a)2

1

gβ(n1)2

1

gα(m2 + a)2

1

gβ(n2)2
|R−R′|.

Here |R−R′| is of the form

∣∣∣∣ 1

gα() + . . .
− 1

gα() + . . .

∣∣∣∣, hence is lower than
(
1 + 1

1+a

)α−
1 ≤ 1

( 3
2)
β
−1
− 1

2β−1
. Therefore we get

| log θ(w)− log θ(w′)| ≤

(
1(

3
2

)β − 1
− 1

2β − 1

)(
2(

3
2

)β − 1
− 1

2β − 1

)((
4

3

)β
− 1

)2

1

gα(m1 + a)2

1

gβ(n1)2

1

gα(m2 + a)2

1

gβ(n2)2
.(19)

• Estimation for log θ ◦ σ(w)− log θ ◦ σ(w′). Note that we have

θ(σ(w)), θ(σ(w′)) =
1

gβ(1) + 1
gα(m1+a)+...

.

Copying what we have done just above we get

| log θ ◦ σ(w)− log θ ◦ σ(w′)| ≤

(
1(

3
2

)β − 1

)(
1(

3
2

)β − 1
− 1

2β − 1

)((
3

2

)β
− 1

)2

1

gα(m1 + a)2

1

gβ(n1)2

1

gα(m2 + a)2

1

gβ(n2)2
.(20)

• Estimation for log(2β − 1− θ ◦ σ(w))− log(2β − 1− θ ◦ σ(w′)). Again we have

θ(σ(w)), θ(σ(w′)) =
1

gβ(1) + 1
gα(m1+a)+...

. =
1

1
2β−1

+ 1
R

.

Note that we get

2β − 1− 1
1

2β−1
+ 1

R

=
1
1

2β−1

− 1
1

2β−1
+ 1

R

=
1
R(

1
2β−1

)(
1

2β−1
+ 1

R

) =

(
2β − 1

)2

R + 2β − 1
.

Therefore we get
1

2β − 1− θ ◦ σ(w)
≤ R + 2β − 1

(2β − 1)2 , and we get a bound from above

for this last expression if we get a bound from above for R.



RENORMALIZATION AND PHASE TRANSITION 25

Now, R = gα(m1 + a) +
1

gβ(n2) + 1

...

, therefore we get

R ≤ gα(m1 + a) + 2β − 1.

This yields

(21)
1

2β − 1− θ ◦ σ(w)
≤ 1

(2β − 1)2

[
2(2β − 1) + gα(m1 + a)

]
.

This also holds for w′. Now,
∣∣log(2β − 1− θ ◦ σ(w))− log(2β − 1− θ ◦ σ(w′))

∣∣ ≤
|θ ◦ σ(w)− θ ◦ σ(w′)|

2β − 1−min(θ ◦ σ(w), θ ◦ σ(w′))
, and we finally get

∣∣log(2β − 1− θ ◦ σ(w))− log(2β − 1− θ ◦ σ(w′))
∣∣ ≤ 1

(2β − 1)2

[
2(2β − 1) + gα(m1 + a)

]
(

1(
3
2

)β − 1
− 1

2β − 1

)((
3

2

)β
− 1

)2

1

gα(m1 + a)2

1

gβ(n1)2

1

gα(m2 + a)2

1

gβ(n2)2
.(22)

• Estimation for log(2β − 1− θ ◦ σm1+1(w))− log(2β − 1− θ ◦ σm1+1(w′)). We copy
what we have just done to get (22). Note however that σm1+1(w) starts with 0 and
it is thus lower than 01∞. Note also it belongs to 0n11m20n2 . We thus get∣∣∣∣log

2β − 1− θ ◦ σm1+1(w)

2β − 1− θ ◦ σm1+1(w′)

∣∣∣∣ ≤ 1

2β −
(

3
2

)β
(

1(
3
2

)β − 1
− 1

2β − 1

)
1

gβ(n1)2

1

gα(m2 + a)2

1

gβ(n2)2
.(23)

• Estimation for log(θ ◦ σm1+1(w))− log(θ ◦ σm1+1(w′)). Following (18) we have to
find a bound from below for θ ◦ σm1+1(w) and θ ◦ σm1+1(w′). Note that we have

θ ◦ σm1+1(w), θ ◦ σm1+1(w′) =
1

gβ(n1) + 1
gα(m2+a)+ 1

...

.

We thus have to get a bound from below for gα(m2 + a) + . . .. Hence, we claim that
we have

1

θ ◦ σm1+1(w)
≤ gβ(n1) +

(
1 +

1

1 + a

)α
− 1 = gβ(n1) +

(
1(

3
2

)β − 1
− 1

2β − 1

)
.
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Applying (17) we get

∣∣∣∣log
θ ◦ σm1+1(w)

θ ◦ σm1+1(w′)

∣∣∣∣ ≤
(
gβ(n1) +

1(
3
2

)β − 1
− 1

2β − 1

)(
1(

3
2

)β − 1
− 1

2β − 1

)
1

gβ(n1)2

1

gα(m2 + a)2

1

gβ(n2)2
.(24)

From now on, the other bounds are similar to those already computed. We let the
reader check that we have
(25)∣∣∣∣log

θ ◦ σm1+n1+1(w)

θ ◦ σm1+n1+1(w′)

∣∣∣∣ ≤
((

3

2

)β
− 1

)(
1(

3
2

)β − 1
− 1

2β − 1

)
1

gα(m2 + a)2

1

gβ(n2)2
,

obtained similarly than (20). A similar computation than (22)

∣∣∣∣log
2β − 1− θ ◦ σm1+n1+1(w)

2β − 1− θ ◦ σm1+n1+1(w′)

∣∣∣∣ ≤ 2(2β − 1) + gα(m2 + a)

(2β − 1)2

(
1(

3
2

)β − 1
− 1

2β − 1

)((
3

2

)β
− 1

)2

1

gα(m2 + a)2

1

gβ(n2)2
.(26)

Copying (23) we get
(27)∣∣∣∣log

2β − 1− θ ◦ σm1+n1+m2+1(w)

2β − 1− θ ◦ σm1+n1+m2+1(w′)

∣∣∣∣ ≤ 1

2β −
(

3
2

)β
(

1(
3
2

)β − 1
− 1

2β − 1

)
1

gβ(n2)2
.

Copying (24) we get
(28)∣∣∣∣log

θ ◦ σm1+n1+m2+1(w)

θ ◦ σm1+n1+m2+1(w′)

∣∣∣∣ ≤
(
gβ(n2) +

1(
3
2

)β − 1
− 1

2β − 1

)(
1(

3
2

)β − 1
− 1

2β − 1

)
1

gβ(n2)2
.

And finally we get
(29)∣∣∣∣log

θ ◦ σm1+n1+m2+n2(w)

θ ◦ σm1+n1+m2+n2(w′)

∣∣∣∣ ≤
(

1(
4
3

)β − 1
+

1(
3
2

)β − 1
− 1

2β − 1

)(
1(

3
2

)β − 1
− 1

2β − 1

)((
4

3

)β
− 1

)2

.
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Collecting all inequalities (19), (20), (22), (23), (24), (25), (26), (27), (28) and (29),
we get

|Sm1+n1+m2+n2(φβ)(w)− Sm1+n1+m2+n2(φβ)(w′)| ≤(
1(

4
3

)β − 1
+

1(
3
2

)β − 1
− 1

2β − 1

)(
1(

3
2

)β − 1
− 1

2β − 1

)((
4

3

)β
− 1

)2

+(
1(

3
2

)β − 1
− 1

2β − 1

)
1

gβ(n2)

[
1 +

1

gβ(n2)

[
1

2β −
(

3
2

)β +
1(

3
2

)β − 1
− 1

2β − 1
+

1

gα(m2 + a)

((3
2

)β − 1

2β − 1

)2

+
1

gα(m2 + a)

(3

2

)β
− 1 + 2

((
3
2

)β − 1

2β − 1

)2

(2β − 1)+

1

gβ(n1)

[
1 +

1

gβ(n1)

[
1

2β −
(

3
2

)β +
1(

3
2

)β − 1
− 1

2β − 1
+

+
1

gα(m1 + a)

((3
2

)β − 1

2β − 1

)2

+
1

gα(m1 + a)

(3

2

)β
− 1 + 2

((
3
2

)β − 1

2β − 1

)2

(2β − 1)+

((
4

3

)β
− 1

)2(
2(

3
2

)β − 1
− 1

2β − 1

) .(30)

Let us now set :

F1,β(x) :=

(
3

2

)β
− 1 + 2

((
3
2

)β − 1

2β − 1

)2

(2β − 1) + x,

F2,β(x) :=

((
3
2

)β − 1

2β − 1

)2

+ x,

F3,β(x) :=
1

2β −
(

3
2

)β +
1(

3
2

)β − 1
− 1

2β − 1
+ x,

F4,β(x) := 1 + x,

Gβ,n(x) :=
x

gβ(n)
,

Gα,m(x) :=
x

gα(m+ a)
.
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Then (30) yields

|Sm1+n1+m2+n2(φβ)(w)− Sm1+n1+m2+n2(φβ)(w′)| ≤(31) (
1(

4
3

)β − 1
+

1(
3
2

)β − 1
− 1

2β − 1

)(
1(

3
2

)β − 1
− 1

2β − 1

)((
4

3

)β
− 1

)2

+(
1(

3
2

)β − 1
− 1

2β − 1

)
Gβ,n2 ◦ F4,β ◦Gβ,n2 ◦ F3,β ◦Gα,m2 ◦ F2,β ◦Gα,m2 ◦ F1,β◦

Gβ,n1 ◦ F4,β ◦Gβ,n1 ◦ F3,β ◦Gα,m1 ◦ F2,β ◦Gα,m1 ◦ F1,β

((4

3

)β
− 1

)2(
2(

3
2

)β − 1
− 1

2β − 1

)
Note that all the functions Fi,β are of the form x 7→ x+Ai,β with Ai,β > 0. Now gβ
and gα are increasing functions thus

1

gβ(n)
≤
(

3

2

)β
− 1,

1

gα(m+ a)
≤
(

1 +
1

1 + a

)α
− 1.

Let us set Gβ(x) := (
(

3
2

)β − 1)x and Gα(x) :=

(
1

( 3
2)
β
−1
− 1

2β−1

)
x. We finally set

F := Gβ ◦ F4,β ◦Gβ ◦ F3,β ◦Gα ◦ F2,β ◦Gα ◦ F1,β.

Let us setA(β) :=

(
1(

4
3

)β − 1
+

1(
3
2

)β − 1
− 1

2β − 1

)(
1(

3
2

)β − 1
− 1

2β − 1

)((
4

3

)β
− 1

)2

and X(β) :=

(((
4
3

)β − 1
)2
(

2

( 3
2)
β
−1
− 1

2β−1

))
. Then (31) gives

(32)

|Sm1+n1+m2+n2(φβ)(w)− Sm1+n1+m2+n2(φβ)(w′)| ≤ A(β)+

(
1(

3
2

)β − 1
− 1

2β − 1

)
F 2(X(β)).

We emphasize that the “2” in F 2 in (32) exactly is the “2” from the case k = 2.

End of the proof. Existence and value for A. From (32) we claim that for general k
we have

(33) |S~m+~n(φβ)(w)− S~m+~n(φβ)(w′)| ≤ A(β) +

(
1(

3
2

)β − 1
− 1

2β − 1

)
F k(X(β)).

The function F is of the form x 7→ b(β)x+ c(β). Computing b(β) we get

b(β) =

(
1−

(
3
2

)β − 1

2β − 1

)2

< 1.

Therefore, for any initial point X0, the sequence (F n(X0))n converges to the unique

fixed point L(β) :=
c(β)

1− b(β)
.
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For β close to 0, e recall that xβ − 1 = β log x + o(β). We now want to estimate
c(β). This depends continuously on β. We shall thus estimate this value for β close
to 0 to know if it bounded from below or not when β describes ]0, 1].

The following scheme indicates the dominating of the constant iterating the maps
Fi,β of Gj.

F1−→ β
Gα−→ 1

F2−→ 1
Gα−→ 1

β

F3−→ 1

β

Gβ−→ 1
F4−→ 1

Gβ−→ β.

This means that L(β) is in O(β). Note that X(β) is also in O(β). Therefore,
the sequence F n(X(β)) is bounded from above by some constant of the form Bβ,
with B independent of β. Note that A(β) of bounded when β describes ]0, 1], and(

1(
3
2

)β − 1
− 1

2β − 1

)
is in O( 1

β
). We can thus find some A such that for every k

and for every β,

A(β) +

(
1(

3
2

)β − 1
− 1

2β − 1

)
F k(X(β)) ≤ A.

This achieves the proof of the proposition. �

5.2. Construction of Gibbs states. In this section we recall the method of con-
struction of Gibbs state done in [19] and developed in further later works of R.
Leplaideur. We denote by hµ the Kolmogorov entropy of the invariant probability
µ.

First note that the potential γφβ is a continuous function, hence the variational
principle proves that there exists an equilibrium state associated to this potential.
We recall that given a function ϕ : Σ → R, an invariant probability measure µ is
called an equilibrium state for the potential ϕ if it satisfies

hµ +

∫
ϕdµ = sup

ν

{
hν +

∫
ϕdν

}
.

We denote by P(γ, β) the associated pressure.

We now consider the first return map g in the cylinder 01. For y in 01, r(y)
denotes the first return time in 01 of y by iterations of σ. For a real number Z, for
x in 01 and for ψ a continuous function from 01 to R, we define

LZ,β,γ(ψ)(x)
∑

y, g(y)=x

eSr(y)(γφβ)(y)−Zr(y)ψ(y).

This is the usual transfer operator for the map g and associated to the potential
Sr(.)(γφβ)(.)−Zr(.). We study this operator, for fixed γ and β and for large enough
Z. Namely, we set

Zc = Zc(γ, β) := lim sup
n→+∞

1

n
log

 ∑
x=g(y), r(y)=n

eSn(γφβ)(y)

 .
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Note that for every Z > Zc, the series LZ,γ,β(1I01)(x) converges for every x in 01.
Moreover, for every Z < Zc and for every x Proposition 5.1 proves that the same
series diverge.

Using Proposition 5.1 we get

Zc ≤ P(γ, β).

The main problem is to check if we get the strict inequality Zc < P(γ, β) or not. In
the rest of the proof we may omit γ and β when they are not necessary.

We claim that for every Z > Zc the spectral radius λZ of the two adjoint operators
LZ and L∗Z is a simple and dominating eigenvalue. If νZ is the associated eigen-
measure and if hZ is the associated eigen-function (characterized by

∫
hZ dνZ = 1),

then the measure µZ defined by

dµZ := hZdνZ ,

is the unique equilibrium state associated to Sr(.)(γφβ)(.)−Zr(.) for the dynamical
system (01, g) (see Propositions 4.5, 4.8, 5.7 and 5.9 in [19]). We indicate that the
main argument to get this result is to use the Ionescu-Tulcea and Marinescu theorem
for the operator LZ . The large Banach space is the set of continuous functions on
01 and the small Banach space is the set of functions with the same module of
continuity than the potential (see Subsection 4.3 in [19]).

Moreover the pressure of the equilibrium state is log λZ (see proposition 5.9 in
[19]). This is a convex and decreasing function on ]Zc,+∞[ (see Theorem 2.1 and
its proof in section 4 in [3]). Furthermore, for every Z > Zc, there exists a unique
σ-invariant probability measure µ̂Z such that its restriction and renormalization to
the cylinder 01 is the measure µZ (see Proposition 6.8 in [19]). For this we use the
fact that the expectation of the return time is proportional to LZ(r)(x) (for any x

in 01). This last term is equal to −∂LZ(1I)(x)

∂Z
(see Lemma 3.7 in [20]). Now, note

that a power series and its derivative have the same radius of convergence. A simple
computation gives (See Proposition 6.8 in [19])

(34) hbµZ (σ) +

∫
γφβ dµ̂Z = Z + µ̂Z(01) log λZ .

Concerning the conformal property, Proposition 5.1 yields that for every k for
every γ and β, for every Z > Zc(γ, β), and for every x in 01m10n1 . . . 1mk0nk1

(35) e−A ≤ νZ(01m10n1 . . . 1mk0nk1)

eS|~m|+|~n|(γφβ)(x)−k log λZ,γ,β
≤ eA.

The same holds for µZ exchanging A with 2A (see Lemma 5.10 in [19]). Therefore,
the measure νZ can be γφβ-conformal if and only if log λZ = 0, namely if λZ = 1.
To prove Theorem C, hence to get conformal and quasi-conformal measures, it is
sufficient to prove

(36) lim
Z↓Zc

λZ > 1.

If inequality (36) holds, there exists a unique Z0 such that λZ0 = 1. This furnishes
unique conformal and quasi-conformal measures (note that we have Z0 > Zc), and



RENORMALIZATION AND PHASE TRANSITION 31

it it natural to ask for if the quasi-conformal measure µ̂Z0 is an equilibrium state for
γφβ or not.

Let us denote by δ0 the Dirac measure at the fixed point 0∞; similarly the Dirac
measure at 1∞ is denoted δ1 . We point out that every ergodic probability measure
different from δ0 and δ1 gives positive weight to the cylinder 01. Now, we claim that
(34) yields that Z0 is the maximum of the pressures of the potential γφβ among the
measure different from δ0 and δ1. To see this, pick any such measure µ̂, consider its
restriction-renormalization µ to 01 and check that we have

µ̂(01)

(
hµ(g) +

∫
Sr(.)(γφβ)(.) dµ

)
≤ µ̂(01)Z0

∫
r(.) dµ+ µ̂(01) log λZ0 = Z0,

with equalities if and only if µ = µZ0 . Note that φβ(0∞) = φβ(1∞) = 0. Therefore,
if we have

(37) Zc ≥ 0,

then, we automatically get Z0 > 0. This yields that P(γ, β) = Z0, and that the
unique γφβ-quasi-conformal invariant probability is also the unique equilibrium state
associated to γφβ.

5.3. Conditions hold. In this subsection we prove that the two conditions (37)
and (36) hold. This shall achieve the proof of Theorem C.

Proposition 5.2. For every γ and β we have Zc(γ, β) = 0.

Proof. We recall that the transfer operator is defined by

LZ(1I01)(w) :=
∑

v, g(v)=w

eSr(v)(γ φ)(v)−nZ , w ∈ 01.

The point v is of the form v = 01m0n−1w. In that case we have r(v) = 1 +m+ n−
1 + 1 = m+ n+ 1. Therefore we get

LZ(1I01)(w) =
∑
n≥1

∑
m≥1

eS1+m+n(γ φ)(01m0n−1w)−nZ .

Now we have

S1+m+n(φβ)(01m0n−1w)) = φβ(01m0n−1w))+Sm(φβ)(1m0n−1w))+φβ(10nw)+Sn−1(φβ)(0n−1w)).
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Using Lemma 4.3 we get for m ≥ 2

S1+m+n(φβ)(01m0n−1w)) ≥
n−1∑
k=1

ak +
m∑
k=1

uk

≥ −2 log(gβ(n+ 1))− 2 log

(
gα(m+ a) + 2β − 1

gα(1 + a) + 2β − 1

)
+

−2 log

(
(2β − 1)

(
2 +

(
3
2

)β − 1

2β −
(

3
2

)β
))

.(38)

S1+m+n(φβ)(01m0n−1w)) ≤
n−1∑
k=1

bk +
m∑
k=1

vk

≤ −2 log

(
gβ(n+ 1) +

(
1 +

1

1 + a

)α
− 1

)
− 2 log

(
gα(m+ a) + 2(2β − 1)

gα(1 + a) + 2(2β − 1)

)
−2 log

((
3

2

)β
− 1

)
− 2 log

((
2 +

(
3
2

)β − 1

2β −
(

3
2

)β
)(

2β −
(

3
2

)β
2β − 1

))
.(39)

Let us set

A(β) :=
1

(2β − 1)

(
1 +

( 3
2)
β
−1

2β−( 3
2)
β

) ,

B(β) :=
2β − 1

(
(

3
2

)β − 1)(2β − 1 + 2β −
(

3
2

)β
)
.

Then we have

LZ,γ,β(1I01)(w) ≥ A2γ(β)e−Z

+∞∑
n=1

((
1 +

1

n+ 1

)β
− 1

)2γ

e−nZ


1 +

(
1 +

(
3
2

)β − 1

2β −
(

3
2

)β
)2γ +∞∑

m=2

( (
1 + 1

m+a+1

)α − 1
1

2β−1
+
(
1 + 1

m+a+1

)α − 1

)2γ

e−mZ

(40)

LZ,γ,β(1I01)(w) ≤ B2γ(β)e−Z

+∞∑
n=1

(1 + 1
n+1

)β − 1

1 +
(1+ 1

n+1)
β
−1

gα(1)


2γ

e−nZ


1 +

(
2 +

(
3
2

)β − 1

2β −
(

3
2

)β
)2γ +∞∑

m=2

( (
1 + 1

m+a+1

)α − 1
1

2β−1
+ 2

(
1 + 1

m+a+1

)α − 2

)2γ

e−mZ

(41)

Now, the four series have a general term equivalent to 1
n2γ e

−nZ or 1
m2γ e

−mZ when n
or m go to +∞. Hence we get Zc = 0 and the proposition is proved. �
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Proposition 5.3. For any γ ≤ 1
2
, for any β ≤ 1 and for any w in 01 we have

lim
Z↓0

λZ = +∞.

For any γ > 1
2
, there exists βc = βc(γ) such that for any β < βc and for any w in

01 we have

lim
Z↓0

λZ > 1.

Proof. We start with the case γ ≤ 1
2
. Note that for n large we have(

1 +
1

n

)β
− 1 =

β

n
+O(

1

n2
).

The series is increasing as Z decreases to 0.
We now deal with the case γ > 1

2
. The function x 7→ (1+x)β−1− β

2
x is increasing

on the interval [0, 2
1

1−β − 1]. This interval contains [0, 1]. Therefore, for every β < 1
and for every n ≥ 1, (

1 +
1

n

)β
− 1 ≥ β

2n
.

Therefore, we get

A2γ(β)

+∞∑
n=1

((
1 +

1

n+ 1

)β
− 1

)2γ
 ≥ ( β

2β − 1

)2γ
1

22γ

(
2 +

( 3
2)
β
−1

2β−( 3
2)
β

)2γ (ζ(2γ)−1).

All the terms from the right hand side are bounded from below away from 0 when

β describe [0, 1]. This also holds for

(
3
2

)β − 1

2β −
(

3
2

)β .

Let us set H(Z) :=
+∞∑
m=1

( (
1 + 1

m+a+1

)α − 1
1

2β−1
+
(
1 + 1

m+a+1

)α − 1

)2γ

e−mZ . Note that H(0) con-

verges. Therefore we have to show that the term H(0) goes to +∞ when β goes to
0. Hence, we now analyze for β > 0 the function

S(β, γ) = S(β, α, γ, a) =
∞∑
m=1

(
(1 + 1

m+a+1
)α − 1

( 1
2β−1

+ [ (1 + 1
m+a+1

)α − 1 ] )

)2 γ

,

for fixed values of β, α, γ.
We remind the reader that when β → 0 we have that α→∞ and a→∞.
We are interested now in the upper bound.
Note that

S(β, α) =
∞∑
m=1

(
1− 1

1 + (2β − 1) [(1 + 1
m+a+1

)α − 1]

)2 γ

.
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Consider

u(α,m, a) = (1 +
1

m+ a+ 1
)α − 1 = eα log(1+ 1

m+a+1
) − 1.

As log(x) ≥ 1− 1
x
, we get that

u(α,m, a) ≥ eα log(1+ 1
m+a+1

) − 1 ≥ eα(1− 1+m+a
2+m+a

) − 1 ≥ eα( 1
2+m+a

) − 1.

In this way

S(β, α) ≥
∞∑
m=1

(
1− 1

1 + (2β − 1) [eα( 1
2+m+a

) − 1]

)2 γ

.

From elementary calculus we get that last summation is, up to a multiplicative
constant, of the same order as the integral

∫ ∞
0

(
1− 1

1 + (2β − 1) [eα( 1
2+t+a

) − 1]

)2 γ

dt.

Consider the change of variable s = eα( 1
2+t+a

) − 1. Then

ds = − α

(2 + t+ a)2
eα( 1

2+t+a
) dt = − 1

α
(s+ 1) log2(s+ 1) dt.

Note that when t→∞, we have s→ 0, and when t→ 0, we get that s→ e
α

2+a−1.
We claim that when β → 0, we get that e

α
2+a −1 ∼ C

β
, for some constant C (again,

we remind that ∼ means that the quotient goes to 1). Indeed, (1 + 1
1+a

)α − 1 =
1

(3/2)β−1
− 1

2β−1
behaves like log(2)−log(3/2)

log(2) log(3/2)
1
β

= 1
β
1.02361..., when β goes to 0.

As α log(1 + 1
1+a

) ∼ α
1+a

, when a and α are large, then e
α

1+a − 1 ∼ C
β
.

Finally, from α
2+a

= α
1+1+a

= α
1+a

1
1

1+a
+1
, we get the claim.

We return to our main estimation.
After that change of variables we get for some fixed constants 0 < C ′ < C∫ C

β

0

(
1− 1

1 + (2β − 1) s

)2 γ

[
1

α
(s+ 1) log2(s+ 1)]−1 ds ≥

∫ C
β

C′
β

(
1− 1

1 + (2β − 1) s

)2 γ

[
1

α
(s+ 1) log2(s+ 1)]−1 ds.

It is easy to see that for any fixed 0 ≤ γ ≤ 1, and any s such that C ′/β ≤ s ≤ C/β,
the expression (

1− 1

1 + (2β − 1) s

)2 γ

,

uniformly in β, is bounded above and is far away from zero.
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Therefore, up to a multiplicative positive constant∫ C
β

C′
β

(
1− 1

1 + (2β − 1) s

)2 γ

[
1

α
(s+ 1) log2(s+ 1)]−1 ds ≥

K

∫ C
β

C′
β

[
1

α
(s+ 1) log2(s+ 1)]−1 ds ≥

Kα[
−1

log(s+ 1)
]
C
β

C′
β

= Kα[
1

log(C
′

β
+ 1)

− 1

log(C
β

+ 1)
] =

Kα [

log(
(C
β

+1)

(C
′
β

+1)
)

log(C
′+β
β

) log(C+β
β

)
] ∼

K
1

β

C3

(A1 − log(β)) (A2 − log(β))
∼ C4

β log2(β)
.

Therefore, for fixed γ, we have that S(β, γ)→∞ when β → 0. �

Now, Propositions 5.2 and 5.3 prove Theorem C. The quantity βc(γ) is chosen
such that for every w in 01, L0,γ,βc(γ)(1I01)(w) > 1.
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