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Abstract

We study ergodic properties of invariant measures for the partially hyperbolic
horseshoes, introduced in [9]. These maps have a one dimensional center direction
Ec, and are at the boundary of the (uniformly) hyperbolic diffeomorphisms (they
are constructed bifurcating hyperbolic horseshoes via heterodimensional cycles).

We prove that every ergodic measure is hyperbolic, but the set of Lyapunov
exponents in the central direction has gap: all ergodic invariant measures have neg-
ative exponent, with the exception of one ergodic measure with positive exponent.
As a consequence, we obtain the existence of equilibrium states for any continuous
potential. We also prove that there exists a phase transition for the smooth family
of potentials given by φt = t log |DF |Ec |.

1 Introduction

Hyperbolic maps were extensively studied from the topological and ergodic viewpoints in
the 70´s and 80´s. The contributions of several authors build a rather complete theory for
these maps. Among other things, they proved that, given f an expanding map (or Axiom
A diffeomorphism) and φ a continuous real function, there are equilibrium states for φ
and f . Recall that an equilibrium state is a measure that maximizes, among all invariant
probabilities, the sum of the entropy and the integral of the potential. More precisely, if
hµ(f) denotes the entropy of the map f with respect to the invariant probability µ, then
ν is an equilibrium state with respect to the potential φ if

hν(f) +

∫
φ dν = sup{hµ(f) +

∫
φ dµ : µ is a f -invariant probability}.

If φ is Hölder continuous, the equilibrium state is unique on each transitive component
of the map. In this case, this measure is the Gibbs measure of the system and has full
support. Most of the features of the equilibrium states in the hyperbolic case are now
very well understood, as decay of correlations, recurrence properties and limit theorems
(see [23, 4, 20, 2] for precise statements and references).

The importance of equilibrium states and/or Gibbs measures in the description of
some dynamical properties of the map is considerable. Just to mention few examples,
when f is a C1+α expanding map of a compact (connected) manifold, there exists a
unique invariant measure absolutely continuous with respect to the Lebesgue measure,
and it is the unique equilibrium state associated to the potential φ = − log | detDf |. If
we consider the zero potential, an equilibrium state is just a maximum for the metric
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entropy, and gives the statistical distribution of periodic orbits on the manifold. Another
application concerns the Hausdorff dimension of a conformal C1+α expanding attractor
Λ. If t0 is the Hausdorff dimension of the attractor Λ, the equilibrium measure associated
to the potential φ = −t0 log |Df | is the unique invariant measure absolutely continuous
with respect to the t0-dimensional Hausdorff measure of Λ.

The picture beyond hyperbolic systems is pretty much incomplete. To begin with, to
prove the existence of such measures is a difficult problem in general, due to the lack of
(any) regularity of the entropy function (see [15, 12, 16]). Moreover, for symbolic systems
and some one-dimensional maps, as intermittent maps and some rational maps, there
exist phase transitions, i.e., some potentials have more than one equilibrium state, even
assuming regularity of the potential (see [21, 6, 18]). To find, understand and classify the
difficulties and different types of phenomena of the non-uniform setting is a challenging
problem.

In this direction, some advances were obtained recently, for non-uniformly hyperbolic
maps that have some “hyperbolic flavor”. This includes the Hénon-like maps (see [24]),
some one dimensional maps (see [5, 17]), horseshoes with homoclinic tangencies (see
[12, 13]), rational maps on the Riemannian sphere (see [14, 19]), countable Markov shifts
and piecewise expanding maps (see [7, 22, 25]). Results were also obtained when f is a
partially hyperbolic diffeomorphism (see [3], Chapter 11), which is just the case analyzed
here.

One way of having some hyperbolic flavor is to consider systems at the boundary of
the hyperbolic ones. To do this, one can consider, for instance, a one parameter family of
hyperbolic horseshoes that loose hyperbolicity through a first parameter of bifurcation.
The bifurcating system may display a homoclinic tangency, a saddle-node periodic point, a
heterodimensional cycle, etc. In [9], Dı́az et al proposed a model of destruction of higher
dimensional horseshoes via heterodimensional cycles. They proved that there exists a
family of diffeomorphisms F at the boundary of the uniformly hyperbolic ones, defined
in a neighborhood of a region R, satisfying

(a) partial hyperbolicity- for each map F and each point in R, the tangent space
splits into three DF -invariant directions, Es ⊕ Ec ⊕ Eu, where Eu is uniformly
expanded, Es is uniformly contracted and Ec is central. By central we mean that
the possible expansion and contraction in this direction are weaker than in the other
two.

(b) heterodimensional cycles- each diffeomorphism F has a cycle associated to two
hyperbolic saddles P and Q with different indices: the one dimensional stable man-
ifold of the point Q has a non-empty intersection with the one dimensional unstable
manifold of the point P . Similarly, the two dimensional unstable manifold of the
point Q has a non-empty intersection with the two dimensional stable manifold of
the point P . See Figure 1.

Recall that the homoclinic class of a hyperbolic fixed point P for the map F , H(P, F ),
is the closure of the transverse intersections of its stable and unstable manifolds.

(c) homoclinic classes- The homoclinic class of Q is {Q} and the homoclinic class
of P is non-trivial and contains the saddle Q. Moreover, H(P, F ) is the both the
maximal invariant set and the non-wandering set of F in R.
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(d) central curves- A remarkable property of the homoclinic class H(P, F ) is that it
contains infinitely many curves tangent to the central direction Ec. In particular,
it contains a curve tangent to Ec joining P and Q.

(e) semi-conjugacy with the shift- If Σ11 denotes the subshift of finite type in {0, 1}Z

where only the transition 1→ 1 is forbidden, then there is a continuous surjection

Π: H(P, F )→ Σ11, with Π ◦ F = σ ◦ Π. (1)

All the points in the same central curve have the same image by the projection Π
above. Therefore, Π defines a semi-conjugacy of the two dynamics.

The property (d) above imply that the map is a skew product defined in Σ11 × I,
where I is the unitary interval [0, 1], representing the central direction. We explore this
viewpoint in Section 3.

PQ

Figure 1: The twisted horseshoe

Here, we give an ergodic counterpart of [9] for these maps. We prove in Theorem 2.1
that all ergodic invariant measures are hyperbolic (have non-zero Lyapunov exponents)
and that these maps have a gap in the set of central Lyapunov exponents. Indeed, the
unique ergodic invariant measure with positive central exponent is the Dirac measure at
Q. We remark that, for a C1-generic system (that is, a system in a countable intersection
of C1 open and dense sets of diffeomorphisms) there is no such a gap (see [1]). The
nonexistence of such a central gap seems to be the main reason why in the C1-generic
case there are non-hyperbolic measures with uncountable support (see [8]).

As consequence of the hyperbolicity of the ergodic measures supported in H(P, F ),
we prove in Theorem 2.2 that any continuous potential has equilibrium states, and, for a
residual set of potentials in the C0 topology, the equilibrium state is unique. However, it
is unclear if these equilibrium states are Gibbs measures or not. Concerning uniqueness
of the equilibrium states, we prove in Theorem 2.3 that the one-parameter family φt =
t log |DF |Ec | of C∞ potentials has a phase transition: there exists t0 > 0 such that φt0
admits at least two different equilibrium states. As far as we know, this is the first example
of diffeomorphism with equilibrium states for all potentials that exhibits phase transition.
Finally, for t > t0, the Dirac measure supported in Q is the unique equilibrium state
associated to the potential φt (see Theorem 2.3).
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In view of the recent results of [16], it is likely that for each map F , there exists a posi-
tive constant CF depending only on the topological entropy and the expansion/contraction
rates of F , such that for any Hölder potential φ satisfying (supφ−inf φ) ≤ CF there exists
a unique equilibrium state associated to φ. Moreover this equilibrium state should be a
non-lacunary Gibbs measure.

Acknowledgments: We are grateful to F. Abdenur, J. Buzzi, L. J. Dı́az and M. Viana
for useful conversations. Most of this work was carried out at Université de Bretagne
Occidentale (UBO) at Brest, France. K.O. is also thankful to Penn State University
for the hospitality during the preparation of this manuscript. This paper was partially
supported by CNPq, CAPES, Faperj, and UBO.

1.1 Definition of the family of diffeomorphisms

In this section we define he maps F that we consider. For simplicity, we define the
F (x, y, z) for (x, y, z) ∈ R3. The results remain valid for (x, y, z) ∈ Ri ⊕ R⊕ Rj, i, j ≥ 1,
with small changes.

We consider in R3 a family of horseshoe maps F = Fλ0,λ1,β0,σ,β1 : R→ R3, on the cube
R = I3, where I denote the interval I = [0, 1]. Define the sub-cubes R0 = I × I × [0, 1/6],
and R1 = I × I × [5/6, 1] of R. The restrictions Fi of F to Ri, i = 0, 1, are defined by:

• F0(x, y, z) = F0(x, y, z) = (λ0x, f(y), β0z), with 0 < λ0 < 1/3, β0 > 6 and f is the
time one map of a vector field to be defined later;

• F1(x, y, z) = (3/4−λ1x, σ(1− y), β1(z− 5/6)), with 0 < λ1 < 1/3, 0 < σ < 1/3 and
3 < β1 < 4.

First define the map f : I → I as the time one of the vector field

y′ = y(1− y),

depicted in Figure 2.

f
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Figure 2: The central map f

Observe that f(0) = 0 and f(1) = 1, f ′(0) = e and f ′(1) = 1/e (see Equations (1) and
(2) in [9]). Since we have f(0) = 0 and f(1) = 1, the point Q = (0, 0, 0) is a fixed saddle
of index 1 of F (i.e. Q has a one-dimensional stable direction), and the point P = (0, 1, 0)
is a fixed saddle of index 2 of F .

From the definition, the x-direction is the stable direction Es, the y-direction is the
central direction Ec and the z-direction is the unstable direction Eu. We shall thus also
denote a point by (xs, xc, xu). A central curve is a segment of the form {x}× [a, b]×{z}.
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The projection Π: H(P, F )→ Σ11 in (1) is defined as follows. Let Λ be the maximal
invariant set in the cube R. Namely

Λ =
⋂
n∈Z

F n(R).

For X ∈ Λ, associate the sequence Π(X) = (θi)i∈Z ∈ Σ11 such that θi = j if F i(X) ∈ Rj,
j = 0, 1.

We recall that a point X is said to be recurrent if for every neighborhood X ∈ U , there
exists some integer n 6= 0 such that F n(X) belongs to U . It is forward (resp. backward)
recurrent if we add the constraint n > 0 (resp. n < 0).

Remark 1. A recurrent point X different from P and Q returns infinitely many times to
R1. Owing to the fact that R1 = Π−1([1]) is an open set, the coding Π(X) has infinitely
many 1’s.

This fact has an important consequence (see Proposition 3.3): a point X ∈ H(P, F )
which belongs to a central curve contained in the homoclinic class H(P, F ) cannot be
recurrent.

2 Statement of the main results

Our first result describes the central Lyapunov exponents for ergodic invariant measures.
We prove they are negative, except for the Dirac measure δQ supported in Q. Using
this information, we prove the existence of equilibrium measures associated to continuous
potentials.

Given an ergodic invariant measure µ, its central Lyapunov exponent is:

λcµ =

∫
log |DF |Ec | dµ.

Since Ec is one-dimensional, the Birkhoff theorem yields

λcµ = lim
n→+∞

1

n
log |DF n(X)|Ec |,

for µ almost every point X ∈ Λ.

Theorem 2.1. The following properties of F hold true:

1. For any recurrent point X ∈ Λ, different from Q:

lim inf
n→+∞

1

n
log |DF n(X)|Ec| ≤ 0.

Moreover, any ergodic F -invariant measure µ 6= δQ has negative central Lyapunov
exponent.

2. If µn is a sequence of ergodic invariant measures such that λcµn converges to zero,

then µn converges to
δQ+δP

2
in the weak? topology.
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Let φ : Λ → R be a continuous function. Let η be a F -invariant probability measure
supported in Λ and hη(f) its entropy. The the φ-pressure of the measure η is defined by

P(φ) = hη(f) +

∫
φ dη. (2)

We recall that η is called an equilibrium state for the potential φ if its φ-pressure
maximizes the φ-pressures among all F -invariant probabilities. Our second result is:

Theorem 2.2. Any continuous function φ ∈ C0(Λ) admits an equilibrium state. More-
over, there exists a residual set of C0(Λ) such that the equilibrium measure is unique.

If µ is an equilibrium state for some continuous potential φ, the φ-pressure of µ is also
the topological pressure of φ. A natural question that arises from the previous theorem is
if Hölder regularity of φ implies uniqueness of the equilibrium measure. A negative answer
to this question for a particular potential is given in Theorem 2.3 below: φt = t log |DF |Ec|
admits a phase transition.

Theorem 2.3. Consider the one parameter family φt of C∞ potentials given by φt(X) =
t log |DF (X)|Ec|. Then, there exists a positive real number t0 such that:

1. For t > t0, δQ is the unique equilibrium state.

2. For t < t0, any equilibrium state for φt has negative central Lyapunov exponent. In
particular, this measure is singular with respect to δQ.

3. For t = t0, δQ is an equilibrium state for φt, and there exists at least another
equilibrium state, singular with respect to δQ.

Remark 2. In fact, the parameter t0 is the supremum of the expression
{
hµ(F )

1−λcµ

}
among

all F -invariant measures µ different from δQ. Observe that it is not a priori clear that
the supremum above is finite. However, this supremum is well defined, by Theorem 2.1.

3 Central Lyapunov exponents

In this section we study some interesting features of F . For X = (xs, xc, xu) in Λ, we
denote by W u(X) and W s(X) the strong unstable and strong stable leaves of X. The
central leaf W c(X), will denote the set of points on the form (xs, y, xu), with y ∈ I. We
prove that, if X ∈ Λ is (forward and backward) recurrent and different from P and Q,
then W c(X)∩Λ = {X} (see Proposition 3.3). This means that the central intervals that
Λ contains are formed by non-wandering but not recurrent points. We also prove that
the central Lyapunov exponent of any ergodic measure different from δQ is negative.

3.1 Central Lyapunov exponents for recurrent points

The main tool to prove the results in this section is the reduction of the dynamics to a
one-dimensional system of iterated functions. Here we study these systems, and improve
some of the results in [9]. Consider the maps f0, f1 : I → R defined by

f0(y) = f(y),
f1(y) = σ (1− y).
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Among the properties of the map Π proved in [9], there is the fact that the map F
admits a well defined projection along the central direction to I2. In fact, the image of a
central segment of the cube is contained in one central segment, Π is constant on central
segments, and the (well defined) projection of F is conjugated to the shift in Σ11. Using
this conjugacy, F can be thought as the skew product

F̃ : Σ11 × I → Σ11 × I
(θ, x) 7→ (σ̃θ, fθ(x)),

where fθ = fθ0 ∈ {f0, f1} and σ̃ is the shift map.
For X = (xs0, x

c
0, x

u
0) ∈ Λ and k ≥ 0, let Xk = F k(X) = (xsk, x

c
k, x

u
k). By the definition

of F , the central coordinate xck, of Xk is

xck = fik−1
◦ fik−2

◦ · · · ◦ fi0(xc0).

Note that the numbers i0, . . . , ik−1 ∈ {0, 1} are determined by the coordinates xu0 , . . . , x
u
k−1.

In what follows, we consider the dynamics associated to the system of iterated func-
tions generated by f0 and f1.

Given a sequence (in) ∈ Σ+
11, for each given k ≥ 0 we consider the k-block %k =

%k(in) = (i0, i1, . . . , ik) associated to (in). For each k-block %k, we consider the map Φ%k

defined by

Φ%k(x) = fik ◦ fik−1
◦ · · · ◦ fi0(x).

The computation of the contraction in the central direction is based on an explicit
computation of the derivative of the functions Φ%k . First, consider a point y ∈ (0, 1].
Then we have (see Lemma 3.3 in [9])

|(f1 ◦ fα0 )′(y)| =
(

w

y (1− y)

) (
1− w

σ

)
, where fα0 (y) = 1− w/σ.

Note that f1 ◦ fα0 (y) = w. This implies that, if we chose a sequence (i′n) ∈ Σ+
11 such

that (i′n) is the concatenation of blocks of type (0, . . . , 0, 1), with the 1’s occurring in the
positions ki, we have (see formula (7) in [9])

Φ′%ki
(y) =

i∏
j=1

wj (1− wj/σ)

wj−1 (1− wj−1)
where w0 = y and wj = Φ%kj

(y). (3)

Lemma 3.1. Let (in) ∈ Σ+
11 be a sequence with infinitely many 1’s. Assume that i0 = 1.

Let n0, n1, n2 . . . be the successive positions of the symbol 1 in (in). Then, there exist a
sequence of positive real numbers (δj)j≥0 and a positive real number C such that

(i) C depends only on n0,

(ii) each δj depends only on the ni’s, i ≤ j and belongs to the interval [0, σ],

(iii) for every i > 0 and for every y in [0, 1], |Φ′%ni (y)| ≤ C
i−1∏
j=1

1− δj/σ
1− δj

.
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Proof. Let %′ be the block of (in) starting at the first symbol and finishing at the second
1. Let N = n0 be its size, and (i′n) be the sequence obtained from (in) by removing %′.
Then, for k > N and y ∈ (0, 1],

Φ′%k(y) = Φ′%′
(k−N)

(Φ%N (y)).Φ′%N (y). (4)

Let A = max{|Φ′%N (ξ)|, ξ ∈ I}. Note that A only depends on n0.
Let w0 = Φ%N (y), and wj = Φ%′nj−N

(w0). Observe that Φ%N (I) ⊂ (0, σ]; we set

δ0 = min Φ%N (I) and δj = min Φ%′nj−N
([δ0, σ]) ≤ σ.

Then, (3) yields

|Φ′%′ni−N (w0)| =
wi (1− wi/σ)

w0 (1− w0)

i−1∏
j=1

1− wj/σ
1− wj

.

Observe that, if wj > 0, the factor of the product corresponding to it is strictly smaller
than 1. Moreover, it is a decreasing function of wj ∈ [0, σ]. Therefore we have

|Φ′%′ni−N (w0)| =
wi (1− wi/σ)

w0 (1− w0)

i−1∏
j=1

1− wj/σ
1− wj

≤ 1

3δ0(1− δ0)
i−1∏
j=1

1− δj/σ
1− δj

. (5)

Therefore, (4) and (5) yield (i), with C =
A

3δ0(1− δ0)
. Note that C only depends on n0.

Moreover each δj only depends on the ni’s, with i ≤ j. This finishes the proof of the
lemma.

Lemma 3.2. Let (in) ∈ Σ+
11 be a recurrent sequence for the shift such that i0 = 1. Then

there exist a real number a in (0, 1) and an increasing sequence of stopping times (mj)j≥0

such that for every y in [0, 1],
|Φ′%mj (y)| ≤ C.aj,

where C is obtained from (in) as in Lemma 3.1.

Proof. Note that as the sequence (in) is recurrent, it has infinitely many symbols 1. We
can thus apply Lemma 3.1. In particular, we use the notations of its proof.

Since each factor in the product in (iii)-Lemma 3.1 is strictly less than 1, it remains
to show that there are infinitely many factors bounded from above by a number strictly
smaller than 1. This is equivalent to show that there are infinitely many values of j such
that δj is uniformly bounded away from zero.

The first block of %′ is composed by n1 − 1 zeros and one 1. This implies that
Φ%′n1−N

[0, σ] ⊂ [f1 ◦ fn1−1
0 (σ), σ], and so δ1 > f1 ◦ fn1−1

0 (σ). By the recurrence of the

sequence (i′n), this first block repeats infinitely many times. For each time j that it re-
peats, using the same argument, we conclude that δj+1 ∈ [f1◦fn1−1

0 (σ), σ]. This concludes
the proof.

Remark 3. A direct consequence of Lemma 3.2 is that any periodic point is hyperbolic,
and if it is different from Q, it admits a negative Lyapunov exponent in the central
direction.

Remark 4. The hypothesis “(in) recurrent” in Lemma 3.2 is not necessary, and it can
be replaced by the weaker assumption: “One block of the form (1, 0 . . . , 0︸ ︷︷ ︸

k

, 1), with a fixed

k, appears infinitely many times in (in)”.
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3.2 Proof of Theorem 2.1

Let X be a recurrent point for F for forward and backward iterations. Assume that X
is different from Q and P . Let us consider the one-sided sequence Π(X)+. By Remark 1
Π(X)+ contains infinitely many 1’s and it is also recurrent in Σ11. Hence, we can apply
Lemma 3.2 to obtain

lim inf
n→+∞

1

n
log |DF n(X)|Ec | ≤ 0.

This gives estimates for the forward iteration, but we can also get estimates for the
backward iterations:

Proposition 3.3. Let X be a recurrent point for F (for forward and backward iterations)
different from Q and P . Then

∩n∈ZF
n(R) ∩W c(X) = {X}.

Proof. Let Π(X) = (in) ∈ Σ11. By Remark 1, Π(X) has infinitely many 1’s, thus replacing
X by some forward iterate we can assume that i0 = 1. Let %k denote any block (i0, . . . , ik)
of the sequence (in). We denote by (i+n ) the one-sided sequence associated to (in). Again,
we use vocabulary and notations from the proofs of Lemmas 3.1 and 3.2.

The infinite block [(i0, i1, . . .)] begins with the concatenation of the blocks %n0 and
%′n1−n0

. By recurrence of (in), we know that the block %n0%
′
n1−n0

appears infinitely many
times in the sequence (. . . , i−2, i−1, i0). We thus consider a decreasing sequence of integers
kj → −∞ such that σ−kj((in)) coincides with (in) at the positions 0, 1, . . . , n1. We also
ask that kj − kj+1 > n1.

Now, we use Lemmas 3.1 and 3.2. The constant C is as in Lemma 3.1 and only
depends on n0. The Lemma 3.2 is used with the sequence (ikj , ikj+1, . . .) and the sequence
of mj’s is the sequence of appearances of the entire block %′n1−n0

(“shifted” to the end of
the whole block). Hence, for every j and for every y in [0, 1], we have

|Φ′[(ikj ,...,i−1)](y)| ≤ C.aj. (6)

Let Lj ⊂ I be the image of the interval I by the map Φ[(ikj ,...,i−1)]. Points in ∩n∈ZF
n(R)∩

W c(X) have their central coordinates belonging to the intersection of the sets Lj, j > 0.
Now, (6) implies that the diameter of Lj converges to zero. We also have that each Lj
is non-empty, compact and Lj+1 ⊂ Lj. Thus, their intersection is a single point. This
completes the proof of the proposition.

We define the cylinder associated with the block % = (i0, . . . , ik) as follows:

[%] = [i0, . . . , ik] = {x ∈ Λ;F j(x) ∈ Rij , for j = 0, . . . , k} =
k⋂
j=0

F−j(Rij) ∩ Λ.

The last expression in the definition above tells us that these sets are always closed
sets, since they are finite intersection of closed sets F−j(Rij).

We say that a point X has positive frequency for a set A ⊂ Λ if

γ(X,A) := lim inf
#{0 ≤ j < n; f j(X) ∈ A}

n
> 0.
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Definition 3.4. Let b be a negative number. We say that a point X is of b-contractive
type if

lim inf
n→+∞

1

n
log |DF n(X)|Ec | ≤ b < 0.

Next proposition is a tool to finish the proof of Item 1 in Theorem 2.1.

Proposition 3.5. Let l be a positive integer. There exists a real number a ∈ (0, 1) which
depends only on l, such that every X ∈ Λ with positive frequency γ > 0 for the l-block
θ = (1, 0, . . . , 0, 1) is of γ log a-contractive type.

Proof. Let us pick some positive integer l and consider X with frequency γ for θ =
(1, 0, . . . , 0, 1). We simply use Lemma 3.2 and Remark 4. The constant C = C(X)
depends on the first block in Π(X)+ which ends after the second 1. The sequence of
“stopping times” considered is the sequence of appearance of the block θ. Hence, there
exists a ∈ (0, 1), depending only on the length of the cylinder θ, such that, for every n
satisfying F n(X) ∈ θ,

|DF n+l(X)|Ec | ≤ C(X)a#{0≤j≤n, F j(X)∈A}. (7)

Then, (7) yields

lim inf
n→+∞

1

n
log |DF n+l(X)|Ec | ≤ γ(X, θ) log a < 0.

By definition γ(X, θ) = θ. This finishes the proof of Proposition 3.5.

Corollary 3.6. Every ergodic and F -invariant probability µ which is not δQ has a negative
Lyapunov exponent in the central direction.

Proof. If µ(R1) = 0, then µ has its support in R0 = [0], and hence in [0, 0, . . . ], by
invariance. We recall that the cylinder [0, 0, . . . ] is the set {0} × [0, 1]× {0}. Since every
point in [0, 0, . . . ]\{Q} is attracted to P , the cylinder [0, 0, . . . ] supports only two ergodic
F -invariant measures, namely, δQ and δP . Thus, if µ is an ergodic measure different from
δQ such that µ([0, 0, . . . ]) = 1, µ must be δP . For this measure, the Lyapunov exponent
in the central direction is −1.

Let us now assume that µ(R1) > 0. We claim that, if we define the k-block θk =
[1, 0, . . . , 0︸ ︷︷ ︸

k terms

, 1], then there exist ε > 0 and l ∈ N∗ such that µ([θl]) > ε. Set θ∞ =

[1, 0, 0, . . .], and observe that

[1] = θ∞ ∪
∞⋃
k=1

[θk].

Clearly points in θ∞ are non-recurrent, hence Poincaré recurrence’s theorem yields
that µ(θ∞) = 0 (µ is singular with δP and δQ). Thus, there exist some positive ε and
some l-block θl = [1, 0, . . . , 0, 1] such that µ([θl]) > ε. By ergodicity, there exists a
set of full µ-measure, B1 ⊂ Λ, such that every X ∈ B1 has frequency of θl equal to
µ([θl]) > ε > 0. On the other hand, since µ is ergodic, there exists a set B2 ⊂ Λ with
full µ-measure such that for every X ∈ B2, the central Lyapunov exponent is well-defined
and coincides with λcµ. Taking any X ∈ B1 ∩ B2 and observing Proposition 3.5, we have
that λcµ ≤ µ([θl]) log a < 0.
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Let us now prove Item 2 in Theorem 2.1.

Proposition 3.7. Let (µk) be a sequence of ergodic measures such that the sequence of
central Lyapunov exponents (λcµk) converges to zero. Then, the sequence of measures (µk)
converges to ∆ = (1/2)δQ + (1/2)δP .

Proof. Given ε > 0 and θl = [1, 0, . . . , 0︸ ︷︷ ︸
l terms

, 1] an (l + 2)-block, we define Eε,l by:

Eε,l = {µ ergodic and F -invariant;µ(θl) > ε}.
From Proposition 3.5, there exists a constant a = a(l) ∈ (0, 1), such that

λcµk = µk([θl]) log a.

Therefore limk→+∞ µk([θl]) = 0. Since [θl] is open and closed in Λ, if µ is any accumulation
point for the weak* topology, we get µ([θl]) = 0; this holds for every l, which means that
µ([θl]) = 0 for any l ∈ N. Hence, µ([0, 0, . . . ]) = 1, thus µ = αδQ + (1 − α)δP , for some
α ∈ I.

Finally, we observe that log |DF |Ec| is continuous; since µ is a weak* accumulation
point for the sequence (µk), and limk→+∞ λ

c
µk

= 0, we get

0 =

∫
log |DF |Ec| dµ = αλcδQ + (1− α)λcδP .

Since λcδQ = 1 and λcδP = −1, we must have α = 1/2. In particular, the sequence (µk)

admits a unique accumulation point for the weak* topology. It thus converges to ∆ and
the proof is finished.

Remark 5. Using the structure provided by the heteroclinic cycle and the explicit ex-
pression of F , we can prove that there exists a sequence of periodic points pn such that
the Lyapunov exponents of the sequence of measures µn = (1/n)

∑n−1
i=0 δf i(pn) converges

to zero.

4 Proofs of Theorems 2.2 and 2.3

4.1 Existence of equilibrium states

In this section we prove that the entropy function µ→ hµ(F ) is upper-semi continuous. As
a consequence, we are able to prove the existence of equilibrium states for any continuous
potential.

We recall that expansiveness is a sufficient condition to get the upper semi-continuity
for the metric entropy. However, here, F is not a expansive map. It can be easily deduced
observing that points in the central segment connecting Q and P have same α and ω limits,
and F (respectively, F−1) is a contraction when it is restricted to a neighborhood of P
(respectively, Q). This segment is contained in the homoclinic class of P . Nevertheless,
we have the following:

Lemma 4.1. Let µ be any F -invariant probability in Λ. Then every partition P of Λ
with diameter smaller than 1/2 is generating for µ.

11



Proof. Let P be any partition with diameter smaller than 1/2. For any X in Λ we denote
by P(X) the unique element of the partition which contains X. If n and m are two
positive integers, we set

Pn−1
−m+1(X) :=

n−1⋂
k=−m+1

F−k(P(F k(X))),

and P+∞
−∞ (X) is the intersection of all Pn−m(X). We have just to prove that for µ almost

every point X, P+∞
−∞ (x) = {X}.

Consider the set of recurrent points in Λ for F . This set has full µ-measure. More-
over, if X is recurrent, then its projection Π(X) in Σ11 is also recurrent. If the bi-infinite
sequence ρ(X) contains at least one 1, it contains infinitely many 1’s (forward and back-
ward) and Proposition 3.3 proves that P+∞

−∞ (X) ∩W c(X) = {X}. Hence, the uniform
hyperbolicity in the two other directions yields P+∞

−∞ (X) = {X}.
If the bi-infinite sequence Π(X) does not contain any 1, then X must be in the segment

[Q,P ]. Therefore, X = P or X = Q. Let us first assume that X = Q; then for any
Y ∈ (Q,P ], limn→+∞ F

n(Y ) = P . Hence,⋂
n≥0

F−n(P(Q)) ∩ [Q,P ] = {Q}.

Again, the uniform hyperbolicity in the two other directions yields P+∞
−∞ (Q) = {Q}.

If X = P , then for any Y ∈ [Q,P ), limn→+∞ F
−n(Y ) = Q. The same argument yields

P+∞
−∞ (P ) = {P}.

Remark 6. If fact any partition with diameter strictly smaller than 1 is generating with
respect to any invariant probability.

We now recall a classical result about entropy:

Proposition 4.2 (Bowen, Proposition 2.19 in [4]). Let (Ω, T ) be a dynamical system with
Ω compact and T continuous. Suppose that for some ε > 0 one has hµ(T,P) = hµ(T )
whenever µ is a T -invariant probability and diam(P) < ε. Then every ϕ ∈ C0(Ω) has an
equilibrium state.

In fact, Bowen proves that the hypothesis yield the upper semi-continuity of the met-
ric entropy. Now, we recall that for every generating partition P , Kolmogorov-Sinai’s
Theorem gives

hµ(F,P) = hµ(F ).

Therefore Proposition 4.2 and Lemma 4.1 prove that the metric entropy is a upper-semi
continuous function defined on the compact set of all invariant probabilities. Thus, it
attains its maximum. This implies the existence of equilibrium states for any continuous
potential. Now, Theorem V.9.8 in [10] also yields uniqueness for any potential in a
residual set of C0(M), since (φ, µ)→ hµ(f) +

∫
φ dµ is upper semi-continuous on the set

of invariant measures, and is a convex function for φ ∈ C0(M).
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4.2 Phase transition: proof of Theorem 2.3

We denote by P(t) the topological pressure of φt = t log |DF |Ec |. For convenience it is
also referred as the topological t-pressure.

The function t 7→ P(t) is convex, thus continuous on R. Hence we can define t0 ≤ +∞
as the supremum of the set

T = {ξ > 0, ∀ t ∈ [0, ξ), P(t) > t}.

By continuity the set T is not empty because P(0) = htop(F ) > 0.

Lemma 4.3. For t in [0, t0), any equilibrium state µt for φt is singular with respect to
δQ.

Proof. Let us assume, by contradiction, that µt is an equilibrium state for φt with
µt({Q}) > 0, for some t ∈ [0, t0). By the theorem of decomposition of measures, there
exists a F -invariant measure ν, singular with respect to δQ such that µt = µt({Q})δQ +
(1− µt({Q}))ν.

Note that DF|Ec(Q) = f ′(0) = e, hence
∫
φt dδQ = t. Since the metric entropy is

affine, we have

t < P(t) = µt({Q})t+
(
1− µt({Q})

)(
hν(F ) +

∫
φt dν

)
< µt({Q})P(t) + (1− µt({Q}))

(
hν(F ) +

∫
φt dν

)
.

In particular we get P(t) < hν(F ) +
∫
φt dν, which is absurd.

One could also note that any ergodic component of an equilibrium state is also an
equilibrium state, and, in this case, t = hδQ(F )+

∫
φtdδQ < P (t), which is a contradiction.

Corollary 4.4. Given t in [0, t0) and µt any equilibrium state for φt,

λcµt =

∫
log |DF |Ec |dµt < 0.

Proof. Let
(
νt,ξ
)
ξ∈T1 , be the ergodic decomposition of µt (see [11] page 139, with T1

the unit circle). Since µt({Q}) = 0, we have that for Lebesgue-almost every ξ ∈ T1,

νt,ξ({Q}) = 0. Corollary 3.6 says that for each of such ξ, we have

∫
log |DF |Ec |dνt,ξ < 0.

Therefore

λcµt :=

∫
log |DF |Ec |dµt =

∫
T1

(∫
log |DF |Ec| dνt,ξ

)
dξ < 0.

Lemma 4.5. The function P is decreasing on [0, t0).
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Proof. Let t < t′ be in [0, t0). Let us consider two equilibrium states for φt and φt′ , µt
and µt′ . Then we have

P(t′) = hµt′ (F ) + t′λcµt′

= hµt′ (F ) + tλcµt′ + (t′ − t)λcµt′
≤ P(t) + (t′ − t)λcµt′
< P(t),

where the last inequality yields from Corollary 4.4.

Corollary 4.6. The term t0 is a positive real number.

Proof. Lemma 4.5 implies that P(t) is less than htop(F ) on [0, t0). On the other hand,
observe that hδQ(F ) +

∫
φt dδQ = t, which means that P(t) is greater or equal to t.

Therefore t0 ≤ htop(F ) < +∞ (see figure 3 for t ≤ t0).

We can now finish the proof of Theorem 2.3. Note that the existence of the real
number t0 and Item (2) are already proved (see Lemma 4.3 and Corollary 4.6).

Now, we prove Item (3) that is that δQ is an equilibrium state for t = t0 and that
there exists at least one other equilibrium state.

By definition of t0 and by continuity of t 7→ P(t), we must have P(t0) = t0, thus δQ
is an equilibrium state for t0. Moreover, we claim that any weak accumulation point for
µt, as t increases to t0, is an equilibrium state for t0. Indeed, let us pick any acumulation
point µ for µt as t goes to t0. We have

P(t) = hµt(F ) + t

∫
log |DF|Ec | dµt,

and the left hand side term goes to P(t0) by continuity of the pressure (in fact by
convexity) when t goes to t0. The second term in the right hand side term goes to
t0
∫

log |DF|Ec| dµ if we pick the limit along the chosen subsequence of t. Thus, the en-
tropy hµt(F ) must converge and the upper semi-continuity yields hµ(F ) ≥ limt→t0 hµt(F ).

Hence we get

P(t0) ≤ hµ(F ) + t0

∫
log |DF|Ec | dµ ≤ P(t0).

Note that the continuity of log
∣∣DF|Ec∣∣ also yields

∫
log |DF|Ec | dµ ≤ 0, thus the measure

µ is different from δQ. This finishes the proof of Item (3).
Now, we prove Item (1).
Let us pick t > t0. Let µt be any equilibrium state for t. We have

t ≤ P(t) = hµt(F ) + tλcµt
= hµt(F ) + t0λ

c
µt + (t− t0)λcµt

≤ P(t0) + (t− t0)λcµt .

Hence we get t0 + (t− t0) = t ≤ t0 + (t− t0)λcµt . This yields λcµt ≥ 1. Again, considering
the ergodic decomposition of µt, (νt,ξ), we prove like in the proof of Corollary 4.4 that
for almost every ξ, νt,ξ = δQ. In particular, this means that δQ is the unique equilibrium
state for t > t0 (see figure 3 for t ≥ t0) and that P(t) = t for every t > t0. This complete
the proof of Theorem 2.3.
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P(t)

t0

htop(F )

Figure 3: t 7→ P(t)
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