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In this mini-course we will develop several aspects of optimal quantization in connection with the dis-
cretization of BSDE’ss. We will focus on dual quantization, a new notion of quantization recently introduced
and studied in a series of papers [6, 8, 7] which produces smoother approximations than Voronoi quantization
since it relies on an interpolation on the Delaunay triangulation rather than a projection following the nearest
neighbour rule.

We also establish new a priori error bounds which improves those obtained for usual quantization based
discretization schemes, e.g. in [2, 1] or [?]. We will first apply these results to Bermuda options and as a second
step to BSDE’s, possibly with reflection

• Regular Voronoi quantization of a random vector. Function approximation by stepwise constant function
on the Voronoi tessellation of a grid.

• Dual Delaunay quantization of a random vector. Function approximation by continuous stepwise affine
function on the Delaunay triangulation of a grid (see [6]).

• First example of numerical application : pricing multi-asset Bermuda options on a quantization tree.
Delaunay vs Voronoi? Improved error bounds (see [7]).

• Optimal Voronoi and Delaunay quantization. Optimal quantizers, Quantization rate (Zador’s Theorem),
the curse of dimensionality (see [4] and [8]) and how to beat it (spatial Romberg extrapolation).

• How to get optimal quantization by simulation? (see [3])

• Application to the discretization of BSDE and reflected BSDE’s .

• Toward hybrid methods: regression method on Voronoi tessellation/ Delauany triangulation (see [5]).
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