# Simulation of BSDEs and Wiener chaos expansions 

Philippe Briand Céline Labart<br>Université de Savoie, LAMA UMR 5127, 73376 Le Bourget du Lac Cedex, FRANCE<br>philippe.briand@univ-savoie.fr celine.labart@univ-savoie.fr

Tis talk is based on a joint work with Céline Labart. We are interested in this paper in the numerical simulation of solutions to Backward Stochastic Differential Equations. There are several existing methods to handle this problem and one of the main difficulty is to compute conditional expectations.

Even though our approach can also be applied in the case of the dynamic programmation equation, our starting point is the use of Picard's iterations

$$
Y^{q+1}=\xi+\int_{t}^{T} f\left(Y_{s}^{q}, Z_{s}^{q}\right) d s-\int_{t}^{T} Z_{s}^{q} \cdot d B_{s}, \quad 0 \leq t \leq T
$$

and to write this equation in a forward way

$$
\begin{aligned}
Y_{t}^{q+1} & =\mathbb{E}\left(\xi+\int_{0}^{T} f\left(Y_{s}^{q}, Z_{s}^{q}\right) d s \mid \mathcal{F}_{t}\right)-\int_{0}^{t} f\left(Y_{s}^{q}, Z_{s}^{q}\right) d s \\
Z_{t}^{q+1} & =D_{t} Y_{t}^{q+1}=\lim _{s \uparrow t} D_{s} Y_{t}^{q+1}
\end{aligned}
$$

In order to compute the previous conditional expectation, we use a Wiener Chaos expansion of the random variable

$$
\xi+\int_{0}^{T} f\left(Y_{s}^{q}, Z_{s}^{q}\right) d s
$$

Of course, from a practical point of view, we keep only a finite number of terms in this expansion.
One of the key point in using such an decomposition is the fact that there exist explicit formulas for both

$$
\mathbb{E}\left(\xi+\int_{0}^{T} f\left(Y_{s}^{q}, Z_{s}^{q}\right) d s \mid \mathcal{F}_{t}\right), \quad \text { and } \quad Z_{t}^{q+1}=D_{t} Y_{t}^{q+1}
$$

Using these formulas and starting from $M$ trajectories of the underlying Brownian motion we are able to construct $M$ trajectories of the solution $(Y, Z)$ to the BSDE.

We will present numerical experiments and preliminary results on the error analysis.

