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This talk is based on the following paper:

@ Lin, Q., Representation of G-martingales as stochastic
integrals with respect to G-Brownian motion, 2009, preprint.
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Introduction

Introduction

@ Peng [2006] introduced G-expectation, G-normal distribution
and G-Brownian motion. Moreover, Peng developed an o
calculus for the G-Brownian motion.

@ Xu [2009] obtained the martingale characterization of the
G-Brownian motion .

The objective of the present paper is to investigate a
representation of G-martingales as stochastic integrals with respect
to the G-Brownian motion in the framework of sublinear
expectation spaces. In this paper, we

@ study stochastic integrals with respect to G-martingale;

@ study representation theorem of G-martingales.
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Preliminaries

Preliminaries

We briefly recall some basic results about G-stochastic
analysis in the following papers:

@ Peng, S., G-expectation, G-Brownian motion and related
stochastic calculus of It6 type. Stochastic analysis and
applications, 541-567, Abel Symp., 2, Springer, Berlin,(2007).

@ Peng, S. |, Multi-Dimensional G-Brownian Motion and Related
Stochastic Calculus under G-Expectation, Stochastic
Processes and their Applications, 118 (12),(2008), 2223-2253.

Let Q2 be a given set and H be a linear space of real functions
defined on Q such that if 1, - -, 2, € H then ¢(x1,- -, 2,) € H,
for each ¢ € Cy1;p(R™). Here Cj;,(R™) denotes the linear space
of functions ¢ satisfying

lo(x) — @(y)] < C(1+ |z|™ + [y|") |z — y|, for all z,y € R™,

for some C > 0 and n € N, both depending on . The space H is
considered as a set of random variables. 5/35



Preliminaries

Let Q = Co(R™) be the space of all real valued continuous
functions (w¢)ser+ With wp = 0, equipped with the distance

222_2{ max |wt—wt|)/\1} whw? € Q.
° te[0,i]

For each T' > 0, we consider the following space of random

variables:
L5(Fr): = {X@)=¢lwr  wi) [t tm € [0,T],
for all ¢ € Cpip(R™), m > 1},
_ 0
= L3(7
n=1
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Sublinear expectations

A Sublinear expectation £ on 7 is a functional £ : H — R

satisfying the following properties: for all X,Y € H, we have
(i) Monotonicity: If X > Y, then E[X] > K[Y].

(i) Constant preserving: K[c] = ¢, for all ¢ € R.

(iii) Self-dominated property: E[X] — E[Y] < R[X — Y].

(iv) Positive homogeneity: E[AX] = AE[X], for all A > 0.

The triple (Q,H,I@l) is called a sublinear expectation space.

RENEILS

The sublinear expectation space can be regarded as a
generalization of the classical probability space (Q2, F,P) endowed
with the linear expectation associated with IP.
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Preliminaries

Coherent risk measures and sublinear expectations

Let A
p(X) =E[-X], X € H.
Then p(-) is a coherent risk measure, namely
© Monotonicity: If X <Y, then p(X) > p(Y).
@ Constant preserving: p(c) = —c, for all ¢ € R.
© Self-dominated property: p(X) — p(Y) < p(X - Y).
Q Positive homogeneity: p(AX) = Ap(X), for all A > 0.

Conversely, for every coherent risk measure p, let
R[X] = p(-X) X € H.
Then K[] is a sublinear expectation.
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Preliminaries

Forp> 1, || X, = BH[1X 7], X € LE,(F).

Let H = LE,(F) (resp. Hy = LY,(F:)) be the completion of
L?p(}") (resp. L?p(]-})) under the norm || - ||,

(LE(F), || - [lp) is a Banach space.

L’é(}}) C L%(}"T) C Lg(}'), forall 0<t< T < .

Bounded and measurable random variables in general are not in
LY(F) (e.g Ia). Thus, the powerful techniques of stopping times
in classical situations cannot be applied to G-stochastic analysis.
This is a main difficulty faced in the calculus.
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Preliminaries

Independence

Definition

In a sublinear expectation space (Q,H,I@l), a random vector

Y = (Y1, - ,Y,),Y; € H, is said to be independent of another
random vector X = (X1, -+, X;n), X; € H, if for each test
function ¢ € Cj1;,»(R™*™) we have

Elp(X, Y)] = B[E[p(z, Y )]o=x]-

Remark
Independence means the distribution of Y does not change the
realization of X (X = z).
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Y is independent of X does not imply that X is independent of Y . \

B[X] = B[-X] = 0,E[X*] > 0, B[Y?] > —K[-Y?] > 0.
o If X is independent of Y, then E[XY?] = 0.
o But if Y is independent of X, then E[XY?] > 0.
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Preliminaries

G-normal distribution

Definition
G-normal distribution:

&~ N(0, [0%, U%]), if for all ¢ € Cy1p(R),

u(t, z) = Elp(z + Vi),

is the solution of the following PDE:

(r)tu — G(af;mu)7 U‘t:O =¥

where G(a) = %

01<0<02

sup 0402, 0< o071 <ops.

(t,x) € [0,00) x R
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Preliminaries

RENEILS

In the case where o1 = a3 > 0, then N'(0,[0%, 03]) is just the
classical normal distribution N'(0,03).

| A

Remark
If X ~ N(0,[02,03]) and ¢ is convex, then

1

. 27r0§

(z —y)?

B (X)] = =

)dy.

/_ Z e(y) exp(—

RENEILS

Let X ~ N(0,[02,03]). If ¢ is concave and o2 > 0, then

(z —y)?

A 1 o0
Bl = | ement-5 2
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Preliminaries

G-Brownian motion

For simplicity, we assume 0 < 03 =0 < 1,05 =1 in the
following.

A process B in a sublinear expectation space (Q,H,IAE) is called
G-Brownian motion if for each n € N and
0<t; <--- <ty <00, By, -+, By, €H, the following properties
are satisfied:

(I) BO = 0;

(i) For each t,s >0, Byys — By ~ N(0, [02s,5]);
(iii) For each t,s > 0, Biys — By is independent of (By,, -, By,),

for each n € N and ¢,, < t.

v
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Preliminaries

Hu and Peng [2009] obtained presentation theorem of
G-expectation.

Theorem

Let & be a G-expectation. Then there exists a weekly compact
family of probability measures P on (Q, B(2)) such that

R[X] = ga;)(Ep[X], for all X € H,
€

where Ep[-] is the linear expectation with respect to P € P.

Definition
o Choquet capacity: ¢(A) = sup P(A4), A € B(Q).
PeP

o A set A is called polar if ¢(A) = 0 and a property holds
quasi-surely (q.s.) if it holds outside a polar set.

15/35



Preliminaries

As in the classical stochastic analysis, the definition of a
modification of a process plays an important role.

Definition

Let I be a set of indexes, and {X;}er and {Y;}ier two processes
indexed by I. We say that Y is a modification of X if for all £ € I,
X =Y; q.s.
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Preliminaries

Finally, we recall the definition of a G-martingale introduced
by Peng [2006].

Definition

A process M = {M;,t > 0} is called a G-martingale (respectively,
G-supermartingale, and G-submartingale) if for each
t €[0,00), My € LL(F;) and for each s € [0,t], we have

IAE[Mt\Hs] = M, (respectively < M,and > M;) g.s.

Definition

A process M = {M,,t > 0} is called a symmetric G-martingale, if
M and —M are G-martingales.

| A

Remark

By is symmetric G-martingale, but B? — t is not symmetric
G-martingale.

v
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Stochastic integral of G-martingales
Main Results Representation of G-martingales as stochastic integrals

Representation theorem for G-martingale

@ Our objective: representation theorem for G-martingales

@ Recall: classical representation theorem for martingales

Theorem

Let M be a square integrable continuous martingale.
M? — |3 f2ds is a martingale, for some adapted process f such

that fOT 2ds < 00, a.s.,. Then there exists a Brownian motion B
such that

t
Mt_/ fsdBs.
0
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Stochastic integral of G-martingales
Main Results Representation of G-martingales as stochastic integrals

Stochastic integral of G-martingales

@ Peng [2006] introduced stochastic integrals with respect to
G-Brownian motion.

@ Xu [2009] introduced stochastic integrals with respect to
symmetric G-martingales M, with {M? — t}iepo,r] being a
G-martingale.

In order to obtain representation of G-martingale, it is necessary to
extend the notion of G-stochastic integrals.
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Stochastic integral of G-martingales

Main Results Representation of G-martingales as stochastic integrals

Let p>1and T > 0. Let {Ay,t € [0,T]} be a continuous
and increasing process such that for all t € [0,T], A; € Hy, Ao =0
and IAE[AT] < oco. We first consider the following space of step
processes:

n—1
Mg7o(O7T) = {"7 : 77t = Z&tjl[tj,t]‘+1)70 = tO < tl < e < tn = T?
7=0

&, € LY(F,),j=0,--- ,n—1foralln> 1},
and we define the following norm in Mg’O(O,T):

1

_ <E[§ €, 17(Ar,,, — A, >]> p

Ill= (2] T|m|pdAtD’l’
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Stochastic integral of G-martingales

Main Results Representation of G-martingales as stochastic integrals

We denote by M% ,(0,T) the completion of M%°(0,T) under the
norm || - [|p. If Ay =t, then we denote by M3(0,T') the
completion of Mg’O(O,T) under the norm || - ||,.

N = {M!M is a continuous symmetric G-martingale such that

M?—A isa G—supermartingale}.

Definition
For any M € N and € MZ°(0,T) of the form

n—1
Nt = Zoftjf[tj,tjﬂ)(t), we define
J:

I(n) :/0 ned My = th (Mt1+1 - j)-
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Stochastic integral of G-martingales
Main Results Representation of G-martingales as stochastic integrals

Proposition

For all M € N, the mapping I : Mé’O(O, T) — L&(Fr) is a linear
continuous mapping and, thus, can be continuously extended to
I: Mg 4(0,T) — Lg(Fr). Moreover, for all ) € Mg 4(0,T), the

process { fg nSdMS} o] is a symmetric G-martingale and
telo,

IAEU /OT’Otht|2] < IAE[/OT ’ﬂt’szt] (1)

v

22/35



Stochastic integral of G-martingales

Main Results Representation of G-martingales as stochastic integrals

For 0 <s <t <T andne Mg ,(0,T), we denote

t T
/nudMu:/O I[SJ](U)’I?udMu.

It is now straightforward to see that we have the following
properties of the stochastic integral of G-martingales.

Proposition

Let0<s<r<t<T. Forall M € N and 0,n € Mé’A(O,T), we
have
(i) fst NudMy = fsr Nud My + f: NudM,,;

(i) [H(nu + a8u)dM, = [ nudM, + o ! 6,dM,, for all
bounded random variable in L,(Fy);

(iii) BIX + [ nudM,|H|=R[X|H,], for all X € LE(F).
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Stochastic integral of G-martingales

Main Results Representation of G-martingales as stochastic integrals

For proving the continuity of the stochastic integral regarded as a
process, we need the following Doob inequality for symmetric
G-martingale.

Theorem

If X is a right-continuous symmetric G-martingale running over an
interval [0, T] of R, then for every p > 1 such that X1 € L{,(F),

Bl sup |X,7] < (-2

PRI X7 |P].
0P, p—l) [ X7[?]
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Stochastic integral of G-martingales

Main Results Representation of G-martingales as stochastic integrals

Theorem

For all M € N and n € M2 ,(0,T), there exists a continuous
modification of stochastic integral

t
/ nedM,, 0<t<T.
0
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Stochastic integral of G-martingales

Main Results Representation of G-martingales as stochastic integrals

Now we give the Burkholder-Davis-Gundy inequality for the
stochastic integral with respect to G-martingales.

Theorem

For every q > 0, there exist a positive constant C such that, for
all M € N and all ) € Mg 4(0,T),

R T
swp | [ maripr] < OR[( [ aay]

te[o T]
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Stochastic integral of G-martingales

Main Results Representation of G-martingales as stochastic integrals

Assumptions:
o f[AZ] < o0
e For all {#"},>1 sequence of partitions
" ={0=ty <tp--- <ty =T} of [0,7T] such that

. n—1
|7 — 0, as n — oo, E[}_ (A, — Atln)z] — 0,n — oc.
1=0

Proposition

Let M € N'. Then the quadratic variation of M exists and

t
(M)y = M? — 2/ MdM,, for all t > 0.
0

RENEILS

| A

The quadratic variation of M is increasing and continuous.

A
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Stochastic integral of G

Main Results Representation of G-m

Now we can give another kind of the Burkholder-Davis-Gundy
inequalities for the stochastic integral with respect to
G-martingales.

Theorem

For every p > 0, there exist two positive constants c, and C,, such
that, for all M € N and all n € Mg ,(0,T),

T
B[( [ na(an),)] <[ sup | nde ]
0 te [0 T]
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Stochastic integral of G-martingales
Main Results Representation of G-martingales as stochastic integrals

Proposition

For a fixed T'> 0, M is a symmetric G-martingale such that
M? — A and —M? + 03 A be G-martingales. If f € M§ 4(0,T),
then

t t
X, = /0 fed(M), —2 /0 G(f.)dAs, t € [0,T]

is a decreasing G-martingale.

Recall G(a) = (o™ —02a7), a€R.

t t
/ fsd(B)s — 2/ G(fs)ds, t €[0,T], is a G-martingale.
0 0
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Stochastic integral of G-martingales

Main Results Representation of G-martingales as stochastic integrals

@ With respect to a linear expectation, if X is a continuous
martingale with finite variation, then X is a constant.

@ But it is not true in G-stochastic analysis.

(B): —t is a continuous G-martingale with finite variation.
But (B);—t is not a constant. It is a decreasing stochastic process.
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Stochastic integral of G-martingales
Main Results Representation of G-martingales as stochastic integrals

Representation theorem of G-martingales

Special case of the martingale representation is the Lévy
characterization theorem of Brownian motion.

@ Recall: Lévy characterization theorem of Brownian motion.

With respect to a linear expectation we have

Lemma

A process M is a Brownian motion if
@ M is continuous and My = 0;

@ M is a local martingale;

© M7 —t is a local martingale.

31/35



Stochastic integral of G-martingales
Main Results Representation of G-martingales as stochastic integrals

Lévy characterization theorem of G-Brownian motion

Xu [2009] obtained a Lévy characterization theorem for the
G-Brownian motion.

Lemma

A process M € M2(0,T) is a G-Brownian motion with a
parameter 0 < o < 1 if

@ M is continuous and My = 0;

@ M is a symmetric G-martingale;

© Foranyt >0, M? —t is a G-martingale;
Q Foranyt >0, B[-M?] = —o?t.

Remark

In our framework, we do not need the assumption M € M2(0,T).
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Stochastic integral of G-martingales
Main Results Representation of G-martingales as stochastic integrals

Main Results —Representation of G-martingales

The following representation of G-martingales as stochastic
integrals with respect to G-Brownian motion is the main result in
this section.

Theorem

Let0< o <1and f e MZ(0,T) be such that B[] | f|*ds] < co.
Moreover, if there exists a constant C' (small enough) such that
0 < C < |f] and the following hold
Q@ M is a symmetric G-martingale and My = 0;
Q M? - fg f2ds and —M? + o2 fg f2ds are G-martingales, for
te[0,17],
then there exists a G-Brownian motion B such that
My = [ f<dBs, for all t € [0,T].
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Thanks for your attention!

35/35



	Introduction 
	Preliminaries
	Main Results
	Stochastic integral of G-martingales 
	Representation of G-martingales as stochastic integrals

	References

