Introduction. The Trotter scheme

Consider the following evolution equation
du

(E) E—I—Au—I—BUZO, t>0

u(0) = ug
where A: D(A)C X — X and B:D(B) C X —
X generate the semigroups {e_tA,t > 0} and
{e7tB ¢t > 0}, respectively.

Llete=—, n>1. So

t
n

O<e<2e<...<ne=t.

Consider now

dv
(%) a—I—BfUZ , t € (0;¢]
v(0) = ug

and v(e) = e ¢Buyg is the solution of (*) in e.



Then consider

w(0) = v(e) = e Bug

so w(e) = e~ Ae—By,.

We define the approximate solution of (E) in
t1 = € as uf(t1) = e 4eByy. Then con-
sider the systems (*) and (**) with initial data
ue(t1) = e 4e—cByg instead of ug and we ob-

tain
uf(2e) = uf(tr) = (e~ e 8)2ug

and so on...



Finally, we obtain

ut(tp) = uf(ne) = u(t) = (e_EAe_gB)“uo =
¢ ¢
(e_ﬁAe_ﬁB)”uo % u (the solution of (E),

formally written as e~ t(A+B)yy).

t —1
Sometimes we may use the resolvent (I —+ —A)
mn

t
instead of e_ﬁA because, formally,

—N
lim (I + EA) — A,
T

n—oo
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We consider the Navier—Stokes equations for

incompressible fluid flow:

(1) %HU-V)U—AUJFW =0in Q = Qx(0,7T),

(2) diveo=0 in Q,
(3) v=0 on X =90 x (0,T),
(4) v(-,0) =vo() in €,

where Q ¢ R? (d = 2,3) is a bounded domain,
v is the velocity (v: Q — Rd) and p is the scalar

pressure (p: Q — R).



Also we consider the Euler equations for in-

compressible fluid flow

(5) Z—?+(u-v)u+v7r=o in Q,
(6) divu=0 in Q,

(7) w-N=0 onX,

(8) u(+,0) = uo() in €,

where N is outward normal to 02, uw is the

velocity and « is the scalar pressure.

d

Ow
Here (w-V)w = Zwi & e RY for w :




Let us denote by (E(t)ug)(-) the solution u(t, )
of the system (5)—(8) and by A, = —P,A the
Stokes operator for p > 1 where P, : (LP(2))? —
Hy is the Leray projector and Hp, = {u € (LP(Q))d;
divu=0in Q,u- N =0 on 00Q}.

We can write the system (1)—(4) as an evolu-

tion equation

dv

— 4+ Apv =0 in V),
(9) g T P

v(0) = vo,

where V, = {f €¢ (WLP(Q))%; div f = 0 in Q,
f-N = 0on 82} and D(A4,) = (W2P(Q))?%nN
(WoP(2)4N V.



Let's present the splitting scheme!

Let the interval [0,T] be fixed and let an initial

free-divergence velocity vg be given. The time

interval is divided into m subintervals each of
T

Size € = —
m

O<e<2e<...<(m—-1)e<T.

T he splitting scheme defines recursively an ap-
proximate solution of the Navier—Stokes equa-
tions. Let ug = wvg. Having defined v, (an
approximate solution at time t,, = ne, 0 < n <
m—1), let v* be the solution of Euler equations
(5)—(8) at the end of an interval of size £ with
initial data v,. Then v, 7 is the solution of

the stationary Stokes equation

U+ eApu = v*i.e. Up+41 = (I + 5Ap)_1v*



and with our notations
Va1 = (I +eAp) tE(e)vn.
We propose the following splitting approxima-
tion scheme:
Let m € N* and ¢ = Z Consider

m
v = v
0 0
(10) { € — —1 €
vn_|_1—(l—|—sAp) E(e)vs,0<n<m—1,

and define the approximation solution of (1)—
(4) as
( vy (tn +5) = E(s)vy, 0<s<e

(11) { v°(tn +s) = (I—I—&:Ap)_lv%(tn + s),
0<s<e0<n<m-—1,

(

vE(tn +5) = (I +eAp) " LE(s)0E,
(12) X 0<s<e,0<n<m-—1
- v°(0) = vy,

where {v;},>0 is given by (10).




T he main result

Theorem 1. If the initial velocity vg € Vp N
(W2P(Q))4 with p > d, then for a sufficiently
small T > 0 (depending on vg), the approxi-
mate solutions v¢ (given by (2)) is well-defined
and satisfies

LS 107 C,8) = v, Dl paayye < Ce
where v is the strong solution of (1) — (4) and

C > 0 is a constant independent of «.



The idea of the proof

We consider the linearization of (5)—(8) around
the solution v of (1)—(4).

@—F(’U'V)u—FVﬂ':O in Q,

s) I _ |
u =20 in Q,
\u‘NZO on 2,

and then we apply the same scheme with (S)
instead of (5)—(7).

We prove that, in this case, the approximation
scheme is convergent to v (the solution of (1)—
(4)), i.e. the new approximation solution ¢

tends to wv.

In the last step we prove that

su v& — ¥° — 0.
ogthl [(r(e2)) c—0

So we obtain the conclusion of our theorem.
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