
Introduction. The Trotter scheme

Consider the following evolution equation

(E)





du

dt
+ Au + Bu = 0, t > 0

u(0) = u0

where A : D(A) ⊆ X → X and B : D(B) ⊆ X →
X generate the semigroups {e−tA, t ≥ 0} and

{e−tB, t ≥ 0}, respectively.

Let ε =
t

n
, n ≥ 1. So

0 < ε < 2ε < ... < nε = t.

Consider now

(*)





dv

dt
+ Bv = 0, t ∈ (0; ε]

v(0) = u0

and v(ε) = e−εBu0 is the solution of (*) in ε.



Then consider

(**)





dw

dt
+ Aw = 0, t ∈ (0; ε]

w(0) = v(ε) = e−εBu0

so w(ε) = e−εAe−εBu0.

We define the approximate solution of (E) in

t1 = ε as uε(t1) = e−εAe−εBu0. Then con-

sider the systems (*) and (**) with initial data

uε(t1) = e−εAe−εBu0 instead of u0 and we ob-

tain

uε(2ε) = uε(t2) = (e−εAe−εB)2u0

and so on...



Finally, we obtain

uε(tn) = uε(nε) = uε(t) = (e−εAe−εB)nu0 =

(e−
t
nAe−

t
nB)nu0

?−−−→
!!

n→∞
u (the solution of (E),

formally written as e−t(A+B)u0).

Sometimes we may use the resolvent
(
I +

t

n
A

)−1

instead of e−
t
nA because, formally,

lim
n→∞

(
I +

t

n
A

)−n
= e−tA.
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We consider the Navier–Stokes equations for

incompressible fluid flow:

(1)
∂v

∂t
+(v·∇)v−∆v+∇p = 0 in Q = Ω×(0, T ),

(2) div v = 0 in Q,

(3) v = 0 on Σ = ∂Ω× (0, T ),

(4) v(·,0) = v0(·) in Ω,

where Ω ⊂ Rd (d = 2,3) is a bounded domain,

v is the velocity (v : Q → Rd) and p is the scalar

pressure (p : Q → R).



Also we consider the Euler equations for in-

compressible fluid flow

(5)
∂u

∂t
+ (u · ∇)u +∇π = 0 in Q,

(6) div u = 0 in Q,

(7) u ·N = 0 on Σ,

(8) u(·,0) = u0(·) in Ω,

where N is outward normal to ∂Ω, u is the

velocity and π is the scalar pressure.

Here (w · ∇)w =




d∑

i=1

wi
∂wj

∂xi




j=1,d

∈ Rd for w :

Ω → Rd, w = (wj)j=1,d.



Let us denote by (E(t)u0)(·) the solution u(t, ·)
of the system (5)–(8) and by Ap = −Pp∆ the

Stokes operator for p > 1 where Pp : (Lp(Ω))d →
Hp is the Leray projector and Hp = {u ∈ (Lp(Ω))d;

div u = 0 in Ω, u ·N = 0 on ∂Ω}.

We can write the system (1)–(4) as an evolu-

tion equation

(9)





dv

dt
+ Apv = 0 in Vp,

v(0) = v0,

where Vp = {f ∈ (W1,p(Ω))d; div f = 0 in Ω,

f · N = 0 on ∂Ω} and D(Ap) = (W2,p(Ω))d ∩
(W1,p

0 (Ω))d ∩ Vp.



Let’s present the splitting scheme!

Let the interval [0, T ] be fixed and let an initial

free-divergence velocity v0 be given. The time

interval is divided into m subintervals each of

size ε =
T

m

0 < ε < 2ε < ... < (m− 1)ε < T.

The splitting scheme defines recursively an ap-

proximate solution of the Navier–Stokes equa-

tions. Let u0 = v0. Having defined vn (an

approximate solution at time tn = nε, 0 ≤ n ≤
m−1), let v∗ be the solution of Euler equations

(5)–(8) at the end of an interval of size ε with

initial data vn. Then vn+1 is the solution of

the stationary Stokes equation

u + εApu = v∗ i.e. vn+1 = (I + εAp)
−1v∗



and with our notations

vn+1 = (I + εAp)
−1E(ε)vn.

We propose the following splitting approxima-

tion scheme:

Let m ∈ N∗ and ε =
T

m
. Consider

(10)





vε
0 = v0

vε
n+1=(I+εAp)−1E(ε)vε

n,0≤n≤m−1,

and define the approximation solution of (1)–

(4) as

(11)





vε
E(tn + s) = E(s)vε

n, 0 < s ≤ ε

vε(tn + s) = (I + εAp)−1vε
E(tn + s),

0 < s ≤ ε,0 ≤ n ≤ m− 1,

i.e.

(12)





vε(tn + s) = (I + εAp)−1E(s)vε
n,

0 < s ≤ ε,0 ≤ n ≤ m− 1

vε(0) = v0,

where {vε
n}n≥0 is given by (10).



The main result

Theorem 1. If the initial velocity v0 ∈ Vp ∩
(W2,p(Ω))d with p > d, then for a sufficiently

small T > 0 (depending on v0), the approxi-

mate solutions vε (given by (2)) is well-defined

and satisfies

sup
0≤t≤T

|vε(·, t)− v(·, t)|(Lp(Ω))d ≤ Cε,

where v is the strong solution of (1)− (4) and

C > 0 is a constant independent of ε.



The idea of the proof

We consider the linearization of (5)–(8) around

the solution v of (1)–(4).

(S)





∂u

∂t
+ (v · ∇)u +∇π = 0 in Q,

div u = 0 in Q,
u ·N = 0 on Σ,

and then we apply the same scheme with (S)

instead of (5)–(7).

We prove that, in this case, the approximation

scheme is convergent to v (the solution of (1)–

(4)), i.e. the new approximation solution ṽε

tends to v.

In the last step we prove that

sup
0≤t≤T

|vε − ṽε|(Lp(Ω))d −−−→
ε→0

0.

So we obtain the conclusion of our theorem.
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