Starting and Stopping problem Numerical resolution of BSDE Obliquely reflected BSDEs Constrained BSDE with jumps

Switching problems and related BSDE approximation

Romuald ELIE

CEREMADE, Université Paris-Dauphine

Joint work with J.-F. Chassagneux & I. Kharroubi

Outline of the talk

- Starting and stopping problem (d=2)
- Numerical resolution of BSDE
- Numerical resolution of BSDE with oblique reflections
- An alternative approach : Constrained BSDEs with jumps

Hamadene & Jeanblanc 05:

- Consider e.g. a power station producing electricity whose price is given by a diffusion process $X: dX_t = b(t, X_t)dt + \sigma(t, X_t)dW_t$
- Two modes for the power station : mode 1 : operating, with running profit $f_1(X_t)dt$ and terminal one $g_1(X_T)$ mode 0 : closed, with running profit $f_0(X_t)dt$ and terminal one $g_0(X_T)$
 - \hookrightarrow switching from one mode to another has a cost : c > 0
- Management decides to produce electricity only when it is profitable enough.
- The management strategy is (θ_j, α_j) : θ_j is a sequence of stopping times representing switching times from mode α_{j-1} to α_j .
 - $(a_t)_{0 \le t \le T}$ is the state process, i.e. the management strategy.

Value processes

• Following a strategy a from t up to T, gives

$$J(a,t) = g_{a_T}(X_T) + \int_t^T f_{a_s}(X_s) ds - \sum_{j \geq 0} c \mathbf{1}_{\{t \leq \theta_j \leq T\}}$$

• The value processes starting respectively at time 0 in mode 1 and 2 are

$$\underline{Y_0^0} := \sup_{\{a \in \mathcal{A} \text{ s.t. } \underline{a_0} = 0\}} \mathbb{E}\left[J(a,0)\right] \qquad \text{and} \qquad \underline{Y_0^1} := \sup_{\{a \in \mathcal{A} \text{ s.t. } \underline{a_0} = 1\}} \mathbb{E}\left[J(a,0)\right]$$

Y is solution of a coupled optimal stopping problem

$$\begin{aligned} \mathbf{Y}_{t}^{0} &= \operatorname{ess} \sup_{t \leq \tau \leq T} \mathbb{E} \left[\int_{t}^{\tau} f_{0}(X_{s}) ds + (\mathbf{Y}_{\tau}^{1} - c) \mathbf{1}_{\{\tau < T\}} \mid \mathcal{F}_{t} \right] \\ \mathbf{Y}_{t}^{1} &= \operatorname{ess} \sup_{t \leq \tau \leq T} \mathbb{E} \left[\int_{t}^{\tau} f_{1}(X_{s}) ds + (\mathbf{Y}_{\tau}^{0} - c) \mathbf{1}_{\{\tau < T\}} \mid \mathcal{F}_{t} \right] \end{aligned}$$

with terminal conditions : $Y_T^0 = g_0(X_T)$ and $Y_T^1 = g_1(X_T)$

• The optimal strategy (θ_j^*, α_j^*) is given by

$$\alpha_{j+1}^* := 1 - \alpha_j^*$$
 and $\theta_{j+1}^* := \inf\{s \ge \theta_j^* \mid Y_s^{\alpha_j^*} = Y_s^{\alpha_{j+1}^*} - c\}$

System of reflected BSDEs

Y is the solution of the following system of reflected BSDEs:

$$Y_t^i = g_i(X_T) + \int_t^T f_i(X_s) ds - \int_t^T Z_s^i \cdot dW_s + \int_t^T dK_s^i \;, \; i \in \{0,1\} \;,$$

with (the coupling...)

$$Y_t^1 \geq Y_t^0 - c$$
 and $Y_t^0 \geq Y_t^1 - c$, $orall t \in [0, T]$

and ('optimality' of K)

$$\int_{0}^{T} \left(Y_{s}^{1} - (Y_{s}^{0} - c) \right) dK_{s}^{1} = 0 \text{ and } \int_{0}^{T} \left(Y_{s}^{0} - (Y_{s}^{1} - c) \right) dK_{s}^{0} = 0$$

- Problem : Oblique reflections.
- Idea : Interpret $Y^1 Y^0$ as the solution of a doubly reflected BSDE.

Related PDE

Associated coupled system of PDE

• on $\mathbb{R} \times [0, T)$

$$\begin{split} \min\left(-\partial_t u_0 - \mathcal{L} u_0 - f_0, \underline{u_0} - \underline{u_1} + c\right) &= 0 \\ \min\left(-\partial_t u_1 - \mathcal{L} u_1 - f_1, \underline{u_1} - \underline{u_0} + c\right) &= 0 \end{split}$$
 with $\mathcal{L}: u \mapsto \frac{\sigma^2}{2} \, \partial_{xx} u + b \, \partial_x u$

Terminal conditions

$$u_0(T,.) = g_0(.)$$
 and $u_1(T,.) = g_1(.)$

Link via

$$Y_t^0 = u_0(t, X_t)$$
 and $Y_t^1 = u_1(t, X_t)$

Literature on optimal switching:

- Hamadène & Jeanblanc 05: starting and stopping problem (d = 2).
- Djehiche, Hamadène & Popier 07 : studied the multidimentional case.
- Carmona & Ludkovski 06 or Porchet, Touzi & Warin 07: Additional constraints and numerical results.

Link with non linear Backward SDE:

- Hu & Tang 07 "multi-dimentional BSDEs with oblique reflection" BSDE representation for optimal switching in the case where X uncontrolled or at most partially controlled : $dX_t^a = \sigma(X_t^a) \Big[\mu_a(X_t^a) dt + dW_t \Big]$.
- Hamadène & Zhang 08 Generalization of Hu & Tang's BSDEs but still with an uncontrolled underlying diffusion.

Literature on control:

• Bouchard 09: Relation with stochastic target problems with jumps.

• Multi-dimensional reflected BSDE (see Hamadène & Zhang 08) : Find m triplets $(Y^i, Z^i, K^i)_{i \in \mathcal{I}} \in (S^2 \times L^2(W) \times A^2)^{\mathcal{I}}$ satisfying

$$\begin{cases} Y_t^i = g_i(X_T) + \int_t^T f_i(s, X_s, Y_s^1, \dots, Y_s^m, Z_s^i) ds - \int_t^T Z_s^i dW_s + K_T^i - K_t^i \\ Y_t^i \ge h_{i,j}(t, Y_t^j) \\ \int_0^T [Y_t^i - \max_{j \in \mathcal{I}} \{h_{i,j}(t, Y_t^j)\}] dK_t^i = 0 \end{cases}$$

- Conditions on the constraint h in order to avoid instantaneous gain via circle switching.
- For any i ≠ j, h_{i,j} and f_i are increasing in y_j.
 ⇒ 'Interpretation' in terms of cooperative game options
- The reflections are oblique with respect to the domain of definition of Y.

FBSDE system

• FSDE
$$\begin{cases} X_t = x + \int_0^t b(s, X_s) ds + \int_0^t \sigma(s, X_s) dW_s \\ \\ \mathbf{Y_t} = g(X_T) + \int_t^T f(s, X_s, \mathbf{Y_s}, \mathbf{Z_s}) ds - \int_t^T \mathbf{Z_s} dW_s \end{cases}$$

Solution and link with PDE (Pardoux & Peng, 90 & 92);

$$\|\mathbf{Y}\|_{\mathcal{S}^{2}} \; := \; \mathbb{E} \left[\sup_{0 \leq r \leq 1} |Y_{r}|^{2} \right]^{\frac{1}{2}} \; < \; \infty \; , \qquad \|\mathbf{Z}\|_{\mathcal{L}^{2}} \; := \; \mathbb{E} \left[\int_{0}^{1} |Z_{r}|^{2} dr \right]^{\frac{1}{2}} \; < \; \infty \; ,$$

• PDE
$$\mathcal{L}^{X}[y] + f(., y, \sigma \nabla y) = 0$$
 $y(T, .) = g(.)$

- Approximation of the BM (Chevance 97, Briand 01, Ma 02);
- Discrete time scheme based on the path regularity of Z (Zhang);

Discrete time scheme (Zhang 02)

• FSDE
$$\begin{cases} X_t = x + \int_0^t b(s, X_s) ds + \int_0^t \sigma(s, X_s) dW_s \\ \\ \mathbf{Y}_t = g(X_T) + \int_t^T f(s, X_s, \mathbf{Y}_s, \mathbf{Z}_s) ds - \int_t^T \mathbf{Z}_s dW_s \end{cases}$$

- Regular time grid $\pi := (t_i)_{i \le n}$ on [0, T]
- Forward Euler approximation X^{π} of X

Initial value :
$$\mathbf{X}_{0}^{\pi} := \mathbf{x}$$

From t_{i} to t_{i+1} : $\mathbf{X}_{t_{i}+1}^{\pi} := X_{t_{i}}^{\pi} + \frac{1}{n} b(t_{i}, X_{t_{i}}^{\pi}) + \sigma(t_{i}, X_{t_{i}}^{\pi})(W_{t_{i+1}} - W_{t_{i}})$

• Backward approximation (Y^{π}, Z^{π}) of (Y, Z)

Intuition of the scheme

$$Y_{t_{i}} = Y_{t_{i+1}} + \int_{t_{i}}^{t_{i+1}} f(r, X_{r}, Y_{r}, Z_{r}) dr - \int_{t_{i}}^{t_{i+1}} Z_{r} \cdot dW_{r}$$

Step 1 : Constant step driver $(\widetilde{Z}^{\pi}$ given by the representation of $Y_{t_{i+1}}^{\pi}$)

$$\mathbf{Y}_{\mathsf{t}_i}^{\pi} = \mathbf{Y}_{\mathsf{t}_{i+1}}^{\pi} + \frac{1}{n} f\left(t_i, X_{\mathsf{t}_i}^{\pi}, \mathbf{Y}_{\mathsf{t}_i}^{\pi}, \mathbf{Z}_{\mathsf{t}_i}^{\pi}\right) - \int_{t_i}^{t_{i+1}} \widetilde{Z}_r^{\pi} \cdot dW_r$$

Step 2 : Best $\mathcal{L}^2(\Omega \times [t_i, t_{i+1}])$ approximation of \widetilde{Z}^{π} by \mathcal{F}_{t_i} -meas. r.v.

$$\mathbf{Z}_{\mathsf{t}_{\mathsf{i}}}^{\pi} := n \mathbb{E}\left[\int_{t_{\mathsf{i}}}^{t_{\mathsf{i}+1}} \widetilde{Z}_{r}^{\pi} dr \mid \mathcal{F}_{\mathsf{t}_{\mathsf{i}}}\right] = n \mathbb{E}\left[\mathbf{Y}_{\mathsf{t}_{\mathsf{i}+1}}^{\pi}(\mathsf{W}_{\mathsf{t}_{\mathsf{i}+1}} - \mathsf{W}_{\mathsf{t}_{\mathsf{i}}}) \mid \mathcal{F}_{\mathsf{t}_{\mathsf{i}}}\right]$$

Step 3: Conditioning the first expression

$$\boldsymbol{Y}_{t_i}^{\pi} = \mathbb{E}\left[\underline{\boldsymbol{Y}}_{t_{i+1}}^{\pi} \mid \mathcal{F}_{t_i} \right] + \frac{1}{n} \, f\left(t_i, \boldsymbol{X}_{t_i}^{\pi}, \boldsymbol{Y}_{t_i}^{\pi}, \boldsymbol{Z}_{t_i}^{\pi} \right).$$

Approximation Error (Zhang 02)

$$Y_t = y(t, X_t)$$

PDE

$$\mathcal{L}^{X}[y] + f(.,y,\sigma\nabla y) = 0 \qquad y(1,.) = g(.)$$

• Forward Euler approximation X^{π} of X

$$\mathbf{X}_0^{\pi} := x$$
 and $\mathbf{X}_{t_i+1}^{\pi} := X_{t_i}^{\pi} + \frac{1}{n} b(t_i, X_{t_i}^{\pi}) + \sigma(t_i, X_{t_i}^{\pi})(W_{t_{i+1}} - W_{t_i})$

• Backward approximation $(\mathbf{Y}^{\pi}, \mathbf{Z}^{\pi})$ of (Y, Z)

$$\mathbf{Y}_{\mathsf{T}}^{\pi} := g(X_{\mathsf{T}}^{\pi}) \& \begin{cases} \mathbf{Z}_{\mathsf{t}_{i}}^{\pi} & := & n \, \mathbb{E} \left[Y_{t_{i+1}}^{\pi}(W_{t_{i+1}} - W_{t_{i}}) \mid \mathcal{F}_{t_{i}} \right] \\ \\ \mathbf{Y}_{\mathsf{t}_{i}}^{\pi} & := & \mathbb{E} \left[Y_{t_{i+1}}^{\pi} \mid \mathcal{F}_{t_{i}} \right] + \frac{1}{n} \, f\left(t_{i}, X_{t_{i}}^{\pi}, \mathbf{Y}_{t_{i}}^{\pi}, Z_{t_{i}}^{\pi} \right) \end{cases}$$

Approximation Error

$$\operatorname{\mathcal{E}\!rr}(\mathbf{Y},\mathbf{Y}^\pi) := \sup_{t_i} \mathbb{E}\left[|Y_{t_i} - Y_{t_i}^\pi|^2 \right] \qquad \operatorname{\mathcal{E}\!rr}(\mathbf{Z},\mathbf{Z}^\pi) := \frac{1}{n} \sum_{i=1}^n \mathbb{E}\left[|Z_{t_i} - Z_{t_i}^\pi|^2 \right]$$

$$\mathcal{E}rr(Y,Y^{\pi}) + \mathcal{E}rr(Z,Z^{\pi}) \leq C |\pi|$$

Approximation Error (Gobet 05)

$$Y_t = y(t, X_t)$$

PDE

$$\mathcal{L}^{X}[y] + f(.,y,\sigma\nabla y) = 0 \qquad y(1,.) = g(.)$$

• Forward Euler approximation X^{π} of X

$$\mathbf{X}_{0}^{\pi} := x$$
 and $\mathbf{X}_{t_{i}+1}^{\pi} := X_{t_{i}}^{\pi} + \frac{1}{n} b(t_{i}, X_{t_{i}}^{\pi}) + \sigma(t_{i}, X_{t_{i}}^{\pi})(W_{t_{i+1}} - W_{t_{i}})$

• Backward approximation (Y^{π}, Z^{π}) of (Y, Z)

$$\begin{aligned} \boldsymbol{Y}_{1}^{\pi} := g(X_{1}^{\pi}) \;\; & \& \left\{ \begin{array}{ll} \boldsymbol{Z}_{t_{i}}^{\pi} & := & n \, \mathbb{E} \left[Y_{t_{i+1}}^{\pi} (\,W_{t_{i+1}} - W_{t_{i}}) \mid \mathcal{F}_{t_{i}} \right] \\ \\ \boldsymbol{Y}_{t_{i}}^{\pi} & := & \mathbb{E} \left[Y_{t_{i+1}}^{\pi} \mid \mathcal{F}_{t_{i}} \right] + \frac{1}{n} \, \mathbb{E} \left[f \left(t_{i}, X_{t_{i}}^{\pi}, \boldsymbol{Y}_{t_{i+1}}^{\pi}, Z_{t_{i}}^{\pi} \right) \mid \mathcal{F}_{t_{i}} \right] \\ \end{aligned} \right.$$

Approximation Error

$$\operatorname{\mathcal{E}\!rr}(\mathbf{Y},\mathbf{Y}^\pi) := \sup_{t_i} \mathbb{E}\left[|Y_{t_i} - Y_{t_i}^\pi|^2 \right] \qquad \operatorname{\mathcal{E}\!rr}(\mathbf{Z},\mathbf{Z}^\pi) := \frac{1}{n} \sum_{i=1}^n \mathbb{E}\left[|Z_{t_i} - Z_{t_i}^\pi|^2 \right]$$

$$\mathcal{E}rr(Y, Y^{\pi}) + \mathcal{E}rr(Z, Z^{\pi}) \leq C |\pi|$$

Addition of normal reflections (Bouchard Chassagneux 08)

Reflected BSDE on a boundary ℓ(X_t)

$$\begin{aligned} Y_t &= g(X_T) + \int_t^T f(t, X_t, Y_t, Z_t) \mathrm{d}t - \int_t^T (Z_t)' \mathrm{d}W_t + \int_t^T \mathrm{d}K_t \\ Y_t &\geq \ell(X_t) \text{ and } \int_0^T \left(Y_t - \ell(X_t)\right) \mathrm{d}K_t = 0 \end{aligned}$$

- Forward Euler approximation X^{π} of X
- Backward approximation (Y^{π}, Z^{π}) of (Y, Z)

$$\mathbf{Y}_{\mathsf{T}}^{\pi} := g(X_{1}^{\pi}) \& \begin{cases} \mathbf{Z}_{\mathsf{t}_{i}}^{\pi} & := n \mathbb{E}\left[Y_{t_{i+1}}^{\pi}(W_{t_{i+1}} - W_{t_{i}}) \mid \mathcal{F}_{t_{i}}\right] \\ \widetilde{\mathbf{Y}}_{\mathsf{t}_{i}}^{\pi} & := \mathbb{E}\left[Y_{t_{i+1}}^{\pi} \mid \mathcal{F}_{t_{i}}\right] + \frac{1}{n} f\left(t_{i}, X_{t_{i}}^{\pi}, \mathbf{Y}_{t_{i}}^{\pi}, Z_{t_{i}}^{\pi}\right) \\ \mathbf{Y}_{\mathsf{t}_{i}}^{\pi} & := \max[\widetilde{Y}_{t_{i}}^{\pi} ; \ell(X_{t_{i}}^{\pi})] \mathbf{1}_{\{t_{i} \in \Re\}} \end{cases}$$

with $\Re \subset \pi$ the reflection grid to be chosen properly.

Approximation Error

$$\operatorname{\mathcal{E}rr}(Y,Y^{\pi})+\operatorname{\mathcal{E}rr}(Z,Z^{\pi}) \leq C |\pi|^{1/2}$$

Obliquely reflected BSDEs

Multidimensional system of reflected BSDEs

$$\begin{aligned} Y_t^i &= g_i(X_T) + \int_t^T f_i(u, X_u, \mathbf{Y}_u^i, Z_u^i) \mathrm{d}u - \int_t^T Z_u^i \cdot \mathrm{d}W_u + \mathbf{K}_T^i - \mathbf{K}_t^i \\ Y_t &\in \mathcal{C}(X_t) \text{ (constrained by } K) \end{aligned} \qquad \int_0^T \left(Y_t^i - \mathcal{P}^i(\mathbf{X}_t, \mathbf{Y}_t) \right) \mathrm{d}K_t^i = 0$$

• The domain C(x) is given by (m > 2)

$$\mathcal{C}(x) := \{ y \in \mathbb{R}^m | y^i \ge \mathcal{P}^i(\mathbf{x}, \mathbf{y}) := \mathsf{max}_i(\mathbf{y}_i - \mathbf{c}_{ij}(\mathbf{x})) \}$$

- $\implies \mathcal{P}(x,.)$ is an oblique projection
- Non linear switching problems with cost matrix $c(X_t)$ at time t

Goal and method

Goal : Approximation scheme for Continuously Obliquely Reflected BSDE (COR) and convergence results...

Method:

- (i) Discretize the reflections along a grid \Re
 - \implies Discretely Obliquely Reflected BSDE (DOR) $(\widetilde{Y}^{d\Re}, Z^{d\Re}, \widetilde{K}^{d\Re})$
- (ii) Approximation scheme for the DOR along a grid $\pi \supset \Re$
 - ⇒ Convergence of the scheme, via regularity of the DOR
- (iii) Convergence of the DOR to the COR when \Re is refined.
 - \implies The scheme converges to the COR (\Re and π well chosen)

Discretely obliquely reflected BSDEs

- Grid $\Re := \{0 = r_0 < ... < r_k < ... < r_{\kappa} = T\}$ given.
- ullet A DOR is a triplet $(\widetilde{Y}^{d\Re}, Z^{d\Re}, \widetilde{K}^{d\Re})$ satisfying $\widetilde{Y}_T^{d\Re} := g(X_T)$ and

$$\begin{split} \widetilde{Y}_{t}^{d\Re} &= g(X_{T}) + \int_{t}^{T} f(X_{s}, \widetilde{Y}_{s}^{d\Re}, Z_{s}^{d\Re}) \mathrm{d}s - \int_{t}^{T} Z_{s}^{d\Re} \cdot \mathrm{d}W_{s} + \widetilde{K}_{T}^{d\Re} - \widetilde{K}_{T}^{d\Re} \\ \widetilde{K}_{t}^{d\Re} &= \sum_{r \in \Re \setminus \{0\}} \Delta \widetilde{K}_{r}^{d\Re} \mathbf{1}_{t \geq r} , \quad \Delta \widetilde{K}_{r}^{d\Re} = \mathcal{P}(X_{r}^{\pi}, \widetilde{Y}_{r}^{d\Re}) - \widetilde{Y}_{r}^{d\Re} \end{split}$$

 To any strategy a and related cumulative cost process A^a, we associate the one-dimensional 'switched BSDE'

$$U_t^a = g_{a_T}(X_T) + \int_t^T f_{a_s}(s, X_s, U_s^a, V_s^a) ds - \int_t^T V_s^a dW_s - A_T^a + A_t^a$$

ullet Same representation property as COR with switching times restricted to \Re

$$(Y_t^{d\Re})^i = \operatorname{ess} \sup_{\{a \ / \ a_t = i\}} U_t^a =: U_t^{a*}$$

Regularity results for the DOR

$$\begin{split} \widetilde{Y}_{t}^{d\Re} &= g(X_{T}) + \int_{t}^{T} f(X_{s}, \widetilde{Y}_{s}^{d\Re}, Z_{s}^{d\Re}) \mathrm{d}s - \int_{t}^{T} Z_{s}^{d\Re} \cdot \mathrm{d}W_{s} + \widetilde{K}_{T}^{d\Re} - \widetilde{K}_{T}^{d\Re} \\ \widetilde{K}_{t}^{d\Re} &= \sum_{r \in \Re \setminus \{0\}} \Delta \widetilde{K}_{r}^{d\Re} \mathbf{1}_{t \geq r} , \quad \Delta \widetilde{K}_{r}^{d\Re} = \mathcal{P}(X_{r}^{\pi}, \widetilde{Y}_{r}^{d\Re}) - \widetilde{Y}_{r}^{d\Re} \end{split}$$

- Stability with respect to parameters $f, b, \sigma...$ allows for regularization.
- Switching representation allows to work with one-dimensional BSDE.

$$\mathcal{R}eg(\widetilde{Y}^{d\Re}) := \sup_{i \leq n} \sup_{t_i \leq t \leq t_{i+1}} \mathbb{E}\left[|\widetilde{Y}_s^{d\Re} - \widetilde{Y}_{t_i}^{d\Re}|^2\right] \leq \frac{C}{n}$$

• $Z^{d\Re}$ representation using the optimal strategy a^* (here f = f(x))

$$(Z_t^{d\Re})^i = \mathbb{E}\left[\nabla g^{\frac{a_T^*}{T}}(X_T)D_tX_T + \int_t^T \nabla f^{\frac{a_s^*}{S}}(X_s)D_tX_s\mathrm{d}s \mid \mathcal{F}_t\right]$$

Approximation Scheme

- Discretization grid $\pi \supset \Re$
- Start from the terminal condition $Y_T^{\pi} := g(X_T^{\pi}) \in \mathcal{C}(X_T^{\pi})$
- Compute at each step

$$\left\{ \begin{array}{ll} \bar{Z}^{\pi}_{t_{i}} &=& (t_{i+1} - t_{i})^{-1} \mathbb{E} \left[(W_{t_{i+1}} - W_{t_{i}}) \cdot Y^{\pi}_{t_{i+1}} \mid \mathcal{F}_{t_{i}} \right] \\ \widetilde{Y}^{\pi}_{t_{i}} &=& \mathbb{E} \left[Y^{\pi}_{t_{i+1}} \mid \mathcal{F}_{t_{i}} \right] + (t_{i+1} - t_{i}) f(t_{i}, X^{\pi}_{t_{i}}, \widetilde{Y}^{\pi}_{t_{i}}, \bar{Z}^{\pi}_{t_{i}}) \\ Y^{\pi}_{t_{i}} &=& \widetilde{Y}^{\pi}_{t_{i}} \mathbf{1}_{\{t_{i} \notin \Re\}} + \mathcal{P}(X^{\pi}_{t_{i}}, \widetilde{Y}^{\pi}_{t_{i}}) \mathbf{1}_{\{t_{i} \in \Re\}} \end{array} \right.$$

• Problem : The projection operator is L-lipschitz with L>1

$$\mathcal{E}rr(\widetilde{Y}^{d\Re}, \widetilde{Y}^{\pi}) + \mathcal{E}rr(Z^{d\Re}, \overline{Z}^{\pi}) \leq \underline{L}^{\kappa} \Big[\mathcal{E}rr(X, X^{\pi}) + \mathcal{R}eg(\widetilde{Y}^{d\Re}) + \mathcal{R}eg(Z^{d\Re}) \Big]$$

- Idea: Monotonicity arguments and well chosen dominating BSDE
- Drawback : Requires f independent of z

Sketch of proof

- 1. Observe that $(Y^{\pi}, \widetilde{Y}^{\pi}, \bar{Z}^{\pi})$ interprets as a DOR
- \implies Representation in terms of 'switched BSDEs' $(U^{\pi,a})_a$
- 2. Introduce another DOR $(\check{Y}, \check{Z}, \check{K})$ with terminal value $g(X_T) \vee g(X_T^{\pi})$,

$$\text{driver} \quad f(t, X_t, \widetilde{Y}_t) \vee f(t_i, X_{t_i}^\pi, \widetilde{Y}_{t_i}^\pi) \quad \text{ and costs} \quad c(X_t) \wedge c(X_{t_i}^\pi) \;, \quad t_i \leq t < t_{i+1} \;.$$

- \implies Representation in terms of 'switched BSDEs' $(\check{U}^a)_a$
- \implies Existence of an optimal strategy \check{a} such that $\check{Y}_t^i = \check{U}_t^{\check{a}}$
- **3**. Via comparison arguments, $(\widetilde{Y}_t^{d\Re})^i \leq \check{Y}_t^i$ and $(\widetilde{Y}_t^{\pi})^i \leq \check{Y}_t^i$.
- 4. From the switched representations,

$$U_t^{\check{\mathsf{a}}} \leq (\widetilde{Y}_t^{d\Re})^i \leq \check{U}_t^{\check{\mathsf{a}}} \quad \text{and} \quad U_t^{\pi,\check{\mathsf{a}}} \leq (\widetilde{Y}_t^{\pi})^i \leq \check{U}_t^{\check{\mathsf{a}}}$$

5. We deduce

$$|(\widetilde{Y}_t^{d\Re})^i - (\widetilde{Y}_t^{\pi})^i|^2 \leq 2(|\check{U}_t^{\mathtt{a}} - U_t^{\pi,\mathtt{a}}|^2 + |\check{U}_t^{\mathtt{a}} - U_t^{\mathtt{a}}|^2)$$

→ Work with one-dimensional BSDEs switching simultaneously

Convergence results

- Always convergence of the scheme
- Distance between the scheme to the DOR (f independent of z)

$$\mathcal{E}rr(Y^{d\Re}, Y^{\pi}) \leq \frac{C}{n}$$
 and $\mathcal{E}rr(Z^{d\Re}, \bar{Z}^{\pi}) \leq C(\frac{\kappa}{n} + n^{-\frac{1}{2}})$

Distance between the DOR and the COR (f bounded in z)

$$\mathcal{E}rr(Y, Y^{d\Re}) \leq C \kappa^{-1-\varepsilon}$$
 and $\mathcal{E}rr(Z, Z^{d\Re}) \leq C \kappa^{-\frac{1}{2}-\varepsilon}$

• If f independent of z, we have

$$\Re = \pi \qquad \Longrightarrow \quad \mathcal{E}rr(Y, Y^{\pi}) \le C |\pi|^{1-\varepsilon}$$
$$|\Re| = |\pi|^{2/3} \quad \Longrightarrow \quad \mathcal{E}rr(Z, \bar{Z}^{\pi}) \le C |\pi|^{\frac{1}{3}-\varepsilon}$$

General Multi-dimensional reflected BSDE

• Multi-dimensional reflected BSDE (see Hamadène & Zhang 08) : Find m triplets $(Y^i, Z^i, K^i)_{i \in \mathcal{I}} \in (S^2 \times L^2(W) \times A^2)^{\mathcal{I}}$ satisfying

$$\left\{ \begin{array}{l} \boldsymbol{Y}_t^i = \boldsymbol{\xi}^i + \int_t^T f_i(\boldsymbol{s}, \boldsymbol{Y}_s^1, \dots, \boldsymbol{Y}_s^m, \boldsymbol{Z}_s^i) d\boldsymbol{s} - \int_t^T \boldsymbol{Z}_s^i dW_s + \boldsymbol{K}_T^i - \boldsymbol{K}_t^i \\ \boldsymbol{Y}_t^i \geq \max_{j \in \mathcal{I}} h_{i,j}(t, \boldsymbol{Y}_t^j) \\ \int_0^T [\boldsymbol{Y}_t^i - \max_{j \in \mathcal{I}} \{h_{i,j}(t, \boldsymbol{Y}_t^j)\}] d\boldsymbol{K}_t^i = 0 \end{array} \right.$$

where

- $(\xi^i)_{i\in\mathcal{I}}\in (\mathsf{L}^2(\Omega,\mathcal{F}_T,\mathsf{P}))^{\mathcal{I}}$,
- $h_{i,j}: \Omega \times [0,T] \times \mathbb{R} \to \mathbb{R}$ are a given constraint functions,
- $f_i: \Omega \times [0, T] \times \mathbb{R}^m \times \mathbb{R}^d \to \mathbb{R}$ is an \mathbb{F} -progressively measurable map.
- Reinterpretation of the solution in terms of constrained BSDE with jumps

Idea: Introduce an independent random switching regime, allowing to jump between the components of the solution!

Alternative BSDE representation

• Introduce the random switching regime *I* defined by

$$I_t = I_0 + \int_0^t \int_{\mathcal{I}} (i - I_{s^-}) \mu(ds, di) \quad t \leq T,$$

where μ is an independent Poisson measure on $\mathcal{I} := \{1, \dots, m\}$.

• Consider the one-dimensional constrained BSDE with jumps :

$$\begin{split} \tilde{Y}_t &= \xi^{\textbf{I}_{\textbf{T}}} + \int_t^T f_{\textbf{I}_{\textbf{s}}}(s, \tilde{\underline{Y}}_{\textbf{s}} + \tilde{\underline{U}}_{\textbf{s}}(\textbf{1}), \dots, \tilde{\underline{Y}}_{\textbf{s}} + \tilde{\underline{U}}_{\textbf{s}}(\textbf{m}), \tilde{Z}_{\textbf{s}}) ds + \tilde{\underline{K}}_{\textbf{T}} - \tilde{\underline{K}}_t \\ &- \int_t^T \tilde{Z}_{\textbf{s}}.dW_{\textbf{s}} - \int_t^T \int_{\mathcal{I}} \tilde{\underline{U}}_{\textbf{s}}(i) \mu(ds, di), \quad 0 \leq t \leq T, \text{ a.s.} \end{split}$$

constrained by : $\tilde{Y}_{t^-} - h_{l_{t^-},j}(t,\tilde{Y}_{t^-} + \tilde{U}_t(j)) \ge 0, d\mathbb{P} \otimes dt \otimes \lambda(dj)$ a.e.

• Unique minimal solution $(\tilde{Y}, \tilde{Z}, \tilde{U}, \tilde{K})$ of the constrained BSDE with jumps relates to the solution $(Y^i, Z^i, K^i)_{i \in \mathcal{I}}$ of the multidimensional reflected BSDE

$$\text{via} \quad \tilde{Y}_t = Y_t^{\prime_t-}, \quad \tilde{Z}_t = Z_t^{\prime_t-} \ \text{and} \quad \tilde{U}_t = \left[Y_t^j - Y_{t^-}^{\prime_{t^-}}\right]_{j \in \mathcal{I}}.$$

• Use of probabilistic arguments valid in an eventually non Markovian context

Intuition when m=2

• Multi-dimensional reflected BSDE :

Find
$$(Y^0, Z^0, K^0)$$
 and (Y^1, Z^1, K^1) such that
$$\begin{cases} Y_t^0 = \xi^0 + \int_t^T f_0(s, Y_s^0, Y_s^1, Z_s^0) ds - \int_t^T Z_s^0 dW_s + K_T^0 - K_t^0 \\ Y_t^0 \ge h_{0,1}(t, Y_t^1) ; \quad \int_0^T [Y_t^0 - h_{0,1}(t, Y_t^1)] dK_t^0 = 0 \end{cases}$$

$$\begin{cases} Y_t^1 = \xi^1 + \int_t^T f_1(s, Y_s^1, Y_s^0, Z_s^1) ds - \int_t^T Z_s^1 dW_s + K_T^1 - K_t^1 \\ Y_t^1 \ge h_{1,0}(t, Y_t^0) ; \quad \int_0^T [Y_t^1 - h_{1,0}(t, Y_t^0)] dK_t^1 = 0 \end{cases}$$

• Constrained BSDE with jumps :

Random switching regime : $I_t = I_0 + \int_0^t (1 - I_{s-}) \mu(ds, 1)$ $t \le T$, and the one-dimensional constrained BSDE with jumps on [0, T]:

$$\begin{split} \tilde{Y}_t &= \xi^{\mathbf{l_T}} + \int_t^T f_{\mathbf{l_s}}(s, \tilde{Y}_s, \tilde{Y}_s + \tilde{U}_s, \tilde{Z}_s) ds + \tilde{K}_T - \tilde{K}_t - \int_t^T \tilde{Z}_s. dW_s - \int_t^T \tilde{U}_s \mu(ds, 1) \,, \\ \text{constrained by}: \quad \tilde{Y}_{t-} - h_{l-1-l} \quad (t, \tilde{Y}_{t-} + \tilde{U}_t) > 0, \ a.e. \end{split}$$

Link via
$$\tilde{Y}_t = Y_t^{l_t-}$$
, $\tilde{Z}_t = Z_t^{l_t-}$ and $\tilde{U}_t = Y_t^{1-l_{t-}} - Y_{t-}^{l_{t-}}$.

Possible extension: optimal Switching with controlled diffusion

Consider the optimal switching problem : $\sup_{a \in A} J(a)$ with

$$J(a) := \mathbb{E}\Big[g_{a_T}(X_T^a) + \int_0^T f_{a_s}(X_s^a) ds - \sum_{0 < \tau_k \le T} c_{a_{\tau_k}, a_{\tau_k}}(X_{\tau_k}^a)\Big].$$

where the underlying X^a , is the controlled diffusion defined by

$$X_t^a = X_0 + \int_0^t b_{a_s}(X_s^a)ds + \int_0^t \sigma_{a_s}(X_s^a)dW_s, \quad t \geq 0.$$

Representation in terms of constrained BSDE with jumps?

• Introduce the forward process (I, X^I) defined by

$$I_{t} = i_{0} + \int_{0}^{t} \int_{\mathcal{I}} (i - I_{t-}) \mu(dt, di) , \quad X_{t}^{I} = x_{0} + \int_{0}^{t} \mathbf{b}_{\mathbf{I}_{s}}(X_{s}^{I}) ds + \int_{0}^{t} \sigma_{\mathbf{I}_{s}}(X_{s}^{I}) dWs$$

• Consider the constrained BSDE with jumps :

$$\widetilde{Y}_{t} = g_{l_{T}}(X_{T}^{l}) + \int_{t}^{T} f_{l_{s}}(X_{s}^{l}) ds - \int_{t}^{T} \widetilde{Z}_{s} dW_{s} - \int_{t}^{T} \int_{\mathcal{I}} \widetilde{U}_{s}(i) \mu(ds, di) + \widetilde{K}_{T} - \widetilde{K}_{t},$$

on [0, T], with the constraint : $U_t(i) \leq c_{l_{\star^-}, i}(X_t^l)$, $d\mathbb{P} \otimes dt \otimes \lambda(di)$ a.e.

• Y_0 is the solution of the switching problem starting in mode i_0 at time 0.

Related systems of variational inequalities

• Bi-dimensional forward process

$$I_t = i_0 + \int_0^t \int_{\mathcal{I}} (i - I_{t^-}) \mu(dt, di) \;, \quad X_t^I = x_0 + \int_0^t b_{I_{\boldsymbol{s}}}(X_s^I) ds + \int_0^t \sigma_{I_{\boldsymbol{s}}}(X_s^I) dWs$$

• General Constrained BSDE with jumps

$$\widetilde{Y}_{t} = g_{I_{\mathcal{T}}}(X_{\mathcal{T}}) + \int_{t}^{T} f_{I_{\boldsymbol{s}}}(X_{s}, \widetilde{\underline{Y}}_{s} + \widetilde{\underline{U}}_{s}, \widetilde{Z}_{s}) ds + \widetilde{K}_{\mathcal{T}} - \widetilde{K}_{t} - \int_{t}^{T} \widetilde{Z}_{s} \cdot dW_{s} - \int_{t}^{T} \widetilde{\mathcal{T}}_{\mathcal{I}} \widetilde{U}_{s}(j) \mu(ds, dj)$$

together with the constraint

$$h_{I_{s-},j}(X_s,\widetilde{Y}_{s-},\widetilde{Y}_{s-}+\widetilde{U}_s(j),\widetilde{Z}_s)\geq 0\;, \qquad j\in\mathcal{I},\;\;t\leq s\leq T\;.$$

 \implies We have $\widetilde{Y}_t := v_{l_t}(t, X_t^l)$ where v interprets as the unique viscosity solution of the following coupled system of variational inequalities

$$\left[-\frac{\partial v_i}{\partial t} - \mathcal{L}^i v_i - f_i(., (v_k)_{1 \leq k \leq m}, \sigma_i^\top D_x v_i)\right] \wedge \min_{1 \leq j \leq m} h_{i,j}(., v_i, v_j, \sigma_i^\top D_x v_i) = 0,$$

on
$$\mathcal{I} \times [0, T) \times \mathbb{R}^d$$
, with terminal condition $v(T, .) = g$ on \mathbb{R}^d ,

Numerical approximation

Bi-dimensional forward process

$$I_t = i_0 + \int_0^t \int_{\mathcal{I}} (i - I_{t^-}) \mu(dt, di) \; , \quad X_t^I = x_0 + \int_0^t b_{I_{\boldsymbol{s}}}(X_s^I) ds + \int_0^t \sigma_{I_{\boldsymbol{s}}}(X_s^I) dW s$$

General Constrained BSDE with jumps

$$\widetilde{Y}_t = g_{I_{\mathcal{T}}}(X_{\mathcal{T}}) + \int_t^T f_{I_{\boldsymbol{s}}}(X_{\boldsymbol{s}}, \widetilde{\underline{Y}_{\boldsymbol{s}}} + \widetilde{\underline{U}}_{\boldsymbol{s}}, \widetilde{Z}_{\boldsymbol{s}}) ds + \widetilde{K}_{\mathcal{T}} - \widetilde{K}_t - \int_t^T \widetilde{Z}_{\boldsymbol{s}} \cdot dW_{\boldsymbol{s}} - \int_t^T \widetilde{\mathcal{U}}_{\boldsymbol{s}}(j) \mu(ds, dj)$$

together with the constraint

$$h_{l_{s-},j}(X_s,\widetilde{Y}_{s-},\widetilde{Y}_{s-}+\widetilde{U}_s(j),\widetilde{Z}_s)\geq 0, \qquad j\in\mathcal{I}, \ t\leq s\leq T.$$

- Numerical approximation via :
 - Forward simulation of (I, X^I)
 - Include the constraint in the driver by penalization
 - Use of approximation scheme for BSDEs with jumps, Bouchard & Elie 07
 - Convergence of the scheme
 - Practical influence of the penalization parameter and the jump frequency

Conclusion

- Probabilistic numerical approximation of optimal switching problems.
 - via obliquely reflected BSDE (convergence rate)
 - via constrained BSDE with jumps (possibility of controlled diffusion)
- Constrained BSDEs with jumps unify and generalize
 - Constrained BSDE without jumps, Peng & Xu 07
 - BSDE with diffusion-transmutation process, Pardoux, Pradeilles & Rao 97
 - BSDE with constrained jumps, Kharroubi, Ma, Pham & Zhang 08
 - Multidimensional BSDE with oblique reflections, Hamadène & Zhang 08
- Numerical approximation for coupled systems of variational inequalities :

$$\min\left[-\frac{\partial v_i}{\partial t} - \mathcal{L}^i v_i - f_i(., v_i, \sigma_i^\top D_x v_i, [v_j - v_i]_{j \in \mathcal{I}}), \min_{j \in \mathcal{I}} h^{i,j}(., v_i, \sigma_i^\top D_x v_i, v_j - v_i)\right] = 0,$$

with terminal condition v(T,.) = g.