Lifetime of relativistic diffusions

Ismaël Bailleul, (Statistical Laboratory, Cambridge)

Probability Seminar, Cambridge, Novembre 2010.

Layout of the talk

- Relativistic diffusions
- Lifetime of relativistic diffusions
 - Non-explosion criteria
 - Explosion criteria
- Time function on a Lorentzian manifold

•
$$m_s = m_0 + \int_0^s \dot{m}_r dr$$
:
 $X_s = (m_s, \dot{m}_s) \in \mathbb{R}^{1,3} \times \mathbb{H}$

• Law of $\{X_s\}_{s\geqslant 0}$ frame-independent, *i.e.* intrinsic.

THEOREM (Dudley, 66')

If X is continuous then \dot{m}_s is a Brownian motion on \mathbb{H} .

Brownian motion on \mathbb{S}^2 . Infinitesimal Euclidean rotations:

$$E_1 = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad E_2 = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
; $\mathbf{e} \in \mathbb{O}_3$: $V_i(\mathbf{e}) = \mathbf{e}E_i$: invariant vector fields on $O(3)$.

$$\mathsf{g}_{i} \text{ parallelly transported along the path } \{B_{s}\}_{s \in [t, t + \Delta t]}$$

$$\circ d\mathbf{e}_{s} = V_{1}(\mathbf{e}_{s}) \circ dw_{s}^{1} + V_{2}(\mathbf{e}_{s}) \circ dw_{s}^{2}$$

$$\mathsf{g}_{1}(t)$$

$$\mathsf{g}_{1}(t)$$

$$\mathsf{g}_{2}(t)$$

$$\mathsf{g}_{2}(t)$$

Brownian motion on H. Idem: use infinitesimal hyperbolic rotations:

Brownian moțion on S². Infinitesimal Euclidean rotations:

$$E_1 = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad E_2 = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \text{ ; } \mathbf{e} \in O(3) : V_i(\mathbf{e}) = \mathbf{e}E_i \text{: invariant vector fields on } O(3).$$

Brownian motion on \mathbb{H} . Infinitesimal hyperbolic rotations:

 $\mathbf{e} \in SO(1,3)$: $V_i(\mathbf{e}) = \mathbf{e}E_i$: invariant vector fields on SO(1,3).

Dudley's diffusion on $\mathbb{R}^{1,3} \times SO(1,3)$.

$$(m_s, \mathbf{e}_s) = (m_s, (\mathbf{e}_0(s), \mathbf{e}_1(s), \mathbf{e}_2(s), \mathbf{e}_3(s))$$
 solves the sde

$$dm_s = \mathbf{e}_0(s) ds$$
,

$$d\mathbf{e}_s = V_i(\mathbf{e}_s) \circ dw_s^i$$

has generator

$$G = H_0 + \frac{1}{2} \sum_{i=1}^{3} V_i^2.$$

- (M, g): Lorentzian manifold (oriented, time-oriented) of dimension 1+3.
- T^1M : future unit bundle; $(m, \dot{m}) \in T^1M$.
- OM: orthonormal frame bundle, $\Phi = (m, (\mathbf{e}_0, \dots, \mathbf{e}_3)) \in \mathbb{OM}, \mathbf{e}_0$ timelike and future.
- H_0 : generates the geodesic flow, $(V_i)_{1 \le i \le 3}$ canonical vertical vector fields.
- ullet Θ -diffusion: $\Theta: \mathcal{T}^1\mathbb{M} \to \mathbb{R}_+$ (function of the curvature, of the stress-energy tensor...)

$$d\Phi_s = H_0(\Phi_s) ds + \frac{1}{4} (V_i \Theta) V_i + \sqrt{\Theta(\Phi_s)} V_i \circ dw_s^i$$

$$\mathcal{G} = H_0 + \frac{1}{2} \sum_{i=1}^3 V_i (\Theta V_i)$$

Layout of the talk

- Relativistic diffusions
- Lifetime of relativistic diffusions
- Time function on a Lorentzian manifold

Motivations from physics. Undesirable phenomena: exploding curvature invariants, inextendible incomplete geodesics...

THEOREM (Hawking-Penrose)

The following three conditions cannot hold at the same time on a Lorentzian manifold

- (Causality condition) The chronology condition holds.
- (Energy condition) Any complete causal geodesic has a pair of conjugated points.
- (Initial/boundary condition) The space has a "trapped set".

Non-explosion

Lyapounov functions • If there exists a function f and a positive constant C such that $\mathcal{G}f \leqslant Cf$, and f diverges to $+\infty$ along any timelike path living any compact set, then the relativistic diffusion has as an infinite lifetime.

- U vector field on \mathbb{M} : $f(\Phi) = g(U, \mathbf{e}_0)$, for $\Phi = (m, (\mathbf{e}_0, ..., \mathbf{e}_d)) \in \mathbb{OM}$
- Generalised warped product: $\mathbb{R} \times S$, $ds^2 = a(m)^2 dt^2 h_{ij}(m) dx^i dx^j$

THEOREM (B.-F. '10)

Take $\Theta(\Phi) = \Theta(m)$. Then the Θ -diffusion has as an infinite lifetime if the function $(m,\dot{m}) \in T^1\mathbb{M} \to \nabla_{\dot{m}}(\log a)$ is bounded below $\iff \nabla a$ is everywhere non-spacelike and future.

A "volume-growth" condition

Riemannian case. X a symmetric conservative diffusion, with generator L, $X_0 \sim$ invariant measure

$$f(X_s) = f(X_0) + M_s + \int_0^s Lf(X_r) dr$$

$$f(X_s) = f(X_{T-(T-s)}) = f(X_T) + \widetilde{M}_s + \int_0^s Lf(X_{T-(T-r)}) dr$$

so $df(X_s) = \frac{1}{2}(dM_s + \widetilde{M}_s)$: Gaussian control of the increments of f(X) if $\langle M \rangle$, $\langle \widetilde{M} \rangle$ controlled.

X: reflected Brownian motion on the boundary of a (large) ball.

THEOREM (Grigor'yan '86 / Hsu-Qin '10)

On a complete Riemannian manifold, Brownian motion is conservative if $\int_1^\infty \frac{r}{\ln |B(r)|} dr = \infty$.

Lorentzian case. *Difficulties:* no balls on \mathbb{M} ; what could play the role of the conservative, symmetric diffusion?

• A Riemannian metric on \mathbb{OM} ? Parallelisable manifold: set $H_0,...,H_d,(V_{ij})_{0\leqslant i < j\leqslant d}$ to be an orthonormal basis everywhere.

Proposition (B.-F. '10)

 $\Theta(\Phi) = \Theta(m)$, bounded. The Θ -diffusion is conservative if \mathbb{OM} is complete.

• A weaker geometric control. Controlled dynamics: $\dot{\Psi}_s = H_0 u_s^0 + V_i u_s^i$ Reference point $\Phi_{\rm ref}$. Define $\mathcal{T}(\Phi) =$ minimal traveling time from $\Phi_{\rm ref}$ to Φ , with controls $|u^i|_{\infty} \leqslant 1$.

$$|H_0T| + \sum_{i=1}^d |V_iT| \leqslant 1.$$

 $\Theta_r := \max \Theta(\cdot)$ on the set $B_r := \{ \mathcal{T} \leqslant r \}$.

THEOREM (B.-F. '10)

The Θ -diffusion is conservative if

$$\int^{\infty} \frac{r \, dr}{\Theta_r \log(\Theta_r \text{Vol}(B_r))} = \infty.$$

If $\mathbb{M} \sim \mathbb{R}^{1,3}$, Θ bounded, and g,g^{-1} and their first derivative are bounded, then non-explosion.

Explosion

Write ζ for the lifetime of the diffusion.

PROPOSITION

If
$$\mathbb{P}_{\Phi}(\zeta < \infty) > 0$$
, then $\mathbb{P}_{\Phi}(\zeta < \epsilon) > 0$, for all $\epsilon > 0$.

A simple explosion criterion. On some manifold \mathcal{M} .

LEMMA

Suppose there exists two smooth functions $f \leqslant h$ and two constants $0 \leqslant c' < c$ such that

$$\mathcal{G}f \geqslant c f$$
 and $\mathcal{G}h \leqslant c' h$.

Let $x_0 \in \mathcal{M}$ be such that $f(x_0) > 0$. Then the diffusion with generator \mathcal{G} started from x_0 explodes with positive probability.

In our case:

$$G = H_0 + \frac{1}{2} \sum_{i=1...3} V_i^2$$
.

Given $\Phi = (m, \mathbf{e}) = (m, (\mathbf{e}_0, \cdots, \mathbf{e}_3)) \in \mathbb{OM}$, set

$$U(\Phi) = \frac{3}{2} \int_{T_m^1 \mathbb{M}} G(\mathbf{e}_0, y) Ric_m(y, y) \, dy,$$

where G is the Green function of Laplacian on each fiber of $T^1\mathbb{M}$. One can apply the preceding explosion lemma to $f=Ric_{|T^1\mathbb{M}}$ and $h:=Ric_{|T^1\mathbb{M}}+U$, under some conditions. Write R for the scalar curvature.

THEOREM (B. 10')

Let (M, g) be a Lorentzian manifold satisfying the following conditions.

- (1') Static energy condition. $Ric \ge 0$ non-constant, $R \le 0$.
- (2') Regularity condition. \exists $0<\alpha<1,\ 0\leqslant c'< c$ and $c<2<\frac{c'}{\alpha}$ such that $c-c'<2\left(1-\alpha\right)$ and

$$\frac{1-\alpha}{\alpha}\operatorname{Ric}_{\mid T^1\mathbb{M}}\leqslant U.$$

(3') Dynamic energy condition. (i) H_0 $h \le (c' - 2\alpha) h$, (ii) H_0 $Ric \ge (c - 2)$ Ric.

Let $\Phi_0 \in \mathbb{OM}$ be such that $Ric(\Phi_0) > 0$. Then the relativistic diffusion started from Φ_0 explodes with positive probability.

Layout of the talk

- Relativistic diffusions
- Lifetime of relativistic diffusions
- Time function on a Lorentzian manifold

Globally hyperbolic spacetimes. A function T on a Lorentzian manifold is said to be a (global) time function if (1) ∇T is everywhere timelike, (2) each level hypersurface $\{T=t\}$ is a (connected) spacelike submanifold, (3) each integral curve of ∇T meets each hypersurface $\{T=t\}$ at precisely one point.

THEOREM (Geroch '70)

A Lorentzian manifold has a global time function iff it is globally hyperbolic.

On \mathbb{OM} . A weaker definition: A (smooth) function $T:\mathbb{OM}\to\mathbb{R}$ is a time function if it increases along any (lifting to \mathbb{OM} of a) timelike geodesic.

THEOREM (B. '10)

In any strongly causal Lorentzian manifold, the orthonormal frame bundle \mathbb{OM} has a time function.

Some questions. (With an eye towards Penrose, Hawking incompleteness theorems...)

- Find a pathwise version of the global explosion criterion used.
- What happens if the diffusion enters a region satisfying the conditions of a geometric incompleteness theorem?
- Can a relativistic diffusion miss a naked singularity? (Like in the fast rotatoing Kerr black-holes.)