Rough flows and homogenization in stochastic
turbulence
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ABSTRACT. We provide in this work a tool-kit for the study of homogenisation of
random ordinary differential equations, under the form of a friendly-user black box
based on the tehcnology of rough flows. We illustrate the use of this setting on the
example of stochastic turbulence.
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1 Introduction

The history of averaging and homogenization problems for dynamical systems is
fairly long and has its roots in classical perturbative problems in mechanics, in the
19th centery. It has evolved in an impressive body of methods and tools used to
analyse a whole range of multiscale systems, such as (possibly random) transport
equations with multiple time-scales [1, 2], or heat propagation in random media
[3, 4]. The latest developments of Otto, Gloria & co [5] and Armstrong & co [6, 7] on
homogenization for the solutions of Hamilton-Jacobi equations use and develop deep
results in partial differential equations. The present work deals with the transport
side of the story, in the line of the classical works of Kesten and Papanicolaou on
homogenization for random stochastic differential equations [8, 9, 10], and put them
in the flow of ideas and tools that have emerged in the early 2000’s with rough paths
theory. Kelly and Melbourne [11, 12] have for instance shown recently how one can
use rough paths methods to investigate a fast-slow system of the form
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where the dynamics of the fast component y. is autonomous and Anosov or axiom
A, or even non-uniformly hyperbolic. We would like to put this result and other
homogenization results in the newly introduced setting of rough flows [13], that
encompasses a large part of the theory of rough differential equations, and unifies
it with the theory of stochastic flows. We provide for that purpose an easily usable
black box for the study of homogenisation of random ordinary differential equations,
under the form of a result

Convergence of finite dimensional marginals @ Moment/tightness bounds

(for the driving vector fields)

= Homogenisation

for which no knowledge of the mechanics of rough flows is required. See Theorem 4
in section 2.2. As an illustration of use of this method in homogenization problems,
we show in the present work how one can get back and extend in a clean and efficient
way Kesten and Papanicolaou’ seminal result [8] on stochastic turbulence.

The theory of rough flows is based on the following paradigm. The kind of dynam-
ics we are about to consider are all generated by some kind of time-dependent vector
fields, or drivers, that generate flows by a deterministic continuous mechanism. Any
ordinary differential equation is naturally recast in this setting. The benefits of this
picture for the study of averaging and homogenization problems are obvious. If the
drivers are random and depend on some parameters, it suffices that they converge in
law in the space of drivers for their associated dynamics to converge in law, from the
continuity of the driver-to-flow map. Support theorems and large deviation results
are also automatically transported from the driver world to the flow world. The
rough flow setting somehow provides an optimized and friendly environment where
to apply ideas similar to those of rough paths theory, with the same benefits. As a
matter of fact, one can also study some homogenisation problems for random ordi-
nary differential equations from the latter point of view, such as done by Kelly and
Melbourne in their works [11, 12] on fast-slow systems, to the expense of working
with tensor products of Banach spaces and the involved subtleties. No such high
level technology is required in the elementary setting of rough drivers and rough
flows, which may then be easier to use [13]. More importantly, it has a dual version
on function spaces that can be used to study some hyperbolic partial differential
equations and seem beyond the scope of Lyons’ formulation of rough paths theory
[14].

Section 2.1 provides a very light presentation of rough drivers and their associated
flows; convergence problems for flows amount in this setting to convergence problems
for their drivers — a philosophy shared by the martingale problem formulation of
stochastic dynamics, with the noticeable difference that we are here in a deterministic
setting. Section 2.2 contains the above generic homogenisation result; it is proved
in Appendix A. An elementary deterministic example is given in section 2.3 as an
illustration of the mechanics at play in the rough driver/flow setting. The case of
homogenisation for stochastic turbulence is treated in section 3.

Notations. We shall use the sign < for an inequality that holds up to a multiplica-
tive positive constant whose precise value is unimportant. The sign <. will be used
to indicate that this constant depends on a parameter c. Given a finite positive time
horizon T', we shall write Dy for {(s,t) € [0,T]%;s < t}. We shall use the | - | sign
to denote any Euclidean norm on a finite dimensional space; its precise choice will
be unimportant.



2.1

e Given a non-integer positive regularity index a, we shall denote by C® the
usual space of a-Holder functions. Given 0 < a; < 1, a 2-index map
(Zis)o<s<t<r with values in some space C;?(R?) will be said to be a;-Hélder
if

|Zeolo

1Zlegrege = | 590 p—ar <
we write Z € C/J C;.
e An additive function of time (Vis)o<s<t<T is @ vector space valued function
V of time such that Vi = Vi, + Vs, forall 0 < s<u <t < T.

e Whenever convenient, we shall freely identify vector fields with first order
differential operators, so that given two vector fields Vi, Vo, the notation
V1V will stand for the second order differential operator whose action on
smooth functions f is

ViVaf = (Df)(DVa(W)) + (D*f)(V4, Va).

e Given f e L*(R% R%) and ¢ in the unit ball of R?, we define inductively a
sequence A™ of operators on L*(R? R?) setting

(Bof)() = f(-+0) = fz) and AIFf = A, (ARS).

e Implicit summation of repeated indices is used throughout, so a'b; means
Zi a’bi.

e We denote by L*(Q) the corresponding integrability spaces over some prob-

ability space (2, F,P).

2 Tools for flows of random ODEs

The machinery of rough drivers and rough flows introduced in [13] provides a
very convenient setting for the study of convergence of flows and weak convergence
of random flows. Rather than giving the reader an account of the theory of rough
flows, we single out here part of it under the form of a friendly user black box that
requires no knowledge of the mechanics of rough flows. We refer the interested
reader to the work [13], and to Appendix A, for some more technical details.

The black box.

The starting point of this business is the elementary observation that if we are
given some smooth globally Lipschitz vector fields v1,...,,v, on R% and some
real-valued controls k', ..., k! on some time interval [0, 7], then the solution flow
(p1s)o<s<t<T Of the controlled ordinary differential equation

?;’t = hg vi(zt)

enjoys the Taylor expansion property

t ruy
fopw=f+ (hi—Rh)Vif + (J f dhi, dhf“) ViVilf +O(t —s|7?)  (2.1)



for all smooth functions f. The notion of rough driver captures the essence of the
different terms that appear in this local description of the dynamics.

Definition 1. Let 2 < p < 2+7r < 3 be given. A rough driver, with reqularity indices
p and (2+71), is a family (Vts)0<s<t<T’ with Vg 1= (Vts,Vts), for some vector fields
Vis, and Vs some second order differential operator, such that

(1) the vector field Vis is an additive function of time, with V € Ctls/pCb2+T,

(ii) the second order differential operators
1
Wis i= Vs — 5%5%57

are actually vector fields, and W € Cfs/pC;M,

(iii) we have
Vis = Viu + VusViu + Vus,
forany0<s<u<t<T.
We define the norm of V to be

HVH = Imax (||VHCt19/pc§+r ) HWHC?S/PC;JM”) .

We simply talk of a rough driver when its regularity indices are clear from the
context. We typically use rough drivers to give a local description of the dynamics
of a flow ¢, under the form of a Taylor expansion formula

Jowws~f+Visf +Visf.
In the Taylor formula (2.1), the term (h{ — h%)V; plays the role of Vs, while the term
(Sz §" ani, dhff) V; Vi, has the role of Vi,; check that properties (i)-(iii) hold indeed

for these two terms. More generally, given any sufficiently regular time-dependent
vector field v; on R?, on can check that setting

t t rul
Vis 1= f Vg du, Vi := f f Vg Uy, dundug (2.2)

s

defines a rough driver for which

t rr
Wts = J f [Uuz7vu1:| du2du17

with Lie brackets of vector fields used here. Formula (2.2) defines the canonical lift
of a possibly time-dependent vector field v. As we shall use it later, remark here

that if V = (V, W + %VQ) stands for a rough driver with regularity indices p and
(2+7r), and X stands for a %—Hélder function with values in the space of Cg” vector
fields on R?, then the formula

1
(V;fs; Wts + 5 ‘/t?s + Xt — Xs)
still defines a (p,2 + r)-rough driver.

Definition 2. Let Vj be a bounded Lipschitz vector field on RY; let also V be a rough
driver with regularity indices p and (2 +r). A flow ((‘Ots)0<s<t<T 1s said to solve
the rough differential equation

dp = Vo(p)dt + V(p;dt)



2.2

if there exists a possibly (Vo, V) -dependent positive constant 0 such that the inequality
170wt = {1+ (t=5) (Vo) + Viof +Visf }

holds for all f € CI?M, and all 0 < s <t < T witht —s < 6. Such flows are called
rough flows.

3
| <t = sl
0

If V is the canonical lift of a Cf” time-dependent vector field v, its associated
rough flow coincides with the classical flow generated by v. A robust well-posedness
result is provided by the next result, proved in [13].

Theorem 3. Assume § < r < 1. Then the differential equation on flows
de = Vo(p)dt + V(p;dt)

has a unique solution flow; it takes values in the space of homeomorphisms of RY,
and depends continuously on Vo and V in the topology of uniform convergence.
Moreover, if r < 1, then the maps pis and their inverse have uniformly bounded
C"-norms; if r = 1, they have uniformly bounded Lipschitz norms.

If B is an ¢-dimensional Brownian motion and wv1,...,v, are CE vector fields on
R%, one can prove that setting

. t u1l .
Vis = B i, and Vig = <J f odBj, o dB,L]fl) VU
S S

defines almost surely a rough driver with regularity indices p and (2 + r), for any
p <247 <3 with £ <r, and that the solution flow of the equation

do = V(p;dt)

coincides almost surely with the flow generated by the Stratonovich stochastic dif-

ferential equation '
dzy = vi(zy) odBy.
See e.g. Lyons’ seminal paper [15].

How to use it.

Let then assume we are given a random ordinary differential equation
& = vg (xf) (2.3)
in R?, driven by a random time-dependent globally Lipschitz vector field v§, depend-
ing on a parameter €, an element of (0, 1] say. One can think for instance of the slow
dynamics in a fast-slow system [12]
i§ = f(2f,97),
. 1
v = —9(v),
driven by deterministic vector fields f, g, but where g is random for instance, so we
have (2.3) with
vi() = f(90)-

We shall also reformulate in section 3 the stochastic turbulence dynamics in those
terms. Fix a finite time horizon T and define, for 0 < s <t < 7T, the canonical lift
V€ of v¢ into a rough driver

t t ruy
€ . € € . _ € €
V5 = J vy, du, Vi, = f f Uy Uy, duzduy,
S S

S



and

t rr
W, == J f [ve,, vg, | duaduy.

Denote by ¢¢ the random flow generated by equation (2.3), so ¢f(x) is, for any
0 < s <t<T, the value at time ¢ of the solution to equation (2.3) started from z
at time s. This flow is also the solution flow of the equation

de® = V° ((pE ; dt).
Given 0 < r < 1, denote by C(o) the space of r-Holder continuous functions from
RY to itself that are at finite C"-distance from the identity, and write DifFEO) for the
space of C"-homeomorphisms with C"-inverse, for which both the homeomorphism
and its inverse are at finite C"-distance from the identity. The following convergence
result, proved in Appendix A, is an elementary
Convergence of finite dimensional marginals @ Moment/tightness bounds
(for the driving vector fields)
= Homogenisation

result. The exponent a in the statement is to be thought of as a big positive constant.

Theorem 4. Let some positive finite exponents (p,r;a), with r < 1, be given such
that ) J
O<y—F —2<r—-.
i_ L a
p 2a
o Assume that for each 0 < s <t < T, and each y € R%, the random variables
VS (y) and W (y) converge weakly as € goes to 0.

o Assume further that there is an integer k1 = 3 for which the positive quantity

J V() Wi [ J J ARVi(y) y do
1 . 2 (24+r)a+d
RNt =8Pl paagy 11t =517 Lo <B(0,1) 6= 57 poaey 1]
H AR () ‘ do
|t—$| Y |0-|(1+7‘)a+d
Rdx B(0,1) Le(Q)

18 bounded above by a finite constant independent of e.

Then for every pair of reqularity indices (p',2 + '), with p’ <2 +1r' <3, and
, d 1 1 1 1
r<r——, and < =< ===,
a 3 9 p 2a
there exists a random rough driver V, with regularity indices p' and (2 + '), whose
associated random flow
dcp = V(p;dt)

is the weak limit in C’([O,T] D|ff ) of the random flows ¢ generated by the dy-

namics (2.3).

The above e-uniform moment bound is actually a sufficient condition for tight-
ness in the space of drivers with regularity indices p’ and (2 + 7’). Note that the
convergence and moment assumptions are about the vector fields V¢ and W€ that
generate the dynamics, while the conclusion is on the dynamics itself. The possibil-
ity to transfer a weak convergence result on the rough drivers to the dynamics comes
from the continuity of the solution map, given as a conclusions in Theorem 3. Note



also that we work here with vector fields V, W that are in particular bounded, as
required by the definition of a C* function, for a non-integer regularity exponent «.
In applications, one may have first to localize the dynamics in a big ball of radius R,
use Theorem 4, and remove the localization in a second step. This is what we shall
be doing in our study of stochastic turbulence in section 3. Let us note here that the
results proved by Kelly and Melbourne [11, 12] in their study of fast-slow systems
with a chaotic fast component can actually be rephrased exactly in the terms of
Theorem 4, so one can get back their conclusions from the point of view developed
here.

2.3 A toy example.

Before applying Theorem 4 in the setting of stochastic turbulence, we illustrate in
this section on an elementary and interesting toy example the fundamental continuity
property of the solution map to an equation

do = V(p;dt),

in a deterministic setting. In this example, we construct a family V€ of rough drivers,
obtained as the canonical lift of a smooth e-dependent vector field on the plane, such
that its first level V¢ converges to 0 in a strong sense while the flow ¢¢ associated
with V¢ does not converge to the identity. This shows the crucial influence of the
second level object V¢ on the dynamics generated by V€. We work in R? ~ C ; set

ve(x) == if(x) eif(x)t,

for some Cg’ non-zero phase f, so that its canonical lift V = (V, % V2 4+ W) as a
rough driver has first level

V;fs(-r) _ eif(x)t o eif(a:)s'

Given 2 < p < 3, we define a space/time rescaled rough driver V¢, with regularity
indices p and 1, setting

Vii(x) i= € V2 g2 (62 a:), Wi (z) = et (Wte_2 86—2) (62 x);
this is the canonical lift of the e-dependent vector field

€ 1 Zf 62-:U i €2l3
vi(x) := Zv(e%}) = (6)6 fleEyt,

Theorem 5. The rough driver V¢ converges as a (p,1)-rough drivers to the pure
second level rough driver

Vis(z) = (o, —i(ﬂ — s%) £(0) (Vf)(o)) .

As a corollary, the solution flow ¢° to the equation
;= vi(xf)
converges to the elementary flow generated by the ordinary differential equation
) 1
Iy = D) f(0) (V£)(0)

with constant vector field.



Proof — We shall prove the claim as a direct consequence of the following elementary
estimate
H Dt (em-)t _ eif(~)8>

that holds for all times 0 < s <t < T} < o0, every exponent 0 < v < 1, and any
derivative index 0 < ¢ < 3, as shown by interpolating two trivial bounds.

Working with 7 = Te 2, and since D'V, (z) = (D', ) (), it
already follows from (2.4) that

< T, (2.4)
o0

DV

ST |t — s,
0

so, indeed, we have
IVEs
K
o<s<t<T [t —s[7

if one chooses 0 < v < %

—e¢—0 0

To deal with W€, note first that an integration by parts gives for W the decom-
position
I 1
Wt,s(x) ::Q (Dmvr wg(x) - Dm‘/r,s UT(I)) dr = §D‘/f§ ‘/t s D‘/Ts vr d

S

— DV}l )—f if (@) (re @ — seif()7) 5(Vf<x)W+Wieif<x>") dr;

_

(Vf(@)on (@)

SO one can write
Wis(x) = == (> — 5°) f(2)V f(2) + Rus(x)

with

Rus(x) =5 DVia ) V() + 267 £ () f (V1) = VF@)e @) ar

S

- F@VF@)s j 2@ g,

Hence
Wte,s(x) = €4Wt6_2,56—2 ('7362)
1
= _Z(tQ — 32)b(62x)Vb(62x) + Ri (z),
where

RS () := €' Ry—2 go—2(€?).
The scaling in € between space and time gives to convergence
sup HR SHC2 R
o<s<t<T [t — 5%7 7

which is enough to conclude that W€ converges in the same space to

(t,5.2) = ~ (2 = )1 (O)V0).



3.1

3 A case study: Stochastic turbulence

We show in this section how one can use the black box provided by Theorem 4
to reprove and improve in a simple way Kesten and Papanicolaou’ seminal result
on stochastic turbulence [8]. The object of interest here is the dynamics of a par-
ticle subject to a random velocity field that is a small perturbation of a constant
deterministic velocity. Precisely, consider the random ordinary differential equation

j:t =V + EF(fEt),

with initial condition xg fixed, where v is a deterministic non-zero mean velocity and
F' is a sufficiently regular centered, stationary, random field; precise assumptions are
given below. To investigate the fluctuations of x, around its typical value, one looks
at the dynamics of the recentered and time-rescaled process

T$ = T2y — € 2L,

and prove that the continuous random processes (:Ulf) o<t<q Converge in law, as €
decreases to 0, to a Brownian motion with some constant drift b and some covariance
o*o, both given explicitly in terms of the statistics of F. We actually use Theorem

4 to prove a similar result for flows directly.
As the process x€ solves the random ordinary differential equation
Ty = e_lF(xf + e_2tv), (3.1)

the flow genetared by the latter dynamics is also associated with the "rough driver”
1
Ve (VWS (v9?), (3.2)

where
t

€ 1 ! U €
Viis(z) == EL F(:L’ + =2 v) du =: L vs,(z) du
and

1 t ruy 1 t rug
Wi o= 5 [ [ Wi Vil =5 [ [ [t duadun,

that is canonically associated with the space/time rescaled dynamics, equation (3.1).
We put here quotation marks around ”rough driver” as V and W only satisfy the
algebraic conditions defining a rough driver, and not all of the analytic conditions
since they are a priori unbounded. This is the very reason why we shall later
proceed in a two step process for the analysis of the homogenisation phenomenon,
by first localizing the dynamics in a ball of arbitrary radius, homogenising, and then
removing the localisation.

Setting and result

Let F be an almost surely continuous R%valued random field on R, defined on
some probability space (€, F,P). Given a measurable subset A of R%, define the
o-algebra generated by F' on A by

Gri=0(F(z);zeA) c F.
We define the correlation coefficient of F' on two measurable subsets Ay and Ay of
RY by

a(Gay,G0,) = sup ‘P(fh N Az) — P(41) P(42)|.
A1€GA, ,A260),,
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The mixing rate of F is defined as the function

a(u) == sup a(gAl,gAQ)
A1,A2€B
0(A1,A2)>u

for any non-negative u, and where

0(A1,Ag) := /\161\11171;\26/\2 A1 — A2l

We make the following Assumptions on the random field F.

(i) The random field F is centered and stationary.
(i) It takes values in Cj(R?,RY), and

3
E [Z sup ’DkF(x)|2a0] <
k=0 |z|<1

for some integrability exponent ag > (3 v d).
(iii) We also have

+00
J a(u)du < 400
0
1.1 _ 1
for some exponent « € (O, Y %).

The parameters agp and x will be fixed throughout; we fix them once and for
all. One can find in the Appendix of the work [8] of Kesten and Papanicolaou two
interesting classes of examples of random fields satisfying the above assumptions,
some Gaussian vector fields, and vector fields constructed from some side Poisson
process.

A last piece of notation is needed to state our main result. For any two points
z,y of R%, set

Cla,y) = f E[F(2)® Fly +w)] du. (3.3)

R
and note that it is a function of (y — z), since F' is stationary. This covariance
function is C?*", for any 0 < u < 1, under the above assumptions on F. One can
then define a Brownian motion V in the space of C?>™" vector fields on R?, with
covariance C, and use the results of [13] to define a C1*" time-dependent random

vector field Wt(ss ) on RY by the formula

t ruy
Wt(;) ($) = f f [V:)duga ‘/odul] (l’)

at each point x of R% we use Stratonovich integration here. This can be done in
such a way that the formula (V, W) 4 %V2) defines almost surely a rough driver
with regularity indices p and (2 + 7), for any 2 < p < 2+ r < 3. Note that the
integral

b= = LOO E| (D F) F(0) = (DoF) F(uv) | du

is also well-defined as a consequence of the decay assumption (iii) on F', and define
a rough driver V, with regularity indices p and (2 + r), setting

s 1
Vts = <‘/t57Wt(s) + 5‘/2§+ (t*S) b) .
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Denote by ¢ its associated rough flow. It is proved in [13] that the rough flow ¢
actually coincides almost surely with the stochastic flow generated by the Kunita-
type stochastic differential equation

dy; = bdt + V(y; ; odt).

We read directly on this expression the generator £ of the one point motion

20 = b2+ | E[FI0) )] du

R
with

b:= foo E[(DUVF) F(O)]du,

0

and the generator .2 of the two point motion of the stochastic flow

2O =20+ 20+ 2,
where Dfx(l) acts on the first variable and .iﬂy(l) on the second variable, while
Ly f = J E[F(x -y F(x—y+ uv)](&z,éy) du.
R
Here is how one can rephrase Kesten and Papanicolaou’s homogenisation for sto-
chastic turbulence in our flow setting.

Theorem 6. Let K be any compact subset of R%. The restriction to K of ¢ converges
in law to the restriction to K of ¢ in C’([O,T] X K)

We prove Theorem 6 by

§3.2.1 localizing first the rough drivers V€ into a big ball of size R,
§3.2.2 using Theorem 4 on the localized rough drivers V&£,

§3.2.3 removing the localization in the end to get Theorem 6.

Proof of homogenisation for stochastic turbulence

Recall the definition of V¢ given in equation (3.2), and let x be a smooth real-
valued function on R, identically equal to 1 in the open unit ball B(0,1) of R?, with

support in B(0,2). Set
Vi) = x(5)

and
t
VER = By = j 0ol du and f J ZQR, ZlR dquul,
S
and define a rough driver V&% by the formula

Ve,R = (Ve,R’ We,R + % (Ve,R)2>‘
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Tightness of localized drivers

Our main technical ingredient for proving the tightness of the family of rough
drivers VS is the following inequality due to Davydov [18]. If A and B are two
sub-o-algebras of the probability space (€2, F), and if X and Y are two real-valued
random variables that are A, resp. B, measurable, then for all integrability expo-

nents p1, p2, p3 = 1 such that }% + p% + p%, =1, we have

E[XY] — E[X]E[Y]] < a(A, B)#1 | X s |V 1rs. (3.4)

Given any (u,z) € Ry x R? define the set
A (z) == x4+ uv + B(0,¢)

and recall the notation Gy for the o-algebra generated by F' in an e-neighbourhood
of the point x + uv

Lemma 7. o Let G be a continuous real-valued centered random field on RY,
such that G(r,z) € Gpe(y) for all positive €, and for which there exists a
postive finite constant m such that we have

El sup |G(ﬂv+uv)|2a0 < m?o,
u€[s,t],
zeK

for all0 < s <t <T, and all compact subsets K of R?. Then we have

kg1
t % 2 T 2 m 1
E J G(x 4+ uv) xg(x) du < xf(x) (J a(u)”“du) = |t —s|2
s 0 |V‘75
forall0 < s<t<T, all R>0 and all x € R%.
o If furthermore H is another field with the same properties, and associated
constant m, then
L ru aOiOJrl ag
E f J G(JJ + ulv) H(x + UQV) Xr () dusduy
s Js (3.5)
+00 ~
< <J a(u)”du) x(z) mm |t — s|.
0 M
Proof — Set
il 142 2(agk + 1)
= = —_— = pas = 2(agk
q aok + 1’ p1 ao/ﬁl, D2 pas 0 )
and note that = 4+ L + L = 1. Write first
p1 p2 p3
t 2q i
E f G(z + uv)xgr(z) du
S

(ST

< (2 Lt Lm E[‘G(m + u1v) G(z + uav) nR(x)z‘q] édwdm)

N|=

t rr 1
< xF(=) {f f E[|G(m +u1v) 1p(o2r)(7) G(x + u2v) 1 2R) (a:)|q] qdu2du1} )
s S
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and note that, for 0 < us < w1, we have

Glz+wv)€G w-—uw , and G(r+uzv)and H(z +u2v) €G wy—uy
Ay 1 T Ary (z)
with
ujg—ug Ul —ug —
A(Aw® (@) AT @) = S5,

It follows from Davydov’s inequality (3.4) that we have

E { fG(JH—uV) X (x) du %]gh;“ (J f < u2u1)|v|) m2du2du1)é
< x*(x) (j a(w)* du)é Tyl sl

The proof of inequaltity (3.5) is similar, and left to the reader.

>

Note that the only property of x that we used is that it has support in the ball
B(0,2); any derivative of x also has this property. It follows in particular from this
remark, and a change of variable, that we have

1
2a %+ 2a
ar+1

e 2t 1
E ef (D) @ DYk Fdu <e‘6_2t—e *|(DEx) R
€ 2s

~

1
<|t—sl2

(Dix)"

for all 0 < k < 3, all y € R%, for an implicit constant in the inequality that does not
depend on e.

Proposition 8. Given a fized positive radius R, the family (Ve’R)O<€<1 of localized
rough drivers satisfies the e-uniform moment bounds of Theorem 4, with p = 2, any

€(0,1), a= a()(llio-i-l’ and for ki = 3.

Proof — Starting from the representation
A st( )

R 3—k manque un truc ici ®3
( ) RE JO 1 j x+(u1+u2+u3)aX) ® Dﬂ:+(u1+u2+u3)a+uv} 0%° duydusdus du,

and setting

e o ] o]

we see that
1

i+7
j 3‘r6 R apgr+1
’ o'’t,s (:U)

< |t—$’é’0’3f fR(£U+(U1 +UQ+U3)J)> dujdugdus.
[0,1]?

But since f%(z + (u1 + ug + u3)o) < 1 rea)(a), for all u; € [0,1] and o €
B(0,1), we deduce from Lemma 7 the inequality

kg 1
2aq 2 + 2a(
a0n+1

INAED

1o
< |t = s|2|v[21p(0,r44)(7) o).



ismael
manque un truc ici
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The very same reasoning shows that the following inequalities hold

[ _%0

K+ ——
R agk 0 _
£ ||a2weka) ] < It = sV L g0 pen @) lof,

[ R o %+ﬁ 1 1
ank+1 = — 1
E Vi () ] S [t = s[> V72 1p(0,r4)(2),
_ R ap . ,Lg-‘,-%
ank+ —
e|[wet] | S b sl )
which provide the e-uniform moments bounds of Theorem 4 with p = 2, any
r€(0,1), a = 2, and for ky = 3. >

3.2.2 Convergence of the finite dimensional marginals of the localized drivers

Fix a positive radius R. We know from the results of [13] on rough and stochastic
flows that the formula

t ruy
Zt(;) = f J {‘/OdUQ ® Vodu1 - V:)dul ® ‘/Odug}7

defines almost surely a C”(R?%; L(R?))-valued process. Set
1 0
c:= QJ E[F(uv) ® F(0) — F(0) ® F(uv)] du,
0
and
Zig =2 + (t—s)c.

Then the formula
VI = (VR ()2 Wi + xR 21, (4)) (3.6)

defines almost surely a rough driver of regularity p and (2 + r), for any 2 < p <
2 + 7 < 3. We show in this section that the finite dimensional marginals of V&£
converge to those of VT as e decreases to 0. The introduction of a notation will
happen to somehow simplify our life.

Inspecting the explicit expressions of V& and W%, we see that it is sufficient
to prove the finite dimensional convergence of the process

(vis v 02vis [ (v vis [ Vi@ vews [ (0vivis [ (0vi) (0vi)).
0 0 0 0

with values in
R? x (RN)®? x (R)® x R? x (RT)®? x (R)®? x (RT)®?,

indexed by (t,z) € Ry x R%, as VST and W® are the images of the above process
by some fixed linear maps. To make that point clear, and given 2 = (al, a?, a3) and

B = (b',0%,0%) in @;_, (RHF, set

Ax B = (ale,al ®bl,a3b1,a2b2> € R? x (R)®? x (R)®? x (R)®?;
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remark that if AR e R(@+2d°+d*)* qenotes the tensor product of 2 and B, then A+B
is a linear function of A ®‘B. If one defines the (—Dg’:l(Rd)@—valued time-dependent
fields § and ¢ on R? by

Fu(x) = (F(x 4 tv), Dyon F, chH\,F),
V() 1= (Vi @), DaVio, D2V ).

then we have
t t t
([ wvavio [ vieov. [ 0vavi [ (ova)ov)
- [ i, -,
0
= 62 j SUQ * gul du2du1'
0<us<ui<e 2t

We shall use a well-paved road to prove the above finite dimensional convergence
result, that can roughly be summarized as follows.

(a) Decompose U as the sum of a martingale and small coboundary term, and
use a martingale central limit theorem for dealing with the convergence of
that process.

(b) Use a result of Kurtz and Protter on the joint convergence of pairs

o )

in Skorokhod space, for good martingales, to deal with the convergence of
the whole process (‘BE, S(; GG, * %Z)

Given any positive integer m, any m-point x = (a:l, .. ,mm) e (RH)™ in R?, and
any function H from R? to a finite dimensional vector space, we set

H(x):= (H(z1),...,H(zm)).

We shall see in Appendix, Lemma 16, that the following two statements are equiv-
1
alent. Set €, =n"2.

e The finite dimensional marginals of some family of processes
mi,f TS, * mﬁ )
O<e<1

converge to the corresponding finite dimensional marginals of some limit

process (%.,Qﬂ.).
e The same convergence happens for the sequence

min,fm *mﬁn ))

n=1

We shall thus stick from now on to the study of the latter sequence. We first set
the study of the sequence U in the setting of central limit theorems for sums of
mixing, stationnary, random variables, for which martingale methods are commonly
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used. A positive integer m, and an m-point x = (wl, e ,xm) € (Rd)m, are given.
Set
Ax 1= 2max |z; — zj].
K3

)

Lemma 9. The process UL(x) is centered, has stationary increments and is strongly
mizing, with mizing coefficient 8 such that

Bu) < afulv] = Ax), (3.7)
Ax

when u = ok

Proof — The spatial stationarity of the field §p(x) is inherited from the stationary
character of F, so
L
(F(y +h), Dy 41 F, D§+hF> £ (F(y), DyF, D§F>.

It follows that
t t
! (x) — W (x) = f Fu(x) du £ f Suan(x) du = VL, (x) — B, (%),

so the process U} (x) has stationary time-increments. As we also see on the first
equality that the random variable (U} (x) — Ui (x)) is Glsv,tv]+B(0,0)-Measurable,
bound (3.7) follows from the inequality

5<[slv, t1v] + B(0, Ay) , [sav, tav] + B0, )\x)> > (so — 1) V] — A,

which holds for all s; <t < s9 < tg, with (s2 — ¢1)|v] > Ax.

Define a stationary sequence of fields setting

k+1
X, = Fu du.
k

We shall analyse the asymptotic behaviour of (Qﬁ”, Sé DUFEEY Q]fﬁ) (x) by first writing

it in terms of the Xj, in the next lemma, and then by using a ”"martingale plus
remainder” decomposition — see Lemma 11. This will then put us in a position to
use a well-known result of Kurtz and Protter about the convergence in law of pairs
of the form (M., S. MdM), for good martingales M.

Lemma 10. Given any time t € [0,T], any positive integer m, and any m-point X,

we have
< " 1 [n%—l 1 [nt]—lZ
v [ wgewe ) oo - (2 X x e % | ()
0 ) " k=0 j=o

| <0, ([ E[S s * Fua dU2du1> (%) + R (x)
O<uz<ui<l

with a remainder R} (x) that converges to 0 almost surely.

So Slutsky’s theorem brings back the study of the finite dimensional convergence
of the process in the left hand side of the above equality to the study of the finite
dimensional convergence of the first term in the right hand side.
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Proof — Let first pick an R bigger than all the |z;|, and note that 0§ = poft =
(VE’R,DV@R,DZVE’R>, and §2 0, «V¢ du = §8 V505" du, on B(0, R). As it
follows from the tightness result stated in theorem 8 that there is almost surely

an exponent b < % such that the processes ol — U< have finite b-Holder norm
uniformly in €, and since

Wen (x) — — Z Xk(x (%;ﬁ (x) — mfgt] (X))

the first component of R, (x) converges indeed to 0 almost surely. To analyse
its second component, write

1

t
J W # B () = f S Gy duindiny
0 N Jo<us<ur <nt

1

= n J{10<u2<U1<[Nt] + 10<u1<[nt]1[u1]<u2<u1

+ 1[nt]<u1<nt10<u2<[u1] + 1[nt]<u1<nt1[u1]<u2<u1 } gu1 * Suz du2dul-

e The first term is equal to
nt]—1 f—

1
DR
P i, n

e Writing the second term as
1 [nt]—1
_ Z <J ‘S:ul * 8:112 (X) dquu1> )
2o \Jksuosui<k+l

it appears as the ergodic sum of the stationary mixing sequence given by
the integral term. The ergodic theorem gives its asymptotic behaviour.

[nt]—1k—1
=0

tZ ;ank*aeﬁo(i).

3\'—'
e

e The third term decouples and writes
nt 1 [nt] 1 1
( L du> . (n 0 sudu> (x) = O(=) (tE[§1] + 0u(1)) = O(5) 0u(D),

by Lemma 9 and the ergodic theorem.

e The fourth term is almost surely of order %
>

To set the scene of Gordin’s martingale decomposition fof stationary sequences,
define

Fi(x) i= U(f{j(x),j < k:)

and .
Hk(X) = [karJ(X)‘fk] = f E[SU(X)‘J_"}C] du.
>0 k
The fact that the sequence ( )) k> 18 stationary and mixing, with mixing coef-

ficient B(k), ensures that 6 (x) € L?, so it is in particular almost surely finite. Note
the relation

k(%) = 06(%) = O (%) + (B (x) — E[Bs1 (%) Fr]).
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Denote by (Emk(x)) the L2-martingale with increments 6 1(x) — E[0k+1<x>‘fk];

k=0
SO
Q0
My (x) Z X5(x) + 01 (%) — o (x) = f {E[Eu()| 7]~ E[5u(x)|Fo] } du
0
We define a pure jump cadlag martingale by the formula
1
M () = =My (x);

it satisfies the relation
J oy, * N, =

with an It6 integral used in the left

Lemma 11. We have

[nt]—

[ntlfl k ¢
2 o X R e o = (o [ o e ) 6
k=0 ;=0 0

+ <o,t f E[Fus * Fus (%)] dugdm) + Ry,
[1,00)%[0,1]

for a remainder E? that converges in probability to 0.

Proof — (1) We start giving a uniform bound on 6 (x). Define for that purpose an
exponent g by the relation x + a”“ % =1, and let Q € L? n Fi(x) have unit
L%-norm. We have the k- umform bound

‘E Q63 (x ‘<Lw‘E[QSu(x)]‘du

0 K
< —(k+1 d
NL a(|u (k + )|v||> u
Sa 1,

a

so 0i(x) have a finite L3a0'€+1—norm uniformly bounded as k varies.
(2) o The case of

1 [nt]—1 1 1
- X (x) = M} (x) = —=(00(%) = Opniy (x)) + —=Mo(x).
Jn sz; t \/ﬁ( [nt] ) vn

is trivially dealt with using the above k-uniform boundon 6y (x).
e For the second component, start with the decomposition

1 [nt]-1 & 1 [nt]—1
o Z X * X(x) — - 2 (M1 — M) * My (x)
k=1 j=0 k=0
1 [nt]—1 1 nt]—
== Xp* (M, — Ok + 6o — — Z (Xk + Op 1 — Ok) * My(x)
[y Ly
[nt]—1 nt]— [nt]—1
1 1 1
=== ) Xprb(x)— - Z (O = 0) « M) + (= D) Xe) * (60— Mo)(x)
" =0 " =0 "oz
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Since the centered sequence (%k(x)) is stationary and mixing,the last term

k=0
above converges to 0, by the ergodic theorem. The sequence ((f{k * 0k)(x)) k>0

is also stationary and ergodic, so f% Z][;Z](;l X * 0 (x) converges almost surely

to —E[.’{o *HO(X)]. To analyse the second term in the right hand side of equation
(3.8), write it as

n

S|

[nt]—1 k-1 1
D0 20 Grar = Ok) x (Myr = M) (%) + Oy — 00) * Mo ().
k=0 j=0

The second term converges to zero in probability, by point (1). Remark that

1 [nt]—1 k—1 1 [nt]—2
,E Z Z (9k+1 — Gk) * (mthrl — m])(x) = E Z 0j+1 * (ijrl - gﬁj) (X)
k=0 ;=0 =0
1 [nt]—2
—Opi)—1* | = Z M1 — M | (%).
" ko

Here again, thanks to the ergodic theorem the second term in the right hand
side converges to zero in probability. Furthermore, by construction, the sequence
(0541 * (M1 — mtj)(x))j>0 is stationary and ergodic, so the first term of the
right hand side converges almost surely to E[6; x (01 — Mp)(x)]. All these
elementary remarks together prove that

[nt]—1
D1 (Migr — M) * My(x)
k=0

S|

[nt]-1 K
DD X X(x) -
k=1 35=0

SEES

converges in probability to
—E[%o * Go(x)] + E[91 * (f)inl — gﬁo)(x)]

(3) In order to prove the lemma, it remains to find a good expression for the
limit. For all j > 1, we have

%j*%o(x) — (Dﬁj-ﬁ-l —mj) * (E)ﬁl —gﬁo) = %j* (90_91) (X) + (0] _gj-‘rl) * (gﬁl _SUIO) (X)a
with
E[(smjﬂ = My) = (M — 9370)] =0,

since M(x) is an (Fj(x)),. -martingale. One can then use the fact that

k=0

E[.’{j * (00 — 91)(x)] = E[.’{jM * (Gg — 9g+1)(x)]
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for all j,£ = 1, to see that

i E|%; « Xo(x) | - i E|%; « Xo(x) | — E[ (M0 — 9m;) = (901 = 0%o) |

Jj=1

I
D= T

E[:fj * (90 — 91)(X) + (tgj — 9j+1) * (ml — 9)?0) (X)]

<.
Il
—

E[fﬁf*(eij-9N7j+ﬁ(X)*'(37—'3H4)*(9n1“ﬁmﬂ(xX

<
Il
—

I
"MZ

— —E[2n * 0 ()] + E[01 5 (0 — ) ()| + RY
= —E[i‘o * HO(X)] + E[91 * (M — mo)(x)] +RY,

where
RN .= E[%N x o — O gy * (M — zmo)(x)]

converges to zero as IN goes to infinity, thanks to the mixing properties of X
and 4. It follows that

[nt]-1 Kk

DD R Xj(x) -
k=1 j=0

converges in probability to

i E[%; * Xo(x)] = i LjH fol E[qu1 *fu2(x)] dusdu

j=1

-1
Z (DMjoq1 — M) * My (x)
k

S|
SR

[nt]

o

o rl
= f J E[]—"u1 * Fug (x)] duadu .
1 Jo
>

We are now ready to prove the finite dimensional convergence of the sequence
of processes (‘Z]ﬁ”, Sa B * %Z") to the process (%., Sa U gy * %u>, where U is a

Brownian motion on the space (Rd @ (RH®? @ (Rd)®3)m, with covariance C(x)

given, for all A, i (Rd @ RH®2 @ (Rd)®3)m, by the formula

(CooN = ) E[ (o) - ) (2(x) - 1) |

kezZ

S G CRERNER ) P
_ L E[ (B0 X) (3:(x) - 1) | du.

(We used the time-stationarity of § in the last line.) We shall use for our purposes
a useful result proved by Kurtz and Protter in [20], that says that if (M"™),>; is a

sequence of vector-valued martingales, with E[Mln] = 0 forall n > 0, and if (Mt”)n>0

is bounded in L? for each time t € [0, 7], then the convergence in law of M? to M,
in Skorokhod space implies the convergence in law of the pair (Mf’, S(; M- de])
to (M., S(; M, dMu), in the Skorokhod space — the integrals are understood as [t6
integrals.



21

Indeed, since Lemma 9 ensures that we can use for the sequence of processes
ﬁxgﬂ X3 well-known invariance principles, Lemma 11 shows that the process

MY (x) converges to the process Y, in Skorokhod space. As moreover the sequence

2a(
(Hk (X))kzo is bounded in L3%0%+1 and x < % — %, that sequence is also bounded in

L2. So we have

1 1
)| | + - E[160]?] + - E[|05¢]?]

which implis that the random variables M7 are uniformly bounded in L2, for all
t € [0,T] and n > 1. This fact finally puts us in a position to use the above
mentioned result of Kurtz and Protter.

Putting all pieces together, we have proved that the finite dimensional laws of the
family of processes

(260 [ 05 037

converge weakly to the finite dimensional laws of the process

(%.(x), Jo. Vg * V(%) + Ob(X))7

where

b(x) := JOI LUI E[gul * Sus (X)] dugduy + LOO fol E[Su1 * Sus (x)] dusduy

0
- f E[gu *go(x)] du = f E[gu *go] du =: b
0 0
is independent of x, by stationarity of §. Explicitly, one can write
b =b(x) = (b',b% b3 b* - bl b% b3 b*),

m times

with

bl = JOO E[(DWF) F(O)] du, b= JOO E[F(uv) ® F(O)] du

OoO OOO
b3 = L E[(ngF) F(O)]du, b4:—J0 E[DWFDOF] du.

Write V for the first component of 9. If one recalls now that V&% is obtained
from (‘II?R(X), 5o DI ‘Z]ij(x)) by a fixed linear map, it follows that the finite

dimensional laws of V& converge to the finite dimensional laws of the rough driver

VE@) = (Vi) 0 { [ D2V o) = 5 (DVi Vil + (0 =31

S

@) | [ Vi) Vi) = JV0al0) @ Vi) + = 912} ) ).
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In its Stratonovich form, and with the notations introduced before theorem 77, this
gives

V@ = (@) @I @) + (¢ 5) (6 - 10(0.0)}

{20 + (- 9)(6° - C0.0) Vi) ).

where 01C(0,0) = 0:C(z,y)|g=y—0- Since

b! —0,C(0,0) = ;foo E[(DwF)F(0) — (DoF)F(uv)] du = b,
0
and
b2 — C(0,0) — % L E[F(uv) ® F(0) — DoF ® F(uv)] du = c,

we finally see that

VE = VE
This fact finishes the proof of the convergence of the finite dimensional laws of V&£
to those of V1.

End of proof of Theorem 6

The results of sections 3.2.1 and 3.2.2 together put us in a position to use Theorem
4 and show that the family of rough drivers V&, with regularity indices p and (2+r),
converges as a (p’,2+7')-rough driver to the rough driver VF with regularity indices
p and (2 +7’), introduced in (3.6). One finally uses the following elementary fact
to remove the localisation.

Proposition 12. Assume that the quantities
E[ sup  sup |¢E’R(x)|]
0<s<t<T zeK

are uniformly bounded above by a constant independent of R, for each compact subset
K of R%. Then, the restriction (,0|EK of ¢ to K converges in law in C(Dr x K) to

the restriction @i of ¢ to K.

Proof — Given a compact subset K of R, set

M := E[ sup  sup ’¢€’R(x)‘] < 0.

0<s<t<T zeK

Given any closed set F' of C(Ar x K), we have
P(vic e F) <P(¢il € F) +P((K) 0 BO,R)° # @)
<P(gfil e F) + P(¢°R(K) ~ BO, R # ),
with
lim sup P<<p|€}f e F) < P((pﬁ( e F>

by the convergence assumption on the rough driver V&£ and the continuity of
the It6 map, while the second term can be bounded above by %. The conclusion
follows by letting R tend to co.

>
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A Compactness results for rough drivers

We prove in this section a Lamperti-type compactness criterion for random rough
drivers that implis Theorem 4 in a straightforward way. We shall use for that purpose
an elementary result on Besov spaces which we recall first.

Given f € L®(R%,R%) and ¢ in the unit ball of R%, we define inductively a sequence
A" of operators on L*(R? R?) setting

(Ao f)() = f(- +0) = f(z) and ATTLf = A, (AT f).

Given positive parameters a, b < 00, and two exponents 0 < a < m, the Besov space
B2 (RY) =: BY is defined as

do b

—ba m p(b

A N — 0
N |U| H o fHL (Rd) |O'|d> <+

feLPRY : flsg, = [ Flioe + (JB@)

)

Two different choices of constants m(> «) define the same space, with equivalent
norms; so we do not keep track of that parameter in the notation for the space.
These spaces provide refinements of the Holder spaces, in so far as By ,, = C%,
for non-integer a’s. The most useful property of this scale of spaces will be for us
Besov’s embedding properties, according to which, if one is given 1 < p; < pg < @

1 1
and o > 0, then B;x:]i(p ' "7 is continuously embedded into By, .. The following
elementary continuity result was also used above.

Proposition 13. Let 0 < a1 < ag the multiplication is a continuous bilinear operator
from C x C% to C*'.

From a probabilistic point of view, the interest of working with Besov spaces comes
from the fact that it is usually hard to get estimates on the expectation of some
supremum, while making computions on integral quantities is usually much easier,
as the proof of the next proposition will make it clear. We use in this statement the
notations

vy (do) = M—((2+r)a+d) do, v (do) i= M—((r+1)a+d) do,

for two measures on the unit ball B(0, 1) of R?, absolutely continuous with respect to
Lebesgue measure do, and for a range of parameters (a, r) specified in the statement.
Recall Dy stands for the 2-dimensional simplex {(s,t) € [0,T]*; s < t}.

Proposition 14. Assume we are given a family (V}S, Wts) of random vector

0<s<t<T
fields on R%, with V almost surely additive as a function of time, of class C2, and
with W satisfying almost surely the identity

1
Wts = Wtu + Wus + §[Vus> Vtu]7 (Al)
for every 0 < s <t <T. Let a,p and r be positive parameters, with a = 1 and

1 d
= —_ = a
p 2a


ismael
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Assume that there exists two non-negative functions C§ € L*(R?) and C}V e L*(RY)
such that we have

Vis(y)

1
£ — s>

Wt,s (y)

2
t— sl

<Cl(y), and
L2a

<Y (y) (A.2)

La

for all (y,(s,t)) € R* x Dy. Assume also that there exists an integer ky > 3, and
two functions

oV e L“((B(O, 1), uv);La(Rd)>,
and

Cf e Lo ((B(0,1), pw); L(RY)),
such that we have
ARV ()

1
|t = s[>

AR Wes(y)
2
t—sl? L.

for all (0,vy, (s,t)) € B(0,1) x R* x Dy. Then, for any (p',2 + ') with p’ < 2 + v/
and

<C{(o;y), and
LQa

<Cl(o:y), (A3)

, d 1 1 1 1
r<r—-—, and < - = —,
a 3 9 p 2a
there exists a modification \Y% of V := (V, %V2 + W) that is almost surely a rough
driver with regularity indices p’ and (2 + '), for which

E[IVIE 20 ] S IC 1+ 1C3" + [CF ]+ C1),

with each norm taken in its natural space.

We shall set in the proof
D, = {rg =k27"T;k = 0...2”},

for any n > 1, and talk about an element in one of the sets D,, as a dyadic times.
Let insist here on the convention that L® stands for the integrability class of random
variables, whereas we shall always write L(R?) for integrable functions on RY.

Proof — We first show that V has a modification that is almost surely Z%—Hélder,
with values in C2+T—§(Rd, RY). This is done in an elementary way using Besov
embedding theorem to write

2a 2a
Brt2

1
2a d]?a < E[H‘/ts|

02+1”7 a

E| IV

2 2a
" = a do
< E[HVtsH%a(Rd)] ’ +E <JB(0 1 HA(’? Vts“La(Rd) ‘O.‘(2+r)a+d>

1 L é
< ( fRdE[ms(y)r ik dy> +( Ld JB(OJ)E[\AUle(y)! ] ’J|(2+r)a+ddy>

1

g |t - 5| p’

with a multiplicative constant in the inequality proportional to ||C(‘)/ H + HC’Y H
The result for V follows then from the usual Kolmogorov regularity theorem,

d ~
here for a process with values in C2+’"_E(Rd, RY); write V for its modification
1
with values in C¥ (Dr; C2+T—%(Rd, R%)).
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Note, for s < u < t, the elementary inequality

usy Viu d ~ tu| p14r—4 US|l ,24r— 4 + u,s
Vs Vi < |DViul e a Vasl v a + 1DV,

c1+7‘—E

Vi

d

|c1+r—% |CQ+7‘—E

) (A.4)

)

"‘/’,

1 1
St —ul# |u—s|”

~ ~ 1
where V| stands for the norm V as an element of C7 (DT;62+T_%(Rd, R%)),
and is in L® — Proposition 13 is used to justify the first inequality.

Given two dyadic times s < ¢, with s = k427" and ¢ = k;27"0, the interval [s, t)
can uniquely be written as a finite disjoint union of intervals [u,v) with ends in
D, for n = ng + 1, and where no three intervals have the same length. Write
§=8)<8 <- <S8y <SN41 =t, for the induced partition of [s,t), and note
that

[

N 1
Z (3n+1 - Sn) P (Sn - 50)?
n=0

for an absolute positive constant ¢. Using repeatedly the decomposition

~)

2
Sclt—s|v, (A.5)

1
WSTLSO = W8n8n71 + Wsnflso + 5 [VSn7180 ? ‘/:9n5n71j|7
together with estimate (A.4) and (A.5), we see that

~ 2
[Wesl grarg < (IV]+22) = 5],

Cl+r/—

where ( )
9 n 1+27a 2n—1

M::;() (n+ 1) kZ-oHW

is an integrale random variable, so is almost surely finite, as a consequence of
Besov embedding and assumptions (A.2) and (A.3) on the vector field W. An
obvious extension procedure, such as classically done in the proof of Kolmogorov
regularity theorem, finishes the proof of the statement. >

d
C1+r75

Theorem 15 (Kolmogorov-Lamperti-type tightness criterion for rough drivers). Let
(VE, WE) be a family of vector fields satisfying the assumptions of theorem 14, with

t

+Wﬁ€

wle |+

uniformly bounded above as € ranges in (0,1]. Then, for every positive p’,r" with
p <247, and

) d 1 1 1 1
r<r—-—, and < =< ===,
a 3 p p 2a
the family Ve is tight in the space of rough drivers with reqularity indices p' and
(2+1r").

Proof — The proof is elementary and consists in using first theorem 14 with p” > p/
and r” > r’ satisfying the conditions, and seeing that the quantities
E (19155 200
are bounded uniformly in 0 < ¢ < 1. So the probability that Ve is outside a

fixed ball in the space of (p”, 2+ r")-rough drivers can be made arbitrarily small
by choosing a large enough radius for that ball. The claim follows from the



26

fact that such a ball is compact in the space of (p/,2 + r’)-rough drivers, by a
standard Ascoli-Arzela-type argument.
>

Note that one can find in [13] other regularization and compactness results for
rough drivers — Theorem 28. The present Lamperti-type compactness criterion hap-
pens to be particularly easy to use in our study of stochastic turbulence, in section
3.

B An elementary lemma

We state and prove here the following elementary lemma that was used in section
3.2.2 to bring back the study of the convergence problem for a continuous family of
processes to the convergence problem for a sequence of processes. We adopt here
the notations of that section.

Lemma 16. If the finite dimensional laws of the sequence of processes
(e, | w3+ w3 ) )

converge to some limit process then the finite dimensional laws of the continuous

family
(o, | o+ 05 0,

indexed by 0 < € < 1, also converge to the same limit.

Proof — We use for the first component the same argument as in the proof of propo-
sition 10, and use the fact that there is almost surely an exponent b < 1 such
that the processes U have finite b-Holder norm, uniformly in €. So, taking
n= [6_2], we have the almost surely estimate

e 2t
<€f 3. ()| + e—n%f 3 (x
nt

< V5 (x) 6n2 - 1)% (x)

05 (x) -

x)| +

€
tne2

< tB(|1 —ne?|’ + |en% —-1]) < (e* + ).

The proof for the second component is similar. Write

U 05, *Us,(x J b7 *Q]u (x)

<la—emm [ g, v
0

+ +en

—2
€ J f Ty * Fuy (%) dugduy

f Fudu) f Fudu)

Again, by Theorem 8 and by the definition of n, the first term of the right hand

side is bounded by an almost surely finite constant multiple of €2. Since, §, is

almost surely bounded, the second term of the right hand side is of order €2.
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2
Since €2n S;tt Fu(x) du is almost surely bounded by a constant independent of ¢,
we eventually have the estimate

t t 1 nt
U SZ];U*‘ZIZ(X)—J ’BZZ*Q]Z"(X)‘ g62+‘f Fu(x) du
0 0 n Jo

The conclusion follows from the fact that §e(x) is centered, stationary and
mixing, from which the ergodic theorem implies that % Sgt Su(x) du tends to 0.

>
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