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Make sense of the deterministic controlled ordinary differential equation
[ .
dx = ) Vi(x)dhj,
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driven by a control h of low regularity, say a-Hélder with 0 < @ < 1, and get a solution x
that is a continuous function of the control h, unlike e.g. in 1t6’ stochastic integration
theory where x is only a measurable function of the (semimartingale) control.

One expects the path x to be a-Hélder, and V/(x) as well.

A problem of analysis about products — The product V(x)dh |« - (a—1), is
well-defined as a continuous function of V(x) and dh iffa 4+ (¢ — 1) > 0, i.e. a > %
What can be done for @ < ?

» Lyons’ no go theorem — Given a < % there exists no continuous functional
I: C*([0,1],R) x C%([0,1],R) — R, such that if x, y are trigonometric polynomials, then

I(y.h) = [} yech.

Different approaches — Lyons (98’), Davie (03’), Gubinelli (04’), Friz-Victoir (08’),
Bailleul (12’), Lyons & Yang (15’).



B. Constructing flows

A ‘numerical’ scheme for a time evolution

s RIS RY (0<s<t<T <),

approximate description of the evolution of a system between times s and ¢
Perturbations of the identity map, for s, t close.



B. Constructing flows

A ‘numerical’ scheme for a time evolution

s : R RY, (0<s<t<T<w),

approximate description of the evolution of a system between times s and t.
Perturbations of the identity map, for s, t close.

Self-improving: There is an exponent a > 1 such that

H/lru © Hus _/115”01 <lt-sf (0<s<u<t<T).



B. Constructing flows

A ‘numerical’ scheme for a time evolution

s : R RY, (0<s<t<T<w),

approximate description of the evolution of a system between times s and t.
Perturbations of the identity map, for s, t close.

Self-improving: There is an exponent a > 1 such that

H/lru © Hus _/115”01 <lt-sf (0<s<u<t<T).
A flow ¢ = (sﬁba ‘R Rd)m

pwovus =¢ts, (0<s<su<t<T).



B. Constructing flows

A ‘numerical’ scheme for a time evolution
y[S:RdHRd, (0<s<t<T<w),

approximate description of the evolution of a system between times s and t.
Perturbations of the identity map, for s, t close.

Self-improving: There is an exponent a > 1 such that

H/lru © Hus _Ilts||C1 <lt-sf (0<s<u<t<T).

A flow ¢ = (#’ba ‘R Rd)m

pwovus =¢ts, (0<s<su<t<T).

» Theorem — One can associate to any self-improving numerical scheme a unique
flow ¢ such that

llets — mss o < 1t = I
Moreover
||¢f5 7#”:5”00 < |7Tts|a71,

for any partition niys = {s <S << 8y < t} of any interval [s, t], with

RN
Mg -= Oi:O Hsiy1si-
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C. Rough paths

A generalised notion of control h: [0, T] — R’, in a controlled ordinary differential
equation

4
ax; = Z Vi(xe)dh} =: Vi(x;)dhi.
i=1

» Key elementary remark — For all fe C*(R%,R), 0<s<t<T,

f(xt) = f(xs) + hg(Vif)(xs) + (f f an. dh51) (V;Vif)(xs) + O(It = sI),
with vector fields V; seen as first order differential operators.
Pick 2 < p < 3. A Hélder p-rough path is a function

(Xis = (Xos, X1s))

that plays the role of the collection of expansion coefficients

. t Sq .
rsire ([ [ oblrt) .
s Js 1<)kt

|Xis| < 1t =sI"P. [Xs| < 1t = sIP/P,
e algebraic constraints (relations amongst the coefficients), for all s < u < ¢,

XusXtu = Xis.

_ (i ¢ _ (e ¢ ¢
Xis = <Xls)1gis( €R, Xps = (XIS)1sj,ks[ €R'®R

0<s<t<T’

subject to
e size constraints
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D. Numerical schemes associated to rough differential
equations

Given vector fields V4,..., V, on RY and a rough path X = (X, X), one can construct
explicitly a self improving numerical scheme (s)o<s<¢<7 such that for all x € RY, for all
fe C3(RY,R),

futs(x)) = F(x) + X (Vi) (x) + % KV V) (x) + Of(it - sPP).

Compare with the local expansion property of solutions of controlled ordinary
differential equations

F(xe) = f(xs) + M (Vif)( xs)+(ff i, dhk) VjVif)(xs) + Ot - s°).

The unique flow associated with the numerical scheme p by the above Theorem is the
solution flow to the rough differential equation

dx; = V(x)dX;.
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D. Numerical schemes associated to rough differential
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D. Numerical schemes associated to rough differential
equations — The core of the matter
« Rewrite the expansion property
Fls(x)) = F6) + Xig(Vif)(x) + Hig(V; VieF) (x) + Or{It = s*P).

under the form
fous=:V(Xis)f + Offjt - sI""). Q)

In particular
ps = V(Xis)ld + O(1t - s1").

» One can write
Xis = exp(Mss),

and V(A) is a vector field. Define

Uts i= ev(/\ts)

as the time 1 map of the ordinary differential equation

Vo = V(As) ().
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D. Numerical schemes associated to rough differential
equations — The core of the matter
Then

fous =e"Ns)f

= V(eMs)i + Ot - s")

= V(Xis)f + O(1t - si™")
s0 uis has the expected expansion property (1), and

Htu © Hus=

Xus )ty + O(|U - S|>1)

Xus) V(Xpy)ld + O(” S|>1)

v(
V(Xus)(V(Xtu)Id +0(t - u|>1)) +O(lu - sI”")
V(
V(XusXtu)Id + O(It - s™)
V(Xis)ld + O(It - sI”")
= s + O(lt = sP")

so 1« defines indeed an self-improving numerical scheme
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. From approximate flows to flows

» Definition — A C'-approximate flow on RY is a family (us)o<s<t<7 of C> maps from
RY into itself. depending continuously on s, t in the topology of uniform convergence,
such that

[luts = 1d]| o = 0r-s(1) @)
and there exists positive constants c¢; and a > 1, such that the inequality
llttu © pus = pss]| o1 < €xlt = 82 3)
holds forall0 <s<u<t<T.
An example — Euler’ scheme
uis(x) = x + V(x)(t - s),

with V e C2(R?,RY). <

Given a partition s = {s =Sy <S8y <-+<Sp_1<8= t] of aninterval [s, t] c [0, T],
set ;
Hris -= Hspspq © """ O Hsysp = OEO Hsiyysi-



. From approximate flows to flows

» Definition — A C'-approximate flow on R is a family (us)o<s<t<7 of C> maps from
RY into itself, depending continuously on s, t in the topology of uniform convergence,
such that

[Juts = 1d| o = 01-5(1) )
and there exists positive constants ¢; and a > 1, such that the inequality
”lltu © Hus —llts“cq <clt—sf? (5)

holds forall0 <s<u<t<T.

» Theorem 1 (Constructing flows) — A C'-approximate flow defines a unique flow

¢ = (1) gorey ONRY suCh that the inequality

llets — pss||, < clt - sl (6)

holds for a positive constant c, for all0 < s < t < T sufficiently close, say t — s < §. This
flow satisfies the inequality

H‘/’ts —,U:rm”Do S C12 Tlrsl®", (7)

for any partition nis of any interval [s, t] of mesh |rts| < 6.
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o one can find an s; € & such that e < 5=°
e and for any choice u of such an s;, the partitions of [s, u] and [u, t] induced by

are both e-special.

<1-g¢
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1. From approximate flows to flows — Step 1 of the
proof
» Definition — Lete e (0,1) be given. A partition
n={s=sy <8 < <S5 <=1t

of an interval [s, t] is said to be e-special if it is either trivial or

o onecanfindans; e r such thate < 5=5 <1 ¢,

e and for any choice u of such an s;, the partitions of [s, u] and [u, t] induced by
are both e-special.

A partition of any interval into sub-intervals of equal length is %-speciaI.Set

Me := sup (BaJr(‘I —,B)a)<1,

e<p<i-e

and pick a constant
2¢4

L> 1-m.’

where ¢y is the constant that appears in the definition of a C'-approximate flow, in
equation (5).
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1. From approximate flows to flows — Step 1 of the
proof

» Proposition 2 — Let (us)o<s<i<T be a C'-approximate flow onR?. Given e > 0, there
exists a positive constant § such that forany0 <s<t< T witht-s <6, and any
e-special partition nis of the interval [s, t], we have

[lims — pass|| g < L1t = sl ®)

Proof — We first prove
H,Ums - Nts”co <Ljt-s (9)

The proof of estimate (8) is similar and given later. We proceed by induction on the
number n of sub-intervals of the partition.



1. From approximate flows to flows — Step 1 of the
proof

» Proposition 2 — Let (us)o<s<t<T be a C'-approximate flow onR9. Given € > 0, there
exists a positive constant § such that forany0 <s<t< T witht-s <6, and any
e-special partition nits of the interval [s, t], we have

[lims — pass|| g1 < LIt = sl (®)

Proof — We first prove
“H"'ts *ﬂts”Co <L|t-s. )

(n= 2): This is the C° version of identity (5) defining C'-approximate flows.



1. From approximate flows to flows — Step 1 of the
proof

» Proposition 2 — Let (us)o<s<t<T be a C'-approximate flow onR9. Given e > 0, there
exists a positive constant § such that forany0 <s<t< T witht-s <6, and any
e-special partition nis of the interval [s, t], we have

H/’l”ts 7#1‘5“01 < th - S‘a. (8)

Proof — We first prove
H“ﬂts *ﬂls“Co <L|t-s. )

(n—=n+1):Fix0<s<t< Twitht—s <6, and let 7;s be an e-special partition of
[s. 1], splitting the interval [s, t] into (n + 1) sub-intervals. Let u be one of the points of
the partition such that e < tg <1 —¢, so the two partitions 1, and 7ys are both
e-special, with respective cardinals no greater than n.
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» Proposition 2 — Let (us)o<s<t<T be a C' -approximate flow on R, Given e > 0, there

exists a positive constant § such that forany0 <s<t< T witht-s <6, and any
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» Proposition 2 — Let (us)o<s<t<T be a C' -approximate flow on RY. Given e > 0, there
exists a positive constant § such that forany0 <s<t< T witht-s <6, and any
e-special partition nts of the interval [s, t], we have
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1. From approximate flows to flows — Step 1 of the
proof

» Proposition 2 — Let (us)o<s<t<T be a C' -approximate flow onR?. Given e > 0, there

exists a positive constant § such that forany0 < s<t< T witht-s <6, and any
e-special partition nits of the interval [s, t], we have

s = mtsl| v < Lit = I, ®)

Proof — We first prove
[ltrss — pass]| o < L1t = sl 9)

Then

lltrss = tsl oo < It © b = bt © pims [y + It © pimus = s
< ”.Unm *#tu”m + ”Mu O Mrys — Mtu Ollus”00 + ||/1tu © Hus *llts”oo
< Lt =uP + (14 0s(1))Llu - s + 1]t - s

by the induction hypothesis and (4) — here the fact that the up, are C'-close to the
identity, and (5) — the C° version of the C'-approximate flow property.



1. From approximate flows to flows — Step 1 of the
proof

lltms =t < LIt = ul? + (1 + 05(1))LIu = S + 1]t - s

[m] [ = = = o>



1. From approximate flows to flows — Step 1 of the
proof

lttmss = s, < L1t = ul® + (1 + 05(1))L1u — S + 61t - sI?

Set u—s:=p(t-s), with e < <1 -e. The above inequality rewrites

b = sl = {(1+ 0s(D)((1 = B)7 +B2)L + It~ 52



1. From approximate flows to flows — Step 1 of the
proof

lttmss = s, < L1t = ul® + (1 + 05(1))L1u — S + 61t - sI?

Set u—s:=p(t-s), with e < <1 -e. The above inequality rewrites
b = sl < {(1 4+ 0s(D)((1 =B + B)L + 1 it - s
In order to close the induction, we need to choose ¢ small enough for the condition
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1. From approximate flows to flows — Step 1 of the
proof

lttms = pass]|.o < L1t = ul? + (1 + 05(1))LIu - s + c]t - sf?
Set u—s:=p(t-s), with e < <1 -e. The above inequality rewrites
letrs - s, < {(1 +05(1))((1 = B2 + )L+ ¢4 } It— s,
In order to close the induction, we need to choose ¢ small enough for the condition
o +(1+0s(1))meL <L (10)

to hold; this can be done since m, < 1.

One needs to control the derivative of uy.,, — uss to prove (8). One uses the full definition
of a C'-approximate flow for that purpose, and not only its C° version; see later. <
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1. From approximate flows to flows — An elementary
identity

Existence and uniqueness both rely on the elementary identity

fyo--off —gno--og

=

(11)
= (QNO"‘OQN—/‘+1 ofn-i = gno o gN-j+1© gN-f)OfN-/-1 o---off,
i

with g; and f; any maps from R? into itself. In particular, if all the maps gy o --- o g are
Lipschitz continuous, with a common upper bound L for their Lipschitz constants, then

N
Ifvo-ofi—gne-ogil, <L) lfi- gille. (12)
i=1
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Existence. Set D, :={0<s<t<T;t-s<5|andDs = D; N {dyadic numbers}. Given
s=a2% and t = b27% in Dy, define for n > ky

/l(n)Z:,u o---0U
ts SN(n)SN(n)-1 S1S0°

where s; = s 4 i27" and sy, = t. Given n > ko, write

N(n)-1
(n+1) _
His = iQO (ﬂs,-+1s,-+2*”*1 oﬂs;+2*"*‘s,')

and use the elementary identity (11) with
fi= Hs, ysi42-n-1 O Hgio-n-1g  Ji = Hsj qs;
and the fact that the compositions of the g-maps

o]

HsninySnny-1 © 7" © HSN(n)-i1SN(n)-i

are Lipschitz continuous with a common Lipschitz constant L, to get
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proof

(n+1)
His

N(n)-1

'uts <L

||ﬂ5:+181+2 n-1 9 Hg, 4 o-n-1g; —ﬂs,'+1s,||m <cLT2
i=0

—(a—1)n'

o>
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1. From approximate flows to flows — Step 2 of the
proof

(n+1) (n)
ts “His |,

N(n)-1
~(a-1
H/‘ <L Z ||'“s,+1s,'+2’”" O Hgjqo-n-1g *#5/415/”00 <cLr27@n
i=0

So
(1" = ) € C(5, CY(RY, RY))
converges uniformly on D;s to some continuous function ¢ — u. One has
||<Pts —Hts”D0 <clt-s?

as a consequence of estimate (8) for uy,, in Proposition 2.

As ¢ is a uniformly continuous function of (s, t) € Dj, it has a unique continuous
extension to Dy, still denoted by ¢.



1. From approximate flows to flows — Step 2 of the
proof

N(n)-1
(n+1) _ () E -(a-1)n
s T Hs | S L ||'“s,+1$,'+2*”*1 O Hs;po-n-1g; 7#S/+1Sl‘||oo <cLr27@n

o

So
(1™ =) € C(Ds, CY(RY,RY))

converges uniformly on D;s to some continuous function ¢ — u. One has
||<Pts _l—lts”oo <cl|t-s/?

as a consequence of estimate (8) for uy,, in Proposition 2.

As ¢ is a uniformly continuous function of (s, t) € Dj, it has a unique continuous
extension to Dy, still denoted by ¢. To see that it defines a flow on Dy, notice that for
dyadic times s < u < t, we have

WD =i 02

for n big enough



1. From approximate flows to flows — Step 2 of the
proof

N(n)-1
(n+1) _ () E -(a-1)n
s T Hs | S L ||lls,+1s,'+2*”*1 O Hs;po-n-1g; 7#S/+1Sl‘||oo <cLT27(@ N,

o

So
(1™ =) € C(Ds, CY(RY,RY))

converges uniformly on D;s to some continuous function ¢ — u. One has
||‘Pts _Hts”o(, <cl|t-s/?

as a consequence of estimate (8) for uy,, in Proposition 2.

As ¢ is a uniformly continuous function of (s, t) € Dj, it has a unique continuous
extension to Dy, still denoted by ¢. To see that it defines a flow on Dy, notice that for
dyadic times s < u < t, we have

W = 2 o 2,
for n big enough; so, since the maps wgg) are uniformly Lipschitz continuous, we have

Pts = Ptu © Pus

for triples of times in D5



1. From approximate flows to flows — Step 2 of the
proof

N(n)-1
(n+1) _ () E -(a-1)n
s T Hs | S L ||lls,+1s,'+2*”*1 O Hs;po-n-1g; 7“5/+15i”m <cLT27(@ N,
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So
(1™ =) € C(Ds, CY(RY,RY))

converges uniformly on D;s to some continuous function ¢ — u. One has
||‘Pts _Hts”o(, <cl|t-s/?

as a consequence of estimate (8) for uy,, in Proposition 2.

As ¢ is a uniformly continuous function of (s, t) € Dj, it has a unique continuous
extension to Dy, still denoted by ¢. To see that it defines a flow on Dy, notice that for
dyadic times s < u < t, we have

W = 2 o 2,
for n big enough; so, since the maps wgg) are uniformly Lipschitz continuous, we have

Pts = Ptu © Pus

for triples of times in Ds, hence for all times since ¢ is continuous.
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(n+1) (n)
ts ~His

N(n)-1
~(a-1
H/‘ LS L Z ||/‘s,+1sf+2*”" O Hs;po-n-1g; */‘S/HS/'”OO <gLT2r @,
i=0

So
(1" = ) € C(5, CY(RY, RY))
converges uniformly on D;s to some continuous function ¢ — u. One has
||¢ts _HISHO0 <cl|t-s/?

as a consequence of estimate (8) for uy,, in Proposition 2.

As ¢ is a uniformly continuous function of (s, t) € Dj, it has a unique continuous
extension to Dy, still denoted by ¢. To see that it defines a flow on Dy, notice that for
dyadic times s < u < t, we have

=D oul2,

for n big enough; so, since the maps wgg) are uniformly Lipschitz continuous, we have

Pts = Ptu © Pus

for triples of times in Dy, hence for all times since ¢ is continuous. The map ¢ is easily
extended as a flow to the whole of {0 < s <t < T}.
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Uniqueness. Let ¢ be any flow such that
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1. From approximate flows to flows — Step 2 of the
proof
Uniqueness. Let ¢ be any flow such that
[[wts = mssl, < clt = sl

Rewrite
Wts = s + Oc(It - s1?).

Then
Yts= Ysynsn_y © O Wsisy = (;152,752”_1 + Oc(2‘a”)) oo (#51 ot Oc(2‘a”))
= Hspnsyn_g © 7 O Msysy T Ap = ﬂg’) +An,
where Aj is of the form of the right hand side of the elementary identity (11), so
lAflle < L27278" = 0p(1)

since all the maps

Msynson_q © 70 © ﬂSQn_[+1 Son_p

are L-Lipschitz continuous. Sending n to infinity shows that ¢/ts = ¢s.
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Recall the local expansion property of solutions of controlled ordinary differential
equations

dx; = Vi(xt)dhi.

Recall we see vector fields as first order differential operators, so V; Vj is a second
order differential operator e.g., with

V; Vi = (DPf)(V; Vi) + (DF)(DVi(V)))-
One has

£(x) = f(xs) + (f ot ) (Vi) (x5) (ff o ah ) ViVi)(x6) + (-+-)

+(f dhgﬂn...dh;)(v,n... Vi, f)(xs) + O(It = sI"*")
S§<8§y<-<sp<t
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Rough paths

Recall the local expansion property of solutions of controlled ordinary differential
equations

dx; = Vi(xt)dhi.

Recall we see vector fields as first order differential operators, so V; Vj is a second
order differential operator e.g., with

V; Vi = (DPf)(V; Vi) + (DF)(DVi(V)))-
One has

£(x) = f(xs) + (f bl ) (Vi) (x5) (ff o ah ) ViVi)(x6) + (-+-)

(], .. obl ) (Vi Vi 1))+ Oft - s7*)
8<§y<--<sp<t

Rough paths are placeholders for the family of coefficients

His :=

t t sy ) )
1(f o) (ff dh’SZdhf;) (f dhgn...dh;) .
s Isist \Js Js 1<jk<t s<sy<-<spst 1<in,....iy <€

that appear in the expansion, when h is not sufficiently regular for making sense of the
iterated integrals, e.g. his only a-Holder with @ < 1/2. Like the function H, they take
values in an algebraic structure that gives much insight on them.
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2.1 An algebraic prelude

Collections of real valued coefficients (&’ )i<iy....in<¢, @re better seen here as

elements of the tensor space (R¢)®". One can see any element of R’ as a linear map
on the dual space (R’)’. Given u, v € RY, one has

(uev)(V'):=Vv'(v)u,
for any v/ € (RY)’. So (Rf)®2 = L((R”)’,R"). Given u, v, w € R’, one has
(uevew)(w):=ww)uev,

for any w’ € (RY)’. Let (e;,.. ., ) stand for the canonical basis of R¢. The family
(e ®-- @) _, defines the canonical basis of (R/)°<. An element a < (R)*" is

[T~ Al
identified with the collection of its coordinates (&)<, i<, in the canonical basis.
N
. 0 N N .
For N e NU {oo}, set TN := @(R’)W, with (R5)® :=R. Fora= eaoa’ andb = eaob’ in
r=0 r= r=
TN
¢ N
atb:= o (a +b),

r=0

.
N ,
ab:= & ¢, with ¢’ =) aeb ™ e®)”
r=0 k=0

The space T[’" is called the (truncated) tensor algebra over R’ (if N is finite).
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2.1 An algebraic prelude

Think of

t t s ) )
i k n !
[1(f dh’51)1<i<[,(ff dh’SZth1) _ (f dh;n...dh;1) ]
s sis s Js 1<)kt s<sy<-<sp<t 1 <ipyeoniy <C

as a typical element of TV :={a e TN, 2% = 1. Define the dilation
14 14
1(a) = (1,44',....aNa"),

forall2eRandae T[N". We define a norm

N 1/m
[CTEEI EL e
m=1

that is homogeneous with respect to the dilation

[6.(@)|| = 111l
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2.1 An algebraic prelude

Elements of T""! are invertible, with

a'= 2(1 -a)",

n>0

with 1 :=(1,0,0,...). The exponential map exp : TgN‘O - T[NJ, and the logarithm map
TN — TNO, are defined by

sp@= Y 2 gw)= Y Ve

0<n<N+1 1<n<N+1

they are inverse from one another. They are polynomial diffeomorphisms if N < co.
The formula [a, b] := ab - ba, defines a Lie bracket on TN.

» Definition — The Lie algebra
N._ [;: . . . . . 14 N N.0
g, = {llnear combinations of at most N iterated brackets of elements of R® C T, } « T[

is called the N-step free nilpotent Lie algebra. The subset G}V ‘= exp (gév) of T{,N’1 is

a group for the multiplication operation. It is called the N-step nilpotent Lie group on
RE. This is a manifold with tangent space a g;" ata.
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Fix s and look at the evolution of

Hts -

f dhg1 ( f f ah, dh’s‘1) ..... ( f dhgﬂn---dhg) ]
1<j,k<t §<§y<-<sp<t 1<in,..iy <€

as a function of ¢.
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2.2 Hoélder p-rough paths

Fix s and look at the evolution of

Hrs -

t . .
1(f (ff ot dh;) ..... (f dh’s”n-~-dh’s‘1)
s 1</<f 1<jk<t $<8y<--<sp<t

as a function of t. One has
dHis = Hisdhy,

where dh; € R c gV. As Hisdh; € Ty, G if His € GN, and Hss = 1 € GV, then
Hise GNforallt> s, andforalls<u<t

Hts = HusHtu’

from the flow property of solutions to ordinary differential equations.

1<ip iy <
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Fix s and look at the evolution of

Hrs -
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Hts = HusHtu’

from the flow property of solutions to ordinary differential equations. We call this
identity Chen’s relation.



2.2 Hoélder p-rough paths

Fix s and look at the evolution of

Hrs -

t . .
1(f (ff ot dh;) ..... (f dh’s”n-~-dh’s‘1)
s 1</<f 1<jk<t $<8y<--<sp<t

as a function of t. One has
dHis = Hisdhy,

where dh; € R c gV. As Hisdh; € Ty, G if His € GN, and Hss = 1 € GV, then
Hise GNforallt> s, andforalls<u<t

Hts = HusHtu’

from the flow property of solutions to ordinary differential equations. We call this
identity Chen’s relation. So one can write

-
His = (Hso) Hio,

1<ip iy <
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Given a T)*'-valued path X set X;s := X5 'X;.

» Definition — Let 1 < p. AHo6lder p-rough path on [0, 7] is a Té,[p]’1 -valued path
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m
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P 0<s<t<T |t — g|

forallm=1...[p]. We define the norm of X to be
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and a distance d(X, Y) := ||[X - Y| on the set of Hélder p-rough path.



2.2 Hoélder p-rough paths

Given a T)*'-valued path X set X;s := X5 'X;.

» Definition — Let 1 < p. AHo6lder p-rough path on [0, 7] is a Té,[p]’1 -valued path
X:te[0.T]—1eX eX2a---oXP, such that

Xe|

m
P

||Xm||,j ‘= sup
P O<s<t<T |t — g

forallm=1...[p]. We define the norm of X to be

— m
Xl := S [x™|I o

and a distance d(X, Y) := || X - Y| on the set of Hélder p-rough path. A Hdélder weak
geometric p-rough path on [0, T] is a GE,”] -valued Hélder p-rough path.



2.2 Hoélder p-rough paths
Given a T[N'1 -valued path X set X;s := X;1X{.

» Definition — Let 1 < p. AHélder p-rough path on [0, T] is a Tt,[p]’1 -valued path
X:te[0.T]—1eX eX2a---oXP, such that

Xm
[X™|m = sup |7ts’m <o
P O<s<t<T |t — g|P

forallm=1...[p]. We define the norm of X to be

— m
Xl := S [x™I o

and a distance d(X, Y) := || X- Y| on the set of Hélder p-rough path. A Hoélder weak
geometric p-rough path on [0, T] is a Gl,p] -valued Hélder p-rough path.

Chen’s relation
th - Xusxtu

holds by definition of the increments.



2.2 Hoélder p-rough paths
Given a T)*'-valued path X set X;s := X3 'X;.

» Definition — Let 1 < p. A Hélder p-rough path on [0, T] is a T"M'-valued path
X:te[0,T]» 10X/ @Xf@---eaxt[p], such that

Xzl

m
P

X7y = sup
P 0<s<t<T |t — g|

forallm=1...[p]. We define the norm of X to be

F— m
X = S X ||%

and a distance d(X, Y) := || X - Y| on the set of Hélder p-rough path. A Hoélder weak
geometric p-rough path on [0, T] is a GL”] -valued Hélder p-rough path.

For 2 < p < 8, Chen’s relation is equivalent to

X = Xoy+ Xiss Xi = Xf + Xis ® Xy, + XGs
Condition on X' means that X, is the increment of the R’-valued path (X})
Condition on X2 analogue of fst fsr = L,'+futfsu+futfu’.

0<r<T"



2.2 Hoélder p-rough paths

Given a T)'-valued path X set Xss := X5 'X;.

» Definition — Let 1 < p. AHélder p-rough path on [0, 7] is a T[[p]’1 -valued path
X:te[0, T~ 10X eX2a---o X", such that

Xm
||Xm||m = sup | ts ’m
P 0<s<t<T |t — 5| P

forallm=1...[p]. We define the norm of X to be

R m
X = max [[x H%

and a distance d(X, Y) := || X - Y| on the set of Hélder p-rough path. A Hdélder weak
geometric p-rough path on [0, T] is a GL”] -valued Hélder p-rough path.

The metric _
d(X.Y) :=|X] - Y|+ d(X.Y)

turns the set of all Hélder p-rough paths into a (non-separable) complete metric space.



3. Flows driven by rough paths

[m] [ = = = o>
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We identify naturally V(z) with a first order differential operator.
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3.1 Differential operators

Given a collection of vector fields Vi,..., V,; € C*(R?,RY) on RY, set for z € R’

l
z) = Zz’\// =: 7'V,
i=1
We identify naturally V(z) with a first order differential operator. We extend the map
Ve L(R, CPT (RI,RY)) to Ty setting V(1) = 1d : C(RY) — C(RY), and for
21 ®---® z € (RO)® defining a k-th order differential operator V(z; ® - - - ® z) setting

V(Z1 ®---®Zk) = V(Z1)O-~-O V(Zk),

and requiring linearity. In those terms, the expansion property of ODE solutions
t
f(x) = 10) + ([ bl J(vino) + ( f f o, ol ) (Vi Vi) xs) + ()
S

+(f c/hg"n..,dhg)(\/,-n... Vi, f)(xs) + O(It = sI")
s<sy<<sp<t

rewrites
f(xe) = (V(His))(xs) + O(jt = sI™*").
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i=

We identify naturally V(z) with a first order differential operator. We extend the map
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3.1 Differential operators

Given a collection of vector fields Vi, ..., V; € C*(R?,RY) on RY, set for z € R
l
V(z):= Zz’\/, = z'v,.
i=

We identify naturally V(z) with a first order differential operator. We extend the map
Ve L(R, CPHT (RI,RY)) to T, setting V(1) = 1d : C(RY) ~ C(RY), and for
71 ®---® z € (RY)®K defining a k-th order differential operator V(z; ® -+ - ® z) setting

V(zi®---®2zk) = V(z1) 0--- 0 V(2),
and requiring linearity. We have the fundamental morphism property
V(a)V(b) = V(ab), abeT>,
so Vis a Lie algebra morphism sending T;°-brackets into brackets of differential
operators
[V(a). V(b)| = V([a.b]).

As brackets of vector fields are vector fields, V( g}\’ ) is made up vector fields.
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3.2 A ‘numerical’ scheme with the local expansion
property

Let Vi...., V, e C*(R9,RY) be smooth vector fields on R?, with bounded 2[p] + 1

derivatives (V; € C[[)’J]+1 suffices). Given a weak geometric p-rough path X, and
0<s<t<T<oo,set
Ats := log Xis € T[!p] c Ty,

and let u;s stand for the well-defined time 1 map associated with the ordinary
differential equation
Yu=V(N\s)(Yu), O0<u<t.

» Proposition — There exists a positive constant ¢, depending only on the V;, such that
the inequality

[ Lot
fous = VX)T||_ < c(1 -+ IXIP) Ifll g 1t — 17 (18)

holds for any f € CPI*' (r).
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(] (o]
Ais = @ AT
m=1

m
<P
m=1

o>



3.2 A ‘numerical’ scheme with the local expansion
property

Proof — Writing

ol ol
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one has
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3.2 A ‘numerical’ scheme with the local expansion
property

Proof — Writing

ol ol
Ais = @/\g c @ T,
m=1 m=1
one has

and

NSl < 12 = 5™,
o

1 [CEERN
> N =X+ Oft-sI 7 ) T;
k=0 '

where « stands for the multiplication in 7;°, while X;s € T[[p] cTz
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property
Proof — Writing

[p] [p]
one has

Ns=EPATeP T
m=1
and

In%

ol < 1t—s™P,
f
Zkl N =Xis + Of1t - s )ET“’

where = stands for the multiplication in 7%, while Xis € T¥! ¢ T.Then

F(y1) = £00) + {V(As) () + f f

V(As)V /\ts

yL,2 ) dupduy




3.2 A ‘numerical’ scheme with the local expansion
property
Proof — Writing

[p] [p]
one has

Ns=EPATeP T
m=1
and

In%

ol s 1t = s,
[p]

Zkl ts—th-i-O(It % )ET“’

where = stands for the multiplication in 7%, while Xis € T¥! ¢ T.Then

4
fy1) = V(As) () +ff v(n2)r)

f(x)

(}’U2 ) duzduy




3.2 A ‘numerical’ scheme with the local expansion
property
Proof — Writing

[p] [p]
one has

Ns=EPATeP T
m=1
and

In%

ol s 1t = s,
[p]

Z Nt =Xis + Ot - s )e T,
where = stands for the multiplication in 7%, while Xis € T¥! ¢ T.Then
f

1) = f) + {V(As) (%) +

S1
V(A2)r) 00 + f f f VNS csclupcls,




3.2 A ‘numerical’ scheme with the local expansion
property

Proof — Writing

[p] [p]
Ns=EPATeEP T
m=1 m=1
one has
Azl < 1t~ sime,
and

1o

1 Bt
> M :X;s+O(|t—s| b )e Ty,
k=0 "

where « stands for the multiplication in T;°, while X;s € T/} ¢ T:°.Then by induction

{ V(A:S([P]-H ))f}(yu[p]+1 )du

Py
fy1) = {V[Z il (/\ts)*k] f} (x) +

k=0 0<Up) 41 =<y



3.2 A ‘numerical’ scheme with the local expansion
property
Proof — Writing

[Pl [Pl
Ns = DAz P T
m=1 m=1
one has
ING] < 12 = s™/P,
and .
P
1 [PI+1
> N =X+ Ot -8 7 ) T
k=0 ""
where « stands for the multiplication in 7;°, while X;s € T}p] c Tz
[p] 1 .
f(y1) =V ;ﬁ (As)’

#([p]+1)
f V(A f al
] }(X) + L‘gu[p]+1§---gu1 { ( ts ) }(yU[p]+1) u

= (V(Xss)F)(x) + o(|t— s|[p]T”)
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3.2 A ‘numerical’ scheme with the local expansion
property

» Corollary — The family (uss)o<s<i<T is @ C'-approximate flow.

Proof — Write 7 : 7;° — T;“/Tf[p], for the canonical projection map. For
0<s<u<t<T,onehas

Mtu © Hus = {V(Xtu)ld} o Hys + du o HMus
= V(Xys) V(Xp)ld + e Xl | ddw gy o



3.2 A ‘numerical’ scheme with the local expansion
property

» Corollary — The family (uss)o<s<t<T is @ C'-approximate flow.

Proof — Write 7 : 7;° — T;“/Tf[p], for the canonical projection map. For
0<s<u<t<T,onehas

Mtu © Hus = {V(X[U)Id} o pys + du o us
= V(Xus) V(Xp)ld + el‘j/s(xt”)ld + o e
= V(Xgs)Id + V(”(Xusxtu))ld VO g



3.2 A ‘numerical’ scheme with the local expansion
property

» Corollary — The family (us)o<s<t<T is @ C'-approximate flow.

Proof —Write 7 : T;° — T2/ T{,[p], for the canonical projection map. For
0<s<u<t<T,onehas

Htu © Hus = {V(X(U)Id] o ptys + €94 o puyg
= V(Xus) V(Xp)Id + el‘l/s(xtu)ld 4 Moy
= V(Xs)ld + V(ﬂ(xusxtu))ld + eb/s(x’“)ld + et oy

= Uts + Eg + V(ﬂ(xusxtu))ld + El‘,/s(Xm)Id + o Hus-
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DHa
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property

» Definition — A flow on RY s said to be a solution flow to the rough differential
equation
dp = V(e)dX;

if there exists a constant a > 1 independent of X and two possibly X-dependent positive
constants 6 and ¢ such that one has

llots — ttsllo < CIt = SI3,

foral0<s<t<Twitht-s<§



3.2 A ‘numerical’ scheme with the local expansion
property

» Definition — A flow on R? is said to be a solution flow to the rough differential
equation
do = V(e)dX;
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3.2 A ‘numerical’ scheme with the local expansion
property

» Definition — A flow on R is said to be a solution flow to the rough differential
equation
dy = V(e)aX;

if there exists a constant a > 1 independent of X and two possibly X-dependent positive
constants 6 and ¢ such that one has

fogrs = V(Xis)f + Oc (It - sI7),
forall0<s<t<Twitht-s<s, andfeCP* (rY).
» Theorem — The rough differential equation
do = V(g)dX;
has a unique solution flow; it takes values in the space of uniformly Lipschitz

continuous homeomorphisms of RY with uniformly Lipschitz continuous inverses, and
depends continuously on X.
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3.3 Solution paths to rough differential equations

» Definition — An R9-valued path z is said to be a solution path to the rough
differential equation
dz = V(z)dX;,

if there exists a constant a > 1 independent of X and two possibly X-dependent positive
constants § and ¢ such that one has

f(2t) = (V(Xis)F)(2s) + Oc (1t - sI9),
forall0<s<t<Twitht-s<s andfe CP* (r9).
» Theorem — The rough differential equation
dz=V(z)dX;, zg=x¢€ Rd,

has a unique solution path. It is a continuous function of X in the uniform norm
topology.
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3.3 Solution paths to rough differential equations
» Proof — Existence. z; := ¢y(x) is a solution path.
Uniqueness. Set o := min(%,a), and let y. be any other solution path. One has

|yy - ¢zs(ys)| <clt-sl“.
Using the fact that the maps s are uniformly Lipschitz continuous, with a Lipschitz
constant bounded above by L say, one can write for any € > 0 and any integer k < {
Yke = sﬂkf.(k-nf(}’(k-ns) + Oc(e”)
= ‘;Dke,(k—1)5(¢(k—1)5,(k—2)e(y(k—2)e) + O,;(e“)) + Oc(e)
= Pke(k-2)e(Vk-2)e) + Oct(€”) + Oc(e),
and see by induction that
Ve = Pker(k-me(Vik-nye) + Oct((n = 1)€”) + Oc(e)
= ¢keo(X) + Ocr(ke®) + 0c(1)
= Zke + Oc(ke™) + 0c(1).

Taking € and k so that ke converges to some t € [0, T], we see that y; = z, since

a>1.
The continuous dependence of the solution path z, with respect to X is transfered from
<

pto z,.



Further reading

Written version of the lectures on my teaching web page

https://perso.univ-rennes1.fr/ismael.bailleul/files/M2Course.pdf



Further reading

Branched rough paths (towards regularity structures)
e Ramification of rough paths. M. Gubinelli, J. Diff. Eq., 248(4):693-721, (2010).
o Geometric versus non-geometric rough paths. M. Hairer and D. Kelly, Ann. Inst.
H. Poincaré Probab. Stat., 51(1):207-251, (2015).

e On the definition of a solution to a rough differential equation. I. Bailleul, to
appear in Ann. Fac. Sci. Toulouse.

Applications to stochastic analysis... so many!
e Tiny sample in Chap. 5 of my lecture notes, and Chap. 9-11 of Friz-Hairer’s book.

* Mean field rough differential equations
- Evolving communities with individual preferences. T. Cass and T. Lyons,
Proc. London Math. Soc., 110(1):83—-107, (2015).
- Solving mean field rough differential equations. I. Bailleul and R. Catellier
and F. Delarue, Elec. J. Probab., 25(21):1-51, (2020).
- Pathwise McKean-Vlasov Theory with Additive Noise. M. Coghi and J.D.
Deuschel and P. Friz and M. Maurelli, arXiv:1812.11773, (2018).



Further reading

Fast-slow systems

Deterministic homogenization for fast-slow systems with chaotic noise. D. Kelly
and I. Melbourne, J. Funct. Anal., 272(10):4063-4102, (2017).

Rough flows and homogenization in stochastic turbulence. I. Bailleul and R.
Catellier, J. Diff. Eq, 263(8):4894-4928, (2017).

Homogenization with fractional random fields. J. Gehringer and X.-M. Li,
arXiv:1911.12600, (2019).

Signature, analysis of streams and machine learning

Uniqueness for the signature of a path of bounded variation and the reduced
path group. B. Hambly and T. Lyons, Ann. Math., 171(1):109-167, (2010).

The Signature of a Rough Path: Uniqueness. H. Boedihardjo and X. Geng and T.
Lyons and D. Yang, Adv. Math., 293:720-737, (2016).

Reconstruction for the signature of a rough path. X. Geng, Proc. London Math.
Soc., 114(3):495-526, (2017).

Rough paths, Signatures and the modelling of functions on streams. T. Lyons,
https://arxiv.org/abs/1405.4537, (2014).

Kernels for sequentially ordered data. F. Kiraly and H. Oberhauser,
arXiv:1601.08169, (2016).

Signature moments to characterize laws of stochastic processes. |. Chevyrev
and H. Oberhauser, arXiv:1810.10971, (2018).
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sup [ X]| < C < oo, (14)
n

which converge pointwise, in the sense that (M Xis converges to some Xis for each
0 < s<t<1. Then the limit object X is a Hélder p-rough path, and (") X converges to X
as a Hélder q-rough path, forany p < q < [p] + 1.

» Proof — e X'is a Holder p-rough path: direct consequence of the uniform bounds (14)
and pointwise convergence:

IX] = tim |0 X| < Cit - 15
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» Theorem — Assume (") X is a sequence of Holder p-rough paths with uniform bounds

sup ||(”)X|| <C<oo, (14)
n

which converge pointwise, in the sense that (" Xis converges to some X;s for each
0 < s < t<1. Then the limit object X is a Hélder p-rough path, and (") X converges to X
as a Halder q-rough path, forany p < q < [p] + 1.

» Proof —  Would the convergence of (WX to X be uniform, we could find e, X\, 0, such
that, uniformly in s, t,

Ixi; - x,s'<5n, Ixi; (>xts‘<2cu—s|f:.

Using a A b < a' b/, with 6 = 2 < 1, we have

i
‘ th <e,, |t—s\q

which entails the convergence result as a Holder g-rough path.
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On rough paths convergence
» Theorem — Assume (") X is a sequence of Hélder p-rough paths with uniform bounds

sup [|(MX]|| < C < o, (14)
n

which converge pointwise, in the sense that (M X converges to some X;s for each
0 < s < t < 1. Then the limit object X is a Hélder p-rough path, and (" X converges to X
as a Hélder q-rough path, forany p < q < [p] + 1.

» Proof — e Pointwise convergence suffices to get the result! Given a partition 7 of
[0,1]and any 0 < s < t < 1, denote by s, t the nearest points in 7 to s and t
respectively. Writing

d(x,s, (”)x,s) < d(Xis Xgg) + d(XE, (">x;§) + d(<">x§, (”)x,s)

and
Xis = XssXis Xz, ("))(?g - (”)xsg(")xts(")xh

and using the uniform estimate (14), the first and third terms in the above upper bound
can be made arbitrarily small by choosing a partition with a small enough mesh,
uniformly in s, t and n. Second term dealt with the pointwise convergence assumption
as it involves only finitely many points once the partition = has been chosen as above.
<
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» Definition — Pick an R¢ -valued Hélder p-rough path X = (X,X), for2 < p < 3. An
RY-valued path z. is said to be a path controlled by X if its increments Zis := z; — zs,
satisfy

Zts = Zéxts + Rts»

forall 0 < s < t<1,foran L(R),RY)-valued 5-Lipschitz map Z,, and some R%-valued
%-Lipschitz map R. The pair (z,Z’) is is assigned a norm

|(z.2)| = ||Z'||% +IIRlz +12l.

The image of a controlled path z by an R"-valued C' map F on R? is a controlled path
F(z) with derivative D, F o Z] at time t.

For linear maps A, B € L(R,RY), and a,b € R, set

(A® B)(a®b) := (Aa) ® (Bb).
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Controlled paths and rough integral

» Theorem — A family (uss)o<s<t<T Of elements of R? such that
|l1tu + Hus —#ts| <|t-s?,
for a> 1 is said to be almost additive. There exists a unique R9-valued function ¢

such that
|€0t —¥s _llts| <lt-s
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» Proposition — Let X = (X, X) be an R-valued Hélder p-rough path, with2 < p < 3.
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» Proposition — Let X = (X, X) be an R¢-valued Hélder p-rough path, with2 < p < 3.
Let(z,2') be an L(R¢,R?)-valued path controlled by X, so Z; € L(R‘ ® Rf,R?) is s.t.
Zi(a® b) = (Zi(a))(b).
We define an almost-additive map setting
s = ZsXis + Z5 X,
forall0 < s<t<1. Its associated ¢ map is denoted by
t
o =: j; (z,2')s dXs.

» Proof — Writing f;s := f; — fs, an elementary computation using Chen’s relation
Kis = Xy + Xys + Xus ® Xy, forany 0 < s<u<t<1,gives
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Let(z,2') be an L(R¢,R?)-valued path controlled by X, so Z; € L(R‘ ® R, R?) is s.t.
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We define an almost-additive map setting
s = ZsXis + Z5 X,
forall0 < s <t<1. Its associated ¢ map is denoted by
t
o =: j(; (z,2")s dXs.

» Proof — Writing fs := f; — fs, an elementary computation using Chen'’s relation
Kis = Xy + Xys + Xus ® Xy, forany 0 < s<u<t<1,gives
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Controlled paths and rough integral
» Proposition — Let X = (X, X) be an R¢-valued Hélder p-rough path, with2 < p < 3.
We define an almost-additive map setting
s := ZsXis + Zg Xys,

forall0 < s <t<1. lts associated ¢ map is denoted by
t
o =: j(; (z,2')s dXs.

Given vector fields V. ..., V, on RY and x € RY, define F(x) € L(R!,RY) setting

Fx)(2) = ), 2'Vi(x).

1<i<t
» Corollary — A path x, in R? is a solution to the rough differential equation
dXt = F(xt)dXt

iff it is a path controlled by X, with derivative F(x.), and

t
Xt = X +f0 (F(x). (DF)(F(x)), dXs.
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4.1 The Brownian rough path

Let (Bf)o<,<1 be an R¢-valued Brownian motion defined on some probability space

(Q.7.F). Set
t ru t
B/, ::ff dB,®dBu:fBus®dBu.
S S S

This process satisfies Chen’s relation

Bl = Bl, 4+ Bls 4 Bus ® By

forany0<s<u<t<1. Recallforae Tf"

lal = [t ea © 2| = |a'| + \|&. dab)=]a"b].

So B/ is a Hélder p-rough path iff it is a 1/p-Hélder continuous (72", d)-valued path

Use Kolmogorov’s criterion
E[[1Bt]l°] < 1t - 51972,

< 1p. Equivalent to requiring

[Blq 1t-sth 4l g <-s

True as a consequence of the scaling properties of Brownian motion.
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The process B’ is almost surely a Holder p-rough path; it is called the It6 Brownian
rough path. Set
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The process B’ is almost surely a Holder p-rough path; it is called the It6 Brownian

rough path. Set
t ru t
By ;:ff odB,®odBu:f Bus ® 0dB,
s s S

1
S /
Bis = B + P

SO
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The process BS := (B,BS) is almost surely a Hélder p-rough path; it is called the It6
Brownian rough path.



4.1 The Brownian rough path

The process B’ is almost surely a Holder p-rough path; it is called the It6 Brownian

rough path. Set
t u t
BS ::ff odB,®odBu:f Bus ® 0dBy,
S S )

1
S _pl
BtsztsJ'_é

SO

(t-s)d.

The process BS := (B,BS) is almost surely a Hélder p-rough path; it is called the It6
Brownian rough path. Unlike B/, it is a weak geometric Holder p-rough path.
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Given n> 1, set 7, := O'{Bkg n; 0<k< 2”} and let B( ) be the continuous piecewise
linear path that coincides with B at dyadic times k2". Denote by B(")" the coordinates

of B, Setting
t
~ ['ep e o,
S

B =E[Bsl7nl. B =E[BIH 7). (15)

ts ts

one has, for j # k,

and B(n) i _ 1 (B(n).i)Z-

ts
» Proposition — The Hélder p-rough path B"") := (B(") (")) converges almost-surely
to BS in the Hélder p-rough path topology.

» Proof — Use our statement on rough paths convergence. The almost-sure pointwise
convergence follows from the martingale convergence theorem applied to the
martingales in (15).
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4.1 The Brownian rough path
Given n> 1, set 7, := a{Bkz n; 0<k< 2"} and let B( ) be the continuous piecewise

linear path that coincides with B at dyadic times k2". Denote by B(")" the coordinates
of B, Setting

t
- [ Yo
one has, forj # k,
Jk
BY =E[Bul7nl. B =E[BIN 7). (15)

and B(") i =1 (B(")")Z.

ts
» Proposition — The Hélder p-rough path B\" = (B("), 5(") converges almost-surely
to BS in the Hélder p-rough path topology.
» Proof — To get the almost-sure uniform bound

sup [[B)] < 0 (16)
notice that the estimates
|Bis| < Colt—sip,  [BSH| < Ct-sif

obtained from Kolmogorov’s regularity criterion with Cp, € L9 for (any) q > 2, give
1 i 2
18] < E[Colalit— sl [B| < B[ GRln] it~ st

so the uniform estimate (16) follows from Doob’s maximal inequality. <
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4.2 Rough and stochastic integrals

» Proposition — Let (Fs)o<s<1 be an L(R’,R¥)-valued path controlled by B, adapted to
the Brownian filtration, with derivative process (F¢)o<s<1 also adapted to that filtration.
Then we have almost-surely

1 1
f(F,F')Sng:f Fs B,
0 0
» Proof — One has
1 ! /
j; (F,F7)dB = lim Z(F&Bw& +FfiBfi+1fi)
i

and ’
Fs dB. = lim — probab EFB. .
j(; s \rluo v ; Ltk
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» Proposition — Let (Fs)o<s<1 be an L(R¢,R¥)-valued path controlled by B, adapted to
the Brownian filtration, with derivative process (F$)o<s<1 also adapted to that filtration.
Then we have almost-surely

1 1
f(F,F')sng:f Fs dBs.
0 0
» Proof — Suffices to see that
F 20
'B — 0.
Z/: i o

o If F” bounded above by M, then, since F’ is adapted and independent of B{M -
conditioning gives

HZ lj tl+1tIHL2

f:+1h”i2 M? Z”Bt,ﬂt,HLz < M? .




4.2 Rough and stochastic integrals

» Proposition — Let (Fs)o<s<1 be an L(RY,R?)-valued path controlled by B, adapted to
the Brownian filtration, with derivative process (F})o<s<1 also adapted to that filtration.
Then we have almost-surely

1 1
f (F.F')s dB. :f Fs dBs.
0 0
» Proof — Suffices to see that
FlB o L50
z]_: t; liv1ti \ﬂ\‘lé .
o Otherwise introduce the stopping time

™ ::inf[ue [0,1]; IF)I > M}/\1.



4.2 Rough and stochastic integrals

» Proposition — Let (Fs)o<s<1 be an L(RY,R¥)-valued path controlled by B, adapted to
the Brownian filtration, with derivative process (F})o<s<1 also adapted to that filtration.
Then we have almost-surely

1 1
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4.2 Rough and stochastic integrals

» Proposition — Let (Fs)o<s<1 be an L(RY,R%)-valued path controlled by B, adapted to
the Brownian filtration, with derivative process (F¢)o<s<1 also adapted to that filtration.
Then we have almost-surely

1 1
f(F,F')Sng:f F. dBs.
0 0

» Proof — Suffices to see that

E F —>L2
B 0.
t Plivati 110

i
o Otherwise introduce the stopping time
= inf{u e [0.1]; IF)l > M} A 1.

Then we have proved that

T 1
fo (F,F’)dB’:fo FiM dBs,

s0 pass to the limit M — co.
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4.2 Rough and stochastic integrals

» Corollary — Under the above assumptions one has almost surely

1 1
F.F')dBS = | FsodBs.
0 0

» Proof — One has
fo1(F, F')dBS — f01(F, F')dB + (%) = f01 Fe dBs + (%),
with a well-defined additional term
(%) := lim Fi (fi+1 - ) 1d.

Denote by Sym(A) the symmetric part of a matrix A and recall that

1 1
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» Corollary — Under the above assumptions one has almost surely

1 1
f(F,F’)dBS:f Fs odBs.
0 0

» Proof — One has

1 1 1
f(F,F’)dBS:f (F,F’)dB’+(*):f Fo dBs + (),
0 0 0
with a well-defined additional term

(%) := lim Ff

1
5 (tipr — 1) 1d.
N0 4 i 2

Denote by Sym(A) the symmetric part of a matrix A and recall that
1 s I 1 pe2 /
é(tiﬂ —f)ld= Sym(Bf/+1 tl) - Sym(Bt,ﬂ Yi) 2 B’I‘Mfi - Sym(IB,M ti)'

One sees as above that }; Ft',. Sym(B fm t;) converges to 0 in [2.
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4.2 Rough and stochastic integrals

» Corollary — Under the above assumptions one has almost surely

1 1
f(F,F’)dBS:f Fs 0dBs.
0 0

» Proof — One has

1 1 1
f (F.F’)dBS :f (F.F')dB' + (%) :f FsdBs + (),
0 0 0
with a well-defined additional term
(%) = I|m Ft 2(1‘,-+1 - 1) 1d.

So
(02 Izlr:m 22 f t,ﬂt,

But since
’ j—
Ft,-Bfmf; - Ffmf«' + Ry,

for a %-Hélder remainder term R, the above sum equals

%(Z Fii1tBry ’i) + 0o (1)
7

We recognize a quantity which converges in probability to the bracket (F, B).
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4.3 Rough and stochastic differential equations

» Corollary — Let F = (V1 ..... V) be C vector fields on R?. The solution to the rough

differential equation
dx¢ = F(x) dBY (17)

coincides almost-surely with the solution to the Stratonovich differential equation

dzy = Vi(zt) odB].

» Proof — We saw that solving (17) is equivalent to satisfying

t
xi= X0+ fo (FO). (DF)(F())(xs) dBS.

Given the previous corollary, it suffices to see that the path x is adapted to the
Brownian filtration. This is clear from its construction as ¢:s(xp) with the solution flow ¢
built using the non-anticipative schemes ps. <
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4.3 Rough and stochastic differential equations

» Corollary (Wong-Zakai) — The solution path to the ordinary differential equation

ax(” = F(x\") aB!"” (18)

converges almost-surely to the solution path to the Stratonovich differential equation

dX[ = F(Xt) OdB{.

» Proof — It suffices to notice that solving the rough differential equation

az\” = F(z") dB{"

is equivalent to solving equation (18). <



Thank you all for attending the lectures!



