
Rough differential equations



A. What this is all about

Make sense of the deterministic controlled ordinary differential equation

dxt =
∑̀
i=1

Vi (xt )dhi
t ,

driven by a control h of low regularity, say α-Hölder with 0 < α < 1, and get a solution x
that is a continuous function of the control h, unlike e.g. in Itô’ stochastic integration
theory where x is only a measurable function of the (semimartingale) control.

One expects the path x to be α-Hölder, and V (x) as well.

A problem of analysis about products – The product V (x)dh | α · (α − 1), is
well-defined as a continuous function of V (x) and dh iff α + (α − 1) > 0, i.e. α > 1

2 .

What can be done for α ≤ 1
2 ?

� Lyons’ no go theorem – Given α < 1
2 , there exists no continuous functional

I : Cα([0,1],R) × Cα([0,1],R)→ R, such that if x , y are trigonometric polynomials, then
I(y ,h) =

∫ 1
0 yt dht .

Different approaches – Lyons (98’), Davie (03’), Gubinelli (04’), Friz-Victoir (08’),
Bailleul (12’), Lyons & Yang (15’).
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B. Constructing flows
A ‘numerical’ scheme for a time evolution

µts : Rd 7→ Rd , (0 ≤ s ≤ t ≤ T < ∞),

approximate description of the evolution of a system between times s and t .
Perturbations of the identity map, for s, t close.

Self-improving: There is an exponent a > 1 such that∥∥∥µtu ◦ µus − µts
∥∥∥

C1 . |t − s|a, (0 ≤ s ≤ u ≤ t ≤ T ).

A flow ϕ =
(
ϕba : Rd 7→ Rd

)
0≤a≤b≤T

ϕtu ◦ ϕus = ϕts , (0 ≤ s ≤ u ≤ t ≤ T ).

� Theorem – One can associate to any self-improving numerical scheme a unique
flow ϕ such that ∥∥∥ϕts − µts

∥∥∥
C0 . |t − s|a.

Moreover ∥∥∥ϕts − µπts

∥∥∥
C0 . |πts |

a−1,

for any partition πts =
{
s < s1 < · · · < sn < t

}
of any interval [s, t], with

µπts := ©n
i=0 µsi+1si .
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C. Rough paths
A generalised notion of control h : [0,T ]→ R`, in a controlled ordinary differential
equation

dxt =
∑̀
i=1

Vi (xt )dhi
t =: Vi (xt )dhi

t .

� Key elementary remark – For all f ∈ C∞(Rd ,R), 0 ≤ s ≤ t ≤ T ,

f (xt ) = f (xs) + hi
ts(Vi f )(xs) +

(∫ t

s

∫ s1

s
dhj

s2
dhk

s1

) (
Vj Vk f

)
(xs) + O(|t − s|3),

with vector fields Vi seen as first order differential operators.

Pick 2 ≤ p < 3. A Hölder p-rough path is a function(
Xts = (Xts ,Xts)

)
0≤s≤t≤T

, Xts =
(
X i

ts

)
1≤i≤`

∈ R`, Xts =
(
X

jk
ts

)
1≤j ,k≤`

∈ R` ⊗ R`

that plays the role of the collection of expansion coefficients

(hi
ts)1≤i≤`,

(∫ t

s

∫ s1

s
dhj

s2
dhk

s1

)
1≤j ,k≤`

,

subject to
• size constraints ∣∣∣Xts

∣∣∣ . |t − s|1/p ,
∣∣∣Xts

∣∣∣ . |t − s|2/p ,

• algebraic constraints (relations amongst the coefficients), for all s ≤ u ≤ t ,

XusXtu = Xts .
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D. Numerical schemes associated to rough differential
equations

Given vector fields V1, . . . ,V` on Rd and a rough path X = (X ,X), one can construct
explicitly a self improving numerical scheme (µts)0≤s≤t≤T such that for all x ∈ Rd , for all
f ∈ C3

b (Rd ,R),

f
(
µts(x)

)
= f (x) + X i

ts(Vi f )(x) + X
jk
ts(Vj Vk f )(x) + Of

(
|t − s|3/p

)
.

Compare with the local expansion property of solutions of controlled ordinary
differential equations

f (xt ) = f (xs) + hi
ts(Vi f )(xs) +

(∫ t

s

∫ s1

s
dhj

s2
dhk

s1

) (
Vj Vk f

)
(xs) + O(|t − s|3).

The unique flow associated with the numerical scheme µ by the above Theorem is the
solution flow to the rough differential equation

dxt = V (xt )dXt .
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D. Numerical schemes associated to rough differential
equations – The core of the matter

• Rewrite the expansion property

f
(
µts(x)

)
= f (x) + X i

ts(Vi f )(x) + X
jk
ts(Vj Vk f )(x) + Of

(
|t − s|3/p

)
.

under the form
f ◦ µts =: V (Xts)f + Of

(
|t − s|>1

)
. (1)

In particular
µts = V (Xts)Id + O

(
|t − s|>1

)
.

• One can write
Xts = exp(Λts),

and V (Λts) is a vector field. Define

µts := eV (Λts)

as the time 1 map of the ordinary differential equation

ẏu = V
(
Λts

)
(yu).
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ẏu = V
(
Λts

)
(yu).



D. Numerical schemes associated to rough differential
equations – The core of the matter

Then

f ◦ µts = eV (Λts)f

= V
(
eΛts

)
f + O

(
|t − s|>1

)
= V (Xts)f + O

(
|t − s|>1

)′
,

so µts has the expected expansion property (1), and

µtu ◦ µus= V (Xus)µtu + O
(
|u − s|>1

)
= V (Xus)

(
V (Xtu)Id + O

(
|t − u|>1

))
+ O

(
|u − s|>1

)
= V (Xus)V (Xtu)Id + O

(
|t − s|>1

)
= V (XusXtu)Id + O

(
|t − s|>1

)′
= V (Xts)Id + O

(
|t − s|>1

)′
= µts + O

(
|t − s|>1

)′
,

so µ defines indeed an self-improving numerical scheme.
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1. From approximate flows to flows

� Definition – A C1-approximate flow on Rd is a family (µts)0≤s≤t≤T of C2 maps from
Rd into itself, depending continuously on s, t in the topology of uniform convergence,
such that ∥∥∥µts − Id

∥∥∥
C2 = ot−s(1) (2)

and there exists positive constants c1 and a > 1, such that the inequality∥∥∥µtu ◦ µus − µts
∥∥∥

C1 ≤ c1 |t − s|a (3)

holds for all 0 ≤ s ≤ u ≤ t ≤ T .

An example – Euler’ scheme

µts(x) = x + V (x)(t − s),

with V ∈ C2
b (Rd ,Rd ). �

Given a partition πts =
{
s = s0 < s1 < · · · < sn−1 < sn = t

}
of an interval [s, t] ⊂ [0,T ],

set
µπts := µsnsn−1 ◦ · · · ◦ µs1s0 = ©n−1

i=0 µsi+1si .
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� Definition – A C1-approximate flow on Rd is a family (µts)0≤s≤t≤T of C2 maps from
Rd into itself, depending continuously on s, t in the topology of uniform convergence,
such that ∥∥∥µts − Id

∥∥∥
C2 = ot−s(1) (4)

and there exists positive constants c1 and a > 1, such that the inequality∥∥∥µtu ◦ µus − µts
∥∥∥

C1 ≤ c1 |t − s|a (5)

holds for all 0 ≤ s ≤ u ≤ t ≤ T .

� Theorem 1 (Constructing flows) – A C1-approximate flow defines a unique flow
ϕ =

(
ϕts

)
0≤s≤t≤T

on Rd such that the inequality

∥∥∥ϕts − µts
∥∥∥
∞
≤ c |t − s|a (6)

holds for a positive constant c, for all 0 ≤ s ≤ t ≤ T sufficiently close, say t − s ≤ δ. This
flow satisfies the inequality ∥∥∥ϕts − µπts

∥∥∥
∞
. c2

1T |πts |
a−1, (7)

for any partition πts of any interval [s, t] of mesh |πts | ≤ δ.



1. From approximate flows to flows – Step 1 of the
proof

� Definition – Let ε ∈ (0,1) be given. A partition

π =
{
s = s0 < s1 < · · · < sn−1 < sn = t

}
of an interval [s, t] is said to be ε-special if it is either trivial or

• one can find an si ∈ π such that ε ≤ si−s
t−s ≤ 1 − ε,

• and for any choice u of such an si , the partitions of [s,u] and [u, t] induced by π
are both ε-special.

A partition of any interval into sub-intervals of equal length is 1
3 -special.Set

mε := sup
ε≤β≤1−ε

(
βa + (1 − β)a

)
< 1,

and pick a constant

L >
2c1

1 −mε
,

where c1 is the constant that appears in the definition of a C1-approximate flow, in
equation (5).
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1. From approximate flows to flows – Step 1 of the
proof

� Proposition 2 – Let (µts)0≤s≤t≤T be a C1-approximate flow on Rd . Given ε > 0, there
exists a positive constant δ such that for any 0 ≤ s ≤ t ≤ T with t − s ≤ δ, and any
ε-special partition πts of the interval [s, t], we have∥∥∥µπts − µts

∥∥∥
C1 ≤ L |t − s|a. (8)

Proof –
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The proof of estimate (8) is similar and given later. We proceed by induction on the
number n of sub-intervals of the partition.
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C0 ≤ L |t − s|a. (9)

(n = 2): This is the C0 version of identity (5) defining C1-approximate flows.
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� Proposition 2 – Let (µts)0≤s≤t≤T be a C1-approximate flow on Rd . Given ε > 0, there
exists a positive constant δ such that for any 0 ≤ s ≤ t ≤ T with t − s ≤ δ, and any
ε-special partition πts of the interval [s, t], we have∥∥∥µπts − µts

∥∥∥
C1 ≤ L |t − s|a. (8)

Proof – We first prove ∥∥∥µπts − µts
∥∥∥

C0 ≤ L |t − s|a. (9)

(n → n + 1): Fix 0 ≤ s < t ≤ T with t − s ≤ δ, and let πts be an ε-special partition of
[s, t], splitting the interval [s, t] into (n + 1) sub-intervals. Let u be one of the points of
the partition such that ε ≤ t−u

t−s ≤ 1 − ε, so the two partitions πtu and πus are both
ε-special, with respective cardinals no greater than n.
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∥∥∥µtu ◦ µπus − µtu ◦ µus
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∞

+
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(
1 + oδ(1)

)
L |u − s|a + c1 |t − s|a

by the induction hypothesis and (4) – here the fact that the µba are C1-close to the
identity, and (5) – the C0 version of the C1-approximate flow property.



1. From approximate flows to flows – Step 1 of the
proof

∥∥∥µπts − µts
∥∥∥
∞
≤ L|t − u|a +

(
1 + oδ(1)

)
L |u − s|a + c1 |t − s|a

Set u − s := β(t − s), with ε ≤ β ≤ 1 − ε. The above inequality rewrites

∥∥∥µπts − µts
∥∥∥
∞
≤

{(
1 + oδ(1)

)(
(1 − β)a + βa

)
L + c1

}
|t − s|a.

In order to close the induction, we need to choose δ small enough for the condition

c1 +
(
1 + oδ(1)

)
mεL ≤ L (10)

to hold; this can be done since mε < 1.

One needs to control the derivative of µπts − µts to prove (8). One uses the full definition
of a C1-approximate flow for that purpose, and not only its C0 version; see later. �
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of a C1-approximate flow for that purpose, and not only its C0 version; see later. �
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1. From approximate flows to flows – An elementary
identity

Existence and uniqueness both rely on the elementary identity

fN ◦ · · · ◦ f1 − gN ◦ · · · ◦ g1

=
N∑

i=1

(
gN ◦ · · · ◦ gN−i+1 ◦ fN−i − gN ◦ · · · ◦ gN−i+1 ◦ gN−i

)
◦ fN−i−1 ◦ · · · ◦ f1,

(11)

with gi and fi any maps from Rd into itself.
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1. From approximate flows to flows – Step 2 of the
proof

Existence. Set Dδ :=
{
0 ≤ s ≤ t ≤ T ; t − s ≤ δ

}
and Dδ = Dδ ∩

{
dyadic numbers

}
.

Given
s = a 2−k0 and t = b 2−k0 in Dδ, define for n ≥ k0

µ
(n)
ts := µsN(n)sN(n)−1 ◦ · · · ◦ µs1s0 ,

where si = s + i2−n and sN(n) = t . Given n ≥ k0, write

µ
(n+1)
ts =

N(n)−1
©
i=0

(
µsi+1si +2−n−1 ◦ µsi +2−n−1si

)
and use the elementary identity (11) with

fi = µsi+1si +2−n−1 ◦ µsi +2−n−1si
, gi = µsi+1si

and the fact that the compositions of the g-maps

µsN(n)sN(n)−1 ◦ · · · ◦ µsN(n)−i+1sN(n)−i

are Lipschitz continuous with a common Lipschitz constant L, to get
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1. From approximate flows to flows – Step 2 of the
proof

∥∥∥∥ µ(n+1)
ts − µ

(n)
ts
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∞
≤ L

N(n)−1∑
i=0

∥∥∥ µsi+1si +2−n−1 ◦ µsi +2−n−1si
− µsi+1si

∥∥∥
∞
≤ c1LT 2−(a−1)n.

So (
µ(n) − µ

)
∈ C

(
Dδ,C0

b (Rd ,Rd )
)

converges uniformly on Dδ to some continuous function ϕ − µ. One has∥∥∥ϕts − µts
∥∥∥
∞
≤ c |t − s|a

as a consequence of estimate (8) for µπts in Proposition 2.
As ϕ is a uniformly continuous function of (s, t) ∈ Dδ, it has a unique continuous
extension to Dδ, still denoted by ϕ. To see that it defines a flow on Dδ, notice that for
dyadic times s ≤ u ≤ t , we have

µ
(n)
ts = µ

(n)
tu ◦ µ

(n)
us ,

for n big enough; so, since the maps ϕ(n)
tu are uniformly Lipschitz continuous, we have

ϕts = ϕtu ◦ ϕus

for triples of times in Dδ, hence for all times since ϕ is continuous. The map ϕ is easily
extended as a flow to the whole of {0 ≤ s ≤ t ≤ T }.
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1. From approximate flows to flows – Step 2 of the
proof

Uniqueness. Let ψ be any flow such that∥∥∥ψts − µts
∥∥∥
∞
≤ c |t − s|a.

Rewrite
ψts = µts + Oc

(
|t − s|a

)
.

Then

ψts= ψs2n s2n−1
◦ · · · ◦ ψs1s0 =

(
µs2n s2n−1

+ Oc
(
2−an

))
◦ · · · ◦

(
µs1s0 + Oc

(
2−an

))
= µs2n s2n−1

◦ · · · ◦ µs1s0 + ∆n = µ
(n)
ts + ∆n,

where ∆n is of the form of the right hand side of the elementary identity (11), so

‖∆n‖∞ ≤ L2n2−an = on(1)

since all the maps
µs2n s2n−1

◦ · · · ◦ µs2n−`+1s2n−`

are L-Lipschitz continuous. Sending n to infinity shows that ψts = ϕts . �
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2. Rough paths
Recall the local expansion property of solutions of controlled ordinary differential
equations

dxt = Vi (xt )dhi
t .

Recall we see vector fields as first order differential operators, so Vj Vk is a second
order differential operator e.g., with

Vj Vk f = (D2f )(Vj Vk ) + (Df )
(
DVk (Vj )

)
.

One has

f (xt ) = f (xs) +
( ∫ t

s
dhi

s1

)
(Vi f )(xs) +

(∫ t

s

∫ s1

s
dhj

s2
dhk

s1

) (
Vj Vk f

)
(xs) + (· · · )

+

(∫
s≤s1≤···≤sn≤t

dhin
sn . . . dhi1

s1

) (
Vin . . .Vi1 f

)
(xs) + O

(
|t − s|n+1

)
Rough paths are placeholders for the family of coefficients

Hts :=1, ( ∫ t

s
dhi

s1

)
1≤i≤`

,

(∫ t

s

∫ s1

s
dhj

s2
dhk

s1

)
1≤j ,k≤`

, . . . ,

(∫
s≤s1≤···≤sn≤t

dhin
sn · · · dhi1

s1

)
1≤in ,...,i1≤`

.
that appear in the expansion, when h is not sufficiently regular for making sense of the
iterated integrals, e.g. h is only α-Hölder with α ≤ 1/2. Like the function H, they take
values in an algebraic structure that gives much insight on them.
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2.1 An algebraic prelude
Collections of real valued coefficients (ain ...i1 )1≤i1 ,...,in≤`, are better seen here as
elements of the tensor space (R`)⊗n.

One can see any element of R` as a linear map
on the dual space (R`)′. Given u, v ∈ R`, one has

(u ⊗ v)(v ′) := v ′(v) u,

for any v ′ ∈ (R`)′. So (R`)⊗2 = L
(
(R`)′,R`

)
. Given u, v ,w ∈ R`, one has

(u ⊗ v ⊗ w)(w ′) := w ′(w) u ⊗ v ,

for any w ′ ∈ (R`)′. Let (ε1, . . . , ε`) stand for the canonical basis of R`. The family(
εi1 ⊗ · · · ⊗ εik

)
1≤i1 ,...,ik≤`

defines the canonical basis of (R`)⊗k . An element a ∈ (R`)⊗k is

identified with the collection of its coordinates (ain ...i1 )1≤i1 ,...,in≤` in the canonical basis.

For N ∈ N ∪ {∞}, set T N
`

:=
N⊕

r=0

(
R`

)⊗r
, with

(
R`

)⊗0
:= R. For a =

N
⊕

r=0
ar and b =

N
⊕

r=0
br in

T N
`

a + b :=
N
⊕

r=0
(ar + br ),

ab :=
N
⊕

r=0
cr , with cr =

r∑
k=0

ak ⊗ br−k ∈ (R`)⊗r

The space T N
`

is called the (truncated) tensor algebra over R` (if N is finite).
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as a typical element of T N ,1

`
:=

{
a ∈ T N

`
,a0 = 1

}
.

Define the dilation

δλ(a) =
(
1, λa1, . . . , λNaN

)
,

for all λ ∈ R and a ∈ T N ,1
`

. We define a norm

‖a‖ :=
N∑

m=1

∥∥∥am
∥∥∥1/m

Eucl,

that is homogeneous with respect to the dilation∥∥∥δλ(a)
∥∥∥ = |λ| ‖a‖.
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2.1 An algebraic prelude
Elements of T N ,1

`
are invertible, with

a−1 =
∑
n≥0

(1 − a)n,

with 1 := (1,0,0, . . . ).

The exponential map exp : T N ,0
`
→ T N ,1

`
, and the logarithm map

T N ,1
`
→ T N ,0

`
, are defined by

exp(a) =
∑

0≤n<N+1

an

n!
, log(b) =

∑
1≤n<N+1

(−1)n

n
(1 − b)n;

they are inverse from one another. They are polynomial diffeomorphisms if N < ∞.
The formula [a,b] := ab − ba, defines a Lie bracket on T N

`
.

� Definition – The Lie algebra

gN
` :=

{
linear combinations of at most N iterated brackets of elements of R` ⊂ T N

`

}
⊂ T N ,0

`

is called the N-step free nilpotent Lie algebra. The subset GN
`

:= exp
(
gN
`

)
of T N ,1

`
is

a group for the multiplication operation. It is called the N-step nilpotent Lie group on
R`. This is a manifold with tangent space a gN

`
at a.
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2.2 Hölder p-rough paths

Fix s and look at the evolution of

Hts =1, ( ∫ t

s
dhi

s1

)
1≤i≤`

,

(∫ t

s

∫ s1

s
dhj

s2
dhk

s1

)
1≤j ,k≤`

, . . . ,

(∫
s≤s1≤···≤sn≤t

dhin
sn · · · dhi1

s1

)
1≤in ,...,i1≤`


as a function of t .

One has
dHts = Htsdht ,

where dht ∈ R
` ⊂ gN

`
. As Htsdht ∈ THts GN

`
if Hts ∈ GN

`
, and Hss = 1 ∈ GN

`
, then

Hts ∈ GN
`

for all t ≥ s, and for all s ≤ u ≤ t

Hts = HusHtu ,

from the flow property of solutions to ordinary differential equations. We call this
identity Chen’s relation. So one can write

Hts =
(
Hs0

)−1
Ht0,
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2.2 Hölder p-rough paths
Given a T N ,1

`
-valued path X set Xts := X−1

s Xt .

� Definition – Let 1 ≤ p. A Hölder p-rough path on [0,T ] is a T [p],1
`

-valued path

X : t ∈ [0,T ] 7→ 1 ⊕ X 1
t ⊕ X 2

t ⊕ · · · ⊕ X [p]
t , such that

∥∥∥X m
∥∥∥ m

p
:= sup

0≤s<t≤T

∣∣∣X m
ts

∣∣∣
|t − s|

m
p
< ∞

for all m = 1 . . . [p]. We define the norm of X to be

‖X‖ := max
m=1...[p]

∥∥∥X m
∥∥∥ m

p
,

and a distance d(X,Y) := ‖X − Y‖ on the set of Hölder p-rough path. A Hölder weak
geometric p-rough path on [0,T ] is a G[p]

`
-valued Hölder p-rough path.
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3. Flows driven by rough paths



3.1 Differential operators

Given a collection of vector fields V1, . . . ,V` ∈ C∞(Rd ,Rd ) on Rd , set for z ∈ R`

V (z) :=
∑̀
i=1

z i Vi =: z i Vi .

We identify naturally V (z) with a first order differential operator.

We extend the map
V ∈ L

(
R`,C[p]+1

b (Rd ,Rd )
)

to T∞
`

setting V (1) = Id : C(Rd ) 7→ C(Rd ), and for
z1 ⊗ · · · ⊗ zk ∈ (R`)⊗k defining a k -th order differential operator V (z1 ⊗ · · · ⊗ zk ) setting

V (z1 ⊗ · · · ⊗ zk ) := V (z1) ◦ · · · ◦ V (zk ),

and requiring linearity. We have the fundamental morphism property

V (a)V (b) = V (ab), a,b ∈ T∞` ,

so V is a Lie algebra morphism sending T∞
`

-brackets into brackets of differential
operators [

V (a),V (b)
]

= V
(
[a,b]

)
.

As brackets of vector fields are vector fields, V (gN
`

) is made up vector fields.
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s
dhi

s1

)
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s

∫ s1

s
dhj

s2
dhk

s1

) (
Vj Vk f

)
(xs) + (· · · )

+
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s≤s1≤···≤sn≤t

dhin
sn . . . dhi1

s1

) (
Vin . . .Vi1 f

)
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|t − s|n+1
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3.2 A ‘numerical’ scheme with the local expansion
property

Let V1, . . . ,V` ∈ C∞(Rd ,Rd ) be smooth vector fields on Rd , with bounded 2[p] + 1
derivatives (Vi ∈ C[p]+1

b suffices).

Given a weak geometric p-rough path X, and
0 ≤ s ≤ t ≤ T < ∞, set

Λts := log Xts ∈ T [p]
`
⊂ T∞` ,

and let µts stand for the well-defined time 1 map associated with the ordinary
differential equation

ẏu = V (Λts)(yu), 0 ≤ u ≤ 1.

� Proposition – There exists a positive constant c, depending only on the Vi , such that
the inequality

∥∥∥∥f ◦ µts − V (Xts)f
∥∥∥∥
∞
≤ c

(
1 + ‖X‖[p]

)
‖f ‖C[p]+1 |t − s|

[p]+1
p (13)

holds for any f ∈ C[p]+1
b (Rd ).
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property

Proof – Writing

Λts =

[p]⊕
m=1

Λm
ts ∈

[p]⊕
m=1

T m
` ,

one has ∥∥∥Λm
ts

∥∥∥ . |t − s|m/p ,

and
[p]∑

k=0

1
k!

Λ∗kts = Xts + O
(
|t − s|

[p]+1
p

)
∈ T∞` ,

where ∗ stands for the multiplication in T∞
`

, while Xts ∈ T [p]
`
⊂ T∞

`
.Then
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 [p]∑
k=0

1
k!

(Λts)∗k

 f

 (x) +

∫
0≤u[p]+1≤···≤u1

{
V

(
Λ
∗([p]+1)
ts

)
f
}
(yu[p]+1 )du
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`

, while Xts ∈ T [p]
`
⊂ T∞

`
.

Then

f (y1) =

V

 [p]∑
k=0

1
k!

(Λts)∗k

 f

 (x) +

∫
0≤u[p]+1≤···≤u1

{
V

(
Λ
∗([p]+1)
ts

)
f
}
(yu[p]+1 )du

=
(
V (Xts)f

)
(x) + O

(
|t − s|

[p]+1
p

)
.
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3.2 A ‘numerical’ scheme with the local expansion
property

� Definition – A flow on Rd is said to be a solution flow to the rough differential
equation

dϕ = V (ϕ)dXt

if there exists a constant a > 1 independent of X and two possibly X-dependent positive
constants δ and c such that one has for all 0 ≤ s ≤ t ≤ T with t − s ≤ δ

� Theorem – The rough differential equation

dϕ = V (ϕ)dXt

has a unique solution flow; it takes values in the space of uniformly Lipschitz
continuous homeomorphisms of Rd with uniformly Lipschitz continuous inverses, and
depends continuously on X.
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3.3 Solution paths to rough differential equations

� Definition – An Rd -valued path z is said to be a solution path to the rough
differential equation

dz = V (z)dXt ,

if there exists a constant a > 1 independent of X and two possibly X-dependent positive
constants δ and c such that one has

f (zt ) =
(
V (Xts)f

)
(zs) + Oc,f

(
|t − s|a

)
,

for all 0 ≤ s ≤ t ≤ T with t − s ≤ δ, and f ∈ C[p]+1
b (Rd ).

� Theorem – The rough differential equation

dz = V (z)dXt , z0 = x ∈ Rd ,

has a unique solution path. It is a continuous function of X in the uniform norm
topology.
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3.3 Solution paths to rough differential equations
� Proof – Existence. zt := ϕt0(x) is a solution path.

Uniqueness. Set α := min( 3
p ,a), and let y• be any other solution path. One has∣∣∣yt − ϕts(ys)

∣∣∣ ≤ c|t − s|α.

Using the fact that the maps ϕts are uniformly Lipschitz continuous, with a Lipschitz
constant bounded above by L say, one can write for any ε > 0 and any integer k ≤ T

ε

ykε = ϕkε,(k−1)ε

(
y(k−1)ε

)
+ Oc

(
εα

)
= ϕkε,(k−1)ε

(
ϕ(k−1)ε,(k−2)ε

(
y(k−2)ε

)
+ Oc

(
εα

))
+ Oc

(
εα

)
= ϕkε,(k−2)ε

(
y(k−2)ε

)
+ OcL

(
εα

)
+ Oc

(
εα

)
,

and see by induction that

ykε = ϕkε,(k−n)ε

(
y(k−n)ε

)
+ OcL

(
(n − 1)εα

)
+ Oc

(
εα

)
= ϕkε,0(x) + OcL

(
kεα

)
+ oε(1)

= zkε + OcL
(
kεα

)
+ oε(1).

Taking ε and k so that kε converges to some t ∈ [0,T ], we see that yt = zt , since
α > 1.
The continuous dependence of the solution path z• with respect to X is transfered from
ϕ to z•. �
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Further reading

Written version of the lectures on my teaching web page

https://perso.univ-rennes1.fr/ismael.bailleul/files/M2Course.pdf



Further reading

Branched rough paths (towards regularity structures)

• Ramification of rough paths. M. Gubinelli, J. Diff. Eq., 248(4):693–721, (2010).

• Geometric versus non-geometric rough paths. M. Hairer and D. Kelly, Ann. Inst.
H. Poincaré Probab. Stat., 51(1):207–251, (2015).

• On the definition of a solution to a rough differential equation. I. Bailleul, to
appear in Ann. Fac. Sci. Toulouse.

Applications to stochastic analysis... so many!

• Tiny sample in Chap. 5 of my lecture notes, and Chap. 9-11 of Friz-Hairer’s book.

• Mean field rough differential equations
- Evolving communities with individual preferences. T. Cass and T. Lyons,

Proc. London Math. Soc., 110(1):83–107, (2015).
- Solving mean field rough differential equations. I. Bailleul and R. Catellier

and F. Delarue, Elec. J. Probab., 25(21):1–51, (2020).
- Pathwise McKean-Vlasov Theory with Additive Noise. M. Coghi and J.D.

Deuschel and P. Friz and M. Maurelli, arXiv:1812.11773, (2018).



Further reading
Fast-slow systems
• Deterministic homogenization for fast-slow systems with chaotic noise. D. Kelly

and I. Melbourne, J. Funct. Anal., 272(10):4063–4102, (2017).

• Rough flows and homogenization in stochastic turbulence. I. Bailleul and R.
Catellier, J. Diff. Eq, 263(8):4894–4928, (2017).

• Homogenization with fractional random fields. J. Gehringer and X.-M. Li,
arXiv:1911.12600, (2019).

Signature, analysis of streams and machine learning
• Uniqueness for the signature of a path of bounded variation and the reduced

path group. B. Hambly and T. Lyons, Ann. Math., 171(1):109–167, (2010).

• The Signature of a Rough Path: Uniqueness. H. Boedihardjo and X. Geng and T.
Lyons and D. Yang, Adv. Math., 293:720–737, (2016).

• Reconstruction for the signature of a rough path. X. Geng, Proc. London Math.
Soc., 114(3):495–526, (2017).

• Rough paths, Signatures and the modelling of functions on streams. T. Lyons,
https://arxiv.org/abs/1405.4537, (2014).

• Kernels for sequentially ordered data. F. Kiraly and H. Oberhauser,
arXiv:1601.08169, (2016).

• Signature moments to characterize laws of stochastic processes. I. Chevyrev
and H. Oberhauser, arXiv:1810.10971, (2018).



On rough paths convergence

� Theorem – Assume (n)X is a sequence of Hölder p-rough paths with uniform bounds

sup
n

∥∥∥(n)X
∥∥∥ ≤ C < ∞, (14)

which converge pointwise, in the sense that (n)Xts converges to some Xts for each
0 ≤ s ≤ t ≤ 1. Then the limit object X is a Hölder p-rough path, and (n)X converges to X
as a Hölder q-rough path, for any p < q < [p] + 1.
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0 ≤ s ≤ t ≤ 1. Then the limit object X is a Hölder p-rough path, and (n)X converges to X
as a Hölder q-rough path, for any p < q < [p] + 1.

� Proof – • X is a Hölder p-rough path: direct consequence of the uniform bounds (14)
and pointwise convergence:

∣∣∣X i
ts

∣∣∣ = lim
n

∣∣∣∣(n)X
i
ts

∣∣∣∣ ≤ C |t − s|
i
p .
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as a Hölder q-rough path, for any p < q < [p] + 1.

� Proof – •Would the convergence of (n)X to X be uniform, we could find εn ↘ 0, such
that, uniformly in s, t ,∣∣∣∣X i
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Using a ∧ b ≤ a1−θbθ, with θ = p
q < 1, we have
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n |t − s|
i
q ,

which entails the convergence result as a Hölder q-rough path.
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∥∥∥ ≤ C < ∞, (14)

which converge pointwise, in the sense that (n)Xts converges to some Xts for each
0 ≤ s ≤ t ≤ 1. Then the limit object X is a Hölder p-rough path, and (n)X converges to X
as a Hölder q-rough path, for any p < q < [p] + 1.

� Proof – • Pointwise convergence suffices to get the result!

Given a partition π of
[0,1] and any 0 ≤ s ≤ t ≤ 1, denote by s, t the nearest points in π to s and t
respectively. Writing

d
(
Xts ,

(n)Xts

)
≤ d

(
Xts ,Xts

)
+ d

(
Xts ,

(n)Xts

)
+ d

(
(n)Xts ,

(n)Xts

)
and

Xts = XssXtsXt t ,
(n)Xts = (n)Xss

(n)Xts
(n)Xt t

and using the uniform estimate (14), the first and third terms in the above upper bound
can be made arbitrarily small by choosing a partition with a small enough mesh,
uniformly in s, t and n. Second term dealt with the pointwise convergence assumption
as it involves only finitely many points once the partition π has been chosen as above.
�
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Controlled paths and rough integral

� Definition – Pick an R`-valued Hölder p-rough path X = (X ,X), for 2 ≤ p < 3.

An
Rd -valued path z• is said to be a path controlled by X if its increments Zts := zt − zs ,
satisfy

Zts := Z ′sXts + Rts ,

for all 0 ≤ s ≤ t ≤ 1, for an L
(
R`,Rd

)
-valued 1

p -Lipschitz map Z ′•, and some Rd -valued
2
p -Lipschitz map R. The pair (z,Z ′) is is assigned a norm

∥∥∥(z,Z ′)
∥∥∥ :=

∥∥∥Z ′∥∥∥ 1
p

+ ‖R‖ 2
p

+ |z0 |.

The image of a controlled path z by an Rn-valued C1 map F on Rd is a controlled path
F (z) with derivative Dzt F ◦ Z ′t at time t .

For linear maps A,B ∈ L(R`,Rd ), and a,b ∈ R`, set(
A ⊗ B

)
(a ⊗ b) := (Aa) ⊗ (Bb).
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� Corollary – A path x• in Rd is a solution to the rough differential equation

dxt = F (xt )dXt

iff it is a path controlled by X , with derivative F (x•), and

xt = x0 +

∫ t

0

(
F (x), (DF )(F (x))

)
s

dXs .



4. Applications to stochastic analysis



4.1 The Brownian rough path
Let

(
Bt

)
0≤t≤1

be an R`-valued Brownian motion defined on some probability space
(Ω,F ,P).

Set

BI
ts :=

∫ t

s

∫ u

s
dBr ⊗ dBu =

∫ t

s
Bus ⊗ dBu .

This process satisfies Chen’s relation

BI
ts = BI

tu + BI
us + Bus ⊗ Btu

for any 0 ≤ s ≤ u ≤ t ≤ 1. Recall for a ∈ T 2,1
`

‖a‖ =
∥∥∥1 ⊕ a1 ⊕ a2

∥∥∥ =
∣∣∣a1

∣∣∣ +
√∣∣∣a2

∣∣∣, d(a,b) =
∥∥∥a−1b

∥∥∥.
So BI is a Hölder p-rough path iff it is a 1/p-Hölder continuous (T 2,1

`
,d)-valued path.

Use Kolmogorov’s criterion
E
[∥∥∥BI

ts

∥∥∥q]
. |t − s|q/2,

for 0 < 1
2 −

1
q < 1

p . Equivalent to requiring

∥∥∥Bts
∥∥∥

Lq . |t − s|
1
2 ,

∥∥∥BI
ts

∥∥∥
L

q
2
. |t − s|.

True as a consequence of the scaling properties of Brownian motion.
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4.1 The Brownian rough path

The process BI is almost surely a Hölder p-rough path; it is called the Itô Brownian
rough path.

Set
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∫ u
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∫ t

s
Bus ⊗ ◦dBu ,

so
BS

ts = BI
ts +

1
2

(t − s)Id.

The process BS := (B,BS) is almost surely a Hölder p-rough path; it is called the Itô
Brownian rough path. Unlike BI , it is a weak geometric Hölder p-rough path.
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4.2 Rough and stochastic integrals
� Proposition – Let (Fs)0≤s≤1 be an L(R`,Rd )-valued path controlled by B, adapted to
the Brownian filtration, with derivative process (F ′s)0≤s≤1 also adapted to that filtration.

Then we have almost-surely

∫ 1

0
(F ,F ′)s dBI

s =

∫ 1

0
Fs dBs .

� Proof –
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• If F ′ bounded above by M, then, since F ′ is adapted and independent of BI
ti+1ti

,
conditioning gives

∥∥∥∥∑
i

F ′ti B
I
ti+1ti

∥∥∥∥2

L2
=

∑
i

∥∥∥∥F ′ti BI
ti+1ti

∥∥∥∥2

L2
≤ M2

∑
i
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∥∥∥∥2
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4.2 Rough and stochastic integrals
� Proposition – Let (Fs)0≤s≤1 be an L(R`,Rd )-valued path controlled by B, adapted to
the Brownian filtration, with derivative process (F ′s)0≤s≤1 also adapted to that filtration.
Then we have almost-surely
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0
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s =
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0
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i
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0.

• Otherwise introduce the stopping time

τM := inf
{
u ∈ [0,1] ; |F ′u | > M

}
∧ 1.
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so pass to the limit M → ∞. �



4.2 Rough and stochastic integrals
� Corollary – Under the above assumptions one has almost surely∫ 1

0
(F ,F ′) dBS =

∫ 1

0
Fs ◦dBs .

� Proof – One has∫ 1

0
(F ,F ′) dBS =

∫ 1

0
(F ,F ′) dBI + (?) =

∫ 1

0
Fs dBs + (?),

with a well-defined additional term

(?) := lim
|π|↘0

∑
i

F ′ti
1
2

(ti+1 − ti ) Id.

So
(?)

a.s.
= lim
|π|↘0

1
2

∑
i

F ′ti B⊗2
ti+1ti

.

But since
F ′ti Bti+1ti = Fti+1ti + Rti+1ti

for a 2
p -Hölder remainder term R, the above sum equals

1
2

(∑
i

Fti+1ti Bti+1ti

)
+ o|π|(1).

We recognize a quantity which converges in probability to the bracket 〈F ,B〉. �
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4.3 Rough and stochastic differential equations

� Corollary – Let F =
(
V1, . . . ,V`

)
be C3

b vector fields on Rd .

The solution to the rough
differential equation

dxt = F (xt ) dBS
t (17)

coincides almost-surely with the solution to the Stratonovich differential equation

dzt = Vi (zt ) ◦dBi
t .

� Proof – We saw that solving (17) is equivalent to satisfying

xt = x0 +

∫ t

0

(
F (·), (DF )(F (·)

)
(xs) dBS

s .

Given the previous corollary, it suffices to see that the path x is adapted to the
Brownian filtration. This is clear from its construction as ϕts(x0) with the solution flow ϕ
built using the non-anticipative schemes µts . �
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4.3 Rough and stochastic differential equations

� Corollary (Wong-Zakai) – The solution path to the ordinary differential equation

dx (n)
t = F

(
x (n)

t

)
dB(n)

t (18)

converges almost-surely to the solution path to the Stratonovich differential equation

dxt = F (xt ) ◦dBt .

� Proof – It suffices to notice that solving the rough differential equation

dz(n)
t = F

(
z(n)

t

)
dB(n)

t

is equivalent to solving equation (18). �
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Thank you all for attending the lectures!


