Mean field rough differential
equations
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. Motivation

o A particle system of N individuals, subject to symmetric influence of all individuals
ax{ = b(t, X/ u)dt + F(t. X{.u}') dB;.
with plV = Z,-’L J,/» the empirical measure of the time t system. (Think e.g. of
t

b(x,u) or F(x,u) = fRd g(x — y)du(y), for u probability measure.) Exchangeable
system.
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world



2.1 Lift of an irregular trajectory

o Realization (W;(w))o<t<T of R¢-valued rough random input with same regularity as a
Brownian path
|Wt(a)) - Ws(w)| < C(w)lt-sl", ae(1/3,1/2]

o a > 1/2: no need of rough paths, but doesn’t cover typical Brownian trajectory
o @ < 1/3: Rough paths theory applies in a more elaborate form

« Goal: define [ Y;(w) dW;(w) for some path (Y+(w))o<t<T
o Not doable for any (Y¢(w)),_,_,

o First question: does it work for Y(w) = W/(w)?

o lterated integral of W — willing to define

o t X X .
W(w) = fs (Wi(w) - Wiw)) dWi(w).

Think of Wiener case: several ways to define the stochastic integral. No canonical
choice of iterated integral if < 1/2.



o If (W;(w))o<t<T Smooth curve

y t . y
W) = [ (W) - Wiw)Wi(w)or
one checks Chen’s relation for r < s <t
W () = Wik(w) + Wi (w) + (Wi(w) - Wi(w))(Wi(w) - Wi(w))
* We require from a lift W(w) := (( Wi(w))oxt<T (‘Wrsf(w))OSSSIST)
o algebraic Chen relation
o analytic regularity property
[Wst(w)| < Cw) It - sP*
If Wis 10, a natural candidate is Wst(w) = 5(Wi(w) - Ws(w))z.

If dim > 2, “cross integrals” may not exist from analytical arguments: use
probabilistic constructions.

~» Stratonovich/It6 integral of two independent Brownian motions

~» Friz-Victoir integral of two independent Gaussian processes



2.2 Rough integral and RDEs

« Back to [ Y,dW,(w)... Controlled path Y/(w)
Yi(w) - Ys(w) = 6x Ys(w) (Wi(w) - Ws(w)) + RY(w)
with 6y Ys(w): “derivative”, in L(R™,R), and RY(w): “remainder”, in R, and
|ox Ye(w) — 6x Ys(w)] < CY(w) It - 8%, |RYy(w)| < CY (w) It - s

« Rough integral (@ > 1/3)

t N-1
fY,(w)dW,(a) 3 Yy(w) (W, - W) w)+Z§XY, ©) Wit , (@)
s i=0 i=0
and

'fst Y (w) dW,(w) - (Ys(w) (Ws = We)(@) + 6x Ys() ws,(w)) < ()]t - s




Solve
dXi(w) = F(Xt(w))dWi(w)

« Stability of controlled paths by F, for F € C2,

o take controlled path (X:(w))o<t<T and expand (F(Xf(w))oggr
F(Xi(w)) = F(Xs(@)) + F/(Xs(@)) (Xi = Xe)(@) + -

= F(Xs(w)) + F'(Xs()) 5:Xs (w) (W — We)(0) + RL ()

o this makes it possible to define fF(X,(w))dW,(w) if X is controlled
« Fixed point for the rough differential equation, for F € C3,

o input = controlled path (X;(w). 5xXi())_,_ ;-

o output = controlled path (Xo(w) + fot F(X:(w))dW/(w), F(x,(w)))ogsr.

» Theorem (Lyons, Gubinelli) — The intergal map I' : input ~ output, is a contraction

in small time — C* norm on (xX¢(w)),_,.; and C2* on (RY (@) _._ .-



3.1 Mean field RDEs: the main problem

Define

t
fs F(X (@), LX) AW, ()

Doesn'’t suffice to have a rough lift W(w) for any w, for dependence on r in £(X;) is not
good enough to make sense of the integral.

o Replace £(X;) by L(W;) and choose (W;)o<i<T as a centered Gaussian process

Wa( £(We). £(Ws)) = | 7w - \Jr(ws)|.

One can cook an example such that

Wo(L(Wh), L(Ws)) = (t-5)", t>520
for infinitely many pairs (s, ), so, for all p < 2,

sup Z WZ(L( Wi )’L(Wfi))p =
O=fy<-<ty=T j=0--N—1

one cannot define [/ F(L( W,)E\dwr(w) as a Young integral. One can however define
this integral using our approach.



3.1 Mean field RDEs: the main problem

Define ;
fs F(X (@), £0X)) AW, ()

Doesn't suffice to have a rough lift W(w) for any w, for dependence on rin £(X;) is not
good enough to make sense of the integral.

o So far [Cass-Lyons '14, Bailleul ’15, Deuschel et al. *17], no mean field dependence
in diffusivity

aXi(w) = b(Xi(w), L(X)) dt + F(Xi(w)) dWi(w).
o Mean field structure interacts with rough set-up. Requires to expand

F(X,(w),L(X,)) in the measure argument; use P.L. Lions’ approach to differential
calculus on Wasserstein space.



3.2 Derivative on Wasserstein space
Given U : Po(RY) — R, lift U into
U : [3(.P) 3 X > U(L(X))

Say U is differentiable if €/ is Fréchet differentiable.

» Derivative of 2/ — Fréchet differential of U
DU(X) = 8, U(u)(X). 1= L(X)
olf U(u) = &d h(x)du(x), with Vh at most of linear growth, then
OuUp)(v) = ' (v)

o

N
1 1
= N@,‘L{(N Zéxj)(x,-), X{y0nns XN €ER

1 N
ax,[fu(N Zaxj)
Jj=

o If X and X’ are two random variables

U(L(X)) =~ U(LOX)) = B[, U(LOOYX(D(X = X)()] + -
:fayfu(L(X))(x) (%" = x) L(X. X")(dxdx’) + -+



3.3 Expanding a function of X;(w) and L(X;)
Take a measurable collection of controlled trajectories as before

(X(0) = Xe(w) = 6:X6(0) (Wh(0) - We(0) + (o)

we

Take a function F(x, u) with dx F(x,u) and 8, F(x,u)(v) bounded and Lipschitz in
(X1, v). Expand F; := F(Xi(w), L(X1)):
Fi = Fs = 0xF(Xs(w), £(Xs)) 0x Xs(w)( W(w) - We(w))
+ E[aﬁ,F(xs(w).L(XS))(XS(-))HXXS(-) (Ws - Wr)(-)] + Rgy(w)
= (056 F)s(@)(Wi(®) = Wel@)) + B[ (F)s(w, ) (We = Ws)()|

+R§[(a))9

where
(6xF)s(w) := xF(Xs(w), L(Xs)) F(Xs(), L(Xs)).

(0uF)s(w, @) = 3uF(Xs(), L(Xs))(Xs()) F(Xs(w), L(Xs))-

The path F; = F(Xi(w). L(X;)) is not a trajectory controlled by W.(«).



3.4 Extended rough set-up

Above, for fixed w we need two increments
o Wi(w) - Ws(w), in RY,
o Wi() - Ws(-) = (W(w') - Ws(w)),, s in LA(QRY).

Not sufficient to have W(w) iterated integral of W(w), also need

t
Wi (w.0') = f (W; = We)(')dWr(w), (w,0') € Q2
s
where (w, ') - W(w') independent copy of (w,w’) - W(w) on Q2 ~> Wt is the
iterated integral of two independent copies of the noise
o Requires a convenient form of Chen identity for W .

o Requires a convenient form of regularity
E'“VVl (w, )' ] C(w) |t - s?.

(We actually require higher g-moments, with g > 8.)



3.5 Rough integral in the extended set-up
Take a measurable collection of controlled trajectory as before
Xi(@) = Xs(w) = 6xXs(w) (Wi(w) - Ws(w)) + R;f,(w)) .

o no derivative the direction of u: |9, X(w)|, = 0

o require integrability of the Holder norms of (6 Xi(«)) and (RX,(w))

0<t<T O<s<t<T



3.5 Rough integral in the extended set-up

Take a measurable collection of controlled trajectory as before
(X600 = Xete) = Xt (W) = Wo(w) + R (0]
Expand
F(Xi(w), L(X)) = F(Xs(w), £(Xs))
= [5:Fls() (We(w) ~ We(w)) + E[[6,Fls(w.) (Ws —~ We)()] + RE (@)
With Fr = F(X(w), L(X))),

N-1

f Fr ()W, (w ZFf,(w W, () - Wy ()

N-1

+ Z OxFi (@)W gy, 4 () + Z 5;1/:1, Wy ,l“( , )]
i=0

o No derivative in u ~ keep stable the form of X(w)



3.5 Rough integral in the extended set-up
Take a measurable collection of controlled trajectory as before
(X600~ Xs(0) = 623600 (W) - Wa(e) + R
Expand
F(Xe(w). £(X0)) ~ F(Xs(w). £L(Xs))
= [5xFs(w) (Wh(w) = Ws(w)) + B[ [8,Fs(w. ) (We = Ws)()] + RE (@)

With Fr = F(X(w), L(X))),

N-

Fi (0)(Wey (@) = Wy (0))
i=0

N1
+ Z OxFi (@)W gy, 4 () + Z E 5;1Ft, )Wﬁﬁ,m(ww)]

fF,(w YAW, () ~

o If Wis a BM and adapted F ~» recover standard Itd integral



4.1 Fixed point procedure for mean field RDEs

Similar procedure as in the non-mean field case for the integral map I
o input ~» collection ((X,(w),éXXt(w))og,g) o
wEe!

o output ~ collection of controlled paths

(o) + [} A0, £06)aWs ) Fxw 200) ]

In the usual random RDE case, one shows that I' is a contraction on a small enough
random interval [0, T(w)]. No more possible to do that because of mean field

dependency in the dynamics: We can at best obtain L(X,(~)1t<r(.)), rather than
L(Xr(-—). One needs to prove contraction on a deterministic time interval [0, T]. A
variant of Gronwall lemma? Not easy in a rough paths setting...



4.2 A global in time stability estimate

o Trick: find a random norm |- ||, on controlled paths, a constant p and ar.v. A(w) s.t.
o 1/p
IF0@) - T @, <o) | [ 1XG@) - X @] B
for (Xo(w), dxXo(w)) = (X5 (). x X5 (w)), with
p<1, and fﬂp(w)dP(w) — 1, asTtendstoO.
Q

If so, taking the LP norm in the left hand side shows that I" is a contraction.



4.2 A global in time stability estimate

o Trick: find a random norm || - ||, on controlled paths, a constant p and ar.v. A(w) s.t.
1/p
[F(X)(@) - T(X") ()], <p A (f X (@) = X' ()| ]P(da/))

o Choices of || - [l, and A(w):

(s, t,w) a variation-type norm involving W(w), W(-), W(w), Wt (w,-) and W(-,-)
N(w), accumulated local variation: lowest number of points (#)1<i<n(.) With

i, tir1, w) = € < 1, fixed, and INw) 2 T

wp=p.N0ase\,0,

w Aw) = C(1 4+ 9(0, T, w))N®),

B [0x Xt(@) = 9xXs(@)| | |Rst()|
||X(w)||¢u '7 |()(07 6Xx0)(w)| + [S,t?g[g,T] 19(3’ t, w)a 17(8, t, w)Za



4.3 A well-posedness statement

» Regularity and boundedness assumptions on F,d,F,d,F and second order
derivatives. Example F(x,u) = g(x, [ f(x, y)u(dy))

« Tail assumptions on the noise: tails of ¥(0, T,-) in exp(—r"") and tails of N(-) in
exp(—r'*72). Example fBM with Hurst between 1/3 and 1/2.

» Theorem — For initial condition in L2, existence and uniqueness of a solution to the
mean field equation

aX; = F(Xi, L(Xp)) dWs;

moreover, L(X) depends continuously on L(W).

Continuity leads to propagation of chaos. One even has sharp convergence rate for
the empirical measure of the particle system to its limit.



Open directions

o Allow diffusivity with linear growth, as in the Curie-Weiss model, where
F(x.p) = VU(X) + [(x = y)u(dy).

o Malliavin calculus and existence of densities for time marginals of solutions
driven by appropriate random rough paths (Gaussian processes, random Fourier
series, Markov processes associated with Dirichlet forms...).

o After propagation of chaos, other limit theorems, e.g. central limit theorem,
large and moderate deviations.

o Particle systems with common noise, e.g. motion in a random velocity field, as
in classical stochastic flow theory, that introduces strong correlations at small
distances and decorrelation at large distances.



Thank you for you attention!



