Flow approach to the gKPZ equation

Based on a joint work with Ajay Chandra (Imperial College), 2402.03101

Léonard Ferdinand

IJCLab, Université Paris Saclay

université ®CLb

Iréne Joliot-Curie

PA R I S 'SAC LAY Laboratoire de Physique

des 2 Infinis

Rencontre de ’ARN Smooth, Université Bretagne Occidentale, Brest

May 23, 2024



ﬁ Gibbs measures and renormalization group
e The flow approach to singular SPDEs

e The generalized KPZ equation



@ Gibbs measures and renormalization group



EQFT measures

Aim: make sense of the formal expression
v(dg) oo™ g (dg),

where g = N (0,(1 —A)7").

» (strong) UV problem: [ ¢* =oc0as,;
» IR problem: ¢ has no decay as A 1 R%;
» large field problem: the potentiel V needs to be bounded below;

» (week) UV problem: even in perturbation, convergent subamplitudes create new
divergences in the IR (called renormalon).

Let g. = N(0,e <(""#)/(1 — A)), and find V. such that
1
ve(de) = e~ g.(dg)

13

has a weak limit as € |, 0.



The renormalization group

For 4 > ¢,
¢=<u+ Pzp,
where
Law(g<,) = N'(0, (e ("2 — &™) /(1 = A)) , and Law(¢>,.) = g4

One is interested in observables F such that

F(¢) = F(¢>u), for some > 0.

They verify

B, [F@)] = 5 o lF(0)e™ O] = 2 Bs, [F(0,) B o™ 0 00

- 7E>u[F(¢>M)e*V€’“<¢>u>1 :
€

where we set Ve ,(¢5,) == — log E<,[e”Ve(¢<uté=u)],



Polchinski’s flow equation [Polchinski, Kopper,...]

Hope: for any yx > ¢, V., can be controlled uniformly in ¢, provided one made the
correct choice of "initial condition" V. . = V.o = V..
By Gaussian integration, setting C ,, = [ e ""=2)dt and C,, = e *('=2), one has

e—V.s,M — e%<v¢av¢>csy“ (e_vs)
_ 1 _
= due” " = 5(Ve: Ve, e Yo
1 1
= 6# Ve = §<V¢»V¢>CM Ve, — §<V¢V6,uv V¢V6,u>cu

Case V(¢) = A¢*. Try an ansatz, and expand

Veu(p) = Z)\Z/ VIR (dxr, -+, dxn)p(x1) -+ B(xa) -

In d = 3, one ends up with

Veo =o' + (ade "+ bX\loge™")¢® + (che 2 +dX’e ' +eX’loge™).



The large field problem

» The UV problem is solved, in the sense that we identified V;
» The week UV problem too, since we were working with an IR cut-off;

» This is not the case of the large field problem: since V. is not bounded below
(uniformly in € > 0). This corresponds to the fact that the formal series defining
Ve, is divergent.

Two main options to handle this large field problem:

» Rather perform a discreet renormalization group: good factors coming from high
convergent graphs can tame the divergence of V.;

» Combine the Langevin dynamic
(O +1-2D)p=-V4V() +¢

with some PDE techniques.



e The flow approach to singular SPDEs



Discrete flow approach [Kupiainen 2014]

In 2014, Kupiainen introduced a framework to solve singular SPDEs, based on a
discrete renormalization group idea.

He deals with the dynamical ®3 equation:

(@ + 1= D)ge = =22 + ccde + & = S:[6e]
= ¢ = G(1t>oss[¢s] + 0t=0 ® ¢5(0)) ’

For simplicity, assume that formally, we are in the stationary case
9:(0) = G(1:<0S:[¢:])(0)
so that ¢ = G(SE [qﬁs])
Define the effective field
G>p = ¢ep = Gu(Sc[o:]) , where G, is cut-off at scale
along with the effective force by the relation

SE,M[¢€,H] = SE[¢5] .



Discrete flow approach [Kupiainen 2014]

Note that a priori one does not have DV ,, = E[S. ,].

On the other hand, recall that it holds

E[e*‘/a,u[d’s,u]] — ]E[efvslqbs]] .

This motivates the definition of the effective force: by making S ,, random, one has
more room to require S¢ . [¢e, ] = ctec.

With a fixed point argument, Kupiainen constructed for a random m € N a family
(Seo=n)nzm

starting from S_ ,- 00 = S..

Involves tedious computations of stochastic objects.

The solution to the RG flow is local in scale, hence the solution to the equation is local
in time.



The flow equation [Duch 21]

Recall that formally,

Sfaﬂ«[‘ﬁ&ﬂ«] = SE [¢6] ’ and ¢a,u = Gu (Sa [¢5]) .
Thus, one obtains a flow equation
SE [¢s] = Sayu[@ u] 8HS€M[¢E;M] + Dseyuauﬁbe,u
=0= 8#*98,#[(15&#] + Dss,uGuS&u[qﬁs,u] .

Looks very much like the Polchinski flow equation.

Again, combined with an appropriate ansatz for S.

Sulol) =X [ €l o) 60m),

i1 n=0

where the force coefficients (€27, are a collection of random variables polynomial in
the noise, similar to the model of regularity structures.



Duch’s cumulant flow equation [Duch 21]

The previous flow equation rewrites as a hierarchy of equations for the force coefficients
in i—j,m+1 ~ j,n—m
aﬂfa,u - _ZZ(m+ 1) b GM ST
J m

Duch made the following crucial remark: there exists a similar hierarchical system of
equations for the cumulants

Ké,p, = "ip( 2,,;7,17--'5 ?:Zp)’ I= ((i17n1)7"'v(ipvnp))

of the force coefficients, reading
OuKl, = CuGuK:  + > Cunkl GuKE, .
J ML

» It is therefore possible to construct all the cumulants (and therefore all the mo-
ments) of the force coeflicients by induction, starting from the covariance of the
noise;

» This analysis avoids much of the algebraic considerations present in regularity
structures/higher paracontrolled calculus.



e The generalized KPZ equation



Beyond polynomial interactions

The generalized KPZ equation
(0 = D)d = gi()Drdpd ¢ + h(H)E .

General case of semi-linear singular parabolic SPDE with non-polynomial interaction,
including

» the Kardar—Parisi—Zhang equation,
» the multiplicative SHE, or parabolic Anderson model.

The equation is subcritical as long as the expected regularity of the solution is > 0
(ie. £ €CT# a>0).

Falls outside the scope of the work by Duch, where
» the flow equation is implemented for a polynomial interaction;

» the solution theory is limited to the case where the regularity of the equation is
negative.

Another motivation coming from the quantization of gauge theories:

®(AL) = (DiAo)” for g~ g = —daa, (9 'dg) .



Main result

For simplicity, we focus on gPAM:

(8f - A)¢E = h(¢5) + CE(h7¢578X¢E) .

Theorem 1 [Chandra, F.] I

» Fixae (0V(1/2—n/4),1],andletT := |2/ac — 1];

. . r+1
» fix a function h in ¢ 3V

(R);
» fix an initial condition ¢.(0) in o (T").

Then, there exists a random variable 0 < T < 1 such that for any deterministic
T € (0,1] the following holds on the event {T < T}: gPAM is well posed on
([0, T] x T") with solutions ¢. which converges (in probability) to a limit ¢ in
Cc*([0,T] x T") as e } 0.




Ansatz for the effective force

Basis for the flow equation spanned by multi-indices a € N* (for gPAM) corresponding
to some product of derivatives of h:

el = [I TTA"(
i€supp(a) j€|aj]
The multi-indices need to be populated, that is to say
o(a) := Zia,- =1 +Za,-.
i>0 i>0

Subcriticality implies that it is sufficient to go to a certain order, after which all the
force coefficients are irrelevant. In practice, for gPAM with o € (2/3, 1], one has

Seuldl(x) = Y (€2, T[6])(x)

a:o(a)<1

/ €% (x, dy)h (v () + / X1 (x, dy, dz)h (v (y))h' (v(2))
=0 h[Y] + .. (hh)[¥] .



Renormalization

The force coefficients verify the flow equations
OOz u(x,dy) =0 = o u(x,dy) = 0:(x,dy) = & (x)dx(dy) for all >0,

and

Bufs’u(x, dy,dz) = —Os(x,dz)/G(z — w)o.(w,dy)dw .

—3+2a
5

The latter equation can not be solved forward in y since ||8uf eplltes o and

is solved backward up to a (deterministic, diverging as € | 0) value

$ - o(x,dy, dz) = c-8¢(dy)8x(dz).

The counterterms are local.

Note that if we considered larger objects (of order larger than one), then they would
vanish as ;1 | 0.



The week UV problem in the flow approach

In the context of singular SPDESs, the new divergences caused by the terms convergent
in the UV take the following from:

» they result in the fact that whenever f € C*>° and g € C#<°, fg is only C* and
not Co4.

Dealing with this difficulty is a the core of any solution theory to singular SPDEs:

» putting an IR cut-off on f, rather working with f > g, suggests that the other piece
f < g should be added to a paracontrolled ansatz;

» recentering f, rather working with (f —f(x )) g for some given base point x, suggests
to add f(x)g to the ansatz, and ultimately to view the solution as modelled by g,
with coefficient f(x);

» in the flow approach, an IR is directly implemented, in the sense that
f,’;"p, = Os(G - G,u)os + Cs(;,

and the fluctuation propagator G — G, o< p? vanishes at short scales, so that

indeed one has ||dos,u||u>o < e



Construction of the solution 1: the non-stationary force

Going back to the original context, recall that we wanted to solve

¢g = G(1t>085[¢5] + 51‘:0 ® ¢E(O)) ) SE [¢E] = h[(z)f]g‘f + c6(/7h')|:¢5] N

We constructed a stationary solution S¢ ,, to the flow equation truncated at order 1,
with initial condition S..

» To deal with parabolic problems, a good choice of UV cut-off is

Go(t,x) == x(t/u?)e"™(x), supp(x) = [1,00) and x | [2,00) = 1.
Ensures that ¢, is supported after time 1°.

» Given the trajectory (S:,.)u>0, Duch showed that one can construct without
any additional renormalization a trajectory (F ,,)u>o0 solving the truncated flow
equation with initial condition 1;>0S.. Indeed, the stationary and non-stationary
force coeflicients agree after a time of order i, and the small size of the remaining
interval can be leveraged to complete the construction.

» The renormalization is therefore independent of time.



Construction of the solution 2: the remainder equation

To simplify, set ¢ (0) = 0, so that . = G(F:[¢c]).

To compensate the fact that F. ,, only solves a truncated flow equation, we make the as-
sumption that there exists a random time T > 0 along with a remainder (Re, “)u o,V

such that for y € [0,v/T],
FE[¢€] = Fau[d’s,u] +Re -
Again using %FE [¢<] = 0, one can derive the equation
OuRep = _DF&M[(psyu]GuRE,u = (Ou + DFS;u[‘iﬁs,u]Gu)Fe,u[(ﬁe,u]a

that can be solved by a fixed point argument, but locally in scale up to a scale /T (this
is where the large field problem comes back into play).

On the other side, the solution reads

¢ = G(F[¢:]) = G(F. s7lo. 7] + R. s7)
=G(F. 701 +R. s7) on[0,T],

and is therefore constructed.



Construction of the solution 3: the initial value problem

Let us go back to the initial value problem. d—o ® ¢-(0) being too rough a forcing,
one rather shifts by the harmonic completion of the initial condition

H = G(8i=0 ® ¢=(0)) = & (¢(0)) ,
looking at 1. := ¢ — H which solves
Ve = G(150Se[e+H]) = G(108:[1he+H]) = G(150(Se [V +H]—01—0® < (0))) .
In the polynomial case, Duch noted that given the trajectory (Se,.).>0 solving the
(possibly truncated) flow equation with initial condition S,
Seul] = Seult) + Hul = 620 ® 6(0), Hyu = G (61=0 © ¢:(0))

is a solution too, with initial condition S; [t + H] — di=0 ® ¢<(0).

When the solution is of negative regularity say ¢ < 0, ég, » can be easily constructed,
since H,, shares the behavior of (G — G, )0, in the sense that one has

[Hyulleoe < 1



The initial value problem for gKPZ

In the case where the solution is of positive regularity « > 0, things are different, since
H,, can definitely not behave like (G — G, )o-.

Indeed, in the flow approach, being of positive regularity implies vanishing, while one
has H, — H.

That would not be a problem if we had
IH = Hylle < n®
However, the above estimate is wrong, since for t < 2, H,(t) = 0.
Actually, it only holds
172 (H = Hy)lle S 1

The presence of many non-compactly supported kernels makes the flow equation with
weights pretty involved.



Covariance blow-up [Hairer 2024]

As in other approaches, subcriticality is not the only limitation on the value of c.
Since c&’u o ;1722 one has

Cov($ e o) o™ el & —4+4a+d+2>0.

Ind =1, weneed o > 1/4.

Hairer showed in a very similar context, and in the marginal case o = 1/4, that f <
converges to a new noise do independent from o.

Moreover, the solution to the original KPZ equation converges to the solution to the
KPZ equation driven by f .

Is there a way to "renormalize" the covariance?



Thank you!
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