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EQFT measures

Aim: make sense of the formal expression

ν(dϕ) ∝ e−V(ϕ)
g(dϕ) ,

where g = N
(
0, (1 −∆)−1).

a
➤ (strong) UV problem:

∫
ϕ4 = ∞ a.s.;

➤ IR problem: ϕ has no decay as Λ ↑ Rd ;
➤ large field problem: the potentiel V needs to be bounded below;
➤ (week) UV problem: even in perturbation, convergent subamplitudes create new

divergences in the IR (called renormalon).
a
Let gε = N

(
0, e−ε(1−∆)/(1 −∆)

)
, and find Vε such that

νε(dϕ) =
1
Zε

e−Vε(ϕ)gε(dϕ)

has a weak limit as ε ↓ 0.



The renormalization group

For µ > ε,

ϕ = ϕ<µ + ϕ⩾µ ,

where

Law(ϕ<µ) = N
(
0, (e−ε(1−∆) − e−µ(1−∆))/(1 −∆)

)
, and Law(ϕ⩾µ) = gµ .

One is interested in observables F such that

F(ϕ) = F(ϕ⩾µ) , for some µ > 0 .

They verify

Eνε [F(ϕ)] =
1
Zε

Egε [F(ϕ)e
−Vε(ϕ)] =

1
Zε

E⩾µ

[
F(ϕ⩾µ)E<µ[e−Vε(ϕ<µ+ϕ⩾µ)]

]
=

1
Zε

E⩾µ[F(ϕ⩾µ)e−Vε,µ(ϕ⩾µ)] ,

where we set Vε,µ(ϕ⩾µ) := − logE<µ[e−Vε(ϕ<µ+ϕ⩾µ)].



Polchinski’s flow equation [Polchinski, Kopper,...]

Hope: for any µ > ε, Vε,µ can be controlled uniformly in ε, provided one made the
correct choice of "initial condition" Vε,ε ≡ Vε,0 = Vε.
By Gaussian integration, setting Cε,µ =

∫ µ

ε
e−t(1−∆)dt and Ċµ = e−µ(1−∆), one has

e−Vε,µ = e
1
2 ⟨∇ϕ,∇ϕ⟩Cε,µ

(
e−Vε

)
⇒ ∂µe−Vε,µ =

1
2
⟨∇ϕ,∇ϕ⟩Ċµ

e−Vε,µ

⇒ ∂µVε,µ =
1
2
⟨∇ϕ,∇ϕ⟩Ċµ

Vε,µ − 1
2
⟨∇ϕVε,µ,∇ϕVε,µ⟩Ċµ

.

Case V(ϕ) = λϕ4. Try an ansatz, and expand

Vε,µ(ϕ) =
∑
i⩾1

λi
∑
n⩾0

∫
V i,n
ε,µ(dx1, · · · , dxn)ϕ(x1) · · ·ϕ(xn) .

In d = 3, one ends up with

Vε,0 = λϕ4 + (aλε−1 + bλ2 log ε−1)ϕ2 + (cλε−2 + dλ2ε−1 + eλ3 log ε−1) .



The large field problem

➤ The UV problem is solved, in the sense that we identified Vε;
➤ The week UV problem too, since we were working with an IR cut-off ;
➤ This is not the case of the large field problem: since Vε is not bounded below

(uniformly in ε > 0). This corresponds to the fact that the formal series defining
Vε,µ is divergent.

a
Two main options to handle this large field problem:
a

➤ Rather perform a discreet renormalization group: good factors coming from high
convergent graphs can tame the divergence of Vε;

➤ Combine the Langevin dynamic

(∂t + 1 −∆)ϕ = −∇ϕV(ϕ) + ξ

with some PDE techniques.
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Discrete flow approach [Kupiainen 2014]

In 2014, Kupiainen introduced a framework to solve singular SPDEs, based on a
discrete renormalization group idea.
a
He deals with the dynamical Φ4

3 equation:

(∂t + 1 −∆)ϕε = −λϕ3
ε + cεϕε + ξε =: Sε[ϕε]

⇒ ϕε = G
(
1t>0Sε[ϕε] + δt=0 ⊗ ϕε(0)

)
.

For simplicity, assume that formally, we are in the stationary case

ϕε(0) = G
(
1t⩽0Sε[ϕε]

)
(0)

so that ϕε = G
(
Sε[ϕε]

)
.

a
Define the effective field

ϕ⩾µ ≡ ϕε,µ := Gµ

(
Sε[ϕε]

)
, where Gµ is cut-off at scale µ ,

along with the effective force by the relation

Sε,µ[ϕε,µ] = Sε[ϕε] .



Discrete flow approach [Kupiainen 2014]

Note that a priori one does not have DVε,µ = E[Sε,µ].
a
On the other hand, recall that it holds

E[e−Vε,µ[ϕε,µ]] = E[e−Vε[ϕε]] .

a
This motivates the definition of the effective force: by making Sε,µ random, one has
more room to require Sε,µ[ϕε,µ] = cteε.
a
With a fixed point argument, Kupiainen constructed for a random m ∈ N a family

(Sε,2−n)n⩾m

starting from Sε,2−∞ = Sε.
a
Involves tedious computations of stochastic objects.
a
The solution to the RG flow is local in scale, hence the solution to the equation is local
in time.



The flow equation [Duch 21]

Recall that formally,

Sε,µ[ϕε,µ] = Sε[ϕε] , and ϕε,µ = Gµ

(
Sε[ϕε]

)
.

Thus, one obtains a flow equation

0 =
d

dµ
Sε[ϕε] =

d
dµ

Sε,µ[ϕε,µ] = ∂µSε,µ[ϕε,µ] + DSε,µ∂µϕε,µ

⇒ 0 = ∂µSε,µ[ϕε,µ] + DSε,µĠµSε,µ[ϕε,µ] .

Looks very much like the Polchinski flow equation.
a
Again, combined with an appropriate ansatz for Sε,µ

Sε,µ[ϕ](x) =
∑
i⩾1

λi
∑
n⩾0

∫
ξ i,n
ε,µ(x, dy1, · · · , dyn)ϕ(y1) · · ·ϕ(yn) ,

where the force coefficients (ξ i,n
ε,µ) are a collection of random variables polynomial in

the noise, similar to the model of regularity structures.



Duch’s cumulant flow equation [Duch 21]

The previous flow equation rewrites as a hierarchy of equations for the force coefficients

∂µξ
i,n
ε,µ = −

∑
j

∑
m

(m + 1)ξ i−j,m+1
ε,µ Ġµξ

j,n−m
ε,µ .

Duch made the following crucial remark: there exists a similar hierarchical system of
equations for the cumulants

K I
ε,µ := κp

(
ξ i1,n1
ε,µ , . . . , ξ

ip,np
ε,µ

)
, I =

(
(i1, n1), . . . , (ip, np)

)
of the force coefficients, reading

∂µK I
ε,µ =

∑
J

CIJĠµK J
ε,µ +

∑
M,L

C̃IMLK M
ε,µĠµK L

ε,µ .

➤ It is therefore possible to construct all the cumulants (and therefore all the mo-
ments) of the force coefficients by induction, starting from the covariance of the
noise;

➤ This analysis avoids much of the algebraic considerations present in regularity
structures/higher paracontrolled calculus.
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Beyond polynomial interactions

The generalized KPZ equation

(∂t −∆)ϕ = gij(ϕ)∂iϕ∂jϕ+ h(ϕ)ξ .

a
General case of semi-linear singular parabolic SPDE with non-polynomial interaction,
including

➤ the Kardar–Parisi–Zhang equation,
➤ the multiplicative SHE, or parabolic Anderson model.

The equation is subcritical as long as the expected regularity of the solution is > 0
(i.e. ξ ∈ C−2+α, α > 0).
a
Falls outside the scope of the work by Duch, where

➤ the flow equation is implemented for a polynomial interaction;
➤ the solution theory is limited to the case where the regularity of the equation is

negative.
a
Another motivation coming from the quantization of gauge theories:

Φt(Ag0
0 ) =

(
ΦtA0

)gt for g−1∂tg = −d∗
Φt A0(g

−1dg) .



Main result

For simplicity, we focus on gPAM:

(∂t −∆)ϕε = h(ϕε) + cε(h, ϕε, ∂xϕε) .

a
Theorem 1 [Chandra, F.]
a

➤ Fix α ∈ (0 ∨ (1/2 − n/4), 1], and let Γ := ⌊2/α− 1⌋;
a

➤ fix a function h in C1+Γ+3NΓ+1
1 (R);

a
➤ fix an initial condition ϕε(0) in C4NΓ+1

1 +1(Tn).
a
Then, there exists a random variable 0 < T ⩽ 1 such that for any deterministic
T̃ ∈ (0, 1] the following holds on the event {T̃ ⩽ T}: gPAM is well posed on
Cα−([0, T̃ ] × Tn) with solutions ϕε which converges (in probability) to a limit ϕ in
Cα−([0, T̃ ]× Tn) as ε ↓ 0.



Ansatz for the effective force

Basis for the flow equation spanned by multi-indices a ∈ NN (for gPAM) corresponding
to some product of derivatives of h:

Υa[ϕ](ya) :=
∏

i∈supp(a)

∏
j∈[ai ]

h(i)(ϕ(ya
ij )
)
.

The multi-indices need to be populated, that is to say

o(a) :=
∑
i⩾0

iai = 1 +
∑
i⩾0

ai .

Subcriticality implies that it is sufficient to go to a certain order, after which all the
force coefficients are irrelevant. In practice, for gPAM with α ∈ (2/3, 1], one has

Sε,µ[ϕ](x) =
∑

a:o(a)⩽1

⟨ξa
ε,µ,Υ

a[ϕ]⟩(x)

=

∫
ξ1,0,···
ε,µ (x, dy)h

(
ψ(y)

)
+

∫
ξ1,1,···
ε,µ (x, dy, dz)h

(
ψ(y)

)
h′(ψ(z))

= εh[ψ] + ε,µ(hh′)[ψ] .



Renormalization

The force coefficients verify the flow equations

∂µ ε,µ(x, dy) = 0 ⇒ ε,µ(x, dy) = ε(x, dy) = ξε(x)δx(dy) for all µ > 0 ,

and

∂µ ε,µ(x, dy, dz) = − ε(x, dz)
∫

Ġ(z − w) ε(w, dy)dw .

a
The latter equation can not be solved forward in µ since ∥∂µ ε,µ∥L∞ ∝ µ−3+2α, and
is solved backward up to a (deterministic, diverging as ε ↓ 0) value

ε,0(x, dy, dz) = cεδx(dy)δx(dz) .

The counterterms are local.
a
Note that if we considered larger objects (of order larger than one), then they would
vanish as µ ↓ 0.



The week UV problem in the flow approach

In the context of singular SPDEs, the new divergences caused by the terms convergent
in the UV take the following from:

➤ they result in the fact that whenever f ∈ Cα>0 and g ∈ Cβ<0, fg is only Cβ and
not Cα+β .

a
Dealing with this difficulty is a the core of any solution theory to singular SPDEs:

➤ putting an IR cut-off on f , rather working with f ⪰ g, suggests that the other piece
f ≺ g should be added to a paracontrolled ansatz;

➤ recentering f , rather working with
(
f−f(x)

)
g for some given base point x, suggests

to add f(x)g to the ansatz, and ultimately to view the solution as modelled by g,
with coefficient f(x);

➤ in the flow approach, an IR is directly implemented, in the sense that

ε,µ = ε(G − Gµ) ε + cεδ ,

and the fluctuation propagator G − Gµ ∝ µ2 vanishes at short scales, so that
indeed one has ∥ ε,µ∥L∞ ≲ µ−2+2α.



Construction of the solution 1: the non-stationary force

Going back to the original context, recall that we wanted to solve

ϕε = G
(
1t>0Sε[ϕε] + δt=0 ⊗ ϕε(0)

)
, Sε[ϕε] = h[ϕε]ξε + cε(hh′)[ϕε] .

We constructed a stationary solution Sε,µ to the flow equation truncated at order 1,
with initial condition Sε.
a

➤ To deal with parabolic problems, a good choice of UV cut-off is

Gµ(t, x) := χ(t/µ2)et∆(x) , supp(χ) = [1,∞) and χ ↾ [2,∞) = 1 .

Ensures that ϕε,µ is supported after time µ2.
➤ Given the trajectory (Sε,µ)µ>0, Duch showed that one can construct without

any additional renormalization a trajectory (Fε,µ)µ>0 solving the truncated flow
equation with initial condition 1t>0Sε. Indeed, the stationary and non-stationary
force coefficients agree after a time of order µ, and the small size of the remaining
interval can be leveraged to complete the construction.

➤ The renormalization is therefore independent of time.



Construction of the solution 2: the remainder equation

To simplify, set ϕε(0) = 0, so that ϕε = G
(
Fε[ϕε]

)
.

a
To compensate the fact that Fε,µ only solves a truncated flow equation, we make the as-
sumption that there exists a random time T > 0 along with a remainder (Rε,µ)µ∈[0,

√
T ]

such that for µ ∈ [0,
√

T ],

Fε[ϕε] = Fε,µ[ϕε,µ] + Rε,µ .

Again using d
dµFε[ϕε] = 0, one can derive the equation

∂µRε,µ = −DFε,µ[ϕε,µ]ĠµRε,µ − (∂µ + DFε,µ[ϕε,µ]Ġµ)Fε,µ[ϕε,µ] ,

that can be solved by a fixed point argument, but locally in scale up to a scale
√

T (this
is where the large field problem comes back into play).
a
On the other side, the solution reads

ϕε = G
(
Fε[ϕε]

)
= G

(
Fε,

√
T [ϕε,

√
T ] + Rε,

√
T

)
= G

(
Fε,

√
T [0] + Rε,

√
T

)
on [0, T ] ,

and is therefore constructed.



Construction of the solution 3: the initial value problem

Let us go back to the initial value problem. δt=0 ⊗ ϕε(0) being too rough a forcing,
one rather shifts by the harmonic completion of the initial condition

H := G
(
δt=0 ⊗ ϕε(0)

)
= et∆(ϕε(0)

)
,

looking at ψε := ϕε − H which solves

ψε = G
(
1t>0Sε[ψε+H]

)
= G

(
1t>0Sε[ψε+H]

)
= G

(
1t>0(Sε[ψε+H]−δt=0⊗ϕε(0))

)
.

a
In the polynomial case, Duch noted that given the trajectory (Sε,µ)µ>0 solving the
(possibly truncated) flow equation with initial condition Sε,

S̃ε,µ[ψ] := Sε,µ[ψ + Hµ]− δt=0 ⊗ ϕε(0) , Hµ = Gµ

(
δt=0 ⊗ ϕε(0)

)
is a solution too, with initial condition Sε[ψε + H]− δt=0 ⊗ ϕε(0).
a
When the solution is of negative regularity say ς ⩽ 0, S̃ε,µ can be easily constructed,
since Hµ shares the behavior of (G − Gµ) ε, in the sense that one has

∥Hµ∥L∞ ≲ µς .



The initial value problem for gKPZ

In the case where the solution is of positive regularity α > 0, things are different, since
Hµ can definitely not behave like (G − Gµ) ε.
a
Indeed, in the flow approach, being of positive regularity implies vanishing, while one
has Hµ → H.
a
That would not be a problem if we had

∥H − Hµ∥L∞ ≲ µα .

However, the above estimate is wrong, since for t ⩽ µ2, Hµ(t) = 0.
a
Actually, it only holds

∥tα/2(H − Hµ)∥L∞ ≲ µα .

The presence of many non-compactly supported kernels makes the flow equation with
weights pretty involved.



Covariance blow-up [Hairer 2024]

As in other approaches, subcriticality is not the only limitation on the value of α.
a
Since ε,µ ∝ µ−2+2α, one has

Cov( ε,µ, ε,µ) ∝ µ−4+4α ∈ L1 ⇔ −4 + 4α+ d + 2 > 0 .

In d = 1, we need α > 1/4.
a
Hairer showed in a very similar context, and in the marginal case α = 1/4, that ε

converges to a new noise independent from .
a
Moreover, the solution to the original KPZ equation converges to the solution to the
KPZ equation driven by .
a
Is there a way to "renormalize" the covariance?



Thank you!
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