Renormalization of a stochastic nonlinear Schrödinger (NLS) model

Aurélien DEYA (University of Lorraine, Nancy, France)

Rencontre ANR Brest, 2024

Joint work with R. Fukuizumi (Tokyo) and L. Thomann (Nancy)

Main result

A first glimpse of the model

1-d quadratic Schrödinger model with additive noise:

$$(i\partial_t - \Delta)u = |u|^2 + \dot{B}, \quad u_0 = 0, \qquad t \in \mathbb{R}, \ x \in \mathbb{T},$$

where $\mathbb{T} = \mathbb{R}/2\pi\mathbb{Z}$ and \dot{B} is a stochastic noise.

Two main objectives

Random NLS equations

- (i) Identify and treat situations where the equation cannot be interpreted in a space of functions, but only in a space of general distributions, using some additional renormalization procedure.
- (ii) Go beyond the classical white-noise-in-time situations and handle the case of a space-time fractional noise \dot{B} (= test pathwise approach).

Main result

A first glimpse of the model

1-d quadratic Schrödinger model with additive noise:

$$(i\partial_t - \Delta)u = |u|^2 + \dot{B}, \quad u_0 = 0, \qquad t \in \mathbb{R}, \ x \in \mathbb{T},$$

where $\mathbb{T} = \mathbb{R}/2\pi\mathbb{Z}$ and \dot{B} is a stochastic noise.

Two main objectives:

Random NLS equations

- (i) Identify and treat situations where the equation cannot be interpreted in a space of functions, but only in a space of general distributions, using some additional renormalization procedure.
- (ii) Go beyond the classical white-noise-in-time situations and handle the case of a space-time fractional noise \dot{B} (= test pathwise approach).

A first glimpse of the model

1-d quadratic Schrödinger model with additive noise:

$$(i\partial_t - \Delta)u = |u|^2 + \dot{B}, \quad u_0 = 0, \qquad t \in \mathbb{R}, \ x \in \mathbb{T},$$

where $\mathbb{T} = \mathbb{R}/2\pi\mathbb{Z}$ and \dot{B} is a stochastic noise.

Two main objectives:

Random NLS equations

- (i) Identify and treat situations where the equation cannot be interpreted in a space of functions, but only in a space of general distributions, using some additional renormalization procedure.
- (ii) Go beyond the classical white-noise-in-time situations and handle the case of a space-time fractional noise \dot{B} (= test pathwise approach).

Outline

- **1** Random NLS equations
- 2 Fractional noise
- 3 The low regularity issue
- Renormalization: three examples
- Main result

At the crossroads of two lines of research

1. NLS equations with random initial condition: for $p, q \in \mathbb{N}$,

$$(\imath\partial_t-\Delta)u=\overline{u}^pu^q,\quad u(0,.)=\textcolor{red}{\Phi},\quad t\in[-T,T],\;x\in\mathbb{R}^d\;\text{or}\;\mathbb{T}^d,$$

where Φ is a random distribution of low regularity on \mathbb{R}^d or \mathbb{T}^d .

• Bourgain, Burq, Tzvetkov, Oh, Thomann, Robert, Deng, Nahmod, Yue...

2. Stochastic NLS models: for regular maps b, σ ,

$$(i\partial_t - \Delta)u = b(u) + \sigma(u) \dot{W}, \quad u(0,.) = 0, \quad t \in [-T, T], \ x \in \mathbb{R}^d \text{ or } \mathbb{T}^d,$$
 where \dot{W} is a random noise on $[0, T] \times \mathbb{R}^d$ or $[0, T] \times \mathbb{T}^d$.

In the literature: \dot{W} is a white noise in time ightarrow stochastic $\mathit{lt\^o-type}$ controls

- $\bullet \ \mathsf{De} \ \mathsf{Bouard}\text{-}\mathsf{Debussche}, \ \mathsf{Brz\'ezniak}\text{-}\mathsf{Millet}, \ \mathsf{Hornung}, \ \mathsf{Cheung}\text{-}\mathsf{Mosincat}, \dots$
- \longrightarrow Only possible if the equation can be treated in a space of functions

Outline

- Random NLS equations
- Practional noise
- 3 The low regularity issue
- 4 Renormalization: three examples
- Main result

Main result

$$(i\partial_t - \Delta)u = |u|^2 + \dot{\mathcal{B}}, \quad u_0 = 0, \qquad t \in \mathbb{R}, \ x \in \mathbb{T}.$$

Definition. We call **space-time fractional noise** of indexes $H_0, H_1 \in (\frac{1}{2}, 1)$ the centered Gaussian noise \dot{B} on $\mathbb{R} \times \mathbb{R}$ with

$$\mathbb{E}\big[\langle \dot{B}, \varphi \rangle \langle \dot{B}, \psi \rangle\big] = \int ds dt \int dx dy \, \varphi(s, x) \psi(t, y) |s - t|^{2H_0 - 2} |x - y|^{2H_1 - 2}.$$

When $H_0, H_1 \to \frac{1}{2}$, \dot{B} converges to a space-time white noise \dot{W} .

Recall that $\dot{W} = \partial_t \partial_x W$, with W a Brownian sheet.

 \longrightarrow In the same way, $\dot{B} = \partial_t \partial_x B$ with B a fractional Brownian sheet (= 2-parameter version of a fractional Brownian motion).

Fractional noise

$$(i\partial_t - \Delta)u = |u|^2 + \dot{\underline{B}}, \quad u_0 = 0, \qquad t \in \mathbb{R}, \ x \in \mathbb{T}.$$
 (1)

Definition. We call space-time fractional noise of indexes $H_0, H_1 \in$ $(\frac{1}{2},1)$ the centered Gaussian noise B on $\mathbb{R}\times\mathbb{R}$ with

$$\mathbb{E}\big[\langle \dot{B}, \varphi \rangle \langle \dot{B}, \psi \rangle\big] = \int ds dt \int dx dy \, \varphi(s, x) \psi(t, y) |s - t|^{2H_0 - 2} |x - y|^{2H_1 - 2}.$$

When $H_0, H_1 \rightarrow \frac{1}{2}$, \dot{B} converges to a space-time white noise \dot{W} .

Fractional noise

$$\left| (i\partial_t - \Delta)u = |u|^2 + \dot{\underline{B}}, \quad u_0 = 0, \qquad t \in \mathbb{R}, \ x \in \mathbb{T}. \right| \tag{1}$$

Definition. We call space-time fractional noise of indexes $H_0, H_1 \in$ $(\frac{1}{2},1)$ the centered Gaussian noise B on $\mathbb{R}\times\mathbb{R}$ with

$$\mathbb{E}\big[\langle \dot{B}, \varphi \rangle \langle \dot{B}, \psi \rangle\big] = \int ds dt \int dx dy \, \varphi(s, x) \psi(t, y) |s - t|^{2H_0 - 2} |x - y|^{2H_1 - 2}.$$

When $H_0, H_1 \rightarrow \frac{1}{2}$, \dot{B} converges to a space-time white noise \dot{W} .

Recall that $W = \partial_t \partial_x W$, with W a Brownian sheet.

 \longrightarrow In the same way, $|\dot{B} = \partial_t \partial_x B|$ with B a fractional Brownian sheet (= 2-parameter version of a fractional Brownian motion).

$$\mathbb{E}[B_s B_t] = \frac{1}{2} \{ |s|^{2H} + |t|^{2H} - |t - s|^{2H} \}.$$

Remark. When $H = \frac{1}{2}$, one has $\mathbb{E}[B_s B_t] = \frac{1}{2}\{|s| + |t| - |t - s|\} = s \wedge t$. $\implies B$ is a (standard) Brownian motion

Properties.

Self-similar: for every $a \in \mathbb{R}$, $\{B_{at}, t \geq 0\} \sim \{|a|^H B_t, t \geq 0\}$.

Stationary increments: $B_t - B_s \sim B_{t-s}$.

Pathwise regularity: a.s., $|B_t - B_s| \lesssim |t - s|^{H-\varepsilon}$ for all $0 \leq s, t \leq 1$.

Long-range dependence: one has for instance, for $n \ge 1$,

$$\mathbb{E}[(B_1 - B_0)(B_{n+1} - B_n)] = \frac{1}{2}((n+1)^{2H} + (n-1)^{2H} - 2n^{2H}).$$

When $H \neq \frac{1}{2}$, **memory effect**: disjoint increments are not independent. When $H \neq \frac{1}{2}$, B is not a martingale process.

$$\mathbb{E}[B_s B_t] = \frac{1}{2} \{ |s|^{2H} + |t|^{2H} - |t - s|^{2H} \}.$$

Remark. When $H=\frac{1}{2}$, one has $\mathbb{E}\big[B_sB_t\big]=\frac{1}{2}\big\{|s|+|t|-|t-s|\big\}=s\wedge t.$ $\implies B$ is a (standard) Brownian motion

Properties.

Self-similar: for every $a \in \mathbb{R}$, $\{B_{at}, \ t \ge 0\} \sim \{|a|^H B_t, \ t \ge 0\}$.

Stationary increments: $B_t - B_s \sim B_{t-s}$.

Pathwise regularity: a.s., $|B_t - B_s| \lesssim |t - s|^{H - \varepsilon}$ for all $0 \le s, t \le 1$

Long-range dependence: one has for instance, for $n \ge 1$

$$\mathbb{E}[(B_1 - B_0)(B_{n+1} - B_n)] = \frac{1}{2}((n+1)^{2H} + (n-1)^{2H} - 2n^{2H}).$$

When $H \neq \frac{1}{2}$, **memory effect**: disjoint increments are not independent. When $H \neq \frac{1}{2}$, B is not a martingale process.

$$\mathbb{E}[B_s B_t] = \frac{1}{2} \{ |s|^{2H} + |t|^{2H} - |t - s|^{2H} \}.$$

Remark. When $H=\frac{1}{2}$, one has $\mathbb{E}\big[B_sB_t\big]=\frac{1}{2}\big\{|s|+|t|-|t-s|\big\}=s\wedge t.$ $\implies B$ is a (standard) Brownian motion

Properties.

Self-similar: for every $a \in \mathbb{R}$, $\{B_{at}, t \geq 0\} \sim \{|a|^H B_t, t \geq 0\}$.

Stationary increments: $B_t - B_s \sim B_{t-s}$.

Pathwise regularity: a.s., $|B_t - B_s| \lesssim |t - s|^{H - \varepsilon}$ for all $0 \le s, t \le 1$.

Long-range dependence: one has for instance, for $n \ge 1$

$$\mathbb{E}[(B_1 - B_0)(B_{n+1} - B_n)] = \frac{1}{2}((n+1)^{2H} + (n-1)^{2H} - 2n^{2H}).$$

When $H \neq \frac{1}{2}$, **memory effect**: disjoint increments are not independent. When $H \neq \frac{1}{2}$, B is not a martingale process.

$$\mathbb{E}[B_s B_t] = \frac{1}{2} \{ |s|^{2H} + |t|^{2H} - |t - s|^{2H} \}.$$

Remark. When $H=\frac{1}{2}$, one has $\mathbb{E}\big[B_sB_t\big]=\frac{1}{2}\big\{|s|+|t|-|t-s|\big\}=s\wedge t.$ $\implies B$ is a (standard) Brownian motion

Properties.

Self-similar: for every $a \in \mathbb{R}$, $\{B_{at}, t \geq 0\} \sim \{|a|^H B_t, t \geq 0\}$.

Stationary increments: $B_t - B_s \sim B_{t-s}$.

Pathwise regularity: a.s., $|B_t - B_s| \lesssim |t - s|^{H - \varepsilon}$ for all $0 \le s, t \le 1$.

Long-range dependence: one has for instance, for $n \ge 1$,

$$\mathbb{E}[(B_1 - B_0)(B_{n+1} - B_n)] = \frac{1}{2}((n+1)^{2H} + (n-1)^{2H} - 2n^{2H}).$$

When $H \neq \frac{1}{2}$, **memory effect**: disjoint increments are not independent. When $H \neq \frac{1}{2}$, B is not a martingale process.

Fractional noise

The fractional noise is a standard noise model in the SDE/SPDE literature

- SDE: classical application of rough-paths theory
- Heat/wave models: either Skorohod or pathwise interpretation
- Schrödinger: ??

$$(i\partial_t - \Delta)u = |u|^2 + \dot{B}, \quad u_0 = 0, \qquad t \in \mathbb{R}, \ x \in \mathbb{T}.$$

Definition. We call space-time fractional noise of indexes $H_0, H_1 \in (\frac{1}{2}, 1)$ the centered Gaussian noise \dot{B} on $\mathbb{R} \times \mathbb{R}$ with

$$\mathbb{E}\big[\langle \dot{B}, \varphi \rangle \langle \dot{B}, \psi \rangle\big] = \int ds dt \int dx dy \ \varphi(s,x) \psi(t,y) |s-t|^{2H_0-2} |x-y|^{2H_1-2}.$$

We define the space-time fractional noise on $\mathbb{R} imes \mathbb{T}$ by

$$\dot{B}(t,x) = \sum_{k \in \mathbb{Z}} \left(\int_0^{2\pi} dy \ e^{-\imath ky} \dot{B}(t,y) \right) e^{\imath kx}.$$

Remark. Not to be confused with the regularized white noise

$$\dot{W}^{(-\alpha)}(t,x) = (\langle \nabla \rangle^{(-\alpha)} \dot{W})(t,x) = \sum_{k \in \mathbb{Z}} \frac{1}{\langle k \rangle^{\alpha}} \dot{\beta}_t^{(k)} e^{\imath k x}$$

Fractional noise

$$(i\partial_t - \Delta)u = |u|^2 + \dot{B}, \quad u_0 = 0, \qquad t \in \mathbb{R}, \ x \in \mathbb{T}.$$

Definition. We call space-time fractional noise of indexes $H_0, H_1 \in (\frac{1}{2}, 1)$ the centered Gaussian noise B on $\mathbb{R} \times \mathbb{R}$ with

$$\mathbb{E}\big[\langle \dot{B}, \varphi \rangle \langle \dot{B}, \psi \rangle\big] = \int ds dt \int dx dy \, \varphi(s, x) \psi(t, y) |s - t|^{2H_0 - 2} |x - y|^{2H_1 - 2}.$$

We define the space-time fractional noise on $\mathbb{R} \times \mathbb{T}$ by

$$\dot{B}(t,x) = \sum_{k\in\mathbb{Z}} \left(\int_0^{2\pi} dy \, e^{-\imath ky} \dot{B}(t,y)\right) e^{\imath kx}.$$

$$\dot{W}^{(-\alpha)}(t,x) = (\langle \nabla \rangle^{(-\alpha)} \dot{W})(t,x) = \sum_{k \in \mathbb{Z}} \frac{1}{\langle k \rangle^{\alpha}} \dot{\beta}_t^{(k)} e^{ikx}$$

Fractional noise

Fractional noise

$$(i\partial_t - \Delta)u = |u|^2 + \dot{B}, \quad u_0 = 0, \qquad t \in \mathbb{R}, \ x \in \mathbb{T}.$$

Definition. We call space-time fractional noise of indexes $H_0, H_1 \in (\frac{1}{2}, 1)$ the centered Gaussian noise B on $\mathbb{R} \times \mathbb{R}$ with

$$\mathbb{E}\big[\langle \dot{B}, \varphi \rangle \langle \dot{B}, \psi \rangle\big] = \int ds dt \int dx dy \, \varphi(s, x) \psi(t, y) |s - t|^{2H_0 - 2} |x - y|^{2H_1 - 2}.$$

We define the space-time fractional noise on $\mathbb{R} \times \mathbb{T}$ by

$$\dot{B}(t,x) = \sum_{k\in\mathbb{Z}} \left(\int_0^{2\pi} dy \, e^{-\imath ky} \dot{B}(t,y)\right) e^{\imath kx}.$$

Remark. Not to be confused with the regularized white noise

$$\dot{W}^{(-\alpha)}(t,x) = (\langle \nabla \rangle^{(-\alpha)} \dot{W})(t,x) = \sum_{k \in \mathbb{Z}} \frac{1}{\langle k \rangle^{\alpha}} \dot{\beta}_t^{(k)} e^{\imath kx}.$$

Outline

- Random NLS equations
- 2 Fractional noise
- 3 The low regularity issue
- 4 Renormalization: three examples
- Main result

$$(i\partial_t - \Delta)u = |u|^2 + \dot{B}, \quad u_0 = 0, \qquad t \in \mathbb{R}, \ x \in \mathbb{T}.$$

Let us recast the dynamics in the mild form:

$$u(t) = -i \int_0^t ds \, e^{-i(t-s)\Delta} \dot{B}(s,.) - i \int_0^t ds \, e^{-i(t-s)\Delta} |u(s,.)|^2$$
$$= e^{-it\Delta} \left[-i \int_0^t ds \, e^{is\Delta} \dot{B}(s,.) - i \int_0^t ds \, e^{is\Delta} \left(u(s,.) \overline{u(s,.)} \right) \right].$$

Setting

$$\mathring{u}(t) := e^{\imath t \Delta} u(t)$$
 and $\mathring{\downarrow}(t,.) := -\imath \int_0^t ds \, e^{\imath s \Delta} \dot{B}(s)$ ("linear solution")

we obtain

$$\mathring{u}(t) = \mathring{\downarrow}(t) - i \int_0^t ds \, e^{is\Delta} ((e^{-is\Delta}\mathring{u}(s)) \overline{(e^{-is\Delta}\mathring{u}(s))})$$

Mild formulation

$$(i\partial_t - \Delta)u = |u|^2 + \dot{B}, \quad u_0 = 0, \qquad t \in \mathbb{R}, \ x \in \mathbb{T}.$$

Let us recast the dynamics in the mild form:

$$u(t) = -i \int_0^t ds \, e^{-i(t-s)\Delta} \dot{B}(s,.) - i \int_0^t ds \, e^{-i(t-s)\Delta} |u(s,.)|^2$$
$$= e^{-it\Delta} \left[-i \int_0^t ds \, e^{is\Delta} \dot{B}(s,.) - i \int_0^t ds \, e^{is\Delta} \left(u(s,.) \overline{u(s,.)} \right) \right].$$

$$\mathring{u}(t) := e^{\imath t \Delta} u(t)$$
 and $\mathring{\downarrow}(t,.) := -\imath \int_0^t ds \, e^{\imath s \Delta} \dot{B}(s)$ ("linear solution")

$$\mathring{u}(t) = \mathring{\downarrow}(t) - i \int_{0}^{t} ds \, e^{is\Delta} ((e^{-is\Delta}\mathring{u}(s)) \overline{(e^{-is\Delta}\mathring{u}(s))})$$

Mild formulation

$$(i\partial_t - \Delta)u = |u|^2 + \dot{B}, \quad u_0 = 0, \qquad t \in \mathbb{R}, \ x \in \mathbb{T}.$$

Let us recast the dynamics in the mild form:

$$u(t) = -i \int_0^t ds \, e^{-i(t-s)\Delta} \dot{B}(s,.) - i \int_0^t ds \, e^{-i(t-s)\Delta} |u(s,.)|^2$$
$$= e^{-it\Delta} \left[-i \int_0^t ds \, e^{is\Delta} \dot{B}(s,.) - i \int_0^t ds \, e^{is\Delta} \left(u(s,.) \overline{u(s,.)} \right) \right].$$

Setting

$$\mathring{u}(t) := e^{\imath t \Delta} u(t) \quad \text{and} \quad \mathring{\P}(t,.) := -\imath \int_0^t ds \, e^{\imath s \Delta} \dot{B}(s) \quad (\text{"linear solution"}),$$

$$\mathring{u}(t) = \mathring{\downarrow}(t) - i \int_{0}^{t} ds \, e^{is\Delta} ((e^{-is\Delta}\mathring{u}(s)) \overline{(e^{-is\Delta}\mathring{u}(s))})$$

Mild formulation

$$(i\partial_t - \Delta)u = |u|^2 + \dot{B}, \quad u_0 = 0, \qquad t \in \mathbb{R}, \ x \in \mathbb{T}.$$

Let us recast the dynamics in the mild form:

$$u(t) = -i \int_0^t ds \, e^{-i(t-s)\Delta} \dot{B}(s,.) - i \int_0^t ds \, e^{-i(t-s)\Delta} |u(s,.)|^2$$
$$= e^{-it\Delta} \left[-i \int_0^t ds \, e^{is\Delta} \dot{B}(s,.) - i \int_0^t ds \, e^{is\Delta} \left(u(s,.) \overline{u(s,.)} \right) \right].$$

Setting

$$\mathring{u}(t) := e^{\imath t \Delta} u(t) \quad \text{and} \quad \mathring{?}(t,.) := -\imath \int_0^t ds \, e^{\imath s \Delta} \dot{B}(s) \quad \text{("linear solution")},$$

we obtain

$$\dot{u}(t) = (t) - i \int_0^t ds \, e^{is\Delta} ((e^{-is\Delta} \dot{u}(s)) \overline{(e^{-is\Delta} \dot{u}(s))}).$$

Low regularity issue

$$\mathring{u}(t) = (t) - i \int_0^t ds \, e^{is\Delta} ((e^{-is\Delta}\mathring{u}(s)) \overline{(e^{-is\Delta}\mathring{u}(s))}),$$

with (formally)

$$\Pr(t,.) := -i \int_0^t ds \, e^{is\Delta} \dot{B}(s).$$

To study the wellposedness and regularity of \hat{Q} , consider a sequence of smooth approximations $\dot{B}^{(n)}$ of \dot{B} (e.g., $\dot{B}^{(n)} := \rho_n * \dot{B}$) and set

$$\mathbb{Q}^{(n)}(t,.) := -\imath \int_0^t ds \, e^{\imath s \Delta} \dot{B}^{(n)}(s) ds$$

Proposition. Let \dot{B} be a fractional noise of index (H_0, H_1) , and T > 0.

(i) If
$$2H_0+H_1>2$$
, then $\binom{\circ(n)}{i}_{n\geq 1}$ converges a.s. in $L^2(\mathbb{R}\times\mathbb{T})$

(ii) If
$$2H_0 + H_1 \leq 2$$
, then a.s. $\| \cdot \|_{L^2([0,T]\times \mathbb{T})}^{0(n)} \|_{L^2([0,T]\times \mathbb{T})} \to \infty$ as $n \to \infty$.

Low regularity issue

$$\mathring{u}(t) = \int_{0}^{t} ds \, e^{\imath s \Delta} \big((e^{-\imath s \Delta} \mathring{u}(s)) \overline{(e^{-\imath s \Delta} \mathring{u}(s))} \big),$$

with (formally)

$$\Pr(t,.) := -i \int_0^t ds \, e^{is\Delta} \dot{B}(s).$$

To study the wellposedness and regularity of $\hat{}^{}_{\cdot}$, consider a sequence of smooth approximations $\dot{B}^{(n)}$ of \dot{B} (e.g., $\dot{B}^{(n)} := \rho_n * \dot{B}$) and set

$$\mathcal{C}^{(n)}(t,.) := -i \int_0^t ds \, e^{is\Delta} \dot{B}^{(n)}(s).$$

Proposition. Let \dot{B} be a fractional noise of index (H_0, H_1) , and T > 0.

- (i) If $2H_0+H_1>2$, then $({}^{{\Bbb Q}^{(n)}})_{n\geq 1}$ converges a.s. in $L^2({\Bbb R}\times{\Bbb T})$
- (ii) If $2H_0 + H_1 \leq 2$, then a.s. $\| \cdot \|_{L^2([0,T] \times \mathbb{T})}^{0(n)} \|_{L^2([0,T] \times \mathbb{T})} \to \infty$ as $n \to \infty$.

Low regularity issue

$$\mathring{u}(t) = \mathring{\downarrow}(t) - i \int_0^t ds \, e^{is\Delta} \big((e^{-is\Delta} \mathring{u}(s)) \overline{(e^{-is\Delta} \mathring{u}(s))} \big),$$

with (formally)

$$\bigcap(t,.):=-\imath\int_0^t ds\,e^{\imath s\Delta}\dot{B}(s)\,.$$

To study the wellposedness and regularity of $\hat{}^{}_{,}$, consider a sequence of smooth approximations $\dot{B}^{(n)}$ of \dot{B} (e.g., $\dot{B}^{(n)}:=\rho_n*\dot{B}$) and set

$$\mathcal{C}^{(n)}(t,.) := -i \int_0^t ds \, e^{is\Delta} \dot{B}^{(n)}(s).$$

Proposition. Let \dot{B} be a fractional noise of index (H_0, H_1) , and T > 0.

(i) If
$$2H_0 + H_1 > 2$$
, then $\binom{n}{2} n \ge 1$ converges a.s. in $L^2(\mathbb{R} \times \mathbb{T})$.

(ii) If
$$2H_0 + H_1 \leq 2$$
, then a.s. $\| \cdot^{(n)} \|_{L^2([0,T]\times \mathbb{T})} \to \infty$ as $n \to \infty$.

Proposition. Assume that $2H_0 + H_1 < 2$.

Then, almost surely and for every T > 0, the sequence of functions

$$(t,x)\mapsto \int_0^t ds\,e^{\imath s\Delta}\Big(\big(e^{-\imath s\Delta_{\bullet}^{(n)}(s)}\big)\overline{\big(e^{-\imath s\Delta_{\bullet}^{(n)}(s)}\big)}\Big)(x)$$

fails to converge in the general space of distributions on $[-T, T] \times \mathbb{T}$.

Low regularity issue \implies renormalization

 \implies When $2H_0 + H_1 < 2$, we need to renormalize our model

$$(i\partial_t - \Delta)u^{(n)} = |u^{(n)}|^2 + \dot{B}^{(n)}, \quad u_0^{(n)} = 0, \qquad t \in \mathbb{R}, \ x \in \mathbb{T}.$$

= Find "reasonable" correction

$$(i\partial_t - \Delta)\tilde{u}^{(n)} = |\tilde{u}^{(n)}|^2 - \sigma^{(n)} + \dot{B}^{(n)},$$

so that $\tilde{u}^{(n)}$ converges as $n \to \infty$.

$$\sigma^{(n)} = |\tilde{u}^{(n)}|^2$$
 or $\sigma^{(n)} = \dot{B}^{(n)}$, ...

Low regularity issue \implies renormalization

 \implies When $2H_0 + H_1 \le 2$, we need to renormalize our model

$$(i\partial_t - \Delta)u^{(n)} = |u^{(n)}|^2 + \dot{B}^{(n)}, \quad u_0^{(n)} = 0, \qquad t \in \mathbb{R}, \ x \in \mathbb{T}.$$

= Find "reasonable" correction

$$(i\partial_t - \Delta)\tilde{u}^{(n)} = |\tilde{u}^{(n)}|^2 - \sigma^{(n)} + \dot{B}^{(n)},$$

so that $\tilde{u}^{(n)}$ converges as $n \to \infty$.

Of course we want to avoid trivial renormalization procedures, such that

$$\sigma^{(n)} = |\tilde{u}^{(n)}|^2$$
 or $\sigma^{(n)} = \dot{B}^{(n)}$, ...

⇒ identify a reasonable class of renormalization procedures

Outline

- Random NLS equations
- 2 Fractional noise
- The low regularity issue
- Renormalization: three examples
- Main result

Three examples from the SPDE literature

First example: Heat Φ_3^4 model

$$(\partial_t - \Delta)u = u^3 + \dot{B}, \quad u_0 = 0, \quad t \in [0, T], \ x \in \mathbb{T}^3.$$

Theorem (Hairer 12', "Wick" renormalization).

Let \dot{B} be a space-time white noise on $\mathbb{R}_+ \times \mathbb{T}^3$, and $\dot{B}^{(n)} := \rho_n * \dot{B}$.

Then there exists a sequence $(\Lambda^{(n)})_{n\geq 1}$ such that:

- (i) for every $n \ge 1$, $\Lambda^{(n)} \in \mathbb{R}$ is a deterministic constant,
- (ii) $\Lambda^{(n)}$ can be explicitly described in terms of $\dot{B}^{(n)}$
- (iii) $\Lambda^{(n)} \to \infty$ as $n \to \infty$,
- (iv) the renormalized equation

$$\boxed{(\partial_t - \Delta) u^{(n)} = (u^{(n)})^3 - \Lambda^{(n)} u^{(n)} + \dot{B}^{(n)}}, \ u_0^{(n)} = 0, \ t \in [0, T], \ x \in \mathbb{T}^3,$$

converges a.s. in $C([0, T]; \mathcal{H}^{-\alpha}(\mathbb{T}^3))$, for some $\alpha > 0$.

Three examples from the SPDE literature

Second example: Quadratic wave in 3d

$$(\partial_t^2 - \Delta)u = u^2 + \dot{B}, \quad u_0 = 0, \quad t \in [0, T], \ x \in \mathbb{T}^3,$$

Theorem (Gubinelli-Koch-Oh 18', "Wick" renormalization).

Let \dot{B} be a space-time white noise on $\mathbb{R}_+ \times \mathbb{T}^3$, and $\dot{B}^{(n)} := \rho_n * \dot{B}$. Then there exists a sequence $(\sigma^{(n)})_{n \geq 1}$ such that:

- (i) for every $n \ge 1$, $\sigma^{(n)} : \mathbb{R}_+ \to \mathbb{R}$ is a deterministic time function,
- (ii) for every $t \geq 0$, $\sigma^{(n)}(t)$ can be explicitly described in terms of $\dot{B}^{(n)}$,
- (iii) for every t>0, $\sigma^{(n)}(t)\to\infty$ as $n\to\infty$,
- (iv) the renormalized equation

$$\boxed{(\partial_t^2 - \Delta)u^{(n)} = (u^{(n)})^2 - \sigma^{(n)} + \dot{B}^{(n)}}, \ u_0^{(n)} = 0, \ t \in [0, T], \ x \in \mathbb{T}^3,$$

converges a.s. in $C([0, T]; \mathcal{H}^{-\alpha}(\mathbb{T}^3))$, for some $\alpha > 0$.

Three examples from the SPDE literature

Third example: Cubic NLS with rough random initial condition

$$(i\partial_t - \Delta)u = |u|^2 u, \quad u_0 = \Phi, \quad t \in [-T, T], \ x \in \mathbb{T}.$$

Theorem (Colliander-Oh 10', "Bourgain" renormalization).

Let Φ be in a suitable space of rough random distributions on \mathbb{T} , and denote by $(\Phi^{(n)})_{n\geq 1}$ its Fourier approximation. Then setting

$$\Lambda^{(n)}(\omega) := 2 \int_{\mathbb{T}} dx \, |\Phi^{(n)}(\omega, x)|^2,$$

the renormalized equation

$$\boxed{(i\partial_t - \Delta)u^{(n)} = |u^{(n)}|^2 u^{(n)} - \Lambda^{(n)} u^{(n)}}, \quad u_0^{(n)} = \Phi^{(n)}, \ t \in [-T, T], \ x \in \mathbb{T},$$

converges a.s. in $\mathcal{C}([-T,T];\mathcal{H}^{-\alpha}(\mathbb{T}))$, for some $\alpha>0$.

Remark.

- (i) $\Lambda^{(n)}$ is explicitly described in terms of $\Phi^{(n)}$.
- (ii) $\Lambda^{(n)}$ does not depend on (t,x), but it still depends on ω .

"Guidelines" for the renormalization terms:

- Depend explicitly on the noise \dot{B} , and not on the solution u.
- Offer some "reduction" in the variables, i.e. not depend simultaneously on t, x and ω

Outline

- Random NLS equations
- 2 Fractional noise

Random NLS equations

- Main result

Theorem (D-F-T 23). Let $H_0, H_1 > \frac{1}{2}$ be such that $\frac{7}{4} < 2H_0 + H_1 < 2$, and set

$$\Lambda^{(n)}(t) := \int_{\mathbb{T}} \overline{\mathbb{Q}^{(n)}(t,x)} \, dx, \quad \sigma^{(n)}(t) := \sum_{k \neq 0} \mathbb{E} \left[\left| \mathbb{Q}^{(n)}_k(t) \right|^2 \right].$$

Then:

- (i) For every $0 < t \le 1$, $\sigma^{(n)}(t) \stackrel{n \to \infty}{\sim} c_H t 2^{2n(2-(2H_0+H_1))}$.
- (ii) There exists a (random) time $T_0 > 0$ such that the sequence

$$\left[(\imath\partial_t - \Delta)u^{(n)} = |u^{(n)}|^2 - \left[\Lambda^{(n)}u^{(n)} + \sigma^{(n)}\right] + \dot{B}^{(n)}\right]$$

converges a.s. to some limit u in $\mathcal{C}([-T_0, T_0]; \mathcal{H}^{-\alpha}(\mathbb{T}))$, for some $\alpha > 0$.

 $\label{eq:Some details about the strategy.} Start \ \text{from the rescaled model}$

$$(\imath \partial_t - \Delta) u = |u|^2 - \Lambda \cdot u - \sigma + \dot{B}, \quad u_0 = 0, \qquad t \in \mathbb{R}, \ x \in \mathbb{T},$$

for some fixed functions $\Lambda : \mathbb{R} \to \mathbb{C}$ and $\sigma : \mathbb{R} \times \mathbb{T} \to \mathbb{C}$.

Mild form:

$$u(t) = e^{-\imath t\Delta} \left[-\imath \int_0^t ds \, e^{\imath s\Delta} \dot{B}(s,.) - \imath \int_0^t ds \, e^{\imath s\Delta} \left(u(s,.) \overline{u(s,.)} \right) \right.$$
$$\left. + \imath \int_0^t ds \, \Lambda(s) e^{\imath s\Delta} u(s,.) + \imath \int_0^t ds \, e^{\imath s\Delta} \sigma(s,.) \right].$$

Setting

$$\mathring{u}(t) := e^{\imath t \Delta} u(t)$$
 and $\mathring{\P}(t,.) := -\imath \int_0^t ds \, e^{\imath s \Delta} \dot{B}(s)$ ("linear solution")

we obtain

$$\mathring{u}(t) = \mathring{\P}(t) - i \int_0^t ds \, e^{is\Delta} \big((e^{-is\Delta} \mathring{u}(s)) \overline{(e^{-is\Delta} \mathring{u}(s))} \big) + i \int_0^t ds \, \Lambda(s) \mathring{u}(s,.) + i \int_0^t ds \, e^{is\Delta} \sigma(s,.).$$

Setting

$$\mathcal{I}(v)(t) = -i \int_0^t v(r) dr$$
 (time integration),

 $\mathcal{M}(v,w)(s)=e^{\imath s\Delta}\big((e^{-\imath s\Delta}v(s))\overline{(e^{-\imath s\Delta}w(s))}\big)\quad\text{("Schrödinger" product)},$ the equation can be written as

$$\mathring{\textbf{\textit{u}}} = \red{\mathring{\textbf{\textit{I}}}} + \mathcal{I}\mathcal{M}(\mathring{\textbf{\textit{u}}},\mathring{\textbf{\textit{u}}}) - \mathcal{I}\big(\textbf{\textit{N}}\cdot\mathring{\textbf{\textit{u}}}\big) - \mathcal{I}\big(\textbf{\textit{e}}^{\imath\cdot\Delta}\sigma\big).$$

Da Prato-Debussche trick: define

$$z := \mathring{u} - ?$$

and thus recast the equation into the remainder equation

$$z = \mathcal{I}\mathcal{M}(z + ?, z + ?) - \mathcal{I}(\Lambda \cdot (z + ?)) - \mathcal{I}(e^{\imath \cdot \Delta}\sigma),$$

or otherwise stated

$$\begin{split} z &= \mathcal{I}\mathcal{M}(z,z) - \mathcal{I}\big(\Lambda \cdot z\big) + \Big[\mathcal{I}\mathcal{M}(z, ?) + \mathcal{I}\mathcal{M}(?,z)\Big] \\ &+ \Big[\mathcal{I}\mathcal{M}(?, ?) - \mathcal{I}\big(\Lambda \cdot ?\big) - \mathcal{I}\big(e^{\imath \cdot \Delta}\sigma\big)\Big] \,. \end{split}$$

Proposition (D-F-T). ("Bourgain-Wick" renormalization)

Assume that $H_0, H_1 > \frac{1}{2}$ satisfy $\frac{7}{4} < 2H_0 + H_1 < 2$, and set

$$\begin{split} & \Lambda^{(n)}(t) := \int_{\mathbb{T}} \overline{\P^{(n)}(t,x)} \, dx, \qquad \text{("Bourgain")} \\ & \sigma^{(n)}(t) := \sum_{k \neq 0} \mathbb{E} \Big[\big| \overline{\P^{(n)}_k}(t) \big|^2 \Big], \qquad \text{("Wick")} \end{split}$$

as well as

$$\mathbf{Y}^{(n)} := \mathcal{IM}(\mathbf{P}^{(n)}, \mathbf{P}^{(n)}) - \mathcal{I}(\mathbf{A}^{(n)} \cdot \mathbf{P}^{(n)}) - \mathcal{I}(e^{\imath \cdot \Delta} \sigma^{(n)}).$$

Then there exist $b \in (\frac{1}{2}, 1)$ and $s \in (0, \frac{1}{2})$ such that a.s.

Proposition (D-F-T). Given $z \in Z^{s,b}$, we can interpret and control

$$\mathcal{IM}(z,z), \ \mathcal{I}(\Lambda \cdot z), \ \mathcal{IM}(z,?), \ \mathcal{IM}(?,z) \quad \text{in } Z^{s,b}.$$

Proposition (D-F-T). ("Bourgain-Wick" renormalization)

Assume that $H_0, H_1 > \frac{1}{2}$ satisfy $\frac{7}{4} < 2H_0 + H_1 < 2$, and set

$$\begin{split} & \Lambda^{(n)}(t) := \int_{\mathbb{T}} \overline{\P^{(n)}(t,x)} \, dx, \qquad \text{("Bourgain")} \\ & \sigma^{(n)}(t) := \sum_{k \neq 0} \mathbb{E} \Big[\big| \widehat{\P}^{(n)}_k(t) \big|^2 \Big], \qquad \text{("Wick")} \end{split}$$

as well as

$$\mathbf{\mathcal{I}}^{(n)} := \mathcal{IM}(\mathbf{\mathcal{I}}^{(n)}, \mathbf{\mathcal{I}}^{(n)}) - \mathcal{I}(\mathbf{\Lambda}^{(n)} \cdot \mathbf{\mathcal{I}}^{(n)}) - \mathcal{I}(e^{\imath \cdot \Delta} \sigma^{(n)}).$$

Then there exist $b \in (\frac{1}{2}, 1)$ and $s \in (0, \frac{1}{2})$ such that a.s.

$$\bigvee^{o(n)} \to \bigvee^{o} \quad \text{in } Z^{s,b}. \quad \left(\left\| z \right\|_{Z^{s,b}}^2 := \sum_k \langle k \rangle^{2s} \int d\lambda \, \langle \lambda \rangle^{2b} \big| \mathcal{F}(z_k)(\lambda) \big|^2 \right)$$

Proposition (D-F-T). Given $z \in Z^{s,b}$, we can interpret and control

$$\mathcal{IM}(z,z), \ \mathcal{I}(\Lambda \cdot z), \ \mathcal{IM}(z, ?), \ \mathcal{IM}(?,z) \quad \text{in } Z^{s,b}.$$

Perspectives

Proposition. Assume that $H_0 = H_1 = \frac{1}{2}$, that is \dot{B} is a space-time white noise on $\mathbb{R} \times \mathbb{T}$. Then for every $b \geq \frac{1}{2}$, it holds that

$$\mathbb{E}\Big[\Big\|\bigvee^{(n)}\Big\|_{Z^{s,b}}^2\Big]\stackrel{n\to\infty}{\longrightarrow}\infty.$$

⇒ space-time white noise is essentially out of reach.

Questions:

- What happens when $\frac{3}{2} \leq 2H_0 + H_1 < \frac{7}{4}$?
- Need for some higher-order expansion ?

Fractional noise

- Need for some a-priori expansion of the solution ?
- $d \ge 2$? Cubic nonlinearity ?

Thank you!