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A first glimpse of the model

1-d quadratic Schrodinger model with additive noise:

(10r — A)u = [u? + B, u =0, teR, xeT,

where T = R/27Z and B is a stochastic noise.
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1-d quadratic Schrodinger model with additive noise:

(10r — A)u = [u? + B, u =0, teR, xeT,

where T = R/27Z and B is a stochastic noise.

Two main objectives:

(7) ldentify and treat situations where the equation cannot be interpreted
in a space of functions, but only in a space of general distributions, using
some additional renormalization procedure.
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A first glimpse of the model

1-d quadratic Schrodinger model with additive noise:

(10 — A)u=|u> + B, w=0,

teR, xeT,

where T = R/27Z and B is a stochastic noise.

Two main objectives:

(7) ldentify and treat situations where the equation cannot be interpreted
in a space of functions, but only in a space of general distributions, using

some additional renormalization procedure.

(if) Go beyond the classical white-noise-in-time situations and handle the

case of a space-time fractional noise B (= test pathwise approach).
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At the crossroads of two lines of research

1. NLS equations with random initial condition: for p,q € N,

(10; — A)u=wPu?, u(0,.)=d, tec[-T,T], xcR?or T,

where ® is a random distribution of low regularity on R or T¢.

e Bourgain, Burq, Tzvetkov, Oh, Thomann, Robert, Deng, Nahmod, Yue...)

2. Stochastic NLS models: for regular maps b, o,
(10 —A)u = b(u)+o(u) W, u(0,)=0, tc[-T,T], xcR?orT¢,

where W/ is a random noise on [0, T] x RY or [0, T] x T?.

In the literature: W is a white noise in time — stochastic /t6-type controls
e De Bouard-Debussche, Brzézniak-Millet, Hornung, Cheung-Mosincat,...

— Only possible if the equation can be treated in a space of functions
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Fractional noise

(10 — A)u=|u?+B, u=0 teR, xecT. (1)

Definition. We call space-time fractional noise of indexes Hy, H; €
(1,1) the centered Gaussian noise B on R x R with

E[(B, p)(B, )] = / dsdt / dxdy (s, X)6(t, y)|s — t[2H0=2|x — y[2H~2
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Fractional noise

(10 — A)u = |u?+ B, wu=0, teR, xeT. (1)

Definition. We call space-time fractional noise of indexes Hy, H; €
(1,1) the centered Gaussian noise B on R x R with

E[<B790 /dsdt/dxdygp s, X (1_- y)| t|2Ho—2|X_y|2H1—2

When Hy, H; — % B converges to a space-time white noise W. J

Recall that W = 9,0, W, with W a Brownian sheet.

—> In the same way, B= 0:0, B | with B a fractional Brownian sheet

(= 2-parameter version of a fractional Brownian motion).
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Definition. For H € (0,1), we call fractional Brownian motion of index
H the centered Gaussian process B on R with covariance

1
E[B;B;] = §{|s|2H + 2" — |t - s|2H}.
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E[B;B;] = §{|s|2H + 2" — |t - s|2H}.

Remark. When H = 1, one has E[B,B;| = 1{|s|+|t|— [t —s|} = s AL

= B is a (standard) Brownian motion




Definition. For H € (0,1), we call fractional Brownian motion of index
H the centered Gaussian process B on R with covariance

1
E[B;B;] = §{|s|2H + 2" — |t - s|2H}.

Remark. When H = 1, one has E[B,B;| = 1{|s|+|t|— [t —s|} = s AL
= B is a (standard) Brownian motion

Properties.

Self-similar: for every a € R, {B,:, t > 0} ~ {|a|"B;, t > 0}.
Stationary increments: By — Bs ~ B;_s.

Pathwise regularity: a.s., |B; — Bs| < |t —s|/H=¢ forall 0 < s, t < 1.




Definition. For H € (0,1), we call fractional Brownian motion of index
H the centered Gaussian process B on R with covariance

1
E[B;B;] = §{|s|2H + 2" — |t - s|2H}.

Remark. When H = 1, one has E[B,B;| = 1{|s|+|t|— [t —s|} = s AL

= B is a (standard) Brownian motion

Properties.

Self-similar: for every a € R, {B,:, t > 0} ~ {|a|"B;, t > 0}.
Stationary increments: By — Bs ~ B;_s.

Pathwise regularity: a.s., |B; — Bs| < |t —s|/H=¢ forall 0 < s, t < 1.

Long-range dependence: one has for instance, for n > 1,

E[(B1 — Bo)(Bn+1 — Bn)] = 3 ((n+ 1) + (n — 1)2H — 2p%H).

When H # % memory effect: disjoint increments are not independent.

When H # L, B is not a martingale process.
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Fractional noise

The fractional noise is a standard noise model in the SDE/SPDE
literature

- SDE: classical application of rough-paths theory

- Heat/wave models: either Skorohod or pathwise interpretation

- Schrodinger: 77 )
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Fractional noise

(10 — A)u = |[u*+ B, wu =0, teR, xeT.

Definition. We call space-time fractional noise of indexes Ho, Hy € (3,1)
the centered Gaussian noise B on R x R with

E[(B,¢)(B,4)] = / dsdt / dxdly p(s, X)(t, y)[s — t2H=2]x — y 2.

v
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Fractional noise

(10 — A)u = |[u*+ B, wu =0, teR, xeT.

Definition. We call space-time fractional noise of indexes Ho, Hy € (3,1)
the centered Gaussian noise B on R x R with

E[(B,¢)(B,4)] = / dsdt / dxdly p(s, X)(t, y)[s — t2H=2]x — y 2.

v
We define the space-time fractional noise on R x T by
27
B(t,x) = Z ( dy e_ZkyB(t,y)> ethx
kez \70 |
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Fractional noise

(10 — A)u = |[u*+ B, wu =0, teR, xeT.

Definition. We call space-time fractional noise of indexes Ho, Hy € (3,1)
the centered Gaussian noise B on R x R with

E[(B,¢)(B,v)] = /dsdt/dxdyw(s’xw(t,)’)ls— £22x — y 22,

v

We define the space-time fractional noise on R x T by

27
B(t,x) = Z ( i dy e_ZkyB(t,y)> ethx

k€EZ

Remark. Not to be confused with the regularized white noise

W (620 = (VDM (1) = 3 g
kEZ
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Mild formulation

Let us recast the dynamics in the mild form:

t t
u(t) =— z/ dse (A B(s, ) — z/ ds e (E=9)8 (s, )2
0 0
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Let us recast the dynamics in the mild form:
t i t
u(t) =— z/ dse (A B(s, ) — z/ ds e (E=9)8 (s, )2
0 0
t . t
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Mild formulation

(10 — A)u = [u*+ B, wu=0, teR, xeT.

Let us recast the dynamics in the mild form:
t i t
u(t) =— z/ dse (A B(s, ) — z/ ds e (E=9)8 (s, )2
0 0
t . t
= e uA { - z/ dse*2B(s,.) — z/ ds e® (u(s,.)u(s, )|
0 0

Setting

t
a(t) == e"™®u(t) and 9t,.) = —z/ dse*2B(s) (“linear solution”),
0
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Mild formulation

(10 — A)u = [u*+ B, wu=0, teR, xeT.

Let us recast the dynamics in the mild form:
t i t
u(t) =— z/ dse (A B(s, ) — z/ ds e (E=9)8 (s, )2
0 0
t . t
= e uA { - z/ dse*2B(s,.) — z/ ds e® (u(s,.)u(s, )|
0 0

Setting

t
a(t) == e"™®u(t) and 9t,.) = —z/ dse*2B(s) (“linear solution”),
0

we obtain

(t) = t) - z/ot ds 2 ((e~*2u(s)) (e =2 (s))) |

Stochastic NLS model
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Low regularity issue

At) -2 /Ot ds 2 ((e7*2u(s)) (e~ i(s))),

with (formally)

t,.) = —z/ot ds B B(s) |




Low regularity issue

At) -2 /t ds 2 ((e7*2u(s)) (e~ i(s))),

0

with (formally)

t,.) = —z/ot ds B B(s) |

4

To study the wellposedness and regularity of T, consider a sequence of
smooth approximations B(") of B (e.g., B(" := p, * B) and set

t
?(n)(t, NE= —z/ ds e B(s).
0




Low regularity issue

%)~ [ dse (2 als)) e BEEN),

0
with (formally)

t,.) = —z/ot ds B B(s) |

4

To study the wellposedness and regularity of T, consider a sequence of
smooth approximations B(") of B (e.g., B(" := p, * B) and set

t
?(n)(t, NE= —z/ ds e B(s).
0

Proposition. Let B be a fractional noise of index (Ho, H;), and T > 0.
() If 2Hy + Hy > 2, then (?(n)),,zl converges a.s. in L2(R x T).

(i) If 2Hy + H; < 2, then a.s. ||?(n)||L2([O7T]><’]I‘) — 00 as n — o0.
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Low regularity issue

Proposition. Assume that 2Hy + H; < 2.

Then, almost surely and for every T > 0, the sequence of functions

(t,x) — /0 ds e*® ((ef“A?(n)(s)) (e—“A?(n)(S))) (x)

fails to converge in the general space of distributions on [—T, T| x T.

Stochastic NLS model
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Low regularity issue —> renormalization

— When 2Hy + H; < 2, we need to renormalize our model
(18 — A)u™ = M2 4 B, u(()") =0, teR, xeT.

= Find “reasonable” correction
(0, — D)™ = |5 P—o(") 4 B,

so that (") converges as n — oc.

Stochastic NLS model




Random NLS equations Fractional noise The low regularity issue Renormalization: three examples Main result

Low regularity issue —> renormalization

— When 2Hy + H; < 2, we need to renormalize our model
(18 — A)u™ = M2 4 B, u(()") =0, teR, xeT.

= Find “reasonable” correction
(0, — D)™ = |5 P—o(") 4 B,

so that (") converges as n — oc.

Of course we want to avoid trivial renormalization procedures, such that

o — |5 or oM = B,

— identify a reasonable class of renormalization procedures

Stochastic NLS model
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Three examples from the SPDE literature

First example: Heat ®% model

(O —DNu=0v*+B, uwp=0 te[0,T], xecT.

Theorem (Hairer 12°, “Wick” renormalization).
Let B be a space-time white noise on R, x T3, and B(") := p, « B.
Then there exists a sequence (A\"),~1 such that:

() for every n > 1, A € R is a deterministic constant,

(if) A" can be explicitly described in terms of B("

(i) A" — 00 as n — oo,

(iv) the renormalized equation

(0: — A)u™ = (uMP-AD ) 4 O | W) — 0t e, T], x €T3,

converges a.s. in C([0, T]; H~%(T®)), for some a > 0.



Three examples from the SPDE literature

Second example: Quadratic wave in 3d

(83—A)uzu2+3, u=0, tel0,T], x € T3,

Theorem (Gubinelli-Koch-Oh 18’, “Wick” renormalization).
Let B be a space-time white noise on R, x T3, and B(") := p, « B.

Then there exists a sequence (o))~ such that:

() for every n > 1, oM R, — R is a deterministic time function,

(if) for every t >0, o(”(t) can be explicitly described in terms of B("),

(iii) for every t > 0, o("(t) — 0o as n — o0,

(iv) the renormalized equation

(0% — A)ul" = (uM2 (" 4 B | u(()") =0, tc[0,T], xe T3,

converges a.s. in C([0, T]; H~*(T?)), for some a > 0.



Three examples from the SPDE literature

Third example: Cubic NLS with rough random initial condition

(10; — AYu = |u|’u, w=®, te[-T,T], xeT.

Theorem (Colliander-Oh 10’, “Bourgain” renormalization).

Let ® be in a suitable space of rough random distributions on T, and
denote by (CD(”)),,Z;[ its Fourier approximation. Then setting

A (w) ::2/dx|¢(”)(w7x)\2,
JT

the renormalized equation

(10 — A)ul™ = [Py Ay | ) — o)t e [T, T], x €T,

converges a.s. in C([—T, T]; H~*(T)), for some o > 0.

Remark.
(i) A" is explicitly described in terms of ®(").

(ii) A" does not depend on (t,x), but it still depends on w.
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“Guidelines” for the renormalization terms:
e Depend explicitly on the noise B, and not on the solution w.

e Offer some “reduction” in the variables, i.e. not depend simultaneously
ont, x and w

Stochastic NLS model
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Theorem (D-F-T 23). Let Ho, Hy > § be such that £ < 2Hy + Hy < 2,
and set

A (2) ::/?(”)(t,x) de, o0(t):= Y E[%(0)]7].

k20
Then:
(i) For every 0 < t < 1, oM () "X ¢y t 2272~ (Ho+H))

(i) There exists a (random) time Ty > 0 such that the sequence

(18 — A)u™ = |u@R—[AD ) 1 5] 4 B

converges a.s. to some limit u in C([— Ty, To]; H~*(T)), for some o > 0.

Stochastic NLS model



Some details about the strategy. Start from the rescaled model

(10 —D)u=|u?~N-u—0c+B, u=0, teR, x€eT,

for some fixed functions A\: R —+Cand o : R x T — C.
Mild form:

u(t) = e A [z ./O.t ds e~ B(s,.) —1 /Ot ds e”® (u(s,.)u(s,.))
+1 /Ot ds \(s)e*2u(s,.) +1 /Ot ds e*2o (s, )} .

Setting
t
i(t) == e™u(t) and (t,.):= —z/ ds e*2B(s) (“linear solution™)
0
we obtain

i(e) = 9(t) — 1 / ds &2 (e 1(s)) (e B E(s)))
—H/O ds/\(s)i’;(s,.)—i—z/o ds 2o (s,.).




Setting

Z(v)(t) :—z/o v(r)dr (time integration),

M(v,w)(s) = eZSA((e*“Av(s))(e*“Aw(s))) (“Schrodinger” product),

the equation can be written as

i=0+IM(, ) —I(N-0)—Z(e"?0).

Da Prato-Debussche trick: define
z:=0-79,
and thus recast the equation into the remainder equation
z=IM(z+7,z+9) - Z(N- (z+7)) —Z(e"?0),

or otherwise stated

z=IM(z,z)-Z(N-z) + [IM(Z, )+ zZM(S, z)}
+[ZMEQ.D - Z(A-9) — Z(e20)] -




Proposition (D-F-T). (“Bourgain-Wick” renormalization)
Assume that Ho, Hy > 1 satisfy I < 2Ho + H; < 2, and set

A (t) ::/?(n)(t,x) dx,  (“Bourgain”)
T

o) (£) = Zmﬂ?ﬁ"’mﬂ, (“Wick”)

k+£0

as well as

q{o(") = TMmE™ 97y — I(A® . ?(n>) _I(eBo).
Then there exist b € (3,1) and s € (0, 3) such that a.s.

PSP 0 250 (el = Y07 [ A FEF)

y




Proposition (D-F-T). (“Bourgain-Wick” renormalization)
Assume that Ho, Hy > 1 satisfy I < 2Ho + H; < 2, and set

AO(t) = /?(n)(t,x) dx, (“Bourgain”)
T

o) (£) = Zmﬂ?ﬁ”’mﬂ, (“Wick”)

k=0

as well as

O‘{O(n) = TMmE™ 97y — I(A® . ?(n>) _I(eBo).
Then there exist b € (3,1) and s € (0, 3) such that a.s.

PSP 0 250 (el = Y07 [ A FEF)

y

Proposition (D-F-T). Given z € Z5, we can interpret and control

IM(z,2), I(A-z), ZM(2,9), IM(?,2) in Z°°P.
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Perspectives

Proposition. Assume that Hy = H; = %, that is B is a space-time white
noise on R x T. Then for every b > 1, |t holds that

¥ =5 o

— space-time white noise is essentially out of reach.

Questions:

- What happens when 3 < 2Ho+ H; < I?

- Need for some higher-order expansion ?

- Need for some a-priori expansion of the solution ?
- d > 27 Cubic nonlinearity ?

Stochastic NLS model
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Thank you!
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