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Abstract. We propose a theory of linear differential equations driven by unbounded
operator-valued rough signals. As an application we consider rough linear transport
equations and more general linear hyperbolic symmetric systems of equations driven by
time-dependent vector fields which are only distributions in the time direction.

1. Introduction

In this paper we start the program of developing a general theory of rough PDEs aiming
at extending classical PDE tools such as weak solutions, a priori estimates, compactness
results, duality. This is a quite unexplored territory where few tools are available, so as a
start, we will content ourselves in this work with the study of linear symmetric hyperbolic
systems of the form

(1.1) ∂tf + a∇f = 0,

where f is an RN -valued space-time distribution on R+ × Rd, and a : R+ × Rd →
L(Rd,RN×N ) is a N × N matrix-valued family of time–dependent vector fields in Rd.
This setting includes as a particular case scalar transport equations. Moreover we restrict
our attention to the case where the matrix-valued vector field a is only a distribution in the
time variable, rather than a regular bounded function. We however retain some smooth-
ness assumption in the space variable, as expected from the fact that general transport
equations do not possess the regularisation properties needed to drive them with space-
time irregular signals. Even in the classical setting it is known that non-regular coefficients
can give rise to non-uniqueness of weak solutions [16].

When a is only a distribution in the time variable the above weak formulation is not avail-
able since in the classical setting solutions are considered in spaces like C([0, T ],L2(Rd))
for general symmetric systems or L∞(R × Rd) for scalar transport equation. In this
case, the product a∇f is not well-defined, not even in a distributional setting. Rough
paths have their origin in the need to handle such difficulties in the case of ordinary
differential equations driven by distribution valued signals [37, 39, 38, 21]. Controlled
rough paths have been introduced in [23] as a setting for considering more general prob-
lems; they were used successfully in the study of some stochastic partial differential equa-
tions [3, 26, 11, 30, 24, 31, 32], including the remarkable solution by Hairer of the KPZ
equation [28].

These developments have ultimately lead to the notion of paracontrolled distributions
introduced by Gubinelli, Imkeller and Perkowski [25] and to Hairer’s general theory of
regularity structures [29], providing a framework for the analysis of non-linear operations on
distributions. Despite their successes, these new tools and methods are somehow designed
to deal with a prescribed class of singular PDEs which is far from exhausting the set of all
interesting singular PDEs.
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PDEs with irregular signals have been studied using directly rough path methods also
by Friz and co-authors [4, 5, 19, 20, 17]. They have developed an approach to some
fully non-linear PDEs and conservation laws driven by rough signals by interpreting these
equations as transformations of classical PDEs, generalising the method of characteristics.
Subsequently a combination of rough path stability and PDE stability allows to go from
smooth signal to the wider class of signals described by rough paths. Entropy solutions to
scalar conservation laws with rough drivers have also been analysed also by P.-L. Lions,
Souganidis and coauthors [35, 36, 22]. A major drawback of this otherwise effective ap-
proach is that there is no intrinsic notion of solution to the PDE and that the study of the
properties of the PDE has to be done on a global level.

In recent works intrinsic notions of weak solution to rough PDEs have been proposed by
Tindel, Gubinelli and Torecilla [27] for viscosity solutions, Catellier [7] for weak solutions
to linear transport equations (see also Hu and Le [33] for classical solutions to transport
equations) and more recently by Diehl, Friz and Stannat [12] for a general class of parabolic
equations. All these notions are based on a weak formulation of the equation where the
irregularity of some data is taken into account via the framework of controlled paths
introduced in [23]. However in all these papers explicit formulas involving the flow of rough
characteristics play an important role, and this sets apart the study of rough PDEs with
respect to the study of weak solutions to more regular PDEs. One of the main motivations
of our investigations is an effort to understanding what kind of robust arguments can be
put forward in the study of the a priori regularity of distributions satisfying certain rough
PDEs formulated in the language of controlled paths. Extensions to regularity structures
or paracontrolled distributions will be considered in forthcoming work.

We study equation (1.1) by working in the technically easier setting of controlled paths.
To motivate our formalism, note that a formal integration of the weak formulation (1.1)
over any time interval [s, t], gives an equation of the form

ft = fs +

∫ t

s
Vrfrdr,

where Vr = ar∇ is a matrix-valued vector-field and fr(x) = f(r, x), is a convenient notation
of the distribution f evaluated at time r, assuming this make sense. An expansion for the
time evolution of f is obtained by iterating the above equation, and reads

(1.2) ft = fs +A1
tsfs +A2

tsfs +Rts,

where

A1
ts =

∫ t

s
Vrdr, and A2

ts =

∫ t

s

∫ r

s
VrVr′dr

′dr,

are respectively a first order differential operator (that is a vector field) and a second order
differential operator, for each s 6 t. As a function of (s, t), they satisfy formally Chen’s
relation

(1.3) A2
ts = A2

tu +A2
us +A1

tuA
1
us

for all 0 6 s 6 u 6 t. It is a key observation of rough path theory that equation (1.2) can
be used as a replacement for the differential or integral formulation of equation (1.1) if the
remainder term can be shown to be sufficiently small as t− s goes to 0, in a suitable sense.

We shall call a rough driver an operator-valued 2-index maps Ats =
(
A1
ts, A

2
ts

)
satisfying

the operator Chen relation (1.3) and some regularity assumptions. Building on the above
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picture, a path with values in some Banach space where the operators A1
ts and A2

ts act,
will be said to solve the rough linear equation

dfs = A(ds) fs.

if the Taylor expansion (1.2) holds.
There is a complete theory of such equations in the case where the equation is set in

a Banach algebra and the operators A1
ts and A2

ts are given by left multiplication by some
elements of the algebra. It is however natural, in the present PDE setting, to consider also
unbounded operators A1, A2, which makes the use of rough paths ideas non-trivial, unless
we work in the analytic category or in similar topologies.

We lay out in this work a theory of such rough linear equation driven by unbounded
drivers A, and obtain some a priori estimates that are used to study the well–posedness
of some classes of linear symmetric systems in L2 and of the rough transport equation in
L∞. The major difficulty which has to be overcome is the lack of a Gronwall lemma for
rough equations and the main contribution to this paper is to develop suitable a priori
estimates on weak controlled solutions that replace the use of Gronwall lemma in classical
proofs. Along the way we refine the standard theory of controlled path by introducing
weighed norms compatible with the sewing map and by revisiting the theory of linear
rough differential equations in the context of bounded drivers.

As a guide for the reader, here is how we have organised our work. Section 2 provides
a refined version of the sewing lemma that allows to keep track of the growth in time of
the additive function associated with an almost-additive 2-index map. This result is used
in Section 3 in the proof of the well-posed character of linear differential equations driven
by the bounded rough drivers defined there. Unbounded rough drivers are introduced in
Section 4, where some fundamental a priori estimate is proved. An L2 theory of rough
linear equations is developed for a class of unbounded drivers, that contains as a particular
example the rough linear transport equation. Our main workhorse here is a novel renor-
malisation lemma obtained from a tensorization argument in the line of the "doubling of
variables" method commonly used in the setting of transport equations or conservation
laws. A complete L∞ theory of rough transport equations is given in Section 6.

Acknowledgments – The authors would like to express their gratitude to Martina Hof-
manova and Mario Maurelli who discovered a major error in the first version of the paper
and hinted to a possible strategy to overcome it.

Notations – We gather here for reference a number of notations that will be used through-
out the text.

• We shall denote by E a generic Banach space. Given two Banach spaces E and F,
we denote by L(E,F) the set of continuous linear maps from E to F.
• We shall denote by c a constant whose value may change from place to place.
• Given two positive real numbers α, β, we shall write α . β to say that α 6 cβ, for
some positive constant c. To indicate that this constant c depends on a parameter
λ, we write α .λ β.
• Denote by ‖ · ‖α ; k the α-Hölder norm of an Ek-valued path, for k ∈ Z, and by
‖ · ‖α ;E the α-Hölder norm of an E-valued path.
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2. Weighted norms

We introduce some weighted norms that will be useful in getting a priori estimates on
the growth of solutions to the linear differential equations studied in Section 3. These
norms are modelled on Picard’s well-known norms

L f M := sup
t>0

e−λ
−1t
∣∣f(t)

∣∣,
introduced in the study of ordinary differential equations in order to provide a functional
setting where to get well–posedness results on the whole time interval [0,∞), as a direct
consequence of the Banach fixed point theorem, and to get as a consequence a control on
the growth of the size of solutions.

Let T be a possibly infinite positive time horizon. As is common in rough paths theory,
we shall work with Banach space-valued multi-index maps, mainly 2 and 3-index maps,
defined on the simplexes{

(s, t) ∈ [0, T )2 ; s 6 t
}

and
{

(s, u, t) ∈ [0, T )3 ; s 6 u 6 t
}
.

With Picard’s norm in mind, we introduce a norm on the set of 2 and 3-index maps which
captures both their Hölder size and their growth at infinity. Given λ > 0, an increasing
non-negative function g defined on R+ and a non-negative Hölder exponent γ, we define
the (γ, g)-norm of a 2-index map a, and a 3-index map b, by the formulae

L a Mγ,g := sup
06s<t<T
|t−s|≤λ

∣∣ats∣∣
g
(
λ−1t

)
|t− s|γ

,

and

L b Mγ,g := sup
06s<u<t<T
|t−s|≤λ

∣∣btus∣∣
g
(
λ−1t

)
|t− s|γ

;

note the following comparison: For 0 6 γ′ 6 γ, we have

(2.1) L · Mγ′,g 6 λγ−γ
′
L · Mγ,g.

Recall that given an E-valued 2-index map a, the sewing lemma [23, 14] asserts that if
the inequality

(2.2)
∣∣ats − (atu + aus)

∣∣ 6 c|t− s|ζ

holds for all 0 6 s 6 u 6 t < T , with t − s 6 1 say, for some exponent ζ > 1 and
some positive constant c, then there exists a unique map A : [0, T )→ E whose increments
δAts := At −As are well-approximated by ats, in the sense that∣∣δAts − ats∣∣ . |t− s|ζ ,
for all t− s 6 1 say. Moreover, it ti denotes the times of a finite partition πts of an interval
(s, t), with mesh

∣∣πts∣∣, we have

(2.3)
∣∣δAts −∑ ati+1ti

∣∣ . |t− s|∣∣πts∣∣ζ−1.
The sewing map associates to the above 2-index map a the 2-index map

Λ(a)ts := δAts − ats.
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For a given function g : R→ R let

G(t) = g(t) +

∫ t

0
g(r) dr,

and write as usual δatus for ats − (atu + aus), for any 0 6 s 6 u 6 t < T . The following
lemma provides an estimate of the weighted norm of Λ(a) in terms of the weighted norm
of δa; an estimate for the growth of A follows as a consequence.

Lemma 1. There exists a positive constant cζ , depending only on ζ, such that

L Λ(a) Mζ,g 6 cζ L δa Mζ,g.

Proof – Given 0 6 s < t and n > 1, set ti = s+ i2−n(t− s), and note that the telescopic
sum

(?) :=

2n−1∑
i=0

ati+1ti − ats =

n−1∑
k=0

2n−(k+1)∑
`=0

(
a(`+2)2k (`+1)2k + a(`+1)2k `2k − a(`+2)2k `2k

)
provides a control of the quantity (?) in terms of δa only. Sending n to infinity, we see
by identity (2.3) that there exists a constant cζ depending only on ζ, such that

∣∣Λ(a)ts
∣∣ 6 cζ |t− s|ζ sup

{∣∣δat′u′s′∣∣
|t′ − s′|ζ

; 0 6 s < s′ < u′ < t′ 6 t

}
.

If |t− s| 6 λ the above inequality implies clearly that we have

(2.4)

∣∣Λ(a)ts
∣∣

g(λ−1t) |t− s|ζ
6 cζ

∣∣δa∣∣
ζ,g
.

�

We will consider only the particular choice of function g(t) = et and we shall set for a
path f : [0, T )→ E

(2.5) L f• M := sup
t>0

e−λ
−1t
∣∣f(t)

∣∣,
and for a 2-index map a, and a 3-index map b,

(2.6) L a Mγ := sup
06s<t<T
|t−s|≤λ

e−λ
−1t

∣∣ats∣∣
|t− s|γ

, and L b Mγ := sup
06s<u<t<T
|t−s|≤λ

e−λ
−1t

∣∣btus∣∣
|t− s|γ

.

Note that these norms depend on a choice of parameter λ, which may be tuned on demand.
This will be particularly useful in the statement and proof of Theorem 3 below, giving the
well-posed character of some linear rough differential equation. Note also that we can
compare L f• M and L δf Mγ , as the inequality

(2.7) L f• M 6
∣∣f0∣∣+ eλγ L δf Mγ

holds for all λ > 0. The proof is easy. Given a fixed time t, let {0 = t0 < t1 < · · · < tn = t}
be a partition of the interval [0, t] into sub-intervals size at most λ. Then

∣∣f(t)
∣∣ ≤ ∣∣f(0)

∣∣+

n−1∑
k=0

∣∣f(tk)− f(tk+1)
∣∣ ≤ ∣∣f(0)

∣∣+ λγL δf Mγ
n−1∑
k=0

e
tk+1
λ .
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But now
n−1∑
k=0

e
tk+1
λ ≤ λ−1

∫ tk+1+λ

tk+τ
e
s
λ ds ≤ λ−1

∫ t+λ

0
e
s
λ ds ≤ e

s
λ
+1.

The comparison estimate (2.7) will be our starting point in the proof of the a priori estimate
(3.2) in Theorem 3 below.

Last, a 2-index map a such that supt−s61
|ats|
|t−s|γ is finite will be called a γ-Hölder map.

3. Linear differential equations with bounded rough drivers

Let
(
A, |·|

)
be a Banach algebra with unit 1A; one may think for instance to the space of

continuous linear maps from some Hilbert space to itself, or to the truncated tensor algebra
over some Banach space, equipped with a tensor norm and completed for that norm. We
introduce in this section a notion of bounded rough driver in the Banach algebra A, and
show that they generate some flows on the algebra.

Definition 2. Let 1
3 < γ 6 1

2 . A bounded γ-rough driver in A is a pair A =
(
A1, A2

)
of A-valued 2-index maps satisfying Chen’s relations

(3.1) δA1 = 0, and δA2
tus = A1

tuA
1
us,

and such that A1 is γ-Hölder and A2 is 2γ-Hölder. The norm of A is defined by the formula

‖A‖ := sup
06s<t<T ; t−s61

∣∣A1
ts

∣∣
|t− s|γ

∨
∣∣A2

ts

∣∣
|t− s|2γ

.

As an elementary example, think of A as the truncated tensor algebra
⊕N

i=0(R`)⊗i over
R`, for N > 2, and consider a weak geometric γ-Hölder rough path Xts = 1⊕Xts ⊕Xts ∈⊕N

i=0(R`)⊗i, with 2 6 γ < 3. Left multiplication by Xts and Xts define operators A1 and
A2 that are the components of a rough driver.

Recall the weighted norms L · M and L · Mγ defined by identities (2.5) and (2.6), respectively,
depend on some parameter λ. The proof of the following well–posedness result for linear
rough differential equations driven by bounded γ-rough drivers shows the interest of being
flexible on the tuning of λ.

Theorem 3 (Integration of bounded rough drivers). Given any initial condition J0 ∈ A,
there exists a unique γ-Hölder path f• starting from f0, and such that the formula

δft,s −
(
A1
t,s +A2

t,s

)
fs

defines a 3γ-Hölder 2-index map f ]. Moreover, the following estimate holds

(3.2) L f• M 6 2
∣∣f0∣∣

for all λ greater than some λ0 depending only on ‖A‖ and γ. When f0 = 1A, we will use
the notation ft = eAt,0; the flow property

eAt,s = eAt,ue
A
u,s,

holds for all 0 6 s 6 u 6 t < T .

Applied to the above example of rough driver in the truncated tensor product space,
this well–posedness result provides a proof of Lyons’ extension theorem [37].
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Proof – a) A priori estimate – Let us prove the a priori bound (3.2) first; the unique-
ness claim in the theorem follows from this bound and the linear character of the
problem. As mentioned above, we start from the inequality

L f• M 6 |f0|+ cλγL δf Mγ ,

and try and write L δf Mγ in terms of L f• M; this can be done as follows.
By using Chen’s relation (3.1) and the definition of the remainder f ], the identity

−δf ]t,u,s = A1
t,u

(
δfu,s −A1

u,sfs

)
+A2

t,uδfu,s = A1
t,u

(
A2
t,sfs + f ]s,t

)
+A2

t,uδfu,s,

gives us the estimate

L δf ] M3γ 6 ‖A‖2L f• M + ‖A‖L f ] M2γ + ‖A‖L δf Mγ .

But since 3γ > 1, we have
f ] = Λδf ],

so the inequality

L f ] M3γ .γ ‖A‖2L f• M + ‖A‖L f ] M2γ + ‖A‖L δf Mγ

follows from Lemma 1. Using the inequality L f ] M2γ 6 λγL f ] M3γ , emphasized in (2.1),
the above equation gives

L f ] M3γ .γ ‖A‖2 L f• M + λγ‖A‖ L f ] M3γ + ‖A‖ L δf Mγ .

For λ small enough so that λγ‖A‖ 6 1
2 , we obtain

L f ] M3γ .γ ‖A‖2 L f• M + ‖A‖ L δf Mγ ,

so, using again the definition of the remainder f ], and the observation that

LA2f Mγ .γ λ
γLA2f M2γ .γ λ

γ‖A‖ L f• M,

we obtain the estimate
L δf Mγ .γ ‖A‖L f• M + LA2f Mγ + L f ] Mγ

.γ

{
‖A‖

(
1 + λ2γ‖A‖

)
+ λγ‖A‖

}
L f• M + λ2γ‖A‖ L δf Mγ .

Taking λ small enough, depending only on ‖A‖, we eventually see that

L δf Mγ .γ

{
‖A‖

(
1 + λ2γ‖A‖

)
+ λγ‖A‖

}
L f• M.

The a priori estimate L f• M 6 2|f0|, follows now from a choice of sufficiently small
parameter λ, since L f• M 6 |f0|+ cλγL δf Mγ .

b) Existence – We can run a Picard iteration to prove the existence of a path
satisfying the conditions of the theorem. Set first

f0t = f0, and f1t = A1
t0f0

for all t ∈ R. Given the paths fn−1• , fn• , the 2-index map

ants := A1
tsf

n
s +A2

tsf
n−1
s

satisfies the almost-additivity condition (2.2) with ζ = 3γ > 1 here, so there is, by the
sewing lemma, a unique γ-Hölder path fn+1

• for which the formula

δfn+1
ts −

(
A1
tsf

n
s +A2

tsf
n−1
s

)
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defines 2-index 3γ-Hölder map fn+1,]. Setting g0• := 0 and

gn+1
• := fn+1

• − fn• , gn+1,] := fn+1,] − fn,],
for all n > 0, we have

δgn+1
ts = A1

tsg
n
s +A2

tsg
n−1
s + gn+1,]

ts .

Note moreover that we have the identity

−δgn+1,]
t,u,s = A1

t,u

(
δgnu,s −A1

u,sg
n−1
s

)
+A2

t,uδg
n−1
u,s

= A1
t,u

(
A2
t,sg

n−2
s + gn,]s,t

)
+A2

t,uδg
n−1
u,s ,

so, proceeding as in the proof of the a priori bound, we see that the inequality

L gn−1• M + L δgn Mγ + L gn+1,] M3γ .γ,‖A‖ λ
γ
{

L gn−2• M + L δgn−1 Mγ + L gn,] M3γ
}

holds, by choosing λ small enough. The estimate

L gn−1• M + L δgn Mγ + L gn+1,] M3γ .γ,‖A‖ λ
γn

follows as a consequence, so the series fn = f0 +
∑

n>1 g
n converges in the complete

space of A-valued γ-Hölder paths, and defines a path in A satisfying the conditions of
the theorem. �

Remarks 4. (1) Note that the proof given above gives back the known sharp growth
rate exp

(
(2‖A‖)γ t

)
for
∣∣ft∣∣; see [18]. Bounded rough drivers can also be integrated

by defining recursively the (nγ)-Hölder A-valued 2-index map An using the formula

δAnt,u,s =
n−1∑
k=1

An−kt,u Aku,s,

and setting

eAt,s =
∞∑
n=0

Ant,s.

Standard estimates on the sewing map [23] show that δAn has nγ-Hölder norm no
greater than (n!)−γ, so the above series converges in A for all 0 6 s 6 t. The flow
property is obtained by a direct calculation, and setting ft := eAt,0f0, we see that the
path f• solves the problem.

(2) Linear rough differential equations with a linear drift – The above theory
extends easily to rough equations of the form

(3.3) δft,s =

∫ t

s
Brfr dr +A1

t,sfs +A2
t,sfs + f \t,s

where B ∈ L∞(R;A) is a bounded measurable family of bounded operators. This
equation is the rigorous meaning to give to solutions of the differential equation

d

dt
f = (Br + Ȧr)fr

where Ȧt = ∂tA
1
t0. In case Ȧt ∈ L∞(R;A), the two formulations are equivalent

provided A =
(
A1, A2

)
is defined by the formula

A1
t,s =

∫ t

s
Ȧr dr, A2

t,s =

∫ t

s

∫ r

s
ȦuȦr dudr.
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The proof of Theorem 3 can be easily adapted in the present setting, and the final
lower bound on λ gets an additional dependence on ‖B‖∞. It yields moreover the
following Duhamel formula

ft = eAt,0f0 +

∫ t

0
eAt,rBrfr dr.

Indeed, let f• be a function satifsying the above identity. If one computes the
increment of the right hand side in the above equation, we get

δft,s =

∫ t

s
eAt,rBrfr dr −

(
eAt,s − Id

)
fs =

∫ t

s
Brfr dr +A1

t,sfs +A2
t,sfs + f ]t,s

where

f ]s,t =

∫ t

s

(
eAt,r − Id

)
Brfr dr +

(
eAt,s − Id−A1

t,s −A2
t,s

)
fs.

Using the bounds∣∣∣eAt,r − Id
∣∣∣ .‖A‖ |t− r|γ , and

∣∣∣eAt,s − Id−A1
t,s −A2

t,s

∣∣∣ .‖A‖ |t− s|3γ ,
this allows to conclude that

∣∣f ]t,s∣∣ . |t − s|3γ, and that the path f• is indeed the
unique solution to equation (3.3).

(3) Bounded rough drivers have also been introduced previously in the work [8] of Coutin
and Lejay, and studied in relation with the Magnus formula for what is called there
the resolvent operator eA. The above short proof of Theorem 3 can be considered an
alternative proof of the main result of section 3 in [8]. They also consider perturbed
linear equations, with an a priori given drift of the more general form Cts, rather
than

∫ t
s Brfr dr, with C satisfying some regularity conditions. The pioneering work

[15] of Feyel-de la Pradelle-Mokobodzki is also closely related to these questions.

4. Unbounded rough drivers and rough linear equations

The above results apply in the particular case where A is the Banach algebra of bounded
operators on an Hilbert space H. We shall study in the remaining sections the integration
problem

(4.1) δfts =
(
A1
ts +A2

ts

)
fs + f ]ts,

for a particular class of drivers A associated to a class of unbounded operators on H, or
other Banach spaces, with in mind the model case of the rough transport equation

δf(ϕ)ts = Xts fs
(
V ∗ϕ

)
+ Xts fs

(
V ∗V ∗ϕ

)
+ f ]ts(ϕ),

where X = (X,X) is an `-dimensional γ-Hölder rough path and V =
(
V1, . . . , V`

)
is a

collection of ` vector fields on Rd.
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4.1. Rough drivers. To make sense of this equation we need to complete the functional
setting by the datum of a scale of Banach spaces

(
En, | · |n

)
n>0

, with En+1 continuously
embedded in En. For n > 0, we shall denote by E−n = E∗n the dual space of En, equipped
with its natural norm,

|e|−n := sup
ϕ∈En, |ϕ|n61

(ϕ, e), e ∈ E−n.

We require that the following continuous inclusions

En ⊂ · · · ⊂ E2 ⊂ E1 ⊂ E0

hold for all n > 2. One can think of n as quantifying the ’regularity’ of elements of some
test functions, with the elements of En being more regular with n increasing. Denote by
‖ · ‖(b,a) for the norm of a linear operator form Ea to Eb. (Note that we use (b, a) and not
(a, b) in the lower index for the norm.) We also assume the existence of a family

(
Jε
)
0<ε61

of operators from E0 to itself such that the estimates

(4.2)
∥∥Jε − Id

∥∥
(n,n+k)

6 c εk,
∥∥Jε∥∥

(n+k,n)
6 c ε−k

hold for all n, k > 0, for some positive constant c independent of ε. For ϕ ∈ E0, the
elements ϕε := Jεϕ are in particular ’smooth’, that is in the intersection of all the spaces
En, for n > 0.

Whenever we will work with Sobolev–like scales En = Wn,p(Rd) (p ≥ 1) we will take
the operators Jε =

(
I− ε4

)−j0 , for j0 big enough.

Definition 5. Let 1
3 < γ 6 1

2 be given. An unbounded γ-rough driver on the scales(
En, | · |n

)
n>0

, is a pair A =
(
A1, A2

)
of 2-index maps, with

A1
ts ∈ L

(
En, En−1

)
, for n ∈ {−0,−2},

A2
ts ∈ L

(
En, En−2

)
, for n ∈ {−0,−1},

(4.3)

for all 0 6 s 6 t < T , which satisfies Chen’s relations (3.1), and such that A1 is γ-Hölder
and A2 is 2γ-Hölder.

Equation (4.5) below will make it clear that unbounded rough drivers can be thought
of a some kind of (dual objects to some) multi-scales velocity fields, with two time scales
given by A1 and A2. This is particularly clear on the following elementary example, where

A1
ts =

∑̀
i=1

Xi
tsVi, and A2

ts =
∑̀
j,k=1

Xjkts VjVk,

where X = (X,X) is a weak geometric γ-Hölder rough path over R`, with 1
3 < γ 6 1

2 , and
V1, . . . , V` are regular enough vector fields on Rd with values in N×N matrices, understood
here as first order differential operators. On can also take V ∗i = −Vi − divVi in the above
definition of a rough driver.

In a probabilistic setting, the above rough path X could be the (Stratonovich) Brownian
rough path. More generally, one could take as first level A1

ts a semimartingale velocity field
of Le Jan-Watanabe-Kunita type (or its dual), where noise (the above Xts) and dynamics
(the above Vi) cannot be separated from one another. It is shown in the forthcoming work
[2] that these velocity fields can be lifted into a(n object very similar to a) rough driver
under some mild conditions on the semimartingale structure. In the same spirit, Catellier
has shown in [6, 7] the interest for the study of rough transport equations with irregular
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drift, of considering velocity fields in Rd given by the regularisation of some field V (that
may even be a distribution) along some irregular path w, such as a typical trajectory of
a fractional Brownian motion with any Hurst index. One deals in this particular setting
with the ’Young analogue’ of the above γ-rough drivers, corresponding to 1

2 < γ 6 1, with
only one level, and given in this example by the formula

A1
ts(x) =

∫ t

s
V (x+ wu) du.

We denote by ε(e) the duality pairing between an element ε of E−n and an element e
of En, for any n ∈ Z. The dual of a continuous operator A from E−a to E−b is denoted
by A∗; this is a continuous operator from Eb to Ea. We can now make sense of equation
(4.1).

Definition 6. An E−0-valued path f• is said to solve the linear rough differential
equation

(4.4) dfs = A(ds)fs

if there exists an E−2-valued 2-index map f ] such that one has

(4.5) δfts(ϕ) = fs

({
A1,∗
ts +A2,∗

ts

}
ϕ
)

+ f ]ts(ϕ)

for all 0 6 s 6 t < T and all ϕ ∈ E2, and the map f ]ts(ϕ) is 3γ-Hölder, for each ϕ ∈ E2.

Let us insist on the fact that this notion of solution depends on the scale (En)n>0. We
define, for all 0 6 s 6 t < T , an E−1-valued 2-index map f [ setting, for ϕ ∈ E1,

f [ts(ϕ) := δfts(ϕ)− fs
(
A1,∗
ts ϕ

)
;

for ϕ ∈ E2, one also has another expression for that quantity

f [ts(ϕ) = fs
(
A2,∗
ts ϕ

)
+ f ]ts(ϕ).

4.2. A priori estimates. We show in this section that solutions f• of equation (4.4)
satisfy some a priori bounds that depend only on certains norms on the rough driver A
and on the uniform norm of f , when seen as a continuous path with values in some spaces
of distributions.

The next lemma shows that the map f [ is actually 2γ-Hölder with values in a space of
distributions "of order 2" in a certain sense while f ] is only expected to be γ-Hölder from
its definition. This gain of time regularity, traded against a loss of ’space regularity’ may
well be one of our main contribution, despite its elementary nature. It leads to a similar
(and even better) result for f ], as expressed in Theorem 8, that is the key technical result
of this paper and which opens the road to a quite complete theory of linear rough equation.

Recall the notations L·M and L·Mγ for the norms introduced in equations (2.5) and (2.6).
They depend implicitly on some positive parameter λ that we shall tune as needed along
the way. Given ϕ ∈ E0, set

K1(ϕ) := sup
0<ε61

{
L f
(
(A1)∗Jεϕ

)
Mγ + λγε L f

(
(A2)∗Jεϕ

)
M2γ

+ λ2γε2 L f ]
(
Jεϕ

)
M3γ + λ−γε−1 L f

(
(Id− Jε)ϕ

)
M
}
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and

K2(ϕ) := sup
0<ε61

{
L f
(
(A2)∗ϕ) M2γ + λγε L f ]

(
Jεϕ ) M3γ+

λ−2γε−2 L f
(
(Id− Jε)ϕ

)
M + λ−γε−1L f

(
(A1)∗(Id− Jε)ϕ

)
Mγ
}

Given ϕ ∈ E0, set for all n ≥ 0

Kn(ϕ) := sup
0<ε61

inf
ϕ1+ϕ2=ϕ

{
2(λγε)0−n L f

(
ϕx
)
M + (λγε)1−nL f

(
A1,∗ϕx

)
Mγ

+ (λγε)2−nL f
(
A2,∗ϕx) M2γ + (λγε)3−n L f ]

(
ϕx ) M3γ

}
where ϕx is ϕ1 if corresponds to a term of order < nγ or ϕ2 otherwise.

Lemma 7. We have L δf(ϕ) Mγ . K1(ϕ), and L f [(ϕ) M2γ . K2(ϕ).

Proof – We start by an arbitrary decomposition of ϕ ∈ E1 as ϕ = ϕ1 + ϕ2 giving

|δfts(ϕ)| 6 |δfts(ϕ1)|+ |δfts(ϕ2)|.

Take t, s such that |t− s| ≤ λ. The second term is bounded above by

e−λ
−1t |δfts(ϕ2)|
|t− s|γ

6 2λ−γε−1Lϕ2M,

where ε = λ−γ |t − s|γ ∈ (0, 1] if |t − s| ≤ λ. The first term can be estimated using
properties (4.2) and the defining identity (4.5):

e−λ
−1t |δfts(ϕ1)|
|t− s|γ

6 Lf(A1,∗ϕ1)Mγ + λγεLf(A2,∗ϕ1)M2γ + λ2γε2Lf ](ϕ1)M3γ .

• This gives us an upper bound for
∣∣δfts(ϕ)

∣∣ depending on ε and ϕ1, ϕ2 over which we
can optimise to obtain

Lδf(ϕ)Mγ 6 K1(ϕ).

• One can proceed in a similar way to estimate
∣∣f [ts(ϕ)

∣∣, starting from the inequality

|f [ts(ϕ)| 6 |δfts(ϕ1)|+ |fs(A1,∗
ts ϕ1)|+ |fs(A2,∗

ts ϕ2)|+ |f ]ts(ϕ2)|

and optimizing as above we get the upper bound on
∣∣f [ts(ϕ)

∣∣. �

The estimates proved in Lemma 7 are all we need to give an upper bound on the 3γ-
Hölder norm of f ] in terms of f itself. As this result will be our key tool for proving a
number of results in different situations, we formulate it here in some generality. Given a
Banach space B and a B-valued path m•, we set

Lm Mγ ;B := sup
06s<t6T
|t−s|≤λ

e−λ
−1t

∣∣δmts

∣∣
B

|t− s|γ
,

for γ > 0. Let

N(A) := sup
ϕ

‖J1(A1,∗ϕ)‖γ + ‖J2(A2,∗ϕ)‖2γ
|ϕ|F
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with

Jn(ϕ) := sup
0<ε61

inf
ϕ1+ϕ2=ϕ

{
2(ε)0−n |ϕx|E + (ε)1−n‖A1,∗ϕx‖γ;E + (ε)2−n‖A2,∗ϕx‖2γ;E

+ (ε)3−n|ϕx|F
}
.

Theorem 8. Let E ⊂ E0 and F ⊂ E3 be two Banach spaces of distributions such that the
above quantity N(A) is finite. Let λ 6 1 be sufficiently small so that 2λγN(A) 6 1. Then
any solution of the rough linear equation (4.4) satisfies the a priori bound

L f ] M3γ ;F ∗ 6 8λ−2γN(A) L f ME∗ .

Proof – Given ϕ ∈ E3, note that

δftus = f [us
(
A1,∗
tu ϕ

)
+ δfus

(
A2,∗
tu ϕ

)
,

is 3γ-Hölder by Lemma 7, so the sewing Lemma 1 can be used, giving

L f ](ϕ) M3γ . L f [
(
A1,∗ϕ

)
M3γ + L δf(A2,∗ϕ) M3γ

. ‖K2

(
A1,∗ϕ

)
‖γ + ‖K1

(
A2,∗ϕ

)
‖2γ

Now

Kn(ϕ) 6 λ−nγ [(1 + λγ + λ2γ)L f ME∗ + λ3γL f ] M3γ;F∗ ]Jn(ϕ)

so

L f ] M3γ;F∗ 6 [4λ−2γL f ME∗ + λγL f ] M3γ;F∗ ]N(A)

where we assumed λ 6 1, with no loss of generality, to get a simpler expression for the
formula. Taking λ 6 1 small enough so that λγN(A) 6 1/2, we obtain the inequality

L f ] M3γ ;F∗ 6 8λ−2γL f ME∗N(A).

�

Taking
E = E0, and F = E3,

and assuming that

A1,∗
ts ∈ L

(
E1, E0

)
∩ L
(
E3, E2

)
, and A2,∗

ts ∈ L
(
E3, E1

)
∩ L
(
E2, E0

)
for all 0 6 s 6 t 6 T , then N(A) . C2

0 where

(4.6) C0 := 1 +
∥∥A1

∥∥
γ ; (−0,−1) +

∥∥A2
∥∥
2γ ; (−0,−2) +

∥∥A1
∥∥
γ ; (−2,−3) +

∥∥A2
∥∥
2γ ; (−1,−3) <∞.

Indeed in this case we can take the decomposition ϕ2 = Jεϕ and ϕ1 = (Id − Jε)ϕ in the
definition of Jn(ϕ) and obtain, for example,

J1(ϕ) 6 sup
0<ε61

{
2(ε)−1 |(Id− Jε)ϕ|0 + ‖A1,∗Jεϕ‖γ;0 + (ε)1‖A2,∗Jεϕ‖2γ;0

+ (ε)2|Jεϕ|3
}
. C0|ϕ|1

and similarly J2(ϕ) . C0|ϕ|2 from which is easy to conclude the bound N(A) . C2
0 .

Note that it follows from Banach uniform boundedness principle that for a solution path(
f, f ]

)
, we have ∥∥f ]∥∥

3γ ;−3 6
∥∥f ]∥∥

3γ ;−2 <∞.
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Theorem 8 shows that one has an explicit upper bound for
∥∥f ]ts∥∥3γ ;−3 in terms of LfM−0

and C0 only. This fact is recorded in the following :

Theorem 9. For any λ 6 1 such that λγC2
0 . 1 we have the a priori bounds

(4.7) max
{

L δf Mγ ;−1, L f [ M2γ ;−2, L f ] M3γ ;−3
}
.γ C

2
0 λ
−2γ L f M−0.

5. Integration of unbounded rough drivers in Hilbert spaces

We develop in this section the theory of integration of unbounded rough drivers in the
Hilbert space L2(Rd) = E0 = E−0. We are able to give a rather complete theory a class of
drivers that enjoys the same algebraic properties as the rough drivers A =

(
X V,XV V

)
involved in the rough transport equation, when the vector fields V =

(
V1, . . . , V`

)
are

divergence free. These drivers are called conservative. A general existence result for the
rough linear equation dfs = A(ds)fs, driven by conservative drivers is given in Section 5.1.
To prove uniqueness of solutions to such equations, we develop in section (5.2) a robust
tensorization argument for a larger class of unbounded rough drivers that is the key to
obtain some a priori bounds. These bounds imply uniqueness for rough linear equations
driven by conservative drivers under a mild additional assumption, but they also lead to a
complete L2-theory of rough transport equations, as illustrated in section (5.4).

Note that working in a Hilbert space setting, we have the continuous inclusions

(5.1) En ⊂ · · · ⊂ E1 ⊂ E0 = E−0 ⊂ E−1 ⊂ · · · ⊂ E−n.

5.1. Conservative drivers. We start with the simple situation where the driver is con-
servative according to the following definition.

Definition 10. A rough driver is said to be conservative if we have

(i) A1,∗
ts +A1

ts = 0, on E1,

(ii) A2,∗
ts +A2

ts +A1,∗
ts A

1
ts = 0, on E2,

for all 0 6 s 6 t < T .

Notice that the conservative conditions make sense because of the above continuous
inclusions (5.1). As an elementary example of conservative unbounded driver, take as
Banach spaces En the Sobolev spaces Wn,2(Rd), with norm |ϕ|n :=

∑n
k=0

∣∣∇kϕ∣∣L2 , and
consider the unbounded rough driver A given by the formula

(5.2) A1
ts = Xi

tsVi, A2
ts = Xjkts VjVk,

for some `-dimensional geometric γ-rough path, with 1
3 < γ 6 1, and some divergence-free

vector fields (Vi)i=1..` on Rd, with the latter understood as first order differential operators.
Condition (ii) partly plays the role in our setting that the notion of weak geometric rough
path plays in a rough paths setting. Also, the antisymmetry condition (i) holds due to the
fact that Vi have null divergence, and condition (ii) holds as a consequence of the weak
geometric character of X. Indeed, in this setting we have

A1,∗
ts = Xi

ts(Vi)
∗ = −Xi

tsVi = −A1
ts,

A2,∗
ts +A2

ts = Xjkts
(
V ∗k V

∗
j + VjVk

)
=

1

2
Xj
tsX

k
ts

(
VkVj + VjVk

)
= −A1,∗

ts A
1
ts
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on E1 and E2 respectively. The boundedness assumptions (4.3) that A1
ts and A2

ts need to
satisfy hold if, for instance, the vector fields Vi are C2b . (Note that our setting is by no
means restricted to working with vector fields. Working in the spaces En = W kn,2(Rd), we
may take Vi in the above formula for A the operators Vi = W k

i , for some divergence-free
vector fields Wi. Less trivial operators appear in a number of examples.)

A general existence result holds for equations driven by conservative rough drivers under
very mild conditions on the functional setting.

Theorem 11. Assume one can associate to the scale (En)n>0 a family of self-adjoint
smoothing operators

(
J ε
)
0<ε61

, from E0 to itself, satisfying the regularisation estimates
(4.2), and let A be a conservative unbounded γ-rough driver on the scales (En)n>0. Then
for any f0 ∈ L2(Rd), there exists an L2(Rd)-valued path f•, started from f0, such that we
have

δfts(ϕ) = fs

(
A1,∗
ts ϕ

)
+ fs

(
A2,∗
ts ϕ

)
+ f ]ts(ϕ)

for all ϕ ∈ E3, with ∣∣ft∣∣0 6 ∣∣f0∣∣0,
for all t > 0, and we have, for each finite time horizon T ,

(5.3)
∣∣∣f ]ts(ϕ)

∣∣∣ .C0,A,T,|f0|0
∣∣ϕ∣∣

3
|t− s|3γ ,

for 0 6 s 6 t 6 T .

The proof goes by approximating the unbounded rough driver A by bounded rough drivers
Aε, and by using the theory developed in Section 3 to solve the equation

(5.4) δf εts(ϕ) = f εs

(
Aε,1,∗ts ϕ

)
+ f εs

((
Aε,2ts

)∗
ϕ
)

+ f ε,]ts (ϕ).

The a priori bound (4.7) is used to pass to the limit as ε goes to 0.

Proof – More concretly, let

Aε,1ts := J εA1
tsJ

ε, Aε,2ts := J εA2,a
ts J

ε − 1

2
Aε,1ts A

ε,1,∗
ts ,

with J ε understood as a continuous operator from E0 to Ek0+2, for k0 big enough, and
A2,a
ts = 1

2

(
A2
ts−A

2,∗
ts

)
stands for the antisymmetric part of A2

ts. Both Aε,1 and Aε,2 are
bounded linear operators from E0 to itself, and by construction Aε =

(
Aε,1, Aε,2

)
is a

bounded conservative γ-rough driver on the Banach algebra L(E0). So one can denote
by M ε

• the solution path in L(E0) of the rough differential equation

δM ε
ts =

(
Aε,1ts +Aε,2ts

)
M ε
s +M ε,]

ts ,

provided by the theory developed in Section 3. Given f0 ∈ E0, the path f ε• = M ε
•f0

solves the rough differential equation (5.4). Whereas Theorem 3 provides an exponen-
tial control of the growth of the E0-norm of f εt , with an exponent λε that may go to
∞ as ε goes to 0, the conservative character of Aε ensures the uniform bound∣∣f εt ∣∣0 =

∣∣f0∣∣0.
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Indeed, denoting by (·, ·) the scalar product on E0, and setting zεt =
∣∣f εt ∣∣20, one has

δzεts = 2
(
δf εts, fs

)
+
(
δf εts, δf

ε
ts

)
= 2
((
Aε,1ts +Aε,2ts

)
fs, fs

)
+
(
f ε,]ts , fs

)
+
((
Aε,1ts +Aε,2ts

)
fs,
(
Aε,1ts +Aε,2ts

)
fs

)
+O

(
|t− s|3γ

)
= 2
(
Aε,2ts fs, fs

)
+
(
Aε,1ts fs, A

ε,1
ts fs

)
+O

(
|t− s|3γ

)
by the conservative character of Aε,1ts , which finally gives

δzεts = O
(
|t− s|3γ

)
,

since the symmetric part of Aε,2ts is −1
2A

ε,1,∗
ts Aε,1ts . The above equality shows that zε is

constant.

Remark at that point that the constant

Cε0 :=
∥∥Aε,1∥∥

γ ; (−0,−1) +
∥∥Aε,2∥∥

2γ ; (−0,−2) +
∥∥Aε,1∥∥

γ ; (−2,−3) +
∥∥Aε,2∥∥

2γ ; (−1,−3) <∞

is not only finite but also uniformly bounded above, independently of ε > 0. So we
have, by Theorem 9 an ε-uniform upper bound on

∥∥f ε,]∥∥
3γ ;−3, of the form

(5.5)
∥∥f ε,]∥∥

3γ ;−3 .γ,T,|f0|0 1.

These bounds ensure in particular that for each ϕ ∈ E3, the functions f ε•(ϕ) form
a bounded family of γ-Hölder real-valued paths, so it has a subsequence converging
uniformly to some γ-Hölder real-valued function. Moreover, by weak-? compactness,
the uniform bound (5.5) implies the existence of a sequence (εn)n>0 converging to
0, such that the sequence f εn converges weakly-? in L∞

(
[0, T ], E0

)
to some limit

f ∈ L∞
(
[0, T ], E0

)
. In particular, for each ϕ ∈ E3, the sequence f εn(ϕ) converges

weakly-? in L∞
(
[0, T ],R

)
to f(ϕ). As it has a uniformly converging subsequence, this

shows the γ-Hölder character of each function f(ϕ).
Assuming ϕ ∈ E3, it follows that one can pass to the limit in equation (5.4) in the
three terms involving f εs . The limit f ]ts(ϕ) is defined as a consequence, and the bound
(5.3) follows as a direct consequence of (5.5).

It is elementary to extend the above solution defined on [0, T ] to a globally defined
solution satisfying the statement of the theorem. �

Rather than working with a general scale of spaces satisfying some ad hoc conditions,
we shall set

En = Wn,2(Rd),

for the remainder of this section on linear rough differential equation on Hilbert spaces.
So we shall essentially be working from now on with rough drivers given by (at most) first
order rough (pseudo-)differential operators.
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5.2. Tensorization. In order to study the problem of uniqueness and further properties
of solutions to general linear rough equations associated to unbounded rough drivers, we
develop in this section a tensorization argument which can be seen as a rough version of the
(differential) second quantisation functor in Hilbert spaces [40], or the variables doubling
method commonly used in the theory of transport equations and conservation laws after
the pioneering work of Kruzkhov [34]. As far as applications are concerned, we shall not
restrict much our range in assuming that the rough drivers we are working with enjoy the
following property. Given a bounded function φ ∈Wn0,∞, denote byMφ the multiplication
operator by φ; it is a bounded operator from E0 = L2(Rd) to itself.

Definition 12. An unbounded rough driver A is said to be symmetric if the symmetric
operators

(i) B1
A,ts(φ) = A1,∗

ts Mφ +MφA
1
ts,

(ii) B2
A,ts(φ) = MφA

2,∗
ts +A2

tsMφ +A1
tsMφA

1,∗
ts ,

define quadratic forms
g 7→

(
g,Bi

A,ts(φ)g
)

that are continuous on E0, for all 0 6 s 6 t < T , and for any test function φ ∈W 3,∞.

For rough drivers A =
(
A1, A2

)
of the form

A1
ts = Xi

tsVi, A2
ts = Xjkts VjVk,

for some vector fields Vi on Rd, and some weak geometric rough path X, the operator
B1(φ) is the multiplication operator by A1,∗

ts φ, and the second quadratic form is of the
form (

g,B2
A,ts(φ)g

)
=
(
g2, hφts

)
,

for some explicit function hφts that turns A into a symmetric unbounded rough driver if
the vector fields Vi are C2b and φ ∈W 2,∞.

Let now A be a symmetric unbounded rough driver in the scale (En)n>0, and let f• be
a solution to the linear rough differential equation

dfs = A(ds)fs.

Consider f⊗2 = f⊗f , defined on Rd×Rd by f⊗2(x, y) = f(x)f(y); it satisfies the equation

δf⊗2 =
(
A1 ⊗ I + I⊗A1

)
f⊗2 +

(
A2 ⊗ I + I⊗A2 + τ(A1 ⊗A1)

)
f⊗2 + f⊗2,],

where I stands for the identity map and

τ(A1 ⊗A1)ts = A1
ts ⊗A1

ts.

Setting

Γ1
A := A1 ⊗ I + I⊗A1,

Γ2
A := A2 ⊗ I + I⊗A2 + τ(A1 ⊗A1),

and
ΓA :=

(
Γ1
A,Γ

2
A

)
,

we have then

δΓ2
A =

(
A1A1

)
⊗ I + I⊗

(
A1A1

)
+A1 ⊗A1 + σ(A1 ⊗A1),
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where σ(v ⊗ w) = w ⊗ v is the exchange of the two factors in the tensor so that

σ(A1 ⊗A1)tus = A1
us ⊗A1

tu +A1
tu ⊗A1

us.

If follows that ΓA satisfies Chen’s relations (3.1). Endowing E⊗2n with its natural Hilbert
space structure, we turn ΓA into a γ-Hölder unbounded rough driver in the scale

(
E⊗2n

)
n>0

,
for which f⊗2 happens to be a solution, in this scale of spaces, of the linear rough equation

df⊗2s = ΓA(ds)f⊗2s .

The goal of the doubling variable method is to use the dynamics of f⊗2 to gain some
information of its behaviour near the diagonal of Rd × Rd in order to control the trace of
f⊗2 on the diagonal.

Thinking to this goal let us define a scale of spaces E∇n of test functions on Rd ×Rd, by
requiring that they have finite | · |∇n -norm. In order to introduce this norm let us define

|Φ|∇n := sup
0≤k+l≤n

∫
Rd

sup
z∈Rd

∣∣∂kz ∂lwΦ(z + w, z − w)
∣∣ dw.

Moreover we introduce a blow-up transformation Tε on test functions as follows:

TεΦ(x, y) = ε−dΦ
(
x+ +

x−
ε
, x+ −

x−
ε

)
where x± = x±y

2 are coordinates parallel and transverse to the diagonal of Rd × Rd. Note
that Tε is a bounded operator in E∇0 uniformly in ε. The adjoint of this transformation for
the L2 scalar product reads

T ∗ε F (x, y) = F
(
x+ + εx−, x+ − εx−

)
.

We let
Γ∗A,ε := T−1ε Γ∗ATε.

Recall the definition of the operators B1
A,ts(φ) and B2

A,ts(φ) used in the definition of a
symmetric unbounded rough driver. We use below brackets 〈·, ·〉 to denote the L2 scalar
product. Note that fs is an element of E−0 = E0 = L2(Rd), so f2s is in L1(Rd).

Definition 13 (Renomalizable drivers). The unbounded γ-rough driver A is renormal-
izable if {ΓA,ε}ε>0 is a bounded family of unbounded γ-rough drivers in the scale of spaces(
E∇n
)
n>0

.

The following lemma gives flesh to the expresion ’Renormalizable driver’, such as defined
here. It needs to be understood in the light of di Perna-Lions’ work on transport equation
[13] where a notion of renormalizable solution was first introduced. Definition 21 will make
that parallel clear in our study of the L∞ theory for the rough transport equation. Under
some additional assumption stated in Definition 16, the present notion of renormalizable
unbounded rough driver will provide in Theorem 17 a general uniqueness result.

Lemma 14 (Renormalisation). Let A be a symmetric rough driver and f• be a solution
of the equation

dfs = A(ds)fs,

in the initial scale of spaces (En)n>0. If A is renormalizable then the L1(Rd)-valued path
f2• satisfies, for all φ ∈W 3,∞, the equation

(5.6) δf2(φ)ts = 〈fs,
(
B1

A,ts(φ) +B2
A,ts(φ)

)
fs〉+O(|φ|W 3,∞ |t− s|3γ).
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By polarisation the product fg satisfies an equation analogous to equation (5.6) if both f
and g are solutions of the equation dfs = A(ds)fs, in the scale (En)n>0.

Proof – Note that f⊗2• satisfies the equation

(5.7) δf⊗2ε (Φ)ts = f⊗2ε,s ((Γ1,∗
A,ε)tsΦ) + f⊗2ε,s ((Γ2,∗

A,ε)tsΦ) + f⊗2,](TεΦ)ts

for all smooth functions Φ where f⊗2ε = T ∗ε f
⊗2. Note that if we show that f⊗2ε

is uniformly bounded in E∇−0 then from the hypothesis that {ΓA,ε}ε>0 is a bounded
family of unbounded γ-rough drivers in the scale of spaces

(
E∇n
)
n>0

we also have∥∥f⊗2,](TεΦ)
∥∥
3γ

.
∣∣Φ∣∣∇

3
. As a consequence the 3γ-Hölder norm of the remainders

f⊗2, ]
(
TεΦ

)
are bounded uniformly in ε for fixed Φ.

Equation (5.6) will come from taking in equation (5.7) some functions Φ of the form

Φ(x, y) = ψ(x− y)φ

(
x+ y

2

)
,

and by letting ε tend to 0, after checking that some ε-uniform estimates hold for the
different terms in (5.7).
Cauchy–Schwartz inequality provides the bound∣∣∣f⊗2s (

TεΦ
)∣∣∣ =

∣∣∣∣∫
Rd×Rd

fs(x+ + εx−)fs(x+ − εx−)Φ(x+ + x−, x+ − x−) dx+dx−

∣∣∣∣
6 max

±

∫
Rd×Rd

|fs(x+ ± εx−)|2|Φ(x+ + x−, x+ − x−)| dx+dx−

6 max
±

∫
Rd×Rd

|fs(x+ ± εx−)|2 sup
z
|Φ(z + x−, z − x−)| dx+dx−

6 |f |2L2

∫
Rd

sup
z
|Φ(z + w, z − w)| dw

6 |Φ|E∇0
∣∣fs∣∣2L2 .

which shows that f⊗2ε is uniformly bounded in E∇−0. Now, given a positive constant δ,
the fact that for any smooth function g which is δ-close in L2(Rd) of fs, we have∣∣∣f⊗2s (

TεΦ
)
− g⊗2

(
TεΦ

)∣∣∣ . 2δ|f |L2 + δ2,

uniformly in ε, and

lim
ε→0

g⊗2
(
TεΦ) =

∫
Rd

∣∣g(x)
∣∣2φ(x) dx,

shows that
f⊗2s

(
TεΦ

)
−→
ε→0

f2s (φ).

We also have the convergence

g⊗2
(
(Γ1

A)∗tsTεΦ
)

=
(
A1
tsg ⊗ g + g ⊗A1

tsg, TεΦ
)
−→
ε→0

2

∫
Rd
g(x)

(
A1
tsg
)
(x)φ(x) dx,

which we can rewrite as

g⊗2
(
(Γ1

A)∗tsTεΦ
)
−→
ε→0

2
(
g,A1,∗

ts Mφg
)

=
(
g,B1

A,ts(φ)g
)
.
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Using in addition the boundedness on L2(Rd) of the quadratic form associated to
B1
ts(φ), one can then send g to fs, in L2(Rd), in the above convergence result and

conclude that
f⊗2s

(
(Γ1

A)∗tsTεΦ
)
→
(
fs, B

1
A,ts(φ)fs

)
.

Similarly, the boundedness in E∇0 of the family
(
(Γ2
A)∗tsTεΦ

)
0<ε61

, together with the
boundedness on L2(Rd) of the quadratic form associated with B2

A,ts(φ), show that

f⊗2s
(
(Γ2

A)∗tsΦ
ε
)
→
(
fs, B

2
A,ts(φ)fs

)
;

equation (5.6) follows, as we have the ε-uniform bound
∣∣∣f⊗2, ]ts (TεΦ)

∣∣∣ 6
∣∣Φ∣∣∇

3
6∣∣φ∣∣

W 3,∞ |t− s|3γ . �

This result is sufficient to prove that rough linear equations driven by conservative
drivers are unique if the driver is symmetric.

Corollary 15. Let A be a renormalizable symmetric conservative unbounded γ-rough
driver in the scale of spaces (En)n>0. Then the rough linear equation

dfs = A(ds)fs

has a unique solution in L2(Rd), started from any initial condition f0 ∈ E0; it satisfies∣∣ft∣∣0 =
∣∣f0∣∣0, for all times t.

Proof – It suffices to notice that since the driver A is conservative, we have B1
A,ts(1) =

B2
A,ts(1) = 0, so it follows from equation (5.6) that any solution path f• has constant

L2-norm, which proves the uniqueness claim. Existence was proved in Theorem 11.
�

5.3. A priori bounds for closed symmetric drivers. One cannot use directly the
renormalisation lemma to get some closed equation for f2 when A is non-conservative. We
need for that purpose to assume that the symmetric unbounded rough driver A enjoys the
following property. Given that A is symmetric, recall the definition of its associated family
of symmetric operators B1

A,ts(φ) and B2
A,ts(φ) on E0, indexed by (s, t) and φ ∈W 3,∞, given

in Definition 12.

Definition 16. A symmetric unbounded rough driver A in the scale of spaces(
Wn,2

)
n>0

, is said to be closed if there exists some unbounded rough driver B =
(
B1, B2

)
in the scale of spaces

(
Wn,∞)

n>0
, such that we have(

g,B1
A,ts(φ)g

)
=
(
g2, (B1

ts)
∗φ
)
, and

(
g,B2

A,ts(φ)g
)

=
(
g2, (B2

ts)
∗φ
)
,

for all g ∈ E0 and φ ∈W 3,∞.

As an example, it is elementary to check that the unbounded rough driverA =
(
XV,XV V

)
used in the rough transport equation

δfts = X V fs + XV V fs + f ]ts

with some γ-Hölder weak geometric rough path X = (X,X), is closed and symmetric if
the vector fields V =

(
V1, . . . , V`

)
are C3

b , in which case B = A. Another interesting class
of examples of closed symmetric unbounded rough driver in the scale of spaces (En)n>0,
is provided by the lift to rough drivers of C3b -semimartingale velocity fields, as given in the
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theory of stochastic flows. This kind of stochastic velocity fields appear in the study of
Navier–Stokes equation. See the work [2] for a thorough study of stochastic flows from this
point of view.

Building on this notion of closed driver, the following statement provides amongst other
things an a priori estimate on solutions of rough linear equations that plays in this set-
ting the role played in the classical setting by a priori estimates obtained by any kind of
Gronwall–type argument. The crucial point here is that no such Grönwall machinery was
available so far in a rough path–like setting; despite its elementary nature, this result may
well be one of our main contributions.

Theorem 17. Let A be a renormalizable closed symmetric unbounded γ-rough driver on
the scales

(
Wn,2(Rd)

)
n∈N. Let B be its associated driver, and assume that the inequality

(5.8)
∣∣∣(B1

t0

)∗
1
∣∣∣ ∨ ∣∣∣(B2

t0

)∗
1
∣∣∣ 6 ct

holds for all times t, for some time-dependent mositive constant ct such that e−λtct tends
to 0 as t goes to infinity, for any positive parameter λ, so

L c• M <∞.

Then, given any f0 ∈ L2(Rd), there is at most one L2(Rd)-valued solution path f• to the
equation

(5.9) δfts(ϕ) = fs

(
A1,∗
ts ϕ

)
+ fs

(
A2,∗
ts ϕ

)
+ f ]ts(ϕ),

and we have, for each finite time horizon T ,

(5.10)
∣∣∣f ]ts(ϕ)

∣∣∣ .B,T,|f0|0
∣∣ϕ∣∣

3
|t− s|3γ ,

for all ϕ ∈W 3,2, and all 0 6 s 6 t 6 T . It satisfies the upper bound

(5.11)
∣∣ft∣∣0 .B,t

∣∣f0∣∣0
Proof – Let f• be a solution to the rough linear equation (5.9) in the scale of spaces(

Wn,2(Rd)
)
n∈N. Since A is closed, the L1(Rd)-valued path f2• happens to be a solution

to the rough linear equation

δf2(φ)ts = f2s
(
(B1

ts)
∗φ
)

+ f2s
(
(B2

ts)
∗φ
)

+ (f2)]ts(φ),

in the scale of spaces
(
Wn,∞(Rd)

)
n∈N. Denote by CB

0 the finite constant associated
to the unbounded rough driver B, as defined by equation (4.6), with B in the role of
A. It follows from the general a priori estimates on solutions of rough linear equations
proved in Theorem 8, and the fact that f2 is in L1(Rd), that

L (f2)] M3γ ; (W 3,∞)∗ .γ,λ C
B
0 L f2 M(L∞)∗ .γ,λ C

B
0 L f2• ML1 .(5.12)

But since we have the identity

f2t (1) = f20

(
1 + (B1

ts)
∗1 + (B2

ts)
∗1
)

+ (f2)]t0(1)

and the bound (5.8), we also have the estimate

L f2• ML1 = L f2• (1) M .L c• M
∣∣f0∣∣L2 + L (f2)]•0 M(W 3,∞)∗

.L c• M

(∣∣f0∣∣L2 + λ3γ L (f2)] M3γ ; (W 3,∞)∗

)
.
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(Note that (f2)], in the right hand side of the above inequality, is seen as a 2-index
function.) Together with the bound (5.12), this gives the upper bound

L f2• ML1 .L c• M, CB
0

∣∣f0∣∣L2

for λ small enough, which implies uniqueness. �

5.4. Rough transport equation. Building on Theorem 17, one can give a complete
L2-theory of rough transport equations

δfts = X V fs + XV V fs + f ]ts

driven by non-divergence-free vector fields Vi of class W 3,∞.

Lemma 18. Let X be a geometric γ-Hölder rough path on R`, and V1, . . . , V` be W 3,∞ vec-
tor fields on Rd. Then the operator ΓA associated with A =

(
XV,XV V

)
is renormalizable

in the scale of spaces
(
E∇n
)
n>0

.

Proof – For a geometric rough path X = (X,X), the operator ΓA takes the form ΓA =(
XΓ1

V ,XΓ2
V ), with

Γ1
V := V ⊗ I + I⊗ V,

Γ2
V := V V ⊗ I + I⊗ V V + 2(V ⊗ V ) = Γ1

V Γ1
V .

So it is enough to show that the adjoints of these operators satisfy, uniformly in ε, the
inequalities

(5.13) |Γ1,∗
V,εΦ|

∇
n . |V |Wn+1,∞ |Φ|∇n+1, |Γ2,∗

V,εΦ|
∇
m . |V |2Wm+2,∞ |Φ|∇m+2

for n = 0, 2, m = 0, 1, for smooth test functions Φ where Γj,∗V,ε = T−1ε Γj,∗V Tε for j = 1, 2.
Write V = vk∂k where (vk)k=1,...,d are the coefficients of the vector fields in the canon-
ical basis (∂k)k=1,...,d of derivations; with these notations, we have

V ∗ = −vk∂k − d,

where d := divv, is the divergence of the vector field V . For Γ1,∗
V we have the repre-

sentation
Γ1,∗
V = v+k ∂

+
k + v−k ∂

−
k + d+ + d−,

where we denote ∂±k := (∂k ⊗ 1)± (1⊗ ∂k) and, for a real-valued function h on Rd, by

h±(x, y) := h(x)± h(y)

the symmetric and antisymmetric lifts of operators and functions from Rd to Rd×Rd.
Moreover we let

h±ε (x, y) := h(x+ + εx−)± h(x+ − εx−)

the blowup of lifted functions according to the transformation h±ε = T−1ε h±Tε. Note
that

∂+k Tε = Tε∂
+
k ∂−k Tε = ε−1Tε∂

−
k

so that

Γ1,∗
V,ε = T−1ε Γ1,∗

V Tε = v+k,ε∂
+
k +

v−k,ε
ε
∂−k + d+ε + d−ε .

The first estimate in (5.13) follows from the inequalities∣∣a+ε ∇+Φ
∣∣∇
n

+
∣∣ε−1a−ε ∇−Φ

∣∣∇
n
. (|a|Wn,∞ + |∇a|Wn,∞)|Φ|∇n+1.
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The second inequality in (5.13) is obtained by noting that we have

|Γ2,∗
V,εΦ|

∇
m = |Γ1,∗

V,εΓ
1,∗
V,εΦ|

∇
m . |V |Wm+1,∞ |Γ1,∗

V,εΦ|
∇
m+1

. |V |Wm+1,∞ |V |Wm+2,∞ |Φ|∇m+2.

�

Theorem 19. Let X be a geometric γ-Hölder rough path on R`, and V1, . . . , V` be W 3,∞

vector fields on Rd. Then the rough transport equation

δfs =
(
Xts V + Xts V V

)
fs + f ]ts

is well-posed.

Proof – Notice first that the regularity assumption on the Vi puts us in a position to
use the a priori bounds for symmetric closed drivers stated in Theorem 11, with A in
the role of B. So uniqueness is a direct consequence of the a priori bound (5.11) in
Theorem 17.
Let now f0 ∈ E0 be given. We prove the existence of a solution path to rough transport
equation started from f0, by a classical approximation-compactness argument, relying
in a crucial way on the a priori bound (5.11) on the L2-norm of the solution to the
approximate problem, and on the uniform estimate (5.3) for the remainder.
Fix a finite time horizon T . Given that X is geometric, let

(
Xε
)
0<ε61

be a family
of rough path lifts of smooth paths which converge to X is a rough paths sense over
the time interval [0, T ]. Let also

(
V ε
)
0<ε61

be a family of smooth vector fields that
converge to V in W 3,∞, and let

(
Aε
)
0<ε61

be their associated rough driver, defined
by formula (5.2) with Xε and V ε in place of X and V respectively. One can choose(
Xε
)
0<ε61

in such a way that the constant Cε0 associated with Aε by formula (4.6)
satisfies the inequality Cε0 . C0, independently of 0 < ε 6 1. Given the smooth
character of the vector fields V ε, one can solve uniquely the transport equation

δf εts(ϕ) = f εs
(
V ε,∗ϕ

)
Xε
ts + f εs

(
V ε,∗V ε,∗ϕ

)
Xεts + f ε,]ts (ϕ), for ϕ ∈ E2,

by the method of characteristics, as the above equation is actually equivalent to the
ordinary differential equation

df εt
dt

= f εt
(
V ε,∗ϕ

)
Xε
t
′.

The solutions of this problem satisfy the uniform estimates∣∣f εt ∣∣0 .C0,T

∣∣f0∣∣0,
for all 0 6 t 6 T , as a consequence of (5.11), and we also have the uniform bound

sup
0<ε61

∥∥f ε,]∥∥
3γ ;−3 .C0,γ,T,|f0|0 1,

by (5.3). These two a priori estimates are all we need to finish the proof of the theorem
following word by word the end of the proof of Theorem 17. �

It is perfectly possible to extend the present theory to deal with rough linear equations
with a drift

dfs = Wfsds+ A(ds)fs,

where W ∈ L
(
E−0, E−2

)
, such as the Laplacian operator in the Wn,2(Rd) scale of spaces.

We refrain from giving the details here as this is not our main point and this does not
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require the introduction of new tools or ideas. This provides an alternative road to some
of the results of [12] in a slightly different setting.

6. The L∞ theory of rough transport equations

We develop in this section an L∞ theory of the rough transport equation

(6.1) δfts = X V fs + XV V fs + f ]ts

and prove its well-posed character under the assumption that the vector fields be C3, for
some positive constant ν. We show for that purpose that all solutions are renormalised
solutions, in the sense of Di Perna–Lions, which classically leads to uniqueness and stability
results in that setting.

6.1. A priori estimates and existence result. For developping that L∞ theory, we
shall be working in the scale of Sobolev spaces

En = Wn,1(Rd), for n > 0,

with norm denoted by | · |n, and in which one has regularising operators
(
J ε
)
0<ε61

for
which estimates (4.2) hold. Our minimal regularity assumptions on the vector fields will
be the existence of a positive constant C1 such that the inequalities

(6.2)
∣∣V ∗i ϕ∣∣0 6 C1|ϕ|1,

∣∣V ∗i V ∗j ϕ∣∣0 6 C1|ϕ|2

hold for all 1 6 i, j 6 `. These conditions hold for instance if the vector fields Vi and (ViVj)
are all C1b ; we write here (ViVj) for

(
DVj

)
(Vi). One proves the following existence result

by proceeding exactly as in the proof of Theorem 19, using the a priori L∞-estimate∣∣f εt ∣∣L∞ =
∣∣f ε0∣∣L∞ ,

for the regularised equation, and using Theorem 9 to get an ε-uniform control on
∣∣f ε,]∣∣

3γ ;−3,
in terms of X and

∣∣f ε0∣∣L∞ only. It holds in particular if V is C2b .

Theorem 20 (Existence for rough transport equations – L∞ setting). Under the con-
tinuity assumptions (6.2) on the vector fields Vi, for any f0 ∈ L∞(Rd), there exists an
L∞(Rd)-valued path (ft)t>0, started from f0, satisfying the equation

δfts(ϕ) = fs
(
V ∗ϕ

)
Xts + fs

(
V ∗V ∗ϕ

)
Xts + f ]ts(ϕ)

for all ϕ ∈ E3, and the bound

sup
t>0

∣∣ft∣∣L∞(Rd) 6
∣∣f0∣∣L∞(Rd),

with a remainder f ](ϕ) controlled by

(6.3)
∣∣f ]ts(ϕ)

∣∣ .C1,X,T,|f0|L∞ |ϕ|3 |t− s|
3γ ,

for 0 6 s 6 t 6 T .
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6.2. Renormalised solutions, uniqueness and stability. To proceed one step further,
we show that a mild strengthening of the regularity conditions imposed on the vector fields
Vi suffices to guarantee that all bounded solutions to the transport equation (6.1) are
actually renormalised solution, in the sense of the following definition.

Definition 21. A solution f• to the transport equation (6.1) in the scales (En)n>0 is
said to be a renormalised solution if for any function H : R→ R, of class C3b , the path
h• = H ◦ f• is also a solution to equation (6.1) in the same scale (En)n>0.

As expected, this property will lead below to uniqueness and stability results.

Theorem 22. Assume the vector fields Vi are C3b . Then every solution to the transport
equation (6.1), bounded in L∞(Rd), is a renormalised solution.

Proof – The renormalisation Lemma 14 can be stated in the L∞ setting by chosing a
slightly different scale (F∇n )n of spaces of test functions, with norms modelled on L1

(6.4)
∣∣ϕ∣∣∇

n
:= sup

06k+`6n

∫ ∫ ∣∣∣(∇+
)k(∇−)`ϕ(x, y)

∣∣∣ dxdy
rather than on an L∞ space used in Section 5.2. Identity (5.6) holds in that case with
for functions φ ∈W 3,1(Rd), with anO(·) term involving theW 3,1-norm of φ rather than
itsW 3,∞-norm, as the proof of Lemma 14 works verbatim, provided we can prove that
ΓA is an unbounded rough driver in the scale of spaces

(
F∇n
)
n>0

associated with the

norm (6.4). (Note that we have in that case
∣∣f⊗2s (TεΦ)

∣∣ 6 |Φ|∇0 ∣∣fs∣∣2L∞ = |Φ|∇0
∣∣fs∣∣2−0.)

The proof that ΓA is a unbounded rough driver renormalizable in the scale (F∇n )n
follows the same pattern as the proof given in Section 5.4. We invite the reader to
complete the details.
So it follows from the renormalisation lemma that if f, g are two solutions the above
argument also goes through and shows that fg is also a solution, so any power fn of f
is also a solution, with a size of the remainder that depends only on the L∞ norm of
fn. By linearity the result can be extended to any polynomial of f , and by density to
any continuous function H(f), with H defined on the interval

[
− ‖f‖∞, ‖f‖∞

]
. �

We can actually improve slightly this condition and require only a weak integrability
for the third derivative of V ; it provides a significant strengthening of the previous state-
ment when the vector fields Vi are divergence-free, giving some analogue of the traditional
di Perna–Lions conditions in the classical setting. Note that we do not have uniqueness of
solutions for the associated rough differential equation under the conditions below.

Theorem 23. Assume that V ∈ C2b , ∇3V ∈ L1 and divV ∈ C2b . Then every solution to
the transport equation (6.1), bounded in L∞(Rd), is a renormalised solution.

Proof – In the proof of the renormalisation Lemma 14 we can use directly the general a
priori estimate stated in Theorem 8 applied to ΓA with F = Ẽ∇3 and E = F∇0 – note
the choice of function space for F . Here Ẽ∇n are spaces of test functions, with norms
modelled on L∞ like E∇n but with a small change given by an additional averaging over
the auxiliary variable τ and a weight:∣∣ϕ∣∣∇
n

:= sup
06k+`6n

∫
sup
x∈Rd

[ ∫ 1

0
dτ
∣∣∣(∇+

)k(∇−)`ϕ(x− τw, x+ (1− τ)w)
∣∣∣] (1 + |w|)dw
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the reason of which will be clear below. In this case we can show that

N1(ΓA,ε) . (1 + |V |C2b )2

while
N2(ΓA,ε) . (1 + |V |C2b + |∇3V |L1 + |divV |C2b )3.

Indeed apart from many contributions which can be estimated as in the L2 or as
in the previous theorem, a difficult term come form the estimation of norms like
|Γ∗V,εΓ∗V,εΓ∗V,ε|L(F,E) of which the most singular contribution is given by |ΓV,εΓV,εΓV,ε|L(F,E).
In this norm the contribution that requires more regularity to V is due to the first
two vector fields ΓV,ε acting simultaneously on the third one giving terms of the
form ε−1|v+ε v+ε (∇2v)−ε ∇−|L(F,E) and easier ones. Now expanding (∇2vε)

−(x, y) =

ε
∫ 1
0 dτ(∇3v)(x+ ετ(y − x))(y − x) we get

ε−1|v+ε v+ε (∇2v)−ε ∇−Ψ|E = ε−1
∫ ∫ ∣∣∣(v+ε v+ε (∇2v)−ε Ψ)(x, y)

∣∣∣dxdy
. |V |2L∞

∫ 1

0
dτ

∫ ∫
|∇3v(x+ ετw)||Ψ(x, x+ w)||w|dxdw

. |V |2L∞
∫ 1

0
dτ

∫
dx|∇3v(x)|

∫
dw|Ψ(x− τw, x− τw + w)||w|

. |V |2L∞ |∇3V |L1 sup
x∈Rd

∫ 1

0
dτ

∫
dw|Ψ(x− τw, x− τw + w)|(1 + |w|)

. |V |2L∞ |∇3V |L1 |Φ|F .
Granted the bounds on N1(ΓA) and N2(ΓA) the proof continues as the proof of the
previous theorem and gives the renormalisation result. �

As expected, Theorem 22 on renormalised solutions to the transport equation (6.1)
comes with a number of important consequences, amongst which is an equivalent of the
missing Gronwall lemma, as given by the a priori estimate (6.5) below.

Theorem 24. Assume the vector fields Vi are C3b .

(1) Uniqueness – Given an initial condition in L∞(Rd), there exists a unique solution
to the transport equation which remains bounded in L∞(Rd).

(2) Stability – Let the time horizon T be finite. Let
(
V

(n)
i

)
n>0

, i = 1..` and
(
f
(n)
0

)
n>0

be a sequence of approximating sequences with V (n)
i converging to Vi in C3b , and f

(n)
0

converging to f0 in L(Rd). Let also
(
X(n)

)
n>0

be a sequence of weak geometric γ-

rough paths above smooth paths, that converge in a rough paths sense to X, over
the time interval [0, T ]. Then the solution paths f (n)• to the transport equation
associated with X(n), V (n) and f (n)0 , converge weakly-? in L∞

(
[0, T ],L∞(Rd)

)
, and

in L1
loc
(
[0, T ],L∞(Rd)

)
, to f•.

Proof – Uniqueness – We follow the same pattern of proof as that of Theorem 17. Let
f• and f ′• be two solution paths to equation (6.1), bounded in L∞(Rd), and started
from the same initial condition. Let H : R → R be a non-negative function, of class
C3b , null at 0 and positive elsewhere. Define the path

h• = H
(
f• − f ′•

)
;
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it is also a positive solution to the transport equation (6.1) under the above regularity
assumptions on the vector fields Vi, since all solutions are renormalised solution, by
Theorem 22. Set ψ(x) =

(
1 + |x|2

)−k0 , for x ∈ Rd, and some exponent k0 > d. That
function satisfies

div
(
ψV
)

= −V ψ − (divV )ψ,

div
(
div
(
ψV
)
V
)

= V 2ψ + (divV )V ψ +
(
(V divV ) + (divV )2

)
ψ

with ∣∣∣V ψ∣∣∣ ∨ ∣∣∣V 2ψ + (divV )V ψ
∣∣∣ . ψ

as a consequence of the C1b character of the vector fields Vi. Define the scale of spaces

Eψn :=
{
ϕ = ψφ ; φ ∈ L∞

}
with norm

|ϕ|
Eψn

:= |φ|Wn,∞

It is not difficult to check that (V X, V V X) is a γ-rough driver also in this scale of
spaces. In this case however we have∣∣ht(ϕ)

∣∣ =
∣∣ht(ψφ)

∣∣ 6 |φ|L∞∣∣ht(ψ)
∣∣ = |ϕ|

Eψ0

∣∣zt∣∣
where

zt := ht(ψ),

and so
Lh•M(Eψ0 )∗

6 Lz•M

By the general a priori estimates we have that there exists λ and constants depending
on A such that

Lh]M
3γ ; (Eψ3 )∗

. Lz•M

But now
zt = z0 + h0(V

∗ψ)X0,t + h0(V
∗V ∗ψ)X0,t + h]0,t(ψ)

so
Lz•M 6 |z0|

(
1 + LX0,•M + LX0,•M

)
+ Lh]0,•M(Eψ3 )∗

and since Lh]•0M(Eψ3 )∗
6 λ3γLh]M

3γ ; (Eψ3 )∗
6 λ3γLz•M, with h] considered as a 2-index map

in its second occurence, we have for λ small enough

(6.5) Lz•M 6 2|z0|
(
1 + LX0,•M + LX0,•M

)
;

so zt = 0, for all t ≥ 0, if z0 = 0.

Stability – Denote by X(n) a smooth rough path converging to X in the rough paths
metric, and by V

(n)
i a sequence of vector fields converging to Vi in C3b . Let f (n)0

be a smooth function converging to f0 in (L1)∗. One solves the transport equation
associated with X(n) and f (n)0 , using the elementary method of characteristics as the
vector fields V (n)

i are sufficiently regular. It is elementary to use the uniform bound∣∣∣f (n)t

∣∣∣
L∞(Rd)

6
∣∣∣f (n)0

∣∣∣
L∞(Rd)

6 C <∞,

and the uniform a priori bound on
∣∣f (n),]∣∣

3γ ;−3 provided by Theorem 9 and the con-

vergence of X(n) to X, and f
(n)
0 to f0, to get the existence of a subsequence of f (n)•
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converging weakly-? in L∞
(
[0, T ];L∞(Rd)

)
to some solution of the transport equation

(6.1), bounded in L∞(Rd). Since this solution is unique, as proved above, the whole
sequence f (n)• converges weakly-? to f• in L∞

(
[0, T ];L∞(Rd)

)
. As the same conclu-

sion holds for
(
f
(n)
•

)2
and f2, by the renormalisation property, we classically get the

convergence in L1
loc
(
[0, T ];L∞(Rd)

)
. �

Remark 25. It may be tempting, in the light of the results exposed in Section 5.1, to try
and develop an L∞ theory of differential equations driven by more general rough drivers
Ats than those associated with the data of some vector fields V1, . . . , V` and a weak geomet-
ric Hölder rough path over R`, as in the transport equation (6.1). With a view towards the
classical theory of stochastic flows, as developed by Le Jan-Watanabe, Kunita and many
others, one may try, as a first step, to work with rough drivers whose first level are obtained
as typical trajectories of semimartingale velocity fields. It is shown in [2] that such random
fields can be lifted into some objects very similar to rough drivers, under some mild regular-
ity conditions on the semimartingale, and that the use of the approximate flow machinery
introduced in [1] leads to some well–posedness result for some dual evolution equation

dft(ϕ) = ft
(
A(dt)ϕ

)
.
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