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Abstract. We give a review of three works on the construction of random models for singular
stochastic partial differential equations within the theory of regularity structures.

1 – Introduction

The setting of regularity structures allows to decouple the probabilistic features of the study of a
(system of) singular stochastic partial differential equation (SPDE) from its analytic features. The
naive formulation of such an equation involves some classical functions or distributions but fails to
make sense due to some ill-defined operations involved in the equation: typically a product of two
distributions. Think of the archetypal example given by the two-dimensional parabolic Anderson
model equation set on the torus

pBt ´ ∆qu “ uξ,

for a periodic space white noise ξ. The latter has Besov-Hölder regularity ´1 ´ η for any η ą 0,
and no better, which gives u some a priori regularity no better than 1´η. This is not sufficient for
making sense of the product uξ as a continuous function of u and ξ. One then needs a non-naive
way of making sense of the equation even before asking whether it has a (unique) solution or not.
The regularity structure formulation of a given singular SPDE is a family of equations

u “ FMpuq

involving some non-classical objects u called modelled distributions, and indexed by some parameter
M called a model. Under some mild assumptions on the initial singular equation, each equation
of the model-dependent family of equations has a unique ‘local’ solution in a model-dependent
space of modelled distributions. To make a link with the initial stochastic equation one would
like to apply this local well-posedness result for a random model satisfying some natural constraint
involving the random noise in the equation. We could then declare that the associated local solution
is a solution to the singular SPDE. Building a random variable taking its values in the space of
models and satisfying the above mentioned constraint turns out to be fairly elaborate. This is
what renormalization is about.

The analytic and algebraic foundations of regularity structures were laid in the foundational
works [19] by M. Hairer and [12] by Bruned, Hairer & Zambotti. The first construction of a
random model satisfying the above mentioned constraint for a very large class of equation was
given by Chandra & Hairer in [16]. Its dynamical interpretation was explained in Bruned, Chandra,
Chevyrev & Hairer’s work [11].

The work [16] holds under some general assumptions on the noise that involve its cumulants,
but this work is difficult and technically demanding. It is then fortunate that a different approach
to singular SPDEs as a whole, and to renormalization in particular, was developed recently by
Otto and co. [28, 26, 27, 29] with in mind the study of a number of quasilinear equations. Al-
though the architecture of the approach developed in these works is similar to the architecture of
regularity structures, the details differ in a substantial way. The algebra is in particular different,
as expected from the point of view adopted, which somehow considers as single objects some sums
of objects that are considered separately in a regularity structures setting. Interestingly for us
here, they introduce in [27] a very different way of constructing their equivalent of the random
model constructed by Chandra & Hairer in [16]. By implementing a clever and intricate inductive
mechanics, they are able to renormalize their models without renormalizing each of its ‘pieces’ as
in the approach of [16]. The joint consideration of the model together with its Malliavin derivative
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plays a crucial role in their construction when coupled with the assumption that the law of the ran-
dom noise satisfies a Poincaré-type spectral gap inequality. This type of assumption is somewhat
orthogonal to the assumptions of [16], and none implies the other.

The clean setting of regularity structures enabled Hairer & Steele [23] to implement the mechan-
ics of [27] in a classical regularity structure setting and reprove that the BPHZ renormalization
scheme of [12] allows to construct a random model as in [16], under the assumption that the noise
satisfies a spectral gap inequality. This transfer is not free, though, and Hairer & Steele introduced
for their purpose a notion of pointed modelled distribution that plays a crucial technical role in
their construction. This setting is not the only one possible. Bailleul & Hoshino introduced in
[4] a different way of constructing inductively a large family of random models using a notion of
regularity-integrability structure. This construction contains the construction of [23] as a particular
case.

The present work aims at giving an overview of the works [16, 23, 4] by emphasizing some of
their mechanics, differences and similarities. We assume the reader is acquainted with the basics
of regularity structures so we only recall a number of elementary definitions without going deep in
their motivation. The reader will find in [17, 3, 5] some introductions to the analytic and algebraic
aspects of regularity structures. The expository works [20, 21] of Hairer deal specifically with the
renormalization of models and some related subjects. We choose to leave aside the very important
work [27] of Linares, Otto, Tempelmayr & Tsatsoulis and concentrate here on the works [16, 23, 4]
as they share the same technical background. For a reader interested in the multi-indices approach
to regularity structures we recommend the lecture notes [25, 9].

Organization of this work. We use Section 2 to recall some basic facts and definitions about
regularity structures and set a number of notations. A reader acquainted with the subject can
directly go to the next section. Section 3 deals with the diagramatic work [16] and emphasizes
the mechanics at the heart of the BPHZ algorithm for ‘taming the infinities’ that are involved in
the construction of the so-called BPHZ model. Section 4 deals with the non-diagramatic works
[23, 4]. We describe the work [23] of Hairer & Steele in Section 4.1, where we explain in particular
the role played by the pointed modelled distributions. Last we describe in Section 4.2 the gen-
eral construction of [4] and the flexible setting provided by the notion of regularity-integrability
structures.

2 – Basics on regularity structures and a convergence theorem for models

This section is the occasion to introduce a number of notations that will be used at several
places below. We set the stage to formulate a version of the convergence theorem for the BPHZ
random models that were first introduced by Bruned, Hairer & Zambotti in [12].

2.1 – Basics on regularity structures. Fix an integer dimension d ě 1. To avoid the technical
complexities associated with some anisotropic scaling we consider the isotropic, Euclidean, norm

}x} ¨̈“

ˆ d
ÿ

i“1

|xi|
2

˙
1
2

.

The degree of a multiindex k P Nd is define by

|k| ¨̈“

d
ÿ

i“1

|ki|.

A regularity structure T “
`

A,T,G
˘

consists of
(1) A: a subset of R such that the set tα P A ; α ă γu is finite for every γ P R.
(2) T “

À

αPA Tα: an algebraic sum of Banach spaces pTα, } ¨ }αq.
(3) G: a group of continuous linear operators on T such that, for any Γ P G and α P A,

pΓ ´ idqTα Ă Tăα ¨̈“
à

βPA, βăα

Tβ .
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The smallest element α0 of A is called the regularity of T . For any α P A we denote by Pα : T Ñ

Tα the canonical projection and abuse notation writing for any τ P T

}τ}α ¨̈“ }Pατ}α.

For any positive integer r we denote by Br the set of smooth functions φ : Rd Ñ R supported in
the unit ball centered at 0 and such that

ř

|k|ďr }Brφ}L8 ď 1. For φ P Br, x P Rd and λ P p0, 1s we
define the function φλ

x : Rd Ñ R by
φλ
xpyq ¨̈“ λ´dφ

`

λ´1py ´ xq
˘

.

(We would use a different definition in a non-isotropic situation.) It converges as λ goes to 0 to
a Dirac mass at x. The role played by monomials in a classical setting is played here by what we
call a model.

1. Definition – Let T “ pA,T,Gq be a regularity structure of regularity α0. Fix a positive
integer r ą |α0|. A model M “ pΠ,Γq for T on Rd consists of two families of continuous linear
operators

Π “
␣

Πx : T Ñ D1pRdq
(

xPRd , Γ “ tΓyxux,yPRd Ă G

satisfying the following properties.
(1) One has ΠxΓxy “ Πy, Γxx “ id and ΓxyΓyz “ Γxz, for any x, y, z P Rd.
(2) For any γ ą 0 and any compact subset C of Rd one has

}Π}γ;C ¨̈“ max
αPA, αăγ

sup
φPBr

sup
λPp0,1s

sup
xPC

sup
τPTαzt0u

λ´α |pΠxτqpφλ
xq|

}τ}α
ă 8,

}Γ}γ;C ¨̈“ max
α,βPA, βăαăγ

sup
x,x`yPC, y‰0

sup
τPTαzt0u

}Γpx`yqxpτq}β

}y}α´β}τ}α
ă 8.

(2.1)

We write
|||M|||γ;C ¨̈“ }Π}γ;C ` }Γ}γ;C .

Moreover for any two models Mp1q and Mp2q we define the quasi-metric |||Mp1q , Mp2q|||γ;C by replacing
Πx and Γpx`yqx in (2.1) with Π

p1q
x ´ Π

p2q
x and Γ

p1q

px`yqx ´ Γ
p2q

px`yqx respectively.

The Πxpτq provide the basis for some local expansion of some class of functions/distributions
near an arbitrary point x P Rd. The Γ map is used to define a notion of regularity based on some
local expansion property for a particular class of functions or distributions that comes in the form
of the following definition.

2. Definition – Let T “ pA,T,Gq be a regularity structure and let M “ pΠ,Γq be a model for
T on Rd. For any γ P R we define the space Dγ “ DγpΓq of γ-regular modelled distributions
as the space of all functions f : Rd Ñ Tăγ which satisfy

L f Mγ;C ¨̈“ max
αPA, αăγ

sup
xPC

}fpxq}α ă 8, (2.2)

}f}γ;C ¨̈“ max
αPA, αăγ

sup
x,x`yPC, 0ă}y}ď1

›

›fpx ` yq ´ Γpx`yqxpfpxqq
›

›

α

}y}γ´α
ă 8 (2.3)

for any compact subset C Ă Rd. We write
|||f |||γ;C ¨̈“ L f Mγ;C ` }f}γ;C .

Moreover for any two models Mp1q and Mp2q and f piq P DγpΓpiqq with i P t1, 2u, we define the quasi
metric |||f p1q, f p2q|||γ;C by replacing fpxq in (2.2) with f p1qpxq ´ f p2qpxq and replacing fpx ` yq ´

Γpx`yqxpfpxqq in (2.3) with
␣

f p1qpx ` yq ´ Γ
p1q

px`yqxpf p1qpxqq
(

´
␣

f p2qpx ` yq ´ Γ
p2q

px`yqxpf p2qpxqq
(

.

It is a fundamental fact that one can associate to a modelled distribution a unique func-
tion/distribution that is locally well approximated by the model object near every point. This
is the content of the reconstruction theorem, which was first proved by Hairer in Theorem 3.10 of
[19].
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Theorem – Let T “ pA,T,Gq be a regularity structure and let M “ pΠ,Γq be a model for T on
Rd. For any γ ą 0, there exists a unique continuous linear map RM : DγpΓq Ñ D1pRdq satisfying
for any compact subset C of Rd

sup
φPBr

sup
λPp0,1s

sup
xPC

λ´γ
ˇ

ˇ

`

RMf ´ Πxfpxq
˘

pφλ
xq
ˇ

ˇ À }Π}γ;C}f}γ;C ,

where
C ¨̈“

␣

x ` y ; x P C, }y} ď 1
(

.

Moreover the mapping pM, fq ÞÑ RMf is locally Lipschitz continuous with respect to the quasi-
metrics |||Mp1q , Mp2q|||γ;C and |||f p1q, f p2q|||γ;C .

2.2 – The archetype convergence result for a BPHZ model. As in Section 8 of [19], we
consider here for simplicity some regularity structure constructed from a single noise symbol Ξ, a
single integration symbol I, and some Taylor monomials X1, . . . , Xd. We first define recursively
from the following rules a set F of symbols.

– The symbols Ξ,1, X1, . . . , Xd are elements of F .
– For any τ P F and any k P Nd, the symbol Ikpτq is also an element of F .
– For any τ, σ P F , the symbol τσ is also an element of F , where we postulate the relations

pτσqη “ τpσηq, τσ “ στ, τ1 “ τ.

The symbol I represents a given integral operator K. For simplicity, and to make things concrete
in this paragraph, we take for K the Green function p1´∆q´1 on Rd. (More precisely, we have to
define K as a truncated Green function as detailed in Lemma 5.5 of [19]. See Section 5 of [24] for a
slightly different definition of K.) The fact that Kpx, yq “ Kpx ´ yq is translation invariant plays
a crucial role at some point. This recursive definition of some symbols lends itself to a pictorial
representation of these symbols via some decorated trees. We denote by ˝ the single node tree
that represents the noise ξ in the equation. The node ‚ represents the symbol 1. The multiindex
k “ pkiq

d
i“1 of Xk ¨̈“

śd
i“1 X

ki
i is represented as a node decoration. For any tree τ , the symbol

Ikpτq denotes a planted tree given by the grafting of τ onto a new root via an edge decorated by
k. The product is represented as a tree product. For example, the symbol ΞI0pXmIkpΞqIℓpΞqq is
represented as the following tree.

m
k ℓ

The three nodes ˝ and the lower edge have zero decorations, which are omitted.
We fix in this section a parameter α0 P p´8,´d{2q which represents the regularity of the noise

in the equation under study. The degree map r : F Ñ R is defined by setting

rpXkq “ |k|, rpΞq “ α0,

rpIkpτqq “ rpτq ` 2 ´ |k|, rpτσq “ rpτq ` rpσq.
(2.4)

The space F contains a number of symbols that are useless for the study of the initial SPDE. The
notion of rule introduced in Section 5 of [12] is a way to select which symbols will be useful for
the regularity structure analysis of the equation. We fix in this section a subset B Ă F consisting
of the set of symbols of F which strongly conform to a complete subcritical rule. This notion
ensures that the set tτ P B ; rpτq ă γu is finite for any γ P R, and one can construct a regularity
structure T by choosing A “

␣

rpτq ; τ P B
(

,T “ spanpBq with the direct sum decomposition
given by Tα “ span

␣

τ P B ; rpτq “ α
(

, and choosing for G the set of linear maps Γ : T Ñ T such
that

pΓ ´ idqτ P span
␣

σ P B ; rpσq ă rpτq
(

for any τ P B. An admissible model is a model for T on Rd which interprets the symbol I as the
convolution with K. The full definition of admissible models is omitted here; it can be found in
Definition 8.29 of [19]. Instead, we point only some important properties satisfied by an arbitrary
admissible model M “ pΠ,Γq.
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(1) There exist some continuous linear maps Π : T Ñ D1pRdq and Fx P G indexed by x P Rd

such that one has for all x, y
Πx “ Π ˝ F´1

x , Γyx “ Fy ˝ F´1
x .

(2) The actions of Πx on Xk and Ikpτq are given as follows:

ΠxpXkq “ p¨ ´ xqk, ΠxpIkpτqq “ K ˚ Πxτ ´
ÿ

|ℓ|ărpIkpτqq

p¨ ´ xqℓ

ℓ!

`

BℓK ˚ Πxτ
˘

pxq.

(3) The maps Fx, and consequently Γyx, are determined by the map Π.
To make things concrete here we will assume that the noise ξ in our equation is the white noise

on Rd. For any fixed family tϱεu0ăεď1 of mollifiers we define the smooth noises
ξε ¨̈“ ξ ˚ ϱε.

We can then define the family of random admissible models Mε “ pΠε,Γεq by the identities
ΠεpXkqpxq “ xk, ΠεpΞq “ ξε, ΠεpIkpτqq “ BkK ˚ Πεpτq, Πεpτσq “ pΠετqpΠεσq.

We call it the naive model. For any tree τ the smooth function Πεpτqp¨q is given by an iterated
integral with the same structure as the undecorated version of τ . The decorations of τ inform
us about which kernels are used in the iterated integral and which polynomial functions of the
integration variables are inserted at any given place. One has for instance

Πε

ˆ

m
k ℓ

˙

pxq “ ξεpxq

ż

Kpx, yq ym pBkKqpy, aqξεpaq pBℓKqpy, bqξεpbq da db dy.

The recentered version Πε
xpτq of Πεpτq is of the form

Πε
xpτq “ Πεpτq ´

ÿ

σ

cεpτ, σqpxqΠεpσq

for some subtrees σ of τ . It corresponds somehow to replacing a Πεpρq by its Taylor remainder at
some ρ-dependent order and iterating this operation in the tree structure of the iterated integral,
from the leaves to the root of the tree, in a multiplicative way. See for instance Equation (21) in [1]
– the details do not matter here. In any case the quantities Πεpτq and Πε

zpτq are some polynomial
functionals of the noise ξε. We will see in the introduction of Section 3 that we cannot expect the
convergence of Mε as ε goes to 0. One has to tweak the naive model to make it converge. A class of
continuous linear maps R : T Ñ T called preparation maps was introduced by Bruned for that
purpose in [10] – they were called admissible maps therein. One can associate to each 0 ă ε ď 1
and each preparation map R an admissible model Mε,R as in Section 3 of [10]. The details of this
construction are not important here. The so-called BPHZ renormalized model of [12] corresponds
to a subclass of preparation maps of the form

Rℓ “ pℓ b idq∆´
r , (2.5)

where ∆´
r is a map splitting a given symbol τ identified with a tree into a subtree with negative

degree which contains the root of τ and the remaining graph, and the map ℓ assigns a real number
to each tree with negative degree and has some morphism property – see Section 4.1 of [10] for the
definitions. Write Mε,ℓ,Πε,ℓ and Πε,ℓ instead of Mε,Rℓ ,Πε,Rℓ and Πε,Rℓ for simplicity. This model
satisfies an identity of the form

Πε,ℓ
x pτq “ Πε

xpAℓτq “ Πε
xpτq ` ¨ ¨ ¨ (2.6)

for all x and τ , for some map Aℓ that is a perturbation of the identity such that Aℓ´ id is niplotent.
In those terms, Theorem 6.18 in [12] says that for each 0 ă ε ď 1 there exists a unique character
ℓε such that for any τ P B with negative degree and any x we have

E
“`

Πε,ℓετ
˘

pxq
‰

“ 0.

The model
M

ε
¨̈“ Mε,ℓε

is called the BPHZ model. Its probabilistic convergence as ε ą 0 goes to 0 takes the following
form.
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3. Theorem – Suppose that any τ P BztΞu satisfies

rpτq ą ´
d

2
. (2.7)

Then for any γ ą 0, 1 ď q ă 8 and any compact set C Ă Rd we have

lim
ε1,ε2Ñ0

E
“

|||M
ε1
, M

ε2
|||
q
γ;C

‰

“ 0.

Here we assume that ξ is the white noise on Rd, but the above theorem can be extended to more
general noises satisfying some appropriate assumptions on their law. Chandra & Hairer assume in
[16] some moment bounds on the noise while a spectral gap assumption on the law of the noise is
assumed in [23] and [4], following Linares, Otto, Tempelmayr & Tsatsoulis’ work [27].

3 – Diagramatic method: Chandra & Hairer [16] and iterated integrals

We explain in this section some of the ingredients of Chandra & Hairer’s work [16].
Although this may not be obvious at first sight from the notion of convergence of models given

in Definition 2, in the above white noise setting, and more generally for a large class of Gaussian
noises, one can show that a quantitative estimate of the form

›

›

›

›

ż

´

Π
ε1
x τ ´ Π

ε2
x τ

¯

pyqφλ
xpyq dy

›

›

›

›

2

L2pΩq

À omaxpε1,ε2qp1qλ2prpτq`κq, (3.1)

implies the convergence of the models M
ε to some limit model, as stated in Theorem 3. The

notation oρp1q denotes a factor converging to 0 as ρ ą 0 goes to 0. We require here that the
estimate is uniform in φ P Br, locally uniformly in x, for some positive constant κ, for all the
symbols τ of negative degree rpτq. One can think of (3.1) as the main condition in a form of
Kolmogorov regularity theorem in a regularity structure setting – see Theorem 10.7 in [19].

The kernels that we typically use in a singular SPDE setting have a logarithmic or polynomial
singularity on their diagonal

Kpx ´ yq »

´

log |x ´ y| or |x ´ y|´β
¯

for some positive constant β. This singular feature of the kernels of the operators of interest is
the very source of the problem of renormalization. Here is a simple example that shows that the
estimate (3.1) does not hold for the naive model. For a space white noise ξ on the two-dimensional
torus with ξε of covariance Cε converging to a Dirac covariance, and Kpx, yq “ |x ´ y|´β for
0 ă β ă 2, the expectation of

`

Πε
0

˘

pyq is equal to

E

„ˆ
ż

Kpy, cqξεpcqdc ´

ż

Kp0, cqξεpcq

˙

ξεpyq

ȷ

“

ż

Kpy, cqCεpc, yqdc ´

ż

Kp0, cqCεpc, yqdc.

The second integral on the two dimensional torus is converging to Kp0, yq “ |y|´β in a distributional
sense as ε ą 0 goes to 0, since β ă 2, but the first integral is diverging as ε´β . So the random
variable

ş `

Π
ε

xτ
˘

pyqφλ
xpyq dy cannot converge in L2pΩq; it cannot satisfy a fortiori an estimate of

the form (3.1). It is plain on this example that the source of the problem is in the singular character
of the kernel K on its diagonal. Two non-trivial things are thus involved in the estimate (3.1):
The fact that it remains pε1, ε2q-uniformly finite, and the fact that it behaves as λ2prpτq`κq as a
function of λ. We will concentrate here on the first point: taming the infinities.

3.1 – From models to iterated integrals. As a consequence of the translation invariance of
the law of the noise, the L2pΩq-expectation (3.1) is actually independent of x. Since we are working
with some polynomial functionals of the noise the random variable

ş `

Π
ε

0τ
˘

paqφλ
0 paq da. It has an

L2pΩq-orthogonal chaos decomposition
ż

`

Π
ε

0τ
˘

paqφλ
0 paq da “

ÿ

0ďmďnΞpτq

Im

ˆ
ż

W
ε,m

τ pa, ¨qφλ
0 paq da

˙

(3.2)
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encoded by some kernels
ş

W
ε,m

τ pa, ¨qφλ
0 paq da that are elements of the symmetrized m-th tensor

product of the L2 space of the state-space. See for instance Section 10.1 of [19]. We wrote here
nΞpτq for the number of noise symbols in τ . The functions W

ε,m

τ pa, ¨q are given by some iterated
integrals and, setting

W
pε1,ε2q,m

τ
¨̈“ W

ε1,m

τ ´ W
ε2,m

τ ,

the squared L2pΩq norm of (3.2) is equal to

p‹q
pε1,ε2q,m

¨̈“
ÿ

0ďmďnΞpτq

¡

W
pε1,ε2q,m

τ pa, yqW
pε1,ε2q,m

τ pb, yqφλ
0 paqφλ

0 pbq da db dy (3.3)

by Itô isometry. (In the more general case of a translation invariant Gaussian noise with covariance
C we would have an expression of the form

ť

Wpa, y1qCpy1 ´ y2qWpb, y2qdy1dy2 instead of the
above integral

ş

Wpa, yqWpb, yq dy.) The convergence criterion (3.1) brings us back to proving
some quantitative estimates on some iterated integrals.

We denote by Wε,m
τ the equivalent of Wε,m

τ for the naive random variable Πε
0τ . For example,

we consider the tree τ “ , where the solid line denotes I0 and the dotted line denotes Ik with
some k. Then we have

pWε,3
τ q

`

a, y1, y2, y3
˘

“ ϱεpa ´ y1q

ż

Kpa, cqpBkK ˚ ϱεqpc, y2qpBkK ˚ ϱεqpc, y3q dc,

Wε,2
τ “ 0, and

pWε,1
τ qpa, yq “ 2

ż

ϱεpa ´ bqKpa, cqpBkK ˚ ϱεqpc, bqpBkK ˚ ϱεqpc, yq db dc

` ϱεpa ´ yq

ż

Kpa, cqpBkK ˚ ϱεqpc, bqpBkK ˚ ϱεqpc, bq db dc.

We note from (2.6) that W
ε,m

τ is a perturbation of Wε,m
τ , so we can see (3.3) as a perturbation of

the corresponding quantity p‹qpε1,ε2q,m obtained by replacing W
ε,m

τ by Wε,m
τ therein. This brings

us to the question addressed in the next section: Is there a robust recipe for extracting from the a
priori diverging quantities p‹qpε1,ε2q,m some converging quantities as ε ą 0 goes to 0? Ideally, this
convergent part of p‹qpε1,ε2q,m should be p‹q

pε1,ε2q,m
. The answer we will provide will give some

strong hints as to why the L2pΩq norm (3.1) is finite. Obtaining the λ2prpτq`κq factor is a different
matter on which we will only say a word in Section 3.3.

3.2 – The BPHZ mechanics. It will be useful in the sequel to consider not only some numbers
given by some integrals but also some functions given by integrals. We will consider here a class
of functions G of z “ pz1, . . . , znq indexed by some oriented graphs G “ pE ,Vq with

Gpzq “ Gpz1, . . . , znq “

ż n
ź

i“1

ź

ePEi
B

Kepzi ´ xe´
q

ź

e1PEzEB

Ke1 pxe1
`

´ xe1
´

q dx.

These are our model quantities for p‹qpε1,ε2q,m, for some fixed values of ε1, ε2 that do not appear
in the notations. We use the notation dx for a shorthand notation for the integration with respect
to all the variables that we integrate. Here we denote by e “ pe`, e´q P E a generic edge and write
xe˘

for the corresponding variable in the integral. The set V indexes both the variables pz1, . . . , znq

and the integration variables in the integral. To distinguish pz1, . . . , znq from the other variables
we talk of the former as the ‘external variables’. We denote by Vext the vertices corresponding to
␣

z1, . . . , zn
(

, and we write Vint for the set of ‘internal’ vertices, corresponding to the integration
variables. We denote by E i

B the set of edges for which xe`
“ zi, for 1 ď i ď n. We set EB ¨̈“

Ůn
i“1 E i

B

and note that
śn

i“1

ś

ePEi
B

“
ś

ePEB
. The variables associated with the endpoints of an edge in

EzEB are thus some internal variables. A positive translation invariant (smooth) kernel Kepx ´ yq

is associated to each edge e P E , with diagonal behavior quantified as
ˇ

ˇBkKepzq
ˇ

ˇ À }z}´ae´|k| (3.4)
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for some positive constant ae and all multiindices k with |k| bounded by an appropriate constant.
In the setting of Section 3.1 the smooth kernels Ke implicitly depend on ε1, ε2 but the above
control is assumed to be uniform in ε1, ε2. We associate to any sub-graph g “ pEpgq,Vpgqq of
G the corresponding function g of its external variables and we define the superficial degree of
divergence of g as

ωpgq ¨̈“ d
`

|Vintpgq| ´ 1
˘

´
ÿ

ePEpgq

ae,

where |Vintpgq| is the number of internal vertices of g – that is the number of variables that one
integrates. A graph g for which ωpgq ď 0 is called superficially divergent. We will simply say
‘divergent’ below. The denomination of ωpgq is justified by a result of S. Weinberg [31] from the
early sixties that says that if all the subgraphs of G have a positive superficial degree of divergence
then the integral that defines formally G is actually absolutely convergent. We set

ω`pgq ¨̈“ max
`

0,´ωpgq
˘

.

3.2.1 The BPHZ algorithm. This procedure is named after Bogoliubov & Parasiuk for some of
their foundational works on the renormalization problem in quantum field theory in the mid fifties,
which was clarified by some subsequent works of Hepp and Zimmermann in the late sixties.

For a sub-graph g “ pEpgq,Vpgqq of G “ pEpGq,VpGqq we denote by Gzg the graph obtained
from G by removing Epgq from EpGq. We use the suggestive notation Gzg for the corresponding
function and note that the functions g and Gzg have the same external variables; part of them
may be some of the variables of G. One can write

Gpzq “

ż

gpz, yqpGzgqpz, yq dy, (3.5)

keeping in mind that each function g and Gzg may or may not depend on part or all of the
variables z of G, depending on the situation. We set

pTgGq “ 0 if ωpgq ą 0

and otherwise
pTgGqpzq ¨̈“

ż

gpz, yq
ÿ

|k|ăω`pgq

Bk
y pGzgqpz, ry1q

py ´ ry1qk

k!
dy,

for a point py1, . . . , y1q “¨̈
ry1 chosen arbitrarily amongst the external variables of g that we integrate

in (3.5). We do not emphasize the dependence of the operation Tg on the somewhat arbitrary
choice of point y1 as that choice is of no importance for what follows. We note that if g and h are
two disjoint sub-graphs of G then the operators Tg and Th commute.

A family T of divergent sub-graphs of G such that they are pairwise either disjoint or one
is included in the other is called a tree of divergent sub-graphs. The support of such a tree is
the union of its sub-graphs; it is a subset of G. A forest is a union of trees whose supports are
pairwise disjoint. We denote by F the set of forests of divergent sub-graphs of G. The BPHZ
renormalization of G is defined as

G ¨̈“
ÿ

FPF

ź

gPF
p´TgqG. (3.6)

For each forest F “ pT1, . . . , Tℓq the order in the product
ź

gPF
“

ź

1ďiďℓ

ź

gPTi

is done within each tree from the leaves to the root. The order in the product over i does not
matter since Tg and Th commute if g and h have disjoint supports. Note that for any given forest
F˚ P F one has

ÿ

FPF ,FĂF˚

ź

gPF
p´TgqG “

ź

gPF˚

pId ´ TgqG.

We expect from the Taylor remainder maps pId ´ Tgq that they produce some terms that make
convergent the integral that defines G. This idea of using some Taylor remainder maps seems
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promising, as in Hadamard’s finite part extension procedure where we define the distribution |y|´β

in a neighborhood of 0 in Rd, for some β ą 0, by setting
@

| ¨ |´β , f
D

¨̈“

ż

|y|´β

"

fpyq ´
ÿ

|k|ărβ´d`1s

pBkfqp0q
yk

k!

*

dy,

where ras stands for the integer part of a real number a. We can even think of iterating this kind
of operations in some situations where we have some nested divergent subgraphs, ‘curing’ them
one after the other in an increasing order for the inclusion relation, as in

ś

gPF˚ pId ´ Tgq. But
what should we do if two divergent subgraphs are overlapping, with the possibility that one Taylor
remainder operation for curing one graph destroys the curing effect that the other operation has
on the other graph? It turns out that the BPHZ renormalization prescription (3.6) handles this
type of situation.

3.2.2 Multiscale analysis and parcimonious renormalization. A good approach to understand
the formula (3.6) consists in writing each kernel Kepzq as a sum of kernels localized in some annuli
of dyadic radius 2´i. We will illustrate this here in the particular case where we work on Rd and
all the kernels Ke are equal to the Green function K of the operator p∆ ´ 1q. This kernel has a
logarithmic (d “ 2) or polynomial (d ě 3) singularity on its diagonal. We deal with the general
case in a very similar way. To stay aligned with the previous picture where we work with some
smooth kernels that are only controlled by (3.4) we could work with Ke “ eν∆p∆ ´ 1q´1, for a
positive parameter ν that plays the role of pε1, ε2q. We do not loose anything in working directly
with p∆ ´ 1q´1, which we do. We thus have

Kpzq “

ż 8

0

exp
´

´|z|
2

2t ´ t
¯

p4πtqd{2
dt “

ÿ

iPZ

Kipzq

with

Kipzq ¨̈“

ż 2´2pi´1q

2´2i

exp
´

´|z|
2

2t ´ t
¯

p4πtqd{2
dt À 2pd´2qi exp

`

´ c 22i|z|2
˘

(3.7)

for some positive constant c. We talk of i as the scale of the kernel Ki. The function G can then
be represented as a sum

G “
ÿ

µ

Gµ

indexed by the different scale assignments on each edge of the graph G. The problem comes from
the fact that this sum over the scale assignments has no reason to converge a priori – uniformly in
ε1, ε2 when we consider the pε1, ε2q-dependent situation of Section 3.1.

For each scale assignment µ the problems come from couples of diverging sub-graphs g1 Ă g2,
without any other diverging subgraph in between, and such that all the scales of the edges of g1
are greater than the scales of any of the edges in Epg2zg1q. One says that g1 is quasi-local for g2
for this scale assignment. (This notion depends on the scale assignment!) One can indeed prove
that the sum of the Gµ over the scale assignments µ that do not show this ‘pathology’ converges.
(Section 3.2.3 gives some elements about that point.) The following remarks highlight the problem
and propose a remedy for it.

(a) Denote by m the smallest scale of g1 and by M the largest scale of the edges of g2 that are
not some edges of g1. Write

g2pzq “

ż

g1pz, yqpg2zg1qpz, yq dy.

The graph g1 is quasi-local for g2 for the scale assignment µ when m ą M . In that case
the small graph appears as almost local/pointwise from the point of view of the big graph,
in the sense that g1 gives from (3.7) a op1q contribution to the integral whenever two of its
arguments yi, yj satisfy |yi ´ yj | " 2´m. This is where we loose control on the summation
over these bad scale assignments as this basic analysis only gives some control of the integral
of order

ř

mě0 2
´mωpg1q which diverges when ωpg1q ď 0.
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(b) For any pair pg1, g2q of divergent graphs such that g1 is quasi-local for g2 for the scale
assignment µ one can trade g2 for

`

Id ´ Tg1

˘

g2.

With the notations of Section 3.2.1, the support of the function g1pz, yq of y is essen-
tially contained in a neighbourhood of the deep diagonal (yi “ yj for all i, j) of size 2´m.
The function pg2zg1qpz, yq of y having all its scales smaller than M , one gains a factor
2´pω`pg1q`1qpm´Mq by replacing the function pg2zg1qpz, ¨q by its Taylor remainder at or-
der ω`pg1q ` 1 based at the point ry1. This leads to an estimate of the (uniform) size of
`

Id´Tg1

˘

g2 by the converging sum
ř

mě0 2
´mtωpg1q`ω`pg1q`1u. Note that the order ω`pg1q

of expansion of pg2zg1q in Tg1 does not depend on the scale assignment µ.
So, where does the BPHZ formula (3.6) come from? Given a scale assignment µ denote by I˘pµq

the maximum and minimum of the scale assignments, respectively. For I´pµq ď i ď I`pµq denote
by

Ůni

ℓi“1 gi,ℓi the connected components of the subset of G which collects all the edges with scales
bigger than or equal to i. One has for instance nI´pµq “ 1 and gnI´pµq

,1 “ G. Two different gi,ℓi , gj,ℓj
are either disjoint or one is contained in the other. So this set of graphs is naturally organised
into a tree structure when i varies; one talks of Gallavotti-Nicoló tree. If gi,ℓi Ă gj,ℓj then gi,ℓi is
quasi-local for gj,ℓj for the assignment µ. We define the parcimonious renormalization of Gµ as

pG
µ

¨̈“

I´pµq
ź

i“I`pµq

ni
ź

ℓi“1

`

Id ´ Tgi,ℓi

˘

Gµ. (3.8)

Because Tgi,ℓi
Gµ “ 0 if gi,ℓi is not divergent, the parcimonious renormalization actually only

involves the divergent sub-graphs of G. We order the product over i from I`pµq to I´pµq to make it
plaint that we do the product backward starting with the largest value of i. With the convention
of Section 3.2.1 for the notation

ś

gPF one can write

pG
µ

“
ÿ

FPFpµq

ź

gPF
p´TgqGµ, (3.9)

for some particular forest F pµq of divergent sub-graphs of G. A refinement of the analysis of point
(b) above is described in Section 3.2.3 and shows that the summation of the pG

µ over all the scale
assignments µ is finite – Section 3.2.3 gives some insights on that point. This is the main selling
argument of the multiscale analysis: for each assignment the renormalization procedure specified
by (3.8) is actually well ordered and inductive. No renormalization operation made earlier is
perturbed by a later operation – so there is no problem with the so-called overlapping divergences
in this picture. We define the parcimonious renormalization of G as

pG ¨̈“
ÿ

µ

pG
µ

“
ÿ

FPF

ÿ

µ;FPFpµq

ź

gPF
p´TgqGµ. (3.10)

Only the forests of quasi-local sub-diagrams are used here and renormalised via (3.8); they depend
on each scale assignment µ. We remark in particular that no overlapping divergent graphs are
considered here. The formula defining pG has exactly the same form as the formula (3.6) definining
G except that in (3.6) we sum over the set of all scale assignments, independently of F P F while
we sum over the µ with F P F pµq in (3.10). One then sees that the BPHZ formula for G
comprises both the useful renormalizations from the parcimonious renormalization (3.8) but also
a number of operations that seem useless from the point of view of renormalization, at any fixed
scale assignment µ.

3.2.3 Classification of forests. Pick a forest of divergent sub-graphs F P F . A sub-graph g of G,
divergent or not, is said to be compatible with F if F Y tgu is also a forest. One denotes then by g´

F
the unique element of F Y tgu that strictly contains g if g is not the root of the forest, otherwise
we set g´

F “ G. We also denote by g`
F the union of the elements of F that are strictly included in
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g. Given a scale assignment µ, set then

mF,µpgq ¨̈“ min
!

µpeq ; e P E
`

gzg`
F
˘

)

,

MF,µpgq ¨̈“ max
!

µpeq ; e` P Vpgq , e´ P V
`

g´
Fzg

˘

)

.

Define the dangerous part of F for µ as the set

DµpFq ¨̈“

!

g P F ; mF,µpgq ą MF,µpgq

)

.

The complement
SµpFq ¨̈“ FzDµpFq

of the dangerous part of F turns out to be a forest, called the µ-safe part of the forest F . A forest
F for which F “ SµpFq is called a µ-safe forest. One shows that

Sµ

`

SµpFq
˘

“ SµpFq.

This fact allows to partition F according to the µ-safe part of its elements F . We associate to
F P F the following family of divergent sub-graphs of G

S`
µ pFq ¨̈“

!

g Ă G ; g is compatible with F , divergent, and g P Dµ

`

SµpFq Y tgu
˘

)

.

The next statement was first proved by Feldman, Magnen, Rivasseau & Sénéor in [18] – Lemma
2.3 therein; it is called the lemma of classification of forests.

4. Lemma – Let F P F be µ-safe forest. Then F Y S`
µ pFq “ SµpFq Y S`

µ pFq is a forest.
Another forest F 1 P F have the same µ-safe part as F if and only if

SµpFq Ă F 1 Ă

!

SµpFq Y S`
µ pFq

)

.

The set SµpFq Y S`
µ pFq is in particular the maximal forest with the same µ-safe part as the

µ-safe forest F . Lemma 4 allows to rewrite G as

G “
ÿ

FPF

ź

gPF
p´TgqG

“
ÿ

µ

ÿ

FPF

ź

gPF
p´TgqGµ

“
ÿ

µ

ÿ

G safe for µ

ÿ

F ;SµpFq“G

ź

gPF
p´TgqGµ

“
ÿ

GPF

ÿ

µ;G“SµpGq

ÿ

F ;SµpFq“G

ź

gPF
p´TgqGµ

Lemma 4
“

ÿ

GPF

ÿ

µ;G“SµpGq

ÿ

HĂS`
µ pGq

ź

gPGYH
p´TgqGµ.

(3.11)

The term G “ H in the last expression is equal to pG. The set SµpGq Y S`
µ pGq being a forest,

it can be described as a union of disjoint trees T1pG, µq, . . . , TkpG,µqpG, µq. The index kpG, µq is
bounded above by a constant independent of G and µ. One can then write

ÿ

HĂS`
µ pGq

ź

gPGYH
p´TgqGµ “

kpG,µq
ź

k“1

ź

gPTkpG,µq

RgG
µ, (3.12)

where
Rg “ ´Tg, if g P G,
Rg “ Id ´ Tg, if g P S`

µ pGq.

The operators involved in different TkpG, µq commute. The index set F in the fifth equality of
(3.11) for G being finite, it suffices to consider the convergence of each sum

ř

µ;SµpGq“G . Let us
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concentrate on each product
ś

gPTkpG,µq. Setting ´TG ¨̈“ Id, one can re-index the product on the
tree TkpG, µq in (3.12) and write

ź

gPTkpG,µq

Rg “
ź

gPpGXTkpG,µqqYtGu

p´Tgq
ź

hPpS`
µ pGqXTkpG,µqq;h´

G “g

`

Id ´ Th

˘

.

Note that the two operators Tg and Th commute in this formula since they act on the outside
and the inside of g, respectively. The bounds on

ś

gPTkpG,µq RgG
µ that one can get depend on the

order in which one does the integration. To make that point plain, look at the example
ż 3
ź

i“1

a
´ d

2
i e

´
|x´y|2

ai

2
ź

j“1

b
´ d

2
j e

´
|y´z|2

bj c´ d
2 e´

|z´x|2

c dxdydz

that corresponds to some graph G “ pE,Vq that you are invited to draw. One can choose to
bound some of the exponentials by 1 and only keep one term for each integration variable. This
corresponds to choosing a covering tree T of G. Denoting by re P ta1, a2, a3, b1, b2, cu the parameter
associated to the edge e P E the choice of a covering tree T gives for the integral the following
T-dependent bound

˜

ź

ePE

re

¸´ d
2
ź

ePT

r
d
2
e

that one can optimize by an appropriate choice of T guided by the form of the bound. Back to
our general setting, recall that we denote for each i by pg{g`

G qpi,ℓiq the set of connected component
of the graph g{g`

G with scale bigger than or equal to i. We choose a covering tree of G whose
restriction to each pg{g`

G qpi,ℓiq is a sub-tree. For these graphs, the equivalent of the previous re are
essentially given by 2´i. This way, we get as many factors 2´id{2 as we can get from the integration
variables in the pg{g`

G qpi,ℓiq if the kernels that we keep are untouched. If a connected component
pg{g`

G qpi,ℓiq is not quasi-local, and if pg{g`
G qpi,ℓiq ‰ g{g`

G , we have ωppg{g`
G qpi,ℓiqq ě 1 and it gives

a factor 2´ωppg{g`
G qpi,ℓiqq; if pg{g`

G qpi,ℓiq “ g{g`
G , one has a factor Op1q. If the connected component

pg{g`
G qpi,ℓiq is divergent and quasi-local for µ it is part of the collection of

␣

h P S`
µ pGq;h´

G “ g
(

,
and the operator

`

Id ´ Th

˘

gives an ad hoc factor that provides a total contribution Op1q. To
summarize, set

ω1
`

pg{g`
G qpi,ℓiq

˘

:“
´

1 _ ω
`

pg{g`
G qpi,ℓiq

˘

¯

1g{g`
G ‰pg{g`

G qpi,ℓiq
.

The above analysis leads to an estimate of the form
ˇ

ˇ

ˇ

ˇ

ź

gPTkpG,µq

RgG
µ

ˇ

ˇ

ˇ

ˇ

À
ź

gPTkpG,µqYtGu

ź

pi,ℓiq

2´ω1
ppg{g`

G qpi,ℓiqq.

Note that the scale assignment implicitly appears in the right hand side in the bounds for i. It is
then possible from this bound to obtain the summability in µ of (3.12), hence of G. See Section
3.2 of [20] for the model case of Feynman graphs and Section 8 of [16] for the regularity structure
case. (Our account of the BPHZ procedure was influenced by the very nice presentation given by
F. Vignes-Tourneret in his PhD thesis [30].)

3.2.4 Back to trees. The preceding sections sketch the main points of the mechanics involved
in the BPHZ renormalization of some iterated integrals as G or (3.3). However, in a regularity
structures setting, we do not directly have a hand on (3.3) but rather on the W

ε,m

τ , via the
definition of the renormalized Π

ε

0τ . The renormalization procedure introduced by Bruned, Hairer
& Zambotti in [12] has this property that it somehow induces on the quantities (3.3) built from the
renormalized model the same good renormalization/(Taylor remainder) operations as in the BPHZ
procedure. This is made possible by the fact that in the m-th term of the pairing (3.3), except from
the whole graph itself, every divergent sub-graph is either in W

pε1,ε2q,m

τ pa, yq or in W
pε1,ε2q,m

τ pb, yq:
it does not overlap both parts at a time. The appropriate definition of the renormalized smooth
model Πε was first given in Section 6 of [12].
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3.3 – Recentering. Producing some pε1, ε2q-independent finite bounds for (3.3) is not sufficient
to prove that the renormalized smooth models Π

ε converge to a limit in the space of models. We
need for that purpose the bounds to be of the form omaxpε1,ε2qp1qλ2prpτq`κq as in (3.1). The BPHZ
mechanics explained above does not help in that task and provides no clue on that point for the
reason that it essentially deals with the non-recentered interpretation map Π

ε rather than with
the Π

ε

x. A different type of argument is needed to understand this scaling behaviour obtained from
recentering. Theorem A.3 in Hairer & Quastel’s work [22] is a good entry point for that question.
It was latter improved by Bruned & Nadeem in Theorem 3.1 of [13]. The latter was used in [2]
by Bailleul & Bruned to give a simple proof of convergence of the BHZ renormalized model of the
one dimensional generalized (KPZ) equation driven by a spacetime white noise.

4 – Non-diagramatic methods

Chandra & Hairer assume in [16] some moment type condition on the law of the noise in the form
of some quantitative estimates on its cumulant. Within that setting the convergence criterion (3.1)
is relatively sharp and one does not loose much in quantifying the expected convergence result of
Theorem 3 in the form (3.1). The strategy of [16] is somewhat optimal: no information is lost in the
chaos expansion and each iterated integral that comes with that decomposition is proved to scale
as omaxpε1,ε2qp1qλ2prpτq`κq. Linares, Otto, Tempelmayr & Tsatsoulis introduced in [27] a different
type of strategy in their development of an alternative to regularity structures well suited for the
study of a class of quasilinear singular SPDEs. A probability measure P satisfies a spectral gap
inequality if the variance of any L2pPq random variable is bounded above by a constant multiple
of the variance of its Malliavin derivative. Trading Chandra & Hairer’s moment assumption for a
spectral gap assumption on the law of the noise opens the door to a different kind of strategy for
proving the convergence result of Theorem 3. Work in a regularity structure with a noise symbol
and a noise derivative symbol, with some models where one can represent the Πxτ for the usual
symbols τ but also their Malliavin derivative. The reasoning is inductive and informally expressed
as follows.

– Use the spectral gap inequality to propagate a convergence result for the noise derivative
of Πxτ to Πxτ itself.

– Show that the convergence of a number of Πxτ and their derivatives allow to prove the
convergence of the noise derivative of Πxσ for a new symbol σ not in the list of the previous
symbols τ .

We choose to leave aside in this review the very important work [27] of Linares, Otto, Tempelmayr &
Tsatsoulis and concentrate on the works [23, 4] that implement the strategy of [27] in a regularity
structure setting indexed by trees, as they share the same technical background. This makes
their introduction and comparison easier. For a reader interested in the multi-indices approach
to regularity structures we recommend the lecture notes [25, 9]. The works [23] and [4] do not
implement the above inductive strategy in the same way. We describe the details of [23] and [4]
in Section 4.1 and Section 4.2, respectively. The contents of these sections are independent from
each other; they only share some basic matters related to the Malliavin derivative (Section 4.1.1)
and the initial setup for the proof described at the beginning of Section 4.1.3.

4.1 – Hairer & Steele [23] and pointed modelled distributions. We stated in Theorem 3
the main convergence result of [23] for the BPHZ renormalized models. We describe in this section
the main ideas involved in the proof of this statement.

4.1.1 Poincaré inequality and Malliavin derivative. Following the insight of [27] the key tool
used in [23] is the Poincaré inequality. It is satisfied by the law of the white noise. Denote by
H the Hilbert space L2pRdq. A cylindrical function F : D1pRdq Ñ R is a function of the form

F pξq “ f
`

ξpφ1q, . . . , ξpφN q
˘

,
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where f P C8pRN q has at most polynomial growth and φ1, . . . , φN P DpRdq. For each cylindrical
function F the Malliavin derivative in the direction h P H is defined by

∇hF pξq ¨̈“ lim
εÑ0

F pξ ` εhq ´ F pξq

ε
“

N
ÿ

i“1

Bif
`

ξpφ1q, . . . , ξpφN q
˘

xh, φiyL2 .

We denote by ∇F pξq P H˚ the linear form h ÞÑ ∇hF pξq. Denoting by P the probability law of the
white noise and by E the expectation with respect to P, we define D1,2 as the completion of the
set of all cylindrical functions under the norm

`

Er}F }2s ` Er}∇F }2H˚ s
˘1{2. It is well known that P

satisfies the Poincaré inequality

E
”

`

F ´ ErF s
˘2
ı

ď E
“

}∇F }2H˚

‰

(4.1)

for any F P D1,2. One can find the classical proof based on the log-Sobolev inequality in Theorem
5.5.1 of Bogachev’s book [7]. The inequality (4.1) is also called a spectral gap inequality as it turns
out to be a consequence of an estimate for the spectral gap of the Ornstein-Uhlenbeck operator
defined on L2pΩq. The inequality (4.1) allows to reduce the task of estimating the L2 size of a
polynomial functional of a white noise to the L2 size of another functional with lower degree. In
our setting we can write for any τ P B and any q ě 1

E
“

|pΠ
ε

xτqpφλ
xq|q

‰

À
ˇ

ˇE
“

pΠ
ε

xτqpφλ
xq
‰
ˇ

ˇ

q
` E

„

sup
}h}H“1

|∇hpΠ
ε

xτqpφλ
xq|q

ȷ

. (4.2)

As stated in the end of Section 2.2, the BPHZ renormalized model Mε is the unique model associated
with some particular type of preparation maps with the property that ErpΠ

ε
τqpxqs “ 0 everywhere,

for all τ P B with negative degree. This property provides at some relatively low cost some estimates
on E

“

pΠ
ε

xτqpφλ
xq
‰

of the right order in terms of λ – see the proof of Proposition 5.2 of [23]. The
translation invariance of both the kernel and the law of the noise are essentially only used only
at that point. (Precisely, Hairer and Steele first proved the convergence of a modified version rMε

defined by the condition ErprΠε
0τqpφqs “ 0 for some fixed test function φ, and called BPHZ model

therein in [23], and then deduced the convergence of Mε from the convergence of rMε.) The spectral
gap inequality (4.2) then brings back the analysis to estimating the Malliavin derivative term. We
indicated above that this is the key fact for an inductive approach to the convergence of Mε.

It seems natural to introduce a new symbol 9Ξ representing a generic element of H and to
interpret the derivative ∇hpΠ

ε

xτq as the application of (some extension of the interpretation map)
Π

ε

x to some symbol involving 9Ξ. Considering each symbol τ P F as a multilinear functional of Ξ,
we define 9F as the set of symbols obtained by replacing by 9Ξ any of the arguments Ξ in these
functions. For example, from the symbol ΞIpΞq2 in F we obtain the two symbols 9ΞIpΞq2 and
ΞIpΞqIp 9Ξq in 9F . By using these additional symbols we can define the formal Malliavin derivative
operator D : spanpFq Ñ spanp 9Fq as follows:

DΞ “ 9Ξ, DXk “ 0, DIkpτq “ IkpDτq, Dpτσq “ pDτqσ ` τpDσq.

(The map Ik is extended linearly in the third equality). Let now 9B be the subset of 9F consisting
of all the symbols obtained by replacing any one argument Ξ in τ P B with 9Ξ. Set

rT ¨̈“ spanpB Y 9Bq.

In [23] the authors extended the degree map to rT setting

rp 9Ξq “ θ, for some fixed θ P p0, 1q.

They also constructed a regularity structure ĂT with model space rT. Using an argument based on
the reconstruction theorem (see also Lemma 6 below), they were able to extend the BPHZ model
M

ε into a unique model rMε,h on ĂT satisfying rΠε,h
x p 9Ξq “ hε “ h ˚ ϱε. One might expect that the

identity
∇h

rΠε
xpτq “ rΠε,h

x pDτq (4.3)
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holds for any τ P B, but this is not the case, even for τ “ Ξ for which we have

∇hΠ
ε

xpΞq “ ∇hξ
ε “ hε, rΠε,h

x pDΞq “ rΠε,h
x p 9Ξq “ hε ´ hεpxq.

This difference arises because 9Ξ has a much higher degree than Ξ. To circumvent this problem
Hairer & Steele defined some x-dependent modelled distributions rfε;τ

x satisfying the intertwining
relation

∇hΠ
ε

xpτq “ rΠε,h
x

`

rfε;τ
x pxq

˘

“ rRε,h
`

rfε;τ
x

˘

. (4.4)

To capture the main analytic properties of these functions rfε;τ
x they introduced in Section 3 of

[23] a new notion of modelled distribution that is the object of the next section. We return to the
intertwining relation in Section 4.2.

4.1.2 Pointed modelled distributions. In this subsection we let T “ pA,T,Gq be an arbitrary
regularity structure with regularity α0 and let M “ pΠ,Γq be a model for T on Rd. First, we recall
the definition of some Bγ

p,8-type space of modelled distributions. For any γ P R and p P r1,8s we
define Dγ

p “ Dγ
p pΓq as the space of all functions f : Rd Ñ Tăγ for which

L f Mp,γ;C ¨̈“ max
αPA, αăγ

›

›}fpxq}α
›

›

Lp
xpCq

ă 8,

}f}p,γ;C ¨̈“ max
αPA, αăγ

sup
0ă}y}ď1

›

›

›

›fpx ` yq ´ Γpx`yqxpfpxqq
›

›

α

›

›

Lp
xpCq

}y}γ´α
ă 8

for any compact subset C Ă Rd. We define the notations |||f |||p,γ;C and |||f p1q, f p2q|||p,γ;C in a way
similar to Definition 2. There is a reconstruction theorem for this kind of modelled distributions
which reads as follows: For any γ ą 0 and p P r1,8s there exists a unique continuous linear map
RM : Dγ

p pΓq Ñ D1pRdq satisfying

sup
φPBr

sup
λPp0,1s

λ´γ
›

›

`

RMf ´ Πxfpxq
˘

pφλ
xq
›

›

Lp
xpCq

À }Π}γ;C}f}p,γ;C .

Moreover the mapping pM, fq ÞÑ RMf is locally Lipschitz continuous with respect to the quasi-
metrics |||Mp1q , Mp2q|||γ;C and |||f p1q, f p2q|||γ;C . (This is the statement of Theorem 3.4 in [23].)

Given any x P Rd, an x-pointed modelled distribution is a modelled distribution in the class
Dγ

p which behaves better near x than it does elsewhere. Here is the archetypal example. For any
smooth function f : Rd Ñ R and any integers γ ă ν we define the function Fx : Rd Ñ spantXkukPNd

by

Fxpyq ¨̈“
ÿ

|k|ăγ

ˆ

Bkfpyq ´
ÿ

|ℓ|ăν´|k|

Bk`ℓfpxq

ℓ!
py ´ xqℓ

˙

Xk

k!
“¨̈

ÿ

|k|ăγ

Bkfxpyq
Xk

k!
.

We read from Taylor theorem the identity

Fxpzq ´ ΓzyFxpyq “
ÿ

|k|ăγ

Xk

k!

ÿ

|ℓ|“γ´|k|

pz ´ yqℓ

ℓ!

ż 1

0

|ℓ|p1 ´ tq|ℓ|Bk`ℓfx
`

y ` tpz ´ yq
˘

dt,

so we have
›

›Fxpzq ´ ΓzyFxpyq
›

›

|k|
À }z ´ y}γ´|k|

globally in y, z. However since |Bk`ℓfxpyq| À }y ´ x}ν´|k`ℓ| the above estimate improves to
›

›Fxpzq ´ ΓzypFxpyqq
›

›

|k|
À λν´γ}z ´ y}γ´|k|

for y and z in the ball Bpx, λq of center x and radius λ ą 0. For any γ, ν P R, p P r1,8s, and
x P Rd we define

Dγ,ν;x
p “ Dγ,ν;x

p pΓq
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as the space of all functions f P Dγ
p pΓq for which

L f Mp,γ,ν;x ¨̈“ max
αPA, αăγ

sup
λPp0,1s

λα´ν
›

›}fpyq}α
›

›

Lp
ypBpx,λqq

ă 8,

}f}p,γ,ν;x ¨̈“ max
αPA, αăγ

sup
λPp0,1s

sup
0ă}z}ďλ

λγ´ν

›

›

›

›fpy ` zq ´ Γpy`zqypfpyqq
›

›

α

›

›

Lp
ypBpx,λqq

}z}γ´α
ă 8.

The reconstruction of a pointed modelled distribution satisfies an improved version of the re-
construction estimate that involves the following quantity. Fix a positive integer r ą |α0|. For
f P Dγ,ν;x

p pΓq we set

m
`

f,Λ;x
˘

¨̈“ sup
φPBr

"

sup
λPp0,1s

λd{p´ν |Λpφλ
xq| ` sup

0ăδďλď1
λγ´νδ´γ

›

›

`

Λ ´ Πyfpyq
˘

pφδ
yq
›

›

Lp
ypBpx,λqq

*

5. Theorem – [23, Theorem 3.15] Let p P r1,8s, γ P p0, α0 ` d{pqzN, ν P R, and x P Rd. For any
f P Dγ,ν;x

p pΓq its reconstruction RMf satisfies the estimate

m
`

f,RMf ;x
˘

À |||f |||p,γ,ν;x}Π}γ;Bpx,2q

`

1 ` }Γ}γ;Bpx,2q

˘

.

4.1.3 A sketch of the proof of Theorem 3. We describe in this section the architecture of the
argument used by Hairer & Steele in [23] to prove Theorem 3. We focus here of the mechanics to
get some ε-uniform bounds for E

“

|||M
ε
|||
q
γ;C

‰

. Especially, we concentrate on the bounds of the Π
ε

part since the bounds of the Γ
ε part automatically follow – see Theorems 5.14 and 10.7 of [19].

To show the convergence of E
“

|||M
ε1
, M

ε2
|||
q
γ;C

‰

to 0 as ε1, ε2 go to 0 one needs to introduce a new
notion of modelled distributions measured in some negative Sobolev norms. We do not touch upon
this point here and refer the reader to Section 3.3 of [23].

The proof of the ε-uniform bound is done by induction with respect to the following pre-order.
Denote by nΞpτq the number of symbols Ξ contained in τ and define the preorder ĺ by setting

σ ĺ τ
def

ðñ
`

nΞpσq, |Eσ|, rpσq
˘

ď
`

nΞpτq, |Eτ |, rpτq
˘

(4.5)
with the inequality ď in the right hand side standing here for the lexicographical order. We order
the elements of BztXkukPNd as

BztXkukPNd “
␣

τ1 ĺ τ2 ĺ ¨ ¨ ¨
(

and set for each i ě 1

Bi ¨̈“
␣

τ1, τ2, . . . , τi
(

.

We need some notations to keep track of the sizes of Πε and Γ
ε on some vector spaces associated

with Bi. We introduce for that purpose for each τ P B the quantities

}Π
ε
}τ ;C ¨̈“ sup

φPBr

sup
λPp0,1s

sup
xPC

λ´rpτq
ˇ

ˇ

`

Π
ε

xτ
˘

pφλ
xq
ˇ

ˇ,

}Γ
ε
}τ ;C ¨̈“ max

αPA, αărpτq
sup

x,x`yPC, y‰0

›

›Γ
ε

px`yqxpτq
›

›

α

}y}rpτq´α
,

|||M
ε
|||τ ;C ¨̈“ }Π

ε
}τ ;C ` }Γ

ε
}τ ;C .

For any finite subset A Ă B we also write

}Π
ε
}A;C ¨̈“ max

τPA
}Π

ε
}τ ;C ,

}Γ
ε
}A;C ¨̈“ max

τPA
}Γ

ε
}τ ;C ,

|||M
ε
|||A;C ¨̈“ }Π

ε
}A;C ` }Γ

ε
}A;C .

Assume now that we have proved some ε-uniform bounds for the model on Bi´1 and let us
derive the estimates on Bi. The estimate on the initial set B0 ¨̈“ H is free. We use some different
tools in the induction step depending on the sign of rpτiq. As a shorthand notation we denote by
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Rε the reconstruction operator associated with M
ε. We write rRε,h for the reconstruction operator

associated with rMε,h, for any h P H.
▷ If rpτiq ą 0 the estimate follows from the reconstruction theorem applied to a well-chosen

modelled distribution with positive regularity – see Proposition 3.31 of [19]. The key fact
is that the function γε;τi

x : Rd Ñ T defined by
γε;τi
x pyq ¨̈“ Γ

ε

yxpτiq ´ τi

is a modelled distribution in the class Drpτiq associated with M
ε. Its reconstruction is given

by
Rε`

γε;τi
x

˘

pyq “ Π
ε

y

`

γε;τi
x pyq

˘

pyq “
`

Π
ε

xτi ´ Π
ε

yτi
˘

pyq “
`

Π
ε

xτi
˘

pyq.

6. Lemma – If rpτiq ą 0 there exists a polynomial P such that for any compact set
C Ă Rd we have almost surely }Π

ε
}τi;C ď P

`

}Π
ε
}Bi´1;C

˘

.

The reasoning involved in this item is purely deterministic.

▷ If rpτiq ď 0 we use the spectral gap inequality (4.2) and focus on the task of obtaining
some ε-uniform bound on the Malliavin derivative term. This is done in two steps that are
detailed below.

– Algebraic step: One constructs some x-dependent modelled distributions rfε;τ
x sat-

isfying the intertwining relation (4.4) with the Malliavin derivative operator.
– Analytic step: One shows that a certain truncation of rfε;τ

x is a pointed modelled
distribution that satisfies some good estimate.

As in Lemma 6, these two steps provide a probabilistic control of }Π
ε
}τi;C in terms of

}Π
ε
}Bi´1;C

, which is sufficient to close the induction in the case where rpτiq ď 0. The
reasoning involved in this item is probabilistic as it rests on the spectral gap inequality.

– Algebraic step. For any τ P B we define the function fε;τ
x : Rd Ñ T by

fε;τ
x pyq ¨̈“ Γ

ε

yxpτq.

Since one has for any y, z
Γ
ε

zy

`

fε;τ
x pyq

˘

“ fε;τ
x pzq,

this function belongs to D8 and its reconstruction satisfies
Rε`

fε;τ
x

˘

pyq “ Π
ε

xpτqpyq

regardless of the sign of rpτq. As an analogue, we use the following relations to define modelled
distributions rfε;τ

x : Rd Ñ rT representing ∇hΓ
ε

yxpτq, for any fixed h P H. The dependence of rfε;τ
x

on h is not emphasized in the notation for this function.
(a) We set

rfε;Ξ
x pyq ¨̈“ 9Ξ ` hεpyq1, rfε;Xk

x
¨̈“ 0.

In the first identity, the additional term hεpyq1 is necessary to ensure that rRε,hp rfε;Ξ
x q “ hε.

(Recall that rΠε,h
x p 9Ξq “ hε ´ hεpxq.) The second identity reflects the fact that ΓyxpXkq is

deterministic.
(b) We require that some form of Leibniz rule holds true

rfε;τσ
x

¨̈“ rfε;τ
x fε;σ

x ` fε;τ
x

rfε;σ
x .

(c) We use the notations

J ε
pxqτ ¨̈“

ÿ

|k|ărpIτq

`

BkK ˚ Π
ε

xτ
˘

pxq
Xk

k!

and Qăα : rT Ñ rTăα for the canonical projection, and set
rfε;Iτ
x pyq ¨̈“

`

I ` J ε
pyq

˘

rfε;τ
x pyq ´ Γ

ε

yx ˝ QărpIτq

`

J ε
pxq rfε;τ

x pxq
˘

.

The truncation QărpIτq is necessary because 9Ξ has a larger degree than Ξ.
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(d) Last, we ask that
rfε;Ikτ
x

¨̈“ Bk
rfε;Iτ
x ,

where the action of the operator Bk ¨̈“
śd

i“1 B
ki
i on Xℓ and planted trees Iℓτ is defined by

BiX
ℓ ¨̈“ 1ℓiě1 ℓi X

ℓ´ei , BipIℓτq “ Iℓ`eiτ.

Propositions 4.12 and 4.18 of [23] assert that one has the relation (4.4).

– Analytic step. We cannot expect an ε-uniform bound for rfε;τ
x because the regularity of h is

overestimated. Indeed the degree rp 9Ξq “ θ ą 0 is higher than the regularity exponent ‘0’ of the
space L2 “ B0

2,2. Instead we consider a truncation of rfε;τ
x by removing some high order terms.

For that purpose, for any τ P B denote by ατ the smallest degree of all non-polynomial symbols
appearing in the smallest sector containing τ , and set

γτ ¨̈“ ατ `
d

2
.

7. Lemma – [23, Proposition 4.7] The function

rF ε;τ
x

¨̈“ Qăγτ
˝ rfε;τ

x

is a pointed modelled distribution in the class Dγτ ,rpτq`d{2;x
2 . As rfε;τ

x itself, rF ε;τ
x depends implicitly

on h. For each i there exists a polynomial P and a compact set C Ă Rd containing x such that one
has almost surely

sup
}h}H“1

||| rF ε;τ
x |||2,γτ ,rpτq`d{2;x ď P

`

|||M
ε
|||Bi´1;C

˘

.

The function rF ε;τ
x is denoted Hx,h

τ ;n in [23]. Alternatively, we can inductively define rF ε;τ
x from

initial functions rF ε;Ξ
x and rF ε;Xk

x via two operations on pointed modelled distributions: tree products
and integrations – see Theorems 3.11 and 3.21 of [23]. The above lemma is proved via those
inductive formulas. Lemma 8 below is partially involved in the inductive step when applying the
integration map to rF ε;τ

x with γτ ď 0.
We return to the h-uniform estimate of ∇hΠ

ε

xpτiq. If we are in a case where γτi ą 0 the
rRε,h-reconstruction of rF ε;τ

x P Dγτ ,rpτq`d{2;x
2 is well-defined and satisfies

∇hΠ
ε

xpτiq “ rRε,h
`

rfε;τi
x

˘

“ rRε,h
`

rF ε;τi
x

˘

,

so an ph, εq-uniform estimate on a moment of
`

∇hΠ
ε

xpτq
˘

pφλ
xq follows by induction from Lemma 7

and the refined reconstruction theorem given in Theorem 5. We cannot use Theorem 5 if γτi ď 0
since there is not a unique reconstruction in that case. However the following lemma shows that
rRε,h

`

rfε;τi
x

˘

satisfies a good estimate as a candidate for a reconstruction of rF ε;τi
x .

8. Lemma – [23, Lemma 4.6] Even if γτi ď 0 there exists a polynomial P and a compact set
C Ă Rd containing x such that one has almost surely

sup
}h}H“1

m
´

rF ε;τi
x , rRε,hp rfε;τi

x q;x
¯

À P
`

|||M
ε
|||Bi´1;C

˘

.

When τi “ Ξ the above lemma can be checked directly from some elementary deterministic
estimates on hε. Otherwise τ should be of the form τ “ Ξσ with some σ such that ασ ` rpΞq `

d{2 ą 0. This is the content of Lemma 4.4 of [23]. This condition makes it possible to prove
the desired estimate as a result of some kind of ‘Young multiplication’ between B

rpΞq`d{2
2,8 and

Bασ
8,8, as in Theorem 3.12 of [8]. The bound on rF ε;τ

x from Lemma 7 can then be transferred to
`

rRε,hp rfε;τi
x q

˘

pφλ
xq “ p∇hΠ

ε

xτqpφλ
xq, so the result follows by induction.

4.2 – Bailleul & Hoshino [4] and regularity-integrability structures. We describe in this
section the approach of [4] for proving (an improved version of) Theorem 3.
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4.2.1 The abstract Malliavin derivative and an example. We use the extended model space rT

introduced in Section 4.1.1, including the symbol 9Ξ. Unlike [23] we do not assign here a positive
degree to 9Ξ. Rather, noting that H “ L2pRdq embeds into B

´d{2
8,8 we assign 9Ξ the same degree

α0 ă ´d{2 as Ξ. With that choice, it turns out that one can build a setting where we have the
intertwining relation

∇hΠ
ε

xpτq “ pΠε,h
x pDτq (4.6)

for all τ P B, for some model pMε,h introduced below in Section 4.2.3 as pMε,h;8. This identity
plays in [4] a key role in proving some estimates on ∇hpΠ

ε

xτqpφλ
xq which, together with the spectral

gap inequality (4.2), allow for an inductive proof of Theorem 3. We explain in this paragraph the
mechanics on the example of the symbol “ ΞIpΞq in dimension d “ 3. (The following estimates
are locally uniform over x, but for simplicity, we describe them as if they were global over x.) Since
rp q “ ´1´, the desired estimate is the t}h}H “ 1u-uniform bound

sup
x

ˇ

ˇ

`

∇hΠ
ε

xp q
˘

pφλ
xq
ˇ

ˇ À λ´1´. (4.7)

We start from the identity

∇hΠ
ε

xτ “ pΠε,h
x pDτq “

␣

K ˚ ξε ´ K ˚ ξεpxq
(

hε `
␣

K ˚ hε ´ K ˚ hεpxq
(

ξε

“¨̈ Aε
x ` Bε

x.

One can use a Besov-type reconstruction argument to bound Aε
x – see Theorem 3.2 of [8] for that

type of reconstruction theorem and Theorem 4.4 of [15] for the initial version of the reconstruction
theorem for coherent germs. Indeed the germ fε

x
¨̈“ pK ˚ ξεqpxqhε satisfies a B

1{2´

2,8 -type coherence
property

›

›pfε
x`y ´ fε

xqpφλ
xq
›

›

L2
x

“
›

›

`

K ˚ ξεpx ` yq ´ K ˚ ξεpxq
˘

hεpφλ
xq
›

›

L2
x

À |y|1{2´,

since the family tK ˚ ξεu0ăεď1 is bounded in B
1{2´
8,8 and the family thεu0ăεď1 is bounded in L2.

Since the reconstruction of the germ fε “ tfε
xux is given by Rfε “ pK ˚ξεqhε, we have the estimate

›

›Aε
xpφλ

xq
›

›

L2
x

“
›

›

`

Rfε ´ fε
x

˘

pφλ
xq
›

›

L2
x

À λ1{2´

from the characterization of the reconstruction of a germ. Although this ‘B1{2´

2,8 -type’ estimate is
different from (4.7), by noting that B

1{2´

2,8 is embedded into B´1´
8,8 , we expect that a ‘B´1´

8,8 -type’
estimate

sup
x

|Aε
xpφλ

xq| À λ´1´ (4.8)

also holds as a consequence of a similar embedding argument. This heuristic argument is justified
by Lemma 12 of [4]. A similar reasoning does not work to obtain the desired estimate for Bε

x.
Indeed the germ gεx ¨̈“ pK ˚ hεqpxqξε has only a weaker coherence property

›

›pgεx`y ´ gεxqpφλ
xq
›

›

L2
x

“
›

›

`

K ˚ hεpx ` yq ´ K ˚ hεpxq
˘

ξεpφλ
xq
›

›

L2
x

À |y|λ´3{2´,

because the difference K ˚ hεpx ` yq ´ K ˚ hεpxq cannot produce a superlinear estimate of y even
if tK ˚ hεu0ăεď1 is bounded in B2

2,8. Instead, the germ gε` defined by

gε`
x

¨̈“

"

pK ˚ hεqpxq `

d
ÿ

i“1

p¨ ´ xqi BiK ˚ hεpxq

*

ξε,

has the desired coherence property
›

›

`

gε`
x`y ´ gε`

x

˘

pφλ
xq
›

›

L2
x

À |y|2λ´3{2´.

Since the reconstruction of gε` is given by Rgε` “ pK ˚ hεqξε, we obtain a B
1{2´

2,8 -type estimate

}Bε`
x pφλ

xq}L2
x

À λ1{2´



20

for Bε`
x

¨̈“
␣

K ˚ hεp¨q ´K ˚ hεpxq ´
ř

ip¨ ´ xqi BiK ˚ hεpxq
(

ξεp¨q. To eventually get an estimate on
Bε

xpφλ
xq we need some control on the terms

Cε
x,i

¨̈“ p¨ ´ xqi BiK ˚ hεpxqξεp¨q.

Note that p¨ ´ xqiξ
ε is equal to the application of Πε

x to the symbol XiΞ with degree ´1{2´, and
the family tBiK ˚ hεu0ăεď1 is bounded in B1

2,8 Ă L6. Thus we have a ‘B´1{2´

6,8 -type’ estimate

}Cε
x,ipφ

λ
xq}L6

x
“
›

›pBiK ˚ hεqpxqΠ
ε

xpXiΞqpφλ
xq
›

›

L6
x

À λ´1{2´.

Since B
´1{2´

6,8 is embedded into B´1´
8,8 , we expect that a B´1´

8,8 -type estimate similar to (4.8) also
holds for Bε

x “ Bε`
x `

ř

i C
ε
x,i by an embedding argument similar to the argument used for the Aε

x

term.
This example illustrate an important insight. It is useful to adjust the regularity and integrability

exponents of h in different computations: we considered h P B
´3{2
8,8 to show the identity (4.6), we

used that h P L2 in the estimates on Aε
x and Bε`

x , and we used that h P B´1
6,8 in the estimate

on Cε
x,i. To place the above argument in a more general context we consider an extension of the

notion of regularity structure including some integrability exponents and a hierarchy based on the
numerology of the classical Besov embeddings.

4.2.2 Regularity-integrability structures. We use the bold letters a,b, c to denote some generic
elements of R ˆ r1,8s. We represent each component of a P R ˆ r1,8s by

a “
`

rpaq, ipaq
˘

,

where the letters “r” and “i” stand for “regularity” and “integrability”, respectively. We define a
partial order ĺ and a strict partial order ă on the set R ˆ r1,8s by setting

b ĺ a
def
ô rpbq ď rpaq, ipbq ě ipaq,

b ă a
def
ô rpbq ă rpaq, ipbq ě ipaq.

Note that ipbq may be equal to ipaq even for the latter case. For any b ĺ a, we define the element
a a b P R ˆ r1,8s by

a a b ¨̈“

˜

rpaq ´ rpbq,
1

1
ipaq

´ 1
ipbq

¸

.

We have in particular the relations rpaq “ rpa a bq ` rpbq and 1{ipaq “ 1{ipa a bq ` 1{ipbq.

Definition – A regularity-integrability structure T “ pA,T,Gq consists of
(1) A a subset of R ˆ r1,8s such that, for every c P R ˆ r1,8s, the subset ta P A ; a ă cu is

finite.
(2) T “

À

aPA Ta an algebraic sum of Banach spaces pTa, } ¨ }aq indexed by A.
(3) G a group of continuous linear operators on T such that, for any Γ P G and a P A,

pΓ ´ idqTa Ă Tăa ¨̈“
à

bPA,băa

Ta.

The biggest number α0 P R satisfying pα0,8q ĺ a for any a P A is called the regularity of T . For
any a P A we denote by Pa : T Ñ Ta the canonical projection and write

}τ}a ¨̈“ }Paτ}a pτ P Tq.

The notions of models and modelled distributions are defined accordingly.

Definition – Let T “ pA,T,Gq be a regularity-integrability structure of regularity α0. Fix a
positive integer r ą |α0|. A model M “ pΠ,Γq for T on Rd consists of two families of continuous
linear operators

Π “
␣

Πx : T Ñ D1pRdq
(

xPRd , Γ “ tΓyxux,yPRd Ă G

satisfying the following properties.
(1) We have ΠxΓxy “ Πy, Γxx “ id, ΓxyΓyz “ Γxz for any x, y, z P Rd.
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(2) For any c P R ˆ r1,8s and any compact subset C of Rd

}Π}c;C ¨̈“ max
aPA, aăc

sup
φPBr

sup
λPp0,1s

λ´rpaq

›

›

›

›

sup
τPTazt0u

|pΠxτqpφλ
xq|

}τ}a

›

›

›

›

L
ipaq
x pCq

ă 8,

}Γ}c;C ¨̈“ max
a,bPA,băaăc

sup
0ă}y}ď1

1

}y}rpaabq

›

›

›

›

sup
τPTazt0u

}Γpx`yqxpτq}b

}τ}a

›

›

›

›

L
ipaabq
x pCq

ă 8.

We define |||M|||c;C and |||Mp1q , Mp2q|||c;C as in Definition 1.

Although we employ here some local estimates, in line with the previous sections, in the papers
[24] and [4] where the regularity-integrability structures are introduced, we use some global esti-
mates involving some heat kernels and weight functions. This difference is merely technical and not
a serious matter. The same remark applies to the following definition of a modelled distribution
in a regularity-integrability setting.

Definition – Let T “ pA,T,Gq be a regularity-integrability structure and let M “ pΠ,Γq be a
model for T on Rd. For any c P R ˆ r1,8s we define Dc “ DcpΓq as the space of all functions
f : Rd Ñ Tăc for which

L f Mc;C :“ max
aPA, aăc

›

›}fpxq}a
›

›

L
ipcaaq
x pCq

ă 8,

}f}c;C :“ max
aPA, aăc

sup
0ă}y}ď1

›

›

›

›fpx ` yq ´ Γpx`yqxpfpxqq
›

›

a

›

›

L
ipcaaq
x pCq

}y}rpcaaq
ă 8

for any compact subset C Ă Rd. We define |||M|||c;C and |||Mp1q , Mp2q|||c;C as in Definition 2.

For any f P Dc the germ
␣

fx ¨̈“ Πxpfpxqq
(

xPRd satisfies the ‘coherence property’ in the sense
of [8]. The following reconstruction theorem is thus a consequence of Theorem 3.2 of [8]. (See
Theorem 4.1 of [24] for the proof in a slightly different setting.)

9. Theorem – Let T “ pA,T,Gq be a regularity-integrability structure and let M “ pΠ,Γq be
a model for T on Rd. For any c P p0,8q ˆ r1,8s there exists a unique continuous linear map
RM : DcpΓq Ñ D1pRdq satisfying

sup
φPBr

sup
λPp0,1s

λ´rpcq
›

›

`

RMf ´ Πxfpxq
˘

pφλ
xq
›

›

L
ipcq
x pCq

À }Π}c;C}f}c;C .

Moreover the mapping pM, fq ÞÑ RMf is locally Lipschitz continuous with respect to the quasi-
metrics |||Mp1q , Mp2q|||c;C and |||f p1q, f p2q|||c;C .

4.2.3 The convergence result in a regularity-integrability setting. Recall 9B consists of the set
of symbols obtained by replacing one argument Ξ in τ P B with a 9Ξ. For any p P r2,8s we define
the extended degree map rp : B Y 9B Ñ R by the same rules as (2.4) with the additional one

rpp 9Ξq “ α0 `
d

p
.

The value of rpp 9Ξq comes from the numerology in the Besov embedding L2 Ă B
α0`d{2
2,8 Ă B

α0`d{p
p,8 Ă

Bα0
8,8. The map ip : B Y 9B Ñ r2,8s is defined by

ippτq “

#

8 pτ P Bq,

p pτ P 9Bq.

The set
␣

τ P B ; prppτq, ippτqq ă c
(

is finite for any c P Rˆr1,8s and we can construct a regularity-
integrability structure

xTp “
`

pA , pT , pG
˘

by setting
(1) pA “

␣

prppτq, ippτqq ; τ P B Y 9B
(

,
(2) pT “

À

aPA Ta, where pTa “ span
␣

τ P B Y 9B ; prppτq, ippτqq “ a
(

,
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(3) pG is the set of linear maps Γ : pT Ñ pT satisfying for each τ P B Y 9B

pΓ ´ idqτ P span
!

σ P B Y 9B ; prppσq, ippσqq ă prppτq, ippτqq

)

.

(The space xTp is denoted by Wp in [4].) There is a unique multiplicative map Πε,h on pT “

spanpB Y 9Bq such that pΠε,hXkqpxq “ xk, Πε,hpΞq “ ξε, Πε,hp 9Ξq “ hε and

Πε,hpIkτq “ BkK ˚ Πε,hτ pτ P Tq.

This map induces a unique admissible model Mε,h;p on xTp which depends on p via the degree map
rp. This is for instance visible in the identity

Πε,h;p
x pIτq “ K ˚ pΠε,h;p

x τq ´
ÿ

|ℓ|ărppIkpτqq

p¨ ´ xqℓ

ℓ!

`

BℓK ˚ Πε,h;p
x τ

˘

pxq.

We keep from that expression the fact that the order of the Taylor expansion varies with p.
As in Section 2.2, the class of preparation maps provides a systematic way of constructing some

admissible models. One can in particular use the same type of map
pRℓ “ pℓ b idqp∆´

r (4.9)

as in Section 2.2, with p∆´
r in place of ∆´

r , where p∆´
r is an extension of ∆´

r which cuts any given
tree into a subtree with negative degree which contains the root of τ and does not contain 9Ξ, and
the remaining graph. The model pMε,h;p on xTp associated with the preparation map pRℓ is also
called the BPHZ model. Its convergence to a limit model entails the convergence of the BPHZ
model Mε of Section 2.2 to a limit. Practically, the main result of [4] implies that if Ξ is the only
symbol of B with degree less than or equal to ´d{2 then for any c P R ˆ r1,8s, p P r2,8s, q ě 1
and any compact set C of Rd we have

lim
ε1,ε2Ñ0

E

„

sup
}h}H“1

|||pMε1,h;p, pMε2,h;p|||
q
c;C

ȷ

“ 0. (4.10)

Theorem 8 in [4] actually provides the same result for a class of models associated with a family
of preparation maps that contains the BPHZ preparation map (4.9) as a particular case.

4.2.4 A sketch of the proof of (4.10). We use the same ordering of B as in Section 4.1.3

BztXkukPNd “
␣

τ1 ĺ τ2 ĺ ¨ ¨ ¨
(

.

For each i we define 9Bi as the set of all symbols obtained by replacing one argument Ξ in τ P Bi

with 9Ξ. Similarly to Section 4.1.3, we only outline here the proof of the uniform bounds. A simple
modification provides the proof of the convergence as all the identities below have some locally
Lipschitz counterparts. This makes the proof of convergence easier than in [23] as we do not need
to introduce any new notion of modelled distributions measured in some negative Sobolev norms.

For any finite subset A Ă B Y 9B and any p P r2,8s we denote by bdpA, pq the statement that
for any q ě 1 and any compact set C Ă Rd we have

sup
0ăεď1

E

„

sup
}h}H“1

}pMε,h;p}
q
A;C

ȷ

ă 8.

We also denote by bdpAq the statement that bdpA, pq holds for all p P r2,8s. The flow of the
proof is explained as follows.

(1) bdp 9B1q follows from some elementary deterministic estimates on hε.
(2) We show bdpBiq and bdp 9Biq for any i in the following steps.

(a) Probabilistic step: bdpBi´1 Y 9Biq ùñ bdpBiq.
(b) Analytic step: bdpBi Y 9Bi, 2q ùñ bdp 9Bi`1, 2q.
(c) Algebraic step: bdpBi Y 9Biq & bdp 9Bi`1, 2q ùñ bdp 9Bi`1q.

The following diagram illustrates the mechanics; the assertions are shown in the order indicated
by the solid arrows.
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B1 “ tΞu B2 Bi

9B1 “ t 9Ξu 9B2
9Bi

Ĺ

Ĺ

Ĺ

Ĺ

Ĺ

Ĺ

¨ ¨ ¨ ¨ ¨ ¨D D D

For readers familiar with the work [27] of Linares, Otto, Tempelmayr & Tsatsoulis one can
make the following parallel between the above reasoning and the mechanics of [27]. The step 2(a)
is common to both approaches: this is where we use crucially the spectral gap ingredient. The
Step 2(b) is somewhat the equivalent of their algebraic & three point arguments. The Step 2(c) is
the equivalent of their Reconstruction III step together with their Averaging step.

4.2.5 Probabilistic step: bdpBi´1 Y 9Biq ùñ bdpBiq. Recall Bi “ Bi´1 Y tτiu. We show the
estimate on pΠn,h;p

x pτiq assuming bdpBi´1 Y 9Biq. If r8pτiq ą 0 the estimate follows from the
reconstruction theorem, in the same way as in the proof of Lemma 6. In that case the reasoning is
purely deterministic. If r8pτiq ď 0 we use the inequality (4.2) derived from Poincaré inequality, so
the reasoning is probabilistic. The estimate of the expectation term follows from the property of
BPHZ models. It is precisely at that point that the translation invariance of both the kernel and
the law of the noise play a crucial role. For the derivative term we use the identity ∇hΠ

ε

xpτiq “

pΠε,h;8
x pDτiq to deduce the estimate from the assumption bdp 9Biq and the induction assumption.

This is the content of the following statement.

10. Lemma – [4, Lemma 10] If r8pτiq ď 0 there exists a polynomial P such that for any q ě 1
and any compact set C Ă Rd we have

E
“

}Π
ε
}
q
τi;C

‰
1
q ď E

„

P

ˆ

sup
}h}H“1

}pΠε,h;8}Bi´1Y 9Bi;C

˙ȷ

.

4.2.6 Analytic step: bdpBi Y 9Bi, 2q ùñ bdp 9Bi`1, 2q. We show the estimate on pΠε,h;2
x pτq for any

τ P 9Bi`1z 9Bi. Since τ is not equal to 9Ξ we have

r2pτq “ r8pτq `
d

2
ą 0

from the assumption (2.7). We can obtain the estimate on rΠε,h;2
x pτq by an argument similar to

the argument used in the proof of Lemma 6, applying the regularity-integrability version of the
reconstruction theorem, Theorem 9, to a well-chosen modelled distribution.

Lemma – [4, Lemma 15] There exists a polynomial P such that for any h P H and any compact
set C Ă Rd we have

}pΠε,h;2} 9Bi`1;C
ď P

`

}pΠε,h;2}BiY 9Bi;C

˘

.

4.2.7 Algebraic step: bdpBi Y 9Biq & bdp 9Bi`1, 2q ùñ bdp 9Bi`1q. Finally we show the estimate on
pΠε,h;p
x pτq for any τ P 9Bi`1z 9Bi and p P p2,8s. We saw above that the order of the Taylor expansion

in the definition of pΠε,h;p
x pτq varies with p; this difference is described by the identity (4.11) below.

(A particular case of this identity was proved by Bruned & Nadeem in their work [14], Proposition
3.7 therein.)

11. Lemma – [4, Lemma 6 & Lemma 16] For any τ P 9Bi`1 there exist some finite subsets
tσju Ă 9Bi, tηju Ă Bi and tλju Ă R satisfying the following properties.

– One has rppτq “ rppσjq ` r8pηjq and r8pσjq ď 0 ă r2pσjq for each j.
– For any ε and h there exist some functions

␣

x ÞÑ fε,h
x pσjq

(

such that, for any p P r2,8s,
we have the identity

pΠε,h;p
x pτq “ pΠε,h;2

x pτq `
ÿ

j

λj 1trppσjqď0u f
ε,h
x pσjqΠ

ε

xpηjq. (4.11)
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– Denote by ppσjq the unique q P p2,8s satisfying rqpσjq “ 0. There exists a polynomial P
such that for any h P H and any compact set C Ă Rd we have

}fε,h
x pσjq}

L
ppσjq

x pCq
ď P

`

}pΠε,h;ppσjq}BiY 9Bi;C

˘

.

The above lemma actually holds for some arbitrary preparation maps, not only for maps of the
specific form (4.9). Therefore we do not have to go through the extended o-decoration as in [23].

Then we can roughly check that the desired estimate of pΠε,h;p
x pτq follows from (4.11). From

the assumption bdp 9Bi`1, 2q the first term of the right hand side of (4.11) satisfies the B
r2pτq

2,8 -type
estimate

›

›ppΠε,h;2
x τqpφλ

xq
›

›

L2
x

À λr2pτq.

For the remaining terms, the assumption bdpBiq and Lemma 11 imply the B
r8pηjq

ppσjq,8-type estimates
›

›fε,h
x pσjq

`

Π
ε

xηj
˘

pφλ
xq
›

›

L
ppσjq

x

À λr8pηjq.

The space B
r2pτq

2,8 is embedded into B
r2pτq´dp1{2´1{pq
p,8 “ B

rppτq
p,8 . Moreover the space B

r8pηjq

ppσjq,8 is also
embedded into B

rppτq
p,8 because

r8pηjq ´ d

ˆ

1

ppσjq
´

1

p

˙

“ rppτq ´ rppσjq ´ d

ˆ

1

ppσjq
´

1

p

˙

“ rppτq ´ rppσjqpσjq “ rppτq.

These formal argument suggest that pΠε,h;p
x pτq should satisfy a B

rppτq
p,8 -type estimate. The following

statement shows that this is indeed the case.

12. Lemma – [4, Lemma 17] For any p P r2,8s, there exist a polynomial P and a finite subset
Ip Ă r2,8s such that for any compact set C Ă Rd we have

}pΠε,h;p} 9Bi`1;C
ď P

ˆ

max
qPIp

}pΠε,h;q}BiY 9Bi;C

˙

.

Lemmas 10, 11 and 12 are stated somewhat inaccurately. The values of rp on both sides of the
inequalities described in these lemmas must be slightly different. Precisely, if rp on the right hand
side is defined for a fixed α0, then rp on the left hand side is redefined for any smaller choice of α0.
In [4] such an adjustment is performed by introducing an additional parameter – denoted ε ą 0
therein while the role of ε here is played by an integer parameter n in [4]. For the sake of simplicity
we omit such technical details here.
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