Renormalization of random models: a review

I. BAILLEULM and M. HOSHINOP

Abstract. We give a review of three works on the construction of random models for singular
stochastic partial differential equations within the theory of regularity structures.

1 - Introduction

The setting of regularity structures allows to decouple the probabilistic features of the study of a
(system of) singular stochastic partial differential equation (SPDE) from its analytic features. The
naive formulation of such an equation involves some classical functions or distributions but fails to
make sense due to some ill-defined operations involved in the equation: typically a product of two
distributions. Think of the archetypal example given by the two-dimensional parabolic Anderson
model equation set on the torus

(at - A)’LL = ufa
for a periodic space white noise €. The latter has Besov-Holder regularity —1 — n for any n > 0,
and no better, which gives u some a priori regularity no better than 1 —7. This is not sufficient for
making sense of the product u€ as a continuous function of u and £. One then needs a non-naive
way of making sense of the equation even before asking whether it has a (unique) solution or not.
The regularity structure formulation of a given singular SPDE is a family of equations

u=F"(u)

involving some non-classical objects u called modelled distributions, and indexed by some parameter
M called a model. Under some mild assumptions on the initial singular equation, each equation
of the model-dependent family of equations has a unique ‘local’ solution in a model-dependent
space of modelled distributions. To make a link with the initial stochastic equation one would
like to apply this local well-posedness result for a random model satisfying some natural constraint
involving the random noise in the equation. We could then declare that the associated local solution
is a solution to the singular SPDE. Building a random variable taking its values in the space of
models and satisfying the above mentioned constraint turns out to be fairly elaborate. This is
what renormalization is about.

The analytic and algebraic foundations of regularity structures were laid in the foundational
works [19] by M. Hairer and [I2] by Bruned, Hairer & Zambotti. The first construction of a
random model satisfying the above mentioned constraint for a very large class of equation was
given by Chandra & Hairer in [I6]. Its dynamical interpretation was explained in Bruned, Chandra,
Chevyrev & Hairer’s work [11].

The work [I6] holds under some general assumptions on the noise that involve its cumulants,
but this work is difficult and technically demanding. It is then fortunate that a different approach
to singular SPDEs as a whole, and to renormalization in particular, was developed recently by
Otto and co. [28| 26, 27, [29] with in mind the study of a number of quasilinear equations. Al-
though the architecture of the approach developed in these works is similar to the architecture of
regularity structures, the details differ in a substantial way. The algebra is in particular different,
as expected from the point of view adopted, which somehow considers as single objects some sums
of objects that are considered separately in a regularity structures setting. Interestingly for us
here, they introduce in [27] a very different way of constructing their equivalent of the random
model constructed by Chandra & Hairer in [16]. By implementing a clever and intricate inductive
mechanics, they are able to renormalize their models without renormalizing each of its ‘pieces’ as
in the approach of [I6]. The joint consideration of the model together with its Malliavin derivative
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plays a crucial role in their construction when coupled with the assumption that the law of the ran-
dom noise satisfies a Poincaré-type spectral gap inequality. This type of assumption is somewhat
orthogonal to the assumptions of [16], and none implies the other.

The clean setting of regularity structures enabled Hairer & Steele [23] to implement the mechan-
ics of [27] in a classical regularity structure setting and reprove that the BPHZ renormalization
scheme of [12] allows to construct a random model as in [16], under the assumption that the noise
satisfies a spectral gap inequality. This transfer is not free, though, and Hairer & Steele introduced
for their purpose a notion of pointed modelled distribution that plays a crucial technical role in
their construction. This setting is not the only one possible. Bailleul & Hoshino introduced in
[4] a different way of constructing inductively a large family of random models using a notion of
regularity-integrability structure. This construction contains the construction of [23] as a particular
case.

The present work aims at giving an overview of the works [I6], (23] [4] by emphasizing some of
their mechanics, differences and similarities. We assume the reader is acquainted with the basics
of regularity structures so we only recall a number of elementary definitions without going deep in
their motivation. The reader will find in [I7} [, 5] some introductions to the analytic and algebraic
aspects of regularity structures. The expository works [20, 21] of Hairer deal specifically with the
renormalization of models and some related subjects. We choose to leave aside the very important
work [27] of Linares, Otto, Tempelmayr & Tsatsoulis and concentrate here on the works [16] 23] [4]
as they share the same technical background. For a reader interested in the multi-indices approach
to regularity structures we recommend the lecture notes [25] [9].

Organization of this work. We use Section [2] to recall some basic facts and definitions about
regularity structures and set a number of notations. A reader acquainted with the subject can
directly go to the next section. Section [3| deals with the diagramatic work [16] and emphasizes
the mechanics at the heart of the BPHZ algorithm for ‘taming the infinities’ that are involved in
the construction of the so-called BPHZ model. Section [] deals with the non-diagramatic works
[23, [4]. We describe the work [23] of Hairer & Steele in Section where we explain in particular
the role played by the pointed modelled distributions. Last we describe in Section [£:2] the gen-
eral construction of [4] and the flexible setting provided by the notion of regularity-integrability
structures.

2 — Basics on regularity structures and a convergence theorem for models

This section is the occasion to introduce a number of notations that will be used at several
places below. We set the stage to formulate a version of the convergence theorem for the BPHZ
random models that were first introduced by Bruned, Hairer & Zambotti in [12].

2.1 — Basics on regularity structures. Fix an integer dimension d > 1. To avoid the technical
complexities associated with some anisotropic scaling we consider the isotropic, Euclidean, norm

o] = (Z |xi|2)é.

i=1

The degree of a multiindex k € N is define by

d
k| o= [kl.
i=1

A regularity structure . = (A, T, G) consists of
(1) A: a subset of R such that the set {a € A; o <~} is finite for every v € R.
(2) T=@@,ca Ta: an algebraic sum of Banach spaces (Tq, | - [a)-
(3) G: a group of continuous linear operators on T such that, for any I' e G and a € A,

T —id)TocTen:= P T
BEA, B<a



The smallest element o of A is called the regularity of . For any a € A we denote by P, : T —
T, the canonical projection and abuse notation writing for any 7 € T

ITlla = [Pat|a-
For any positive integer r we denote by B, the set of smooth functions ¢ : R — R supported in
the unit ball centered at 0 and such that >}, ., [|0"¢|L» < 1. For p € B, x € R and A € (0,1] we
define the function ¢} : R? — R by

02 () =AY\ y — ).
(We would use a different definition in a non-isotropic situation.) It converges as A goes to 0 to
a Dirac mass at x. The role played by monomials in a classical setting is played here by what we
call a model.

1. Definition — Let F = (A, T,G) be a regularity structure of reqularity cg. Fiz a positive
integer r > |ap|. A model M = (IL,T) for 7 on R? consists of two families of continuous linear
operators
II={II,: T - D'R%}
satisfying the following properties.
(1) One has 0Ty, =11, Ty = id and Ty Ty, = Ty, for any x,y, z € RY.
(2) For any vy > 0 and any compact subset C' of R? one has

F = {Fya:}z,yeRd (e G

reRd’

11 A
HHH;C = max Sup Sup Sup Ssup )\—aw <o,
€A, <Y peB, Ae(0,1] 2€C 7€T,\{0} (7]l o
r T .
”FH'y;C = max sup sup M

@,8€A, B<a<y g z4yeC, y20 reTo\ (0} Y[ 7PIT]a

We write

IM[l;c == []y;c + [T]c-
Moreover for any two models M) and M®) we define the quasi-metric |[M® | M®)||.,.c by replacing

T, and T(zyy), in @1) with 1Y) — 1 and FE” r®

zty)z T (zt+y) respectively.

The II,(7) provide the basis for some local expansion of some class of functions/distributions
near an arbitrary point « € R%. The I map is used to define a notion of regularity based on some
local expansion property for a particular class of functions or distributions that comes in the form
of the following definition.

2. Definition — Let 7 = (A, T, G) be a regularity structure and let M = (II,T) be a model for
T on R%. For any v € R we define the space DY = DV(I') of y-regular modelled distributions
as the space of all functions f : R* — T, which satisfy

(fDyio = max sup|f(z)fa <0, (2.2)
€A, a<y zeC

Iflye = max wp  HEED Tana(f @),

oA, 0 4 4 yeC, 0< |yl <1 lylr==

< (2.3)

for any compact subset C = R*. We write

171y == (f Dy + [ f e
Moreover for any two models MM and M®) and f) € DY(T'W) with i € {1,2}, we define the quasi
metric ||, fP|,.c by replacing f(z) in 2.2) with fO(z) — f@(x) and replacing f(x + y) —
Doy (F(@) in @3) with {fO (@ +y) = TL, (O @)} = {(fP@+y) - T, (FO @)}

It is a fundamental fact that one can associate to a modelled distribution a unique func-
tion/distribution that is locally well approximated by the model object near every point. This
is the content of the reconstruction theorem, which was first proved by Hairer in Theorem 3.10 of
[19].



Theorem — Let 7 = (A, T, G) be a reqularity structure and let M = (II,T) be a model for T on
Re. For any v > 0, there exists a unique continuous linear map RM : DV(T') — D'(R?) satisfying
for any compact subset C' of R?
sup sup sup \7[(RMf — L, f(2)) (¢2)] < IT],.&lf],c
weB, Ae(0,1] zeC
where
Comf{otyized Jyl<1}.

Moreover the mapping (M, f) — RMf is locally Lipschitz continuous with respect to the quasi-
metrics [MM), M® = and [ f, FP, =

2.2 — The archetype convergence result for a BPHZ model. As in Section 8 of [19], we
consider here for simplicity some regularity structure constructed from a single noise symbol =, a
single integration symbol Z, and some Taylor monomials Xi,..., Xy;. We first define recursively
from the following rules a set F of symbols.

— The symbols =, 1, X1, ..., Xy are elements of F.
— For any 7 € F and any k € N, the symbol Z(7) is also an element of F.

— For any 7,0 € F, the symbol 70 is also an element of F, where we postulate the relations
(to)n = 7(on), TO =0T, T1=r.

The symbol 7 represents a given integral operator K. For simplicity, and to make things concrete
in this paragraph, we take for K the Green function (1 — A)~! on R%. (More precisely, we have to
define K as a truncated Green function as detailed in Lemma 5.5 of [19]. See Section 5 of [24] for a
slightly different definition of K.) The fact that K (z,y) = K(x — y) is translation invariant plays
a crucial role at some point. This recursive definition of some symbols lends itself to a pictorial
representation of these symbols via some decorated trees. We denote by o the single node tree
that represents the noise £ in the equation. The node e represents the symbol 1. The multiindex
k = (k)% of X* := [T%, X/ is represented as a node decoration. For any tree 7, the symbol
TZi(7) denotes a planted tree given by the grafting of 7 onto a new root via an edge decorated by
k. The product is represented as a tree product. For example, the symbol 27 (X™Z(E)Zy(E)) is
represented as the following tree.

k\ /?
m

The three nodes o and the lower edge have zero decorations, which are omitted.
We fix in this section a parameter ag € (—o0, —d/2) which represents the regularity of the noise
in the equation under study. The degree map r : F — R is defined by setting

r(X*) =k, r(E) = ao,
r(Zi(1)) = r(7) + 2 — |k, r(to) =r(t) +r(o).

The space F contains a number of symbols that are useless for the study of the initial SPDE. The
notion of rule introduced in Section 5 of [I2] is a way to select which symbols will be useful for
the regularity structure analysis of the equation. We fix in this section a subset B < F consisting
of the set of symbols of F which strongly conform to a complete subcritical rule. This notion
ensures that the set {7 € B; r(7) < ~} is finite for any v € R, and one can construct a regularity
structure .7 by choosing A = {r(r); 7 € B}, T = span(B) with the direct sum decomposition
given by T, = span {T eB;r(r)= a}, and choosing for G the set of linear maps I' : T — T such
that

(2.4)

(T —id)7 € span {0 € B; r(c) < r(r)}
for any 7 € B. An admissible model is a model for .7 on R? which interprets the symbol T as the
convolution with K. The full definition of admissible models is omitted here; it can be found in

Definition 8.29 of [I9]. Instead, we point only some important properties satisfied by an arbitrary
admissible model M = (I, T).



(1) There exist some continuous linear maps IT : T — D’(R?) and F, € G indexed by = € R?
such that one has for all x,y

I, =TloF, Lye=F,oF, .
(2) The actions of I, on X* and Zj(7) are given as follows:

— x)f
¢!

Hr(Xk) = ( — ;];)k, Hm(Ik(T)) =K =17 — Z (
) <r(Zi (1))

(OEK 1L, 7) ().

(3) The maps Fy, and consequently Iy, are determined by the map II.

To make things concrete here we will assume that the noise £ in our equation is the white noise
on R?. For any fixed family {0°}g<.<1 of mollifiers we define the smooth noises

£° = Ex 0",
We can then define the family of random admissible models M = (II¢,T'°) by the identities
I (X*)(2) = 2%,  T(E)=¢, T (Zi(r) ="K «II°(1),  II°(r0) = (II°7)(II%0).

We call it the naive model. For any tree 7 the smooth function IT¢(7)(-) is given by an iterated
integral with the same structure as the undecorated version of 7. The decorations of 7 inform
us about which kernels are used in the iterated integral and which polynomial functions of the
integration variables are inserted at any given place. One has for instance

(

H8< Y )(x) =& () JK(m,y) y™ (3"K)(y, a)&8 (a) (0°K) (y, b)€% (b) da db dy.
The recentered version II (1) of II¢(7) is of the form

II5(r) = I*(r) = ) ¢ (7, 0)(2) II* (o)

for some subtrees o of 7. It corresponds somehow to replacing a I1¢(p) by its Taylor remainder at
some p-dependent order and iterating this operation in the tree structure of the iterated integral,
from the leaves to the root of the tree, in a multiplicative way. See for instance Equation (21) in [I]
— the details do not matter here. In any case the quantities I1¢(7) and II¢(7) are some polynomial
functionals of the noise £°. We will see in the introduction of Section [3|that we cannot expect the
convergence of M¢ as € goes to 0. One has to tweak the naive model to make it converge. A class of
continuous linear maps R : T — T called preparation maps was introduced by Bruned for that
purpose in [I0] — they were called admissible maps therein. One can associate to each 0 < & < 1
and each preparation map R an admissible model M®% as in Section 3 of [10]. The details of this
construction are not important here. The so-called BPHZ renormalized model of [12] corresponds
to a subclass of preparation maps of the form

Ry = ((®id)A, (2.5)
where A

~ is a map splitting a given symbol 7 identified with a tree into a subtree with negative
degree which contains the root of 7 and the remaining graph, and the map /¢ assigns a real number
to each tree with negative degree and has some morphism property — see Section 4.1 of [10] for the
definitions. Write M=* 115¢ and 1% instead of M=%« T15-%¢ and TI5 7 for simplicity. This model
satisfies an identity of the form

54 () = TE(APr) = TIE(7) + - -- (2.6)

for all « and 7, for some map A that is a perturbation of the identity such that A*—id is niplotent.
In those terms, Theorem 6.18 in [I2] says that for each 0 < & < 1 there exists a unique character
£¢ such that for any 7 € B with negative degree and any = we have

E[(IT5* ) (2)] = 0.
The model
M = M
is called the BPHZ model. Its probabilistic convergence as € > 0 goes to 0 takes the following
form.



3. Theorem — Suppose that any T € B\{Z} satisfies

r(r) > —g. (2.7)

Then for any v > 0,1 < q < 00 and any compact set C = R? we have
. 82
61,1;£ILOE[”|M ’ |||"/§C] =0.

Here we assume that £ is the white noise on R%, but the above theorem can be extended to more
general noises satisfying some appropriate assumptions on their law. Chandra & Hairer assume in
[16] some moment bounds on the noise while a spectral gap assumption on the law of the noise is
assumed in [23] and [4], following Linares, Otto, Tempelmayr & Tsatsoulis’ work [27].

3 - Diagramatic method: Chandra & Hairer [16] and iterated integrals

We explain in this section some of the ingredients of Chandra & Hairer’s work [16].

Although this may not be obvious at first sight from the notion of convergence of models given
in Definition [2 in the above white noise setting, and more generally for a large class of Gaussian
noises, one can show that a quantitative estimate of the form
<o

2
‘ f (ﬁ?T ~T; T) (v) 2 (y) dy max(e,e0) (1) A2, (3.1)

L2 ()

implies the convergence of the models M’ to some limit model, as stated in Theorem The
notation o0,(1) denotes a factor converging to 0 as p > 0 goes to 0. We require here that the
estimate is uniform in ¢ € B,, locally uniformly in z, for some positive constant x, for all the
symbols 7 of negative degree 7(7). One can think of as the main condition in a form of
Kolmogorov regularity theorem in a regularity structure setting — see Theorem 10.7 in [I9].

The kernels that we typically use in a singular SPDE setting have a logarithmic or polynomial
singularity on their diagonal

K(z—y) ~ (loglx—yl or Ix—y\‘ﬁ)

for some positive constant S. This singular feature of the kernels of the operators of interest is
the very source of the problem of renormalization. Here is a simple example that shows that the
estimate does not hold for the naive model. For a space white noise £ on the two-dimensional
torus with ¢° of covariance C°¢ converging to a Dirac covariance, and K(z,y) = |z — y|=? for
0 < B < 2, the expectation of (I_Iei)( ) is equal to

E[(JK(@/,C dc—fKchE )ge ] JK% cydc—JKOCC’(cy)d

The second integral on the two dimensional torus is converging to K (0, y) = |y|~? in a distributional
sense as £ > 0 goes to 0, since B < 2, but the first integral is diverging as e . So the random
variable { ﬁZT) (y) ¢ (y) dy cannot converge in L2(Q); it cannot satisfy a fortiori an estimate of
the form (3.1)). It is plain on this example that the source of the problem is in the singular character
of the kernel K on its diagonal. Two non-trivial things are thus involved in the estimate :
The fact that it remains (e1,ez)-uniformly finite, and the fact that it behaves as A\2("(7)+%) ag a
function of A. We will concentrate here on the first point: taming the infinities.

3.1 — From models to iterated integrals. As a consequence of the translation invariance of
the law of the noise, the L?(£2)-expectation is actually independent of z. Since we are working
with some polynomial functionals of the noise the random variable § (Ty7)(a) ¢} (a) da. It has an
L?(Q)-orthogonal chaos decomposition

f(ﬁfﬂ) (a) ¢o(a) da = <JW " (a,) @Y (a )da) (3.2)

O<m<n—(7’



encoded by some kernels {W; " (a,-) ¢} (a) da that are elements of the symmetrized m-th tensor
product of the L? space of the state-space. See for instance Section 10.1 of [I9]. We wrote here
nz(7) for the number of noise symbols in 7. The functions W."" (a,-) are given by some iterated
integrals and, setting

W(a,sz),m L Wsl,m _ Wsz,m
the squared L?(Q) norm of (3.2)) is equal to
@ [[ W W b @6 dadbdy (33
os<m<nz(7)

by It isometry. (In the more general case of a translation invariant Gaussian noise with covariance
C we would have an expression of the form {§ W (a,y1) C(y1 — y2) W (b, y2)dy1dys instead of the
above integral { W (a,y)W (b,y)dy.) The convergence criterion brings us back to proving
some quantitative estimates on some iterated integrals.

We denote by W™ the equivalent of Wi’m for the naive random variable [157. For example,
we consider the tree 7 = Q’g'o, where the solid line denotes Zy and the dotted line denotes Z; with
some k. Then we have

(W) (@ n,v2.08) = ¢°(a = ) [ K0, (0K w 6°)60) (MK » ) (cvam) e
We2 = 0, and
(W) (ar) = 2 [ o%(a = DK@, e)(0 K « 0)(e (@K « o) (c.) dbe
+0°(a —y) JK(a, ¢)(OFK # 0%)(c, b) (0" K * ¢°)(c, b) dbdc.

We note from (2.6]) that Wi’m is a perturbation of W™ so we can see (3.3) as a perturbation of
the corresponding quantity (*)(51’52)”” obtained by replacing W by W2™ therein. This brings
us to the question addressed in the next section: Is there a robust recipe for extracting from the a

priori diverging quantities (*)(51’52)”" some converging quantities as € > 0 goes to 0% Ideally, this

convergent part of (x)(1:52):™ should be (*—)(51,52),m. The answer we will provide will give some

strong hints as to why the L?(Q) norm (3.1)) is finite. Obtaining the \2("())+#) factor is a different
matter on which we will only say a word in Section [3.3]

3.2 — The BPHZ mechanics. It will be useful in the sequel to consider not only some numbers
given by some integrals but also some functions given by integrals. We will consider here a class
of functions G of z = (21, ..., 2,) indexed by some oriented graphs G = (£,V) with

G(Z)IG(Z1,--~,Zn)=JHHK‘3(%‘*%_) H Kel(xe;fxeL)d:v.

i=1ee&} e’e€\Es

These are our model quantities for (*)(51752)*’”, for some fixed values of €1, 5 that do not appear
in the notations. We use the notation dz for a shorthand notation for the integration with respect
to all the variables that we integrate. Here we denote by e = (e4,e_) € £ a generic edge and write
xe, for the corresponding variable in the integral. The set V indexes both the variables (21, ..., z,)
and the integration variables in the integral. To distinguish (z1,...,2,) from the other variables
we talk of the former as the ‘external variables. We denote by Vet the vertices corresponding to
{zl, ey zn}, and we write Vi, for the set of ‘internal’ vertices, corresponding to the integration
variables. We denote by 53 the set of edges for which ., = 2;, for 1 <7< n. Weset & := |_|?:1 &L
and note that [}, Hee:‘;}; = [lce,- The variables associated with the endpoints of an edge in
E\Es are thus some internal variables. A positive translation invariant (smooth) kernel K, (z — y)
is associated to each edge e € £, with diagonal behavior quantified as

0" Ke(2)] S [l (3.4)



for some positive constant a. and all multiindices k& with |k| bounded by an appropriate constant.
In the setting of Section the smooth kernels K. implicitly depend on &1,e5 but the above
control is assumed to be uniform in €1,e9. We associate to any sub-graph g = (€(g),V(g)) of
G the corresponding function g of its external variables and we define the superficial degree of
divergence of g as
w(g) = d(|vint | - ]- Z Qe,
ee€(g)

where |Vint(g)| is the number of internal vertices of g — that is the number of variables that one
integrates. A graph ¢ for which w(g) < 0 is called superficially divergent. We will simply say
‘divergent’ below. The denomination of w(g) is justified by a result of S. Weinberg [3I] from the
early sixties that says that if all the subgraphs of G have a positive superficial degree of divergence
then the integral that defines formally G is actually absolutely convergent. We set

wi(g) = max (0, ~w(9)).

3.2.1 The BPHZ algorithm. This procedure is named after Bogoliubov & Parasiuk for some of
their foundational works on the renormalization problem in quantum field theory in the mid fifties,
which was clarified by some subsequent works of Hepp and Zimmermann in the late sixties.

For a sub-graph g = (£(g),V(g)) of G = (£(G),V(G)) we denote by G\g the graph obtained
from G by removing £(g) from £(G). We use the suggestive notation G\g for the corresponding
function and note that the functions g and G\g have the same external variables; part of them
may be some of the variables of G. One can write

G(z) = j g(z1)(G\g) (=, ) d, (3.5)

keeping in mind that each function g and G\g may or may not depend on part or all of the
variables z of G, depending on the situation. We set

(7,G) =0 if w(g)>0
and otherwise
Y—un
(75G)(2) = Jg(z,y) D, A(G\e)(z y1)% dy,
[k|<w4(g) ’
for a point (y1,...,y1) =: §1 chosen arbitrarily amongst the external variables of g that we integrate
in (3.5). We do not emphasize the dependence of the operation .7; on the somewhat arbitrary

choice of point y; as that choice is of no importance for what follows. We note that if g and h are
two disjoint sub-graphs of G then the operators .7 and 7}, commute.

A family T of divergent sub-graphs of G such that they are pairwise either disjoint or one
is included in the other is called a tree of divergent sub-graphs. The support of such a tree is
the union of its sub-graphs; it is a subset of G. A forest is a union of trees whose supports are
pairwise disjoint. We denote by % the set of forests of divergent sub-graphs of G. The BPHZ

renormalization of G is defined as
a3 [[-%me. (3.6)

FeF geF
For each forest 7 = (71, ...,7¢) the order in the product
geF  1<i<lgeT;

is done within each tree from the leaves to the root. The order in the product over ¢ does not
matter since 7, and .7, commute if g and h have disjoint supports. Note that for any given forest

F*e onehas
> =76 =[] - 7)G

FeF,FcF* geF gEF*
We expect from the Taylor remainder maps (Id — .7;) that they produce some terms that make
convergent the integral that defines G. This idea of using some Taylor remainder maps seems



promising, as in Hadamard’s finite part extension procedure where we define the distribution |y|~#
in a neighborhood of 0 in R, for some 3 > 0, by setting

Gren=fuli- 5 ookl

|k|<[B—d+1]

where [a] stands for the integer part of a real number a. We can even think of iterating this kind
of operations in some situations where we have some nested divergent subgraphs, ‘curing’ them
one after the other in an increasing order for the inclusion relation, as in [ geF* (Id = ;). But
what should we do if two divergent subgraphs are overlapping, with the possibility that one Taylor
remainder operation for curing one graph destroys the curing effect that the other operation has
on the other graph? It turns out that the BPHZ renormalization prescription handles this
type of situation.

3.2.2 Multiscale analysis and parcimonious renormalization. A good approach to understand
the formula consists in writing each kernel K. (z) as a sum of kernels localized in some annuli
of dyadic radius 27*. We will illustrate this here in the particular case where we work on R? and
all the kernels K, are equal to the Green function K of the operator (A — 1). This kernel has a
logarithmic (d = 2) or polynomial (d > 3) singularity on its diagonal. We deal with the general
case in a very similar way. To stay aligned with the previous picture where we work with some
smooth kernels that are only controlled by we could work with K, = e2(A —1)71, for a
positive parameter v that plays the role of (e1,£2). We do not loose anything in working directly
with (A —1)~!, which we do. We thus have

1

K(z):focexp( 2 )dt—ZK’

0 (4ﬂ-t d/2 i€l
with
27201 exp( Z' —t)
KZ<Z) = L72. W dt S 2(d_2)1 exp ( — 0221‘Z|2) (37)

for some positive constant c. We talk of i as the scale of the kernel K*. The function G can then
be represented as a sum
G=>G"
“w

indexed by the different scale assignments on each edge of the graph G. The problem comes from
the fact that this sum over the scale assignments has no reason to converge a priori — uniformly in
€1,€2 when we consider the (e1,e9)-dependent situation of Section

For each scale assignment p the problems come from couples of diverging sub-graphs g1 < ¢o,
without any other diverging subgraph in between, and such that all the scales of the edges of g;
are greater than the scales of any of the edges in £(g2\g1). One says that gy is quasi-local for go
for this scale assignment. (This notion depends on the scale assignment!) One can indeed prove
that the sum of the G* over the scale assignments p that do not show this ‘pathology’ converges.
(Section gives some elements about that point.) The following remarks highlight the problem
and propose a remedy for it.

(a) Denote by m the smallest scale of g; and by M the largest scale of the edges of go that are
not some edges of g;. Write

g2(2) = ng(z,y)(gz\gl)(z,y) dy.

The graph ¢; is quasi-local for go for the scale assignment p when m > M. In that case
the small graph appears as almost local/pointwise from the point of view of the big graph,
in the sense that g; gives from a o(1) contribution to the integral whenever two of its
arguments y;,y; satisfy |y; —y;| » 27™. This is where we loose control on the summation
over these bad scale assignments as this basic analysis only gives some control of the integral
of order > 2-mw(91) which diverges when w(g;) < 0.



10

(b) For any pair (g1, g2) of divergent graphs such that g is quasi-local for go for the scale
assignment p one can trade go for

(Id - '791 )g2

With the notations of Section the support of the function gi(z,y) of y is essen-
tially contained in a neighbourhood of the deep diagonal (y; = y; for all ¢,5) of size 27™.
The function (g2\g1)(z,y) of y having all its scales smaller than M, one gains a factor
2~ (Wi (g)+1)(m=M) hy replacing the function (g2\g1)(z,-) by its Taylor remainder at or-
der w4 (g1) + 1 based at the point ;. This leads to an estimate of the (uniform) size of
(Id— Z,, ) &2 by the converging sum ), _, 2~ ™{«(90)+w+ (941} Note that the order w, (g1)
of expansion of (g2\g1) in ,, does not depend on the scale assignment pu.

So, where does the BPHZ formula come from? Given a scale assignment x denote by 1% (p)
the maximum and minimum of the scale assignments, respectively. For |7 (u) <4 < 17 (u) denote
by |_|Z":1 gi¢; the connected components of the subset of G which collects all the edges with scales
bigger than or equal to i. One has for instance -y = 1 and gp, el = G. Two different g; ¢, , g;.0;
are either disjoint or one is contained in the other. So this set of graphs is naturally organised
into a tree structure when ¢ varies; one talks of Gallavotti-Nicolo tree. If g; o, < gj.e; then g g, is
quasi-local for g; ¢, for the assignment p. We define the parcimonious renormalization of G as

Gh= T ]_[ (1d - 7,,,)G". (3.8)

Because Zh,z; G# = 0 if g; ¢, is not divergent, the parcimonious renormalization actually only
involves the divergent sub-graphs of G. We order the product over 4 from 1 (1) to I~ (1) to make it
plaint that we do the product backward starting with the largest value of <. With the convention
of Section for the notation [ [ > one can write

- > J]-= (3.9)

FeF(u) geF

for some particular forest .% () of divergent sub-graphs of G. A refinement of the analysis of point
(b) above is described in Section and shows that the summation of the PG' over all the scale
assignments p is finite — Section [3.2.3] gives some insights on that point. This is the main selling
argument of the multiscale analysis: for each assignment the renormalization procedure specified
by is actually well ordered and inductive. No renormalization operation made earlier is
perturbed by a later operation — so there is no problem with the so-called overlapping divergences
in this picture. We define the parcimonious renormalization of G as

pé’zgp@b DI N (G2 (3.10)

FeF puFeF (u) geF

Only the forests of quasi-local sub-diagrams are used here and renormalised via ; they depend
on each scale assignment . We remark in particular that no overlapping divergent graphs are
considered here. The formula defining PG has exactly the same form as the formula definining
G except that in we sum over the set of all scale assignments, independently of F € % while
we sum over the p with F € Z#(u) in . One then sees that the BPHZ formula for G
comprises both the useful renormalizations from the parcimonious renormalization but also
a number of operations that seem useless from the point of view of renormalization, at any fixed
scale assignment p.

3.2.3 Classification of forests. Pick a forest of divergent sub-graphs F € .#. A sub-graph g of G,
divergent or not, is said to be compatible with F if F U {g} is also a forest. One denotes then by g
the unique element of F U {g} that strictly contains g if g is not the root of the forest, otherwise
we set g = G. We also denote by g} the union of the elements of F that are strictly included in
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g. Given a scale assignment u, set then
mr,,(g) == min {u(e) ie€ E(Q\Q;)},

My,u(g) = max {u(e); es € V(g), e V(g7\g) .

Define the dangerous part of F for p as the set

Du(F) = {ge Fimrulg) > Mr,(9)}
The complement
Su(F) v= F\Du(F)

of the dangerous part of F turns out to be a forest, called the u-safe part of the forest F. A forest
F for which F = S,,(F) is called a p-safe forest. One shows that

SH(SM(]:)) = Su(F).
This fact allows to partition % according to the p-safe part of its elements F. We associate to

F € F the following family of divergent sub-graphs of G

Sy (F) = {g < G; g is compatible with F, divergent, and g € D, (S,(F) u {g})}

The next statement was first proved by Feldman, Magnen, Rivasseau & Sénéor in [I8] — Lemma
2.3 therein; it is called the lemma of classification of forests.

4. Lemma - Let F € F be p-safe forest. Then F u SF(F) = Su(F) u SF(F) is a forest.
Another forest F' € F have the same p-safe part as F if and only if

Su(F) < F < {S#(]-') U sg(f)}.

The set S, (F) u S;f(F) is in particular the maximal forest with the same j-safe part as the
p-safe forest F. Lemma 4] allows to rewrite G as

G- 3 [

FeF geF

=2 2, [[=7e

n FeF geF

= Z Z Z H(_‘%)G# (3.11)

u G safe for p F;S,(F)=G geF

=2 a2 e

GeF 1;G=8,(G) F;S.(F)=G geF

D YDV W | CEACS

GeF 1;G=8,(9) HcS,F(g) 9e9VH

The term G = & in the last expression is equal to PG. The set S,(G) U S5 (G) being a forest,
it can be described as a union of disjoint trees T1(G, i), ..., Trg,)(G, ). The index (G, u) is
bounded above by a constant independent of G and p. One can then write

> 1] = G“—ﬂ [l #.G6" (3.12)

HST(G) 9e9oH k=1 geTk(G,n)
where
Ry = —Ty, ifgeg,
Ky =1d— T, if ge SF(9).
The operators involved in different Ti(G, ) commute. The index set % in the fifth equality of
(3.11) for G being finite, it suffices to consider the convergence of each sum Z#%Su(g)=9' Let us
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concentrate on each product ngn(g ) Setting — 7 := Id, one can re-index the product on the

tree Tr(G, 1) in (3.12) and write

M- I 2% I  @-a)

9€Tr(G,1) 9€(GnTi(G,1))w{G} he(SE(G)NTw(G,1))shg =g

Note that the two operators .7, and ;, commute in this formula since they act on the outside
and the inside of g, respectively. The bounds on ngTk(Q ) Z4G* that one can get depend on the
order in which one does the integration. To make that point plain, look at the example

d d \y*2\2 d |z—

3 2 2 )
-4 _le=yl -4 _d _|z==|
H a; e @ H b;*e " cre” e dwdydz
i=1 j=1

that corresponds to some graph G = (E,V) that you are invited to draw. One can choose to
bound some of the exponentials by 1 and only keep one term for each integration variable. This
corresponds to choosing a covering tree T of G. Denoting by r € {a1, as, as, by, b, ¢} the parameter
associated to the edge e € E the choice of a covering tree T gives for the integral the following
T-dependent bound

d
2

da
<1_[ re> []r?
ecE eeT
that one can optimize by an appropriate choice of T guided by the form of the bound. Back to
our general setting, recall that we denote for each i by (g/ gg )(i,e;) the set of connected component
of the graph g/ gé’ with scale bigger than or equal to i. We choose a covering tree of G whose
restriction to each (g/ gé )(17 ¢;) is a sub-tree. For these graphs, the equivalent of the previous r. are
essentially given by 27%. This way, we get as many factors 2742 as we can get from the integration
variables in the (g/ g;r )(i,e;) if the kernels that we keep are untouched. If a connected component
(g/gg)(i’gi) is not quasi-local, and if (g/gg)(i,gi) # g/gg, we have w((g/gg)(i,gi)) > 1 and it gives
a factor 2*“’((9/95)“*%)); if (g/gg)(i’gi) = g/gg7 one has a factor O(1). If the connected component
(g/gg)(ﬂi) is divergent and quasi-local for p it is part of the collection of {h € S:[ (G)ihg = g}7
and the operator (Id - ﬂh) gives an ad hoc factor that provides a total contribution O(1). To
summarize, set

W' ((9/98)a00)) = (1 v w((Q/QE)(i,&))) Ly /ot #(0)98 ) ey
The above analysis leads to an estimate of the form

H %QG“ < H 1_[ Q*W/((Q/gg)(i,zi))'

9€Ti(G 1) 9€Tk(G,1) {G} (i,¢:)

Note that the scale assignment implicitly appears in the right hand side in the bounds for 7. It is
then possible from this bound to obtain the summability in pu of ED, hence of G. See Section
3.2 of [20] for the model case of Feynman graphs and Section 8 of [16] for the regularity structure
case. (Our account of the BPHZ procedure was influenced by the very nice presentation given by
F. Vignes-Tourneret in his PhD thesis [30].)

3.2.4 Back to trees. The preceding sections sketch the main points of the mechanics involved
in the BPHZ renormalization of some iterated integrals as G or . However, in a regularity
structures setting, we do not directly have a hand on but rather on the Wi’m, via the
definition of the renormalized ﬁgT. The renormalization procedure introduced by Bruned, Hairer
& Zambotti in [I2] has this property that it somehow induces on the quantities built from the
renormalized model the same good renormalization/(Taylor remainder) operations as in the BPHZ
procedure. This is made possible by the fact that in the m-th term of the pairing , except from
the whole graph itself, every divergent sub-graph is either in Wisl’gg)’m(a, y) or in W(fl@)’m (b,y):
it does not overlap both parts at a time. The appropriate definition of the renormalized smooth
model TI" was first given in Section 6 of [12].
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3.3 — Recentering. Producing some (g1, €2)-independent finite bounds for (3.3)) is not sufficient

to prove that the renormalized smooth models m converge to a limit in the space of models. We
need for that purpose the bounds to be of the form oyax(c; c,) (1) A2 %) as in ([3.1). The BPHZ
mechanics explained above does not help in that task and provides no clue on that point for the
reason that it essentially deals with the non-recentered interpretation map II rather than with
the ﬁi. A different type of argument is needed to understand this scaling behaviour obtained from
recentering. Theorem A.3 in Hairer & Quastel’s work [22] is a good entry point for that question.
It was latter improved by Bruned & Nadeem in Theorem 3.1 of [I3]. The latter was used in [2]
by Bailleul & Bruned to give a simple proof of convergence of the BHZ renormalized model of the
one dimensional generalized (KPZ) equation driven by a spacetime white noise.

4 — Non-diagramatic methods

Chandra & Hairer assume in [16] some moment type condition on the law of the noise in the form
of some quantitative estimates on its cumulant. Within that setting the convergence criterion
is relatively sharp and one does not loose much in quantifying the expected convergence result of
Theorem [3]in the form (3.1)). The strategy of [16] is somewhat optimal: no information is lost in the
chaos expansion and each iterated integral that comes with that decomposition is proved to scale
aS Omax(e;,e0) (1) A2(r(M+%) | Linares, Otto, Tempelmayr & Tsatsoulis introduced in [27] a different
type of strategy in their development of an alternative to regularity structures well suited for the
study of a class of quasilinear singular SPDEs. A probability measure P satisfies a spectral gap
inequality if the variance of any L?(P) random variable is bounded above by a constant multiple
of the variance of its Malliavin derivative. Trading Chandra & Hairer’s moment assumption for a
spectral gap assumption on the law of the noise opens the door to a different kind of strategy for
proving the convergence result of Theorem [3] Work in a regularity structure with a noise symbol
and a noise derivative symbol, with some models where one can represent the I, 7 for the usual
symbols 7 but also their Malliavin derivative. The reasoning is inductive and informally expressed
as follows.

— Use the spectral gap inequality to propagate a convergence result for the noise derivative
of IT,7 to I, 7 itself.

— Show that the convergence of a number of I, 7 and their derivatives allow to prove the
convergence of the noise derivative of 11,0 for a new symbol ¢ not in the list of the previous
symbols 7.

We choose to leave aside in this review the very important work [27] of Linares, Otto, Tempelmayr &
Tsatsoulis and concentrate on the works [23] 4] that implement the strategy of [27] in a regularity
structure setting indexed by trees, as they share the same technical background. This makes
their introduction and comparison easier. For a reader interested in the multi-indices approach
to regularity structures we recommend the lecture notes [25, [9]. The works [23] and [4] do not
implement the above inductive strategy in the same way. We describe the details of [23] and [4]
in Section and Section [£.2] respectively. The contents of these sections are independent from
each other; they only share some basic matters related to the Malliavin derivative (Section
and the initial setup for the proof described at the beginning of Section [1.1.3]

4.1 — Hairer & Steele [23] and pointed modelled distributions. We stated in Theorem
the main convergence result of [23] for the BPHZ renormalized models. We describe in this section
the main ideas involved in the proof of this statement.

4.1.1 Poincaré inequality and Malliavin derivative. Following the insight of [27] the key tool
used in [23] is the Poincaré inequality. It is satisfied by the law of the white noise. Denote by
H the Hilbert space L2(R%). A cylindrical function F : D’'(R?) — R is a function of the form

F(f) = f(f(‘pl)>7§<50N))7
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where f € C*(RY) has at most polynomial growth and ¢, ...,onx € D(R?). For each cylindrical
function F' the Malliavin derivative in the direction h € H is defined by

VB (©) = lim TEFM 2 OF(Elpr). . Eon)) Chpidie

We denote by VF(£) € H* the linear form h — V, F(£). Denoting by P the probability law of the
white noise and by E the expectation with respect to P, we define D2 as the completion of the
set of all cylindrical functions under the norm (E[|F|*] + E[|VF[%,.]) Y2 1t is well known that P
satisfies the Poincaré inequality

E| (F —E[F))*| < E[IVFI3] (4.1)

for any F € D2, One can find the classical proof based on the log-Sobolev inequality in Theorem
5.5.1 of Bogachev’s book [7]. The inequality is also called a spectral gap inequality as it turns
out to be a consequence of an estimate for the spectral gap of the Ornstein-Uhlenbeck operator
defined on L?(Q2). The inequality allows to reduce the task of estimating the L? size of a
polynomial functional of a white noise to the L? size of another functional with lower degree. In
our setting we can write for any 7 € B and any g > 1

E[|(T ) (e2)]%] < [E[AL7)(@D)]]" + E[lhsup ) IV;L(HiT)(wi-)I"} (4.2)
=

As stated in the end of Section the BPHZ renormalized model M~ is the unique model associated
with some particular type of preparation maps with the property that E[(ﬁET) ()] = 0 everywhere,
for all 7 € B with negative degree. This property provides at some relatively low cost some estimates
on E[(H T)(p z)] of the right order in terms of A — see the proof of Proposition 5.2 of [23]. The
translation invariance of both the kernel and the law of the noise are essentially only used only
at that point. (Precisely, Hairer and Steele first proved the convergence of a modified version Me
defined by the condition E[(TT57)(¢)] = 0 for some fixed test function ¢, and called BPHZ model
therein in [23], and then deduced the convergence of M® from the convergence of Me. ) The spectral
gap inequality (4.2 . ) then brings back the analysis to estimating the Malliavin derivative term We
indicated above that this is the key fact for an 1nduct1ve approach to the convergence of M.

It seems natural to 1ntroduce a new symbol = representing a generic element of H and to
1nterpret the derivative Vh(H ’7') as the application of (some extension of the interpretation map)
H to some symbol involving =. Considering each symbol 7 € .7-' as a multilinear functional of =,
we define F as the set of symbols obtained by replacing by Z any of the arguments = in these
functions. For example, from the symbol ZZ(2)2 in F we obtain the two symbols ZZ(Z)? and
2Z(2)Z(Z) in F. By using these additional symbols we can define the formal Malliavin derivative
operator D : span(F) — span(F) as follows:

D

(1]
[1]-

., DX*=0, DI(r)=Ty(Dr),  D(r0)=(D7)o+71(Do).

(The map Ty is extended linearly in the third equality). Let now B be the subset of F consisting
of all the symbols obtained by replacing any one argument = in 7 € B with =. Set

T := span(B U B).
In [23] the authors extended the degree map to T setting
r(E) =6, for some fixed € (0,1).

They also constructed a regularity structure 7 with model space T. Using an argument based on
the reconstruction theorem (see also Lemma |§| below), they were able to extend the BPHZ model
M® into a unique model M=k on ,f?vsatisfying ﬁih(E) = h® = h % ¢°. One might expect that the
identity

VuIIE () = TIS" (D) (4.3)
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holds for any 7 € B, but this is not the case, even for 7 = = for which we have
ViIL(E) = Vipes = b5, IIEMNDE) = TI5ME) = he — h° ().

This difference arises because = has a much higher degree than =. To circumvent this problem
Hairer & Steele defined some z-dependent modelled distributions f5'” satisfying the intertwining
relation

Vil (1) = TS (f57 (2)) = REM(F57). (4.4)

To capture the main analytic properties of these functions ]?;?T they introduced in Section 3 of
[23] a new notion of modelled distribution that is the object of the next section. We return to the
intertwining relation in Section [4.2

4.1.2 Pointed modelled distributions. In this subsection we let .7 = (A, T, G) be an arbitrary
regularity structure with regularity cg and let M = (II, T') be a model for .7 on R?. First, we recall

the definition of some By ,-type space of modelled distributions. For any v € R and p € [1, 0] we
define D) = DJ(T') as the space of all functions f : R? — T_., for which

(fDpyic :== max HHf(x)HaHLg(c) < 0,

acA, a<y
max  sup <

€A, a<v o< y|<1 |y =

If

p,7;C ¢

for any compact subset C = R%. We define the notations || f||,.c and || fV, f@||,-.c in a way
similar to Definition Pl There is a reconstruction theorem for this kind of modelled distributions
which reads as follows: For any v > 0 and p € [1, 0] there exists a unique continuous linear map
RM:D)(T') — D'(R?) satisfying

AY(RMf — 10, vy < ML &
sup sup AT|(RMF ~ T f (@) (22)] y ) < MMy flpai0

Moreover the mapping (M, f) — RMf is locally Lipschitz continuous with respect to the quasi-
metrics [[M™®), M) I,.z and (AR A Il,;z- (This is the statement of Theorem 3.4 in [23].)

Given any = € R, an 2-pointed modelled distribution is a modelled distribution in the class
D} which behaves better near  than it does elsewhere. Here is the archetypal example. For any

smooth function f : R? — R and any integers 7 < v we define the function F, : R? — span{X*},cna
by

k+£ T k k
ro = Y (#rn- 8 Sy -0~ 3 ne g
Ikl<~ <ot T k= '

We read from Taylor theorem the identity

k PRV
RO -Toi) = ¥ 50 X E50 [0 - 01y o - )

|kl<vy i [€]=~—|k|
so we have
Fa(2) ~ Doy Faly)] g < Iz — ol
globally in y, z. However since [0¥™ f,(y)| < |y — #[~***I the above estimate improves to

|’FL(Z) - Fzy(Fx(y))”|k| < )‘D_’YHZ - yH’Y_‘kl

for y and z in the ball B(x,\) of center z and radius A > 0. For any v,v € R, p € [1,0], and
x € R? we define

D;,V;.’L' — D;,V;l' (1—‘)
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as the space of all functions f € D)(T) for which

(fDpyviw = aelga§<7 S?p])‘a VHHf HO‘HLz(B(ac,)\)) < 0,
£y +2) =Ty (F))], HLP (BzA) _
- ATV
1Flp, acA o<y Aiﬁ)pl] 0<SH121F<,\ (E e

The reconstruction of a pointed modelled distribution satisfies an improved version of the re-
construction estimate that involves the following quantity. Fix a positive integer r > |ag|. For
feDyv#(l) we set

. L d/p—v A —v 8
s s OS5 TN O]

5. Theorem - [23| Theorem 3.15] Let p € [1,], v € (0,0 + d/p)\N, v € R, and x € R?. For any
[ € DYvi*(T) its reconstruction RMf satisfies the estimate

m(f,RYf32) < N Fllp s (1 +0:B@2)-

4.1.3 A sketch of the proof of Theorem We describe in this section the architecture of the
argument used by Hairer & Steele in [23] to prove Theorem (3l We focus here of the mechanics to
get some e-uniform bounds for E[|||ME |||‘3{C] Especially, we concentrate on the bounds of the II°

part since the bounds of the T part automatically follow — see Theorems 5.14 and 10.7 of [19].
To show the convergence of E[\||mEl M |||3;C] to 0 as e1, 2 go to 0 one needs to introduce a new
notion of modelled distributions measured in some negative Sobolev norms. We do not touch upon
this point here and refer the reader to Section 3.3 of [23].

The proof of the e-uniform bound is done by induction with respect to the following pre-order.

Denote by nz(7) the number of symbols E contained in 7 and define the preorder < by setting

o<1 &L (nz(0),|Es|,7(c)) < (nz(7),|E-|,7(1)) (4.5)

with the inequality < in the right hand side standing here for the lexicographical order. We order
the elements of B\{X*},cne as

B\{Xk}keNd = {7'1 <7 =< }
and set for each ¢ > 1
B; = {7’1,7'2, e ,Ti}.
We need some notations to keep track of the sizes of I and T° on some vector spaces associated

with B;. We introduce for that purpose for each 7 € B the quantities

sup sup supA~"(7) | (ﬁjﬂ') (‘P;\)L
peB, \e(0,1] zeC

1" T
max sup H (ery H ,
a€A, a<r(T) g,z +yeC, y#0 ”yHT T)-e
Ml = [T e+ [T e

For any finite subset A < B we also write

HﬁE”A;C = Inax HﬁEHT;C7
TEA
IT) asc == max [T | e,
TEA
—e —e —e
IM™ ]l asc o= T e + 1T |ase

Assume now that we have proved some e-uniform bounds for the model on B;_; and let us
derive the estimates on B;. The estimate on the initial set By := ¢J is free. We use some different
tools in the induction step depending on the sign of r(7;). As a shorthand notation we denote by
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R° the reconstruction operator associated with M®. We write RS for the reconstruction operator
associated with |\7|5’h, for any h e H.
> If r(7;) > 0 the estimate follows from the reconstruction theorem applied to a well-chosen
modelled distribution with positive regularity — see Proposition 3.31 of [19]. The key fact
is that the function 7™ : R — T defined by

YT () = Tyul(mi) =7

is a modelled distribution in the class D"(™#) associated with M. Its reconstruction is given
by
€ €;7; _ =3 &5Ts _ =& =3 _ =€

6. Lemma — If r(1;) > O there exists a polynomial P such that for any compact set
C < R4 we have almost surely |TT |,.c < P(||ﬁ5\

Bi—ﬁé) :

The reasoning involved in this item is purely deterministic.

> If r(r;) < 0 we use the spectral gap inequality and focus on the task of obtaining
some e-uniform bound on the Malliavin derivative term. This is done in two steps that are
detailed below. N
— Algebraic step: One constructs some z-dependent modelled distributions f27 sat-
isfying the intertwining relation with the Malliavin derivative operator.

— Analytic step: One shows that a certain truncation of fj” is a pointed modelled
distribution that satisfies some good estimate.
As in Lemma |§|, these two steps provide a probabilistic control of |TT |,,.c in terms of
T | 5,_,;0+ Which is sufficient to close the induction in the case where r(r;) < 0. The
reasoning involved in this item is probabilistic as it rests on the spectral gap inequality.

— Algebraic step. For any 7 € B we define the function f&7 : R — T by

. =
o (y) =Ty (7).
Since one has for any y, z
e 3T 3T
L., (57 () = [27 (),
this function belongs to D* and its reconstruction satisfies

=33

R(f7)(y) = T(n)(y)
regardless of the sign of (7). As an analogue, we use the following relations to define modelled

distributions f57 : R? — T representing VhfZI(T), for any fixed h € H. The dependence of fj”
on h is not emphasized in the notation for this function.

(a) We set
7eE = € Te Xk
R =E+h 1, Y =0

In the first identity, the additional term h¢(y)1 is necessary to ensure that ﬁs’h(fjﬁ) = he.
(Recall that TIE7(Z) = kS — he(z).) The second identity reflects the fact that [y (X*) is
deterministic.

(b) We require that some form of Leibniz rule holds true

(c) We use the notations
Xk

T (z)7 = Z (" K *ﬁi’]’) (z) o

|k|<r(ZT)
and Q.. : T - ’f‘<a for the canonical projection, and set
BT @) = T+ T W) W) ~The 0 Qeran (T (@) /57 (@)

The truncation Q.,(z,) is necessary because = has a larger degree than =.
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(d) Last, we ask that
FETuT = gk fEIT
where the action of the operator 0% := [T, 0¥ on X* and planted trees Z;7 is defined by
X =1y L X7, 0i(Tyr) = Tuge, T
Propositions 4.12 and 4.18 of [23] assert that one has the relation .

— Analytic step. We cannot expect an e-uniform bound for f;f” because the regularity of A is
overestimated. Indeed the degree T(E) = 0 > 0 is higher than the regularity exponent ‘0’ of the
space L? = BY,. Instead we consider a truncation of fg” by removing some high order terms.
For that purpoée, for any 7 € B denote by «, the smallest degree of all non-polynomial symbols
appearing in the smallest sector containing 7, and set

L d
T = Or 5
7 2

7. Lemma — [23] Proposition 4.7] The function

s a pointed modelled distribution in the class Dgﬂr(T)er/Z;y As fij itself, ﬁ‘;” depends implicitly
on h. For each i there exists a polynomial P and a compact set C = R? containing = such that one
has almost surely

~. €
JSup 15 2 ()20 < P(IM 8, 150)-
H=

The function ﬁ'j” is denoted Hff; in [23]. Alternatively, we can inductively define ﬁ‘f” from
initial functions ﬁ'f?z and ﬁj‘x " via two operations on pointed modelled distributions: tree products
and integrations — see Theorems 3.11 and 3.21 of [23]. The above lemma is proved via those
inductive formulas. Lemma |8 below is partially involved in the inductive step when applying the
integration map to ﬁ’;” with v, < 0.

We return to the h-uniform estimate of V,IL (7). If we are in a case where ~,, > 0 the

ReP_reconstruction of F T e ’D;’T’T(T)er/ % s well-defined and satisfies

Vil () = RN (fom) = R (FE),

so an (h, e)-uniform estimate on a moment of (V,IL, (7)) () follows by induction from Lemmalﬂ
and the refined reconstruction theorem given in Theorem @ We cannot use Theorem |§| if v, <0
since there is not a unique reconstruction in that case. However the following lemma shows that
Reh ( f;?”) satisfies a good estimate as a candidate for a reconstruction of ﬁ'j?”.

8. Lemma - [23] Lemma 4.6] Even if v,, < 0 there exists a polynomial P and a compact set
C < R? containing = such that one has almost surely

sup m(ﬁ‘i;nvﬁs,h(ﬁ;n);x> < P(H|m5|
[h]m=1

Bz‘—l;C)'

When 7, = = the above lemma can be checked directly from some elementary deterministic
estimates on h°. Otherwise 7 should be of the form 7 = So with some ¢ such that a, + r(E) +
d/2 > 0. This is the content of Lemma 4.4 of [23]. This condition makes it possible to prove

the desired estimate as a result of some kind of ‘Young multiplication’ between B;f§)+d/ ? and

B% %, as in Theorem 3.12 of [§]. The bound on ﬁ;” from Lemma 7| can then be transferred to
(ﬁEh(ij))(go;‘) = (VLIL,7)(¢)), so the result follows by induction.

4.2 — Bailleul & Hoshino [4] and regularity-integrability structures. We describe in this
section the approach of [4] for proving (an improved version of) Theorem
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4.2.1 The abstract Malliavin derivative and an example. We use the extended model space T
mtroduced in Section including the symbol Z. Unlike [23] we do not assign here a positive

degree to Z=. Rather notlng that H = L?(R?) embeds into BOOO/O we assign = the same degree
ap < —d/2 as 2. With that choice, it turns out that one can build a setting where we have the
intertwining relation

VLIL (1) = I5"(D7) (4.6)

for all 7 € B, for some model M= introduced below in Section as M=h® . This identity
plays in [4] a key role in proving some estimates on Vy, (IL, 7)(¢)) which, together with the spectral
gap inequality , allow for an inductive proof of Theorem |3 We explain in this paragraph the
mechanics on the example of the symbol [ = EZ(Z) in dimension d = 3. (The following estimates
are locally uniform over x, but for simplicity, we describe them as if they were global over z.) Since
7(]) = —1—, the desired estimate is the {||h|z = 1}-uniform bound

sgpl(vhﬁi(i))(wiﬂ <A (4.7)

We start from the identity
VAll,r = TEM (D7) = {K % €5 — K % € () }h° + {K # h* — K » h*(z) }¢°
=: A% + B;.

One can use a Besov-type reconstruction argument to bound A¢ — see Theorem 3.2 of [8] for that
type of reconstruction theorem and Theorem 4.4 of [15] for the initial version of the reconstruction

theorem for coherent germs. Indeed the germ [ := (K % £%)(z)h° satisfies a B, / -type coherence
property

[(Fey = D@D = [(K * €5 (@ +9) = K (@) (@)] 1 < V>

since the family {K # £°}o<c<1 is bounded in B, /OO and the family {h}o<.<; is bounded in L2.
Since the reconstruction of the germ f€ = {f<}, is given by Rf* = (K *&£°)h®, we have the estimate

by —
|A( o HL2 = |(Rf* = £2)(¢2) HL2 SPYe
from the characterization of the reconstruction of a germ. Although this ‘B;)/ ;ﬁ—type’ estimate is

different from (4.7)), by noting that B;fo is embedded into B!, we expect that a ‘By'y-type’
estimate

sup [AS (¢3)] S A7 (4.8)

also holds as a consequence of a similar embedding argument. This heuristic argument is justified
by Lemma 12 of [4]. A similar reasoning does not work to obtain the desired estimate for BE.
Indeed the germ ¢ := (K = h®)(x)&° has only a weaker coherence property

|95y = 920D 2 = |(E b (2 + ) = K = 1°(2)) € (@) 1o < [yIA~227,

because the difference K * h®(x + y) — K * h®(x) cannot produce a superlinear estimate of y even
if {K *h}o<e<1 is bounded in B . Instead, the germ g°* defined by

d

gt {(K*hE Z —2); ;K * h® (x )}56

has the desired coherence property
A 2y —3/2—
H(Qx-&-y )(@z)HLg < ‘y| A3
Since the reconstruction of g°* is given by Rg°" = (K = h®)E°, we obtain a B;,/fof—type estimate

IB:* (e2)lre < A2
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for BE* := {K *h®(-) — K « h*(x) — 3,,(- — x); ;K = h*(x) }¢° (). To eventually get an estimate on

?
B:(¢2) we need some control on the terms

Cri = (= 2)i 6K % h*(2)€°(-).

Note that (- — x);£° is equal to the application of ﬁi to the symbol X;= with degree —1/2—, and
the family {0; K * h¥}o<c<1 is bounded in B; ,, < L°. Thus we have a ‘Bgic/zf—type’ estimate
€

1C2 (@D e = (0 # h¥) (@)L, (X,Z) (@) o < ATV

6 ~
Lg

Since By, iO/Q_ is embedded into B!y, we expect that a By 'y -type estimate similar to (4.8) also

holds for B = B;* + 3, C5 ; by an embedding argument similar to the argument used for the A5

term.

This example illustrate an important insight. It is useful to adjust the regularity and integrability
exponents of h in different computations: we considered h € B;i{oz to show the identity , we
used that h € L? in the estimates on AS and BT, and we used that h € Bﬁ_’éo in the estimate
on C7 ;. To place the above argument in a more general context we consider an extension of the
notion of regularity structure including some integrability exponents and a hierarchy based on the

numerology of the classical Besov embeddings.

4.2.2 Regularity-integrability structures. We use the bold letters a, b, ¢ to denote some generic
elements of R x [1,00]. We represent each component of a € R x [1,00] by

a = (r(a),i(a)),
where the letters “r” and stand for “regularity” and “integrability”, respectively. We define a
partial order < and a strict partial order < on the set R x [1, 0] by setting

@y
1

b<a £ rb)<r(a) i(b)>i(a),

b<a € 1(b)<r(a), i(b)>i(a).

Note that i(b) may be equal to i(a) even for the latter case. For any b < a, we define the element
a©beRx[1,00] by
1
a@b = <’I"(a) — T(b), 11) .
i(a) ~ i(b)
We have in particular the relations r(a) = r(a©b) + r(b) and 1/i(a) = 1/i(a&b) + 1/i(b).
Definition — A regularity-integrability structure = (A, T, G) consists of
(1) A a subset of R x [1,00] such that, for every c € R x [1,0], the subset {a € A; a < c} is
finite.
(2) T = @,ca Ta an algebraic sum of Banach spaces (Ta,| - ||la) indezed by A.
(3) G a group of continuous linear operators on T such that, for any ' e G and a€ A,
(M —id)Ta c Taa = P Ta
beA,b<a
The biggest number g € R satisfying (cg,0) < a for any a € A is called the regularity of 7. For

any a € A we denote by P, : T — T, the canonical projection and write
[7]a == [Patla (7 €T).

The notions of models and modelled distributions are defined accordingly.

Definition — Let 7 = (A, T, Q) be a regularity-integrability structure of regularity ag. Fiz a
positive integer r > |ag|. A model M = (I, T) for .7 on R? consists of two families of continuous
linear operators
II={II,: T— DR}
satisfying the following properties.
(1) We have II,T'yy, =11, Tyy = id, T'yyIy. = Ty for any x,y,z € R4,

I'= {Fya:}z,yeRd cG

reRd’
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(2) For any c € R x [1,00] and any compact subset C of R?

I A
I|e;c := max sup sup A7"@|  sup 10L7)(@2)] < o0,
acA, a<c peB, Ae(0,1] T€T\{0} [7]la Li® ()
1 T .
ITe;c == max sup sl sup M < o,
abeA b<a<cocjyj<t [Y["OP | reraoy  I7la lLieew g

We define [M|le.c and MM, M®)||..c as in Definition .

Although we employ here some local estimates, in line with the previous sections, in the papers
[24] and [4] where the regularity-integrability structures are introduced, we use some global esti-
mates involving some heat kernels and weight functions. This difference is merely technical and not
a serious matter. The same remark applies to the following definition of a modelled distribution
in a regularity-integrability setting.

Definition — Let = (A, T,G) be a regularity-integrability structure and let M = (IL,T) be a
model for 7 on R%. For any c € R x [1,0] we define D¢ = D(T) as the space of all functions
f: R = T_. for which

1fDesc o= amax [1F(@)lal eom ) < -

ILf H Hf(x +y) - F(Hy)z(f(x))ﬂa\ L9 () -
.= max  sup
¢ acA, a<c .|y <1 ly|r(c©=)

for any compact subset C = RY. We define |M|c.c and [M®) | MP)|..c as in Definition @

For any f € D¢ the germ {fz = 11, (f(x))}meRd satisfies the ‘coherence property’ in the sense
of [8]. The following reconstruction theorem is thus a consequence of Theorem 3.2 of [8]. (See
Theorem 4.1 of [24] for the proof in a slightly different setting.)

9. Theorem - Let T = (A, T,G) be a regularity-integrability structure and let M = (II,T) be
a model for 7 on RY. For any c € (0,0) x [1,00] there exists a unique continuous linear map

RM: D¢(T') — D'(RY) satisfying

sup sup /\7T(C)” (RMf =T, f(2)) (¢2)
peB- Ae(0,1]

L;(C)(C) < HHHC,6|‘fHC,6

Moreover the mapping (M, f) — RMf is locally Lipschitz continuous with respect to the quasi-
metrics MM, M@l & and || fV, f@ 5.

4.2.3 The convergence result in a regularity-integrability setting. Recall B consists of the set

of symbols obtained by replacing one argument = in 7 € B with a Z. For any p € [2, 0] we define
the extended degree map 7, : B U B — R by the same rules as (2.4) with the additional one

T(E):Oéo—f—*.
P p

The value of 7, (Z) comes from the numerology in the Besov embedding L? By fgd/ 2 By oFd/p

B%«. The map iy : Bu B — [2,0] is defined by

i = 1® (TGS),
o(7) {p (T € B).

The set {7 € B; (rp(7),ip(7)) < c} is finite for any ¢ € Rx [1, c0] and we can construct a regularity-
integrability structure
I,=(A,T,G)
by setting
(1) A ={(rp(1),ip(7)); T€BUBY,

A~

(2) T =@,ca Ta, where "_f‘a = span {T eBu B; (rp(7),ip(7)) = a},
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(3) G is the set of linear maps [ : T T satisfying for each 7€ B U B
(T —id)7 € span {U e BUB; (ry(0),iy(0)) < (rp(T),ip(T))}.
(The space 9; is denoted by %#, in [4].) There is a unique multiplicative map " on T =
span(B U B) such that (II"X*)(2) = 2, I (Z) = ¢¢, TIS"(Z) = h® and
05" (Tyr) = OFK +« 1" (7€),
This map induces a unique admissible model M®"? on 9; which depends on p via the degree map

rp. This is for instance visible in the identity

.\
o9 (Tr) = K ("Pr) — ) ( E'x) (0K +IS"PT) (2).
lel<rp(Zi(r))

We keep from that expression the fact that the order of the Taylor expansion varies with p.
As in Section the class of preparation maps provides a systematic way of constructing some
admissible models. One can in particular use the same type of map

Ry = (l®id)A; (4.9)

as in Section with ﬁ; in place of A, where A; is an extension of A which cuts any given
tree into a subtree with negative degree which contains the root of 7 and does not contain E, and
the remaining graph. The model MehiP on 9; associated with the preparation map j%g is also
called the BPHZ model. Its convergence to a limit model entails the convergence of the BPHZ
model M° of Section to a limit. Practically, the main result of [4] implies that if = is the only
symbol of B with degree less than or equal to —d/2 then for any ¢ € R x [1,00], p€ [2,00], ¢ = 1
and any compact set C' of R? we have

lim E[ sup [MErhie pE ke | < o, (4.10)

02220 | | p=1

Theorem 8 in [4] actually provides the same result for a class of models associated with a family
of preparation maps that contains the BPHZ preparation map (4.9)) as a particular case.

4.2.4 A sketch of the proof of (4.10). We use the same ordering of B as in Section
B\{Xk}keNd = {’7'1 <71y < - }

For each i we define B; as the set of all symbols obtained by replacing one argument = in 7 € B5;
with E. Similarly to Section we only outline here the proof of the uniform bounds. A simple
modification provides the proof of the convergence as all the identities below have some locally
Lipschitz counterparts. This makes the proof of convergence easier than in [23] as we do not need
to introduce any new notion of modelled distributions measured in some negative Sobolev norms.

For any finite subset A B U B and any p € [2, 0] we denote by bd (A, p) the statement that
for any ¢ > 1 and any compact set C — R% we have

sup E| sup |\I\A/I5’h;p|
O<e<l Lnja=1

We also denote by bd(A) the statement that bd(A,p) holds for all p € [2,00]. The flow of the
proof is explained as follows.

q
A;C:| < Q0.

(1) bd(B;) follows from some elementary deterministic estimates on he.

(2) We show bd(B;) and bd(B;) for any ¢ in the following steps.
(a) Probabilistic step: bd(B;_; u Bz) = bd(B;).
(b) Analytic step: bd(B; U B;,2) — bd(B;41,2).
(c) Algebraic step: bd(B; u B;) & bd(B;41,2) — bd(B;,1).
The following diagram illustrates the mechanics; the assertions are shown in the order indicated
by the solid arrows.
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312{5} c Ba o= < B;
Bi={E8l¢ B & S B

For readers familiar with the work [27] of Linares, Otto, Tempelmayr & Tsatsoulis one can
make the following parallel between the above reasoning and the mechanics of [27]. The step 2(a)
is common to both approaches: this is where we use crucially the spectral gap ingredient. The
Step 2(b) is somewhat the equivalent of their algebraic & three point arguments. The Step 2(c) is
the equivalent of their Reconstruction III step together with their Averaging step.

4.2.5 Probabilistic step: bd(B;_1 U Bl) = bd(B;). Recall B; = B;_; u {7;}. We show the
estimate on ﬁgvh?”(n) assuming bd(B;_1 U B;). If roo(7;) > 0 the estimate follows from the
reconstruction theorem, in the same way as in the proof of Lemmal[6] In that case the reasoning is
purely deterministic. If 74 (7;) < 0 we use the inequality derived from Poincaré inequality, so
the reasoning is probabilistic. The estimate of the expectation term follows from the property of
BPHZ models. It is precisely at that point that the translation invariance of both the kernel and
the law of the noise play a crucial role. For the derivative term we use the identity Vhﬁ;(n) =
ﬁi"“OC(DTi) to deduce the estimate from the assumption bd(Bi) and the induction assumption.
This is the content of the following statement.

10. Lemma - [4, Lemma 10] If ro(7;) < 0 there exists a polynomial P such that for any q¢ = 1
and any compact set C = R* we have

e 1 ~
E[HH H?—i;C]q < E[P< sup H67h7w||8i_1u5i;c>]'
[Pl =1

4.2.6 Analytic step: bd(B; U B;,2) — bd(Bi11,2). We show the estimate on ﬁ‘;’h?Q(T) for any
TE B’Hl\l’)"i. Since 7 is not equal to = we have

ro(T) = reo(T) + g >0

from the assumption (2.7). We can obtain the estimate on ﬁ;’hQ(T) by an argument similar to

the argument used in the proof of Lemma [0} applying the regularity-integrability version of the
reconstruction theorem, Theorem [} to a well-chosen modelled distribution.

Lemma — [, Lemma 15] There exists a polynomial P such that for any h € H and any compact
set C < R* we have
”ﬁe,h;2

Biy1;C < ‘P(Hﬁ&h;2

B; uB‘i;6> :

4.2.7 Algebraic step: bd(B; UB;) & bd(B;1,2) —> bd(B;41). Finally we show the estimate on
ﬁi”“p (1) for any 7 € Bi11\B; and p € (2, 0]. We saw above that the order of the Taylor expansion

in the definition of 115 (7) varies with p; this difference is described by the identity (4.11]) below.
(A particular case of this identity was proved by Bruned & Nadeem in their work [14], Proposition
3.7 therein.)

11. Lemma - [4, Lemma 6 & Lemma 16] For any 7 € Biy1 there exist some finite subsets
{o;} € Bi, {n;} < B; and {\;} = R satisfying the following properties.
— One has (7)) = 1p(0) + ron(n;) and r(0;) < 0 < 1r2(0;) for each j.

— For any € and h there exist some functions {x — fj’h(aj)} such that, for any p € [2, 0],
we have the identity

5P (r) = T2 (1) + YN L, (o) <0y £5(05) Ty () (4.11)
7
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— Denote by p(o;) the unique q € (2,0] satisfying rq(o;) = 0. There exists a polynomial P
such that for any h € H and any compact set C < R* we have

Hf;7h(o-j)”LZ(Uj)(c) < P(HH&h;p(a—j) HB, uBua) :

The above lemma actually holds for some arbitrary preparation maps, not only for maps of the
specific form (4.9). Therefore we do not have to go through the extended o-decoration as in [23].

Then we can roughly check that the desired estimate of ﬁi’h;p (1) follows from (4.11)). From
the assumption bd(B;41,2) the first term of the right hand side of ([{#.11)) satisfies the Bg?o(oﬂ—type

estimate R
iz 2y, X0

For the remaining terms, the assumption bd(;) and Lemma imply the B;E‘J(SJ io-type estimates
. (s
[ £57 (o) (T ) (o) oy < A7),

The space Bg?g) is embedded into B;?O(()T)_d(l/ 2-1/p) B;f’o(oT). Moreover the space B;Efj(jnj ()D is also

embedded into B;fo(g) because

el =05 = 5) =t =t a5 )

=1rp(7) — rp(gj)(aj) =1rp(7).

These formal argument suggest that ﬁ%h”’(r) should satisfy a B;fO(CT)—type estimate. The following

statement shows that this is indeed the case.

12. Lemma - [ Lemma 17] For any p € [2, 0], there exist a polynomial P and a finite subset
I, c [2, 0] such that for any compact set C < R? we have
B; UBi;C> :

Lemmas and [12] are stated somewhat inaccurately. The values of r, on both sides of the
inequalities described in these lemmas must be slightly different. Precisely, if 7, on the right hand
side is defined for a fixed ag, then 7, on the left hand side is redefined for any smaller choice of ag.
In [4] such an adjustment is performed by introducing an additional parameter — denoted € > 0
therein while the role of € here is played by an integer parameter n in [4]. For the sake of simplicity
we omit such technical details here.

jehip| . eshs
[T1¢ p|8i+1;C<P(r§1§}f|H€ q
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