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Abstract. We develop further in this work the high order paracontrolled calculus setting to
deal with the analytic part of the study of quasilinear singular PDEs. Continuity results for a
number of operators are proved for that purpose. Unlike the regularity structures approach of
the subject by Gerencser & Hairer and Otto, Sauer, Smith & Weber, or Furlan & Gubinelli’
study of the two dimensional quasilinear parabolic Anderson model equation, we do not use
parametrised families of models or paraproducts to set the scene. We use instead infinite
dimensional paracontrolled structures that we introduce here.

1 – Introduction

This work is dedicated to the study of the quasilinear singular partial differential equa-
tion (PDE)

Btu´ dpuqAu “ fpuqζ, (1.1)
where ζ stands for a spacetime noise of parabolic Hölder regularity α ´ 2, with 2{5 ă
α ă 1{2, with a real-valued unknown u defined on a 3-dimensional closed Riemannian
smooth manifold M and A a smooth elliptic operator on M . The function dp¨q – for
diffusivity, is supposed to be smooth enough and to take its values in a compact subset
of p0,`8q. We assume here for simplicity that the initial condition u0 in equation (1.1)
is regular enough to treat the free propagation of the initial condition as a remainder
term and avoid the technical use of weighted norms. The problems in the resolution of
such equations are twofold. First, the low regularity of the noise ζ allows only a low
regularity of the potential solutions u, which is not sufficient to make sense of a number
of the terms dpuqLu and fpuqζ. This type of multiplication problems is commom to a
whole class of equations that has received a lot of attention over the past years with
the concomitant introduction of regularity structures [24] by Hairer and of paracontrolled
calculus [20] by Gubinelli, Imkeller and Perkowski. This class of equations is now referred
to as singular stochastic PDEs and general methods for solving (subcritical) semilinear
stochastic PDEs have been devised, following both approaches. For quasilinear equation a
serious additionnal difficulty arises since the nonlinearity in the leading order term is itself
ill-defined. In the present work we extend the tools of paracontrolled calculus to deal with
the analytic part of the study of such equations. The reader acquainted with the results
of Bailleul and Bernicot’s work [3] on the high order paracontrolled calculus will see that
our method for the study of equation (1.1), and the tools introduced along the way, give
a direct access to the analysis of the quasilinear generalised (KPZ) equation

Btu´ dpuqB
2
xu “ fpuqζ ` gpuq|Bxu|

2,

or any other quasilinear version of parabolic semilinear equations, or systems of equations,
that can be studied within the setting of the high order paracontrolled calculus. Like the
works [30, 32], the present work is purely analytical and does not consider the important
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problem of renormalization. This amounts here to assuming that a sequence of multilinear
functions of the noise are given a priori as elements of their natural spaces with natural
bounds on their norms. In particular, we dot explain how to build these random variables
as limits of random variables built from a regularized noise and how to relate the notion
of solution that we capture here to the solutions to a family of renormalized equations
driven by the regularized noises.

Paracontrolled calculus was introduced in Gubinelli, Imkeller and Perkowski’ seminal
work [20] as a first order ‘expansion machinery’ for the study of a number of singular
stochastic PDEs. Despite the first order limitation the paracontrolled approach to the
study of singular PDEs has been very successful, as testify, amongst others, the works of
Gubinelli and Perkowski [22, 23] on the KPZ and stochastic Burgers equations, Catellier-
Chouk, Mourrat-Weber and Gubinelli & co-authors works [13, 26, 27, 9, 19, 25] on the
Φ4 scalar equation from quantum field theory, the works [1, 15] of Chouk and co-authors
on the spectral theory for the two-dimensional Laplacian with white noise potential, and
the very recents works on hyperbolic singular PDEs [21, 29]. The scope of the first order
paracontrolled calculus was much extended in [2, 3, 4], and the high order paracontrolled
calculus offers now a convenient setting for the study of a whole class of singular parabolic
PDEs, in diverse geometric settings. The high order paracontrolled calculus was for in-
stance used in [28] to prove Weyl law for the counting function of the Anderson operator
on two-dimensionnal closed Riemannian manifolds.

The study of quasilinear singular PDEs was launched by the works [31] of Otto and We-
ber, [16] of Furlan and Gubinelli, and [6] of Bailleul, Debussche and Hofmanová, that all
appeared within a few months. Interestingly, each of these works used different methods to
tackle the same equation: The 2-dimensional quasilinear parabolic Anderson model equa-
tion. Otto and Weber introduced a rough paths flavoured variant of regularity structures
while Furlan and Gubinelli introduced a variant of the first order paracontrolled calculus
using paracomposition operators instead of paraproducts; both methods rely on a para-
metric Ansatz. Bailleul, Debussche and Hofmanová showed that the original first order
paracontrolled calculus is sufficient to prove well-posedness of the equation on a small time
interval, for an equation involving a spatial noise. Gerencsér and Hairer then showed in
[18] that the study of a whole class of quasilinear singular parabolic PDEs can be done
within the setting of regularity structures, in the regime 2{5 ă α ď 1{2 for the regularity
exponent α, giving results way beyond the scope of what was proved in [31, 16, 6] and
Otto, Sauer, Smith and Weber’s followup work [30]. The only caveat to their remarkable
results is the fact that their formulation of the quasilinear equation does not allow for a
clean treatment of the renormalization problem yet. See however Gerencsér’s recent work
[17] for a first result in this direction.

By adding a few results to the toolkit of the high order paracontrolled calculus [4]
we are able to prove a local in time well-posedness result for equation (1.1), with the
same line of attack as in [6]. The latter used the classical space paraproduct on the 2-
dimensional torus. By working with the spacetime paraproducts from [3] and the high
order paracontrolled calculus from [4] we are able here to work with spacetime noises on a
manifold. Note that the method works mutatis mutandis for the study of the quasilinear
generalised (KPZ) equation or the quasilinear version of the geometric stochastic heat
equation. We reformulate the quasilinear equation (1.1) under a semilinear-like form

pBt ` Lqu “ fpuqζ ` εpu, ¨qLu`
ÿ̀

i“0

aipu, ¨qViu,

for a smooth second order differential operator L, smooth vector fields Vi and functions
aip¨q, εp¨q of u and the space argument. As the name suggests the function εp¨q will be
small. At first sight this type equation seems to be critical, in the sense that one does not
get any regularizing/contraction effect from the fixed point formulation of the equation
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due to the second order differential operator L in the right hand side. However, each
iteration of the fixed point will come with a factor εpu, ¨q close to 0 at time 0. Working
with the a priori knowledge that u is of positive Hölder regularity this term will indeed be
small for a small time horizon and this will allow us to get around the ‘criticality’ problem.
We will be able to define a paracontrolled structure and formulate the equation as a fixed
point for a contracting map defined on this structure. The well-posedness result obtained
from that formulation of equation (1.1) will be our main result, stated in Theorem 10. The
other approaches developed so far for the study of quasilinear singular PDEs all require
an infinite dimensional ingredient that involves a parametrized family of symbols [18] or
operators [31, 16]. This is the quasilinear effect. It takes adifferent form here, where we
use paracontrolled structures involving series rather that a finite number of terms as in
the setting of semilinear singular PDEs. The introduction of this structure is our main
technical insight; it pops out naturally as explained in Section 2.1. In retrospect, it looks
fortunate that the authors of [6] were able to use a usual, finite, paracontrolled structure
to study the 2-dimensional quasilinear (PAM) equation driven by a space white noise,
rather than an infinite dimensional paracontrolled structure. This is only due to the fact
that the noise in the equation was time-independent and the dimension of the manifold
equal to 2. Infinite dimensional structures are needed if one works with a time-dependent
noise, even in dimension 2, or if the dimension is equal to 3, as is the case here. This will
be explained after the proof of our main result, Theorem 10.

We set the scene of paracontrolled calculus in Section 2, in the form that we need here.
Section 3 is dedicated to the proof of the well-posedness result in small time for equation
(1.1), stated in Theorem 10. We give in Appendix A a bird’s eye view on the results from
[4] on the high order paracontrolled calculus that we use here. The proofs of a number
of new continuity results for operators needed for the study of quasilinear equations are
collected in Appendix B and Appendix C. A minimum of familiarity with the tools of
paracontrolled calculus is needed to get the best of what is presented here.

Notations. We gather here a number of notations used below.
– We denote by M a 3-dimensional closed Riemannian manifold and set M :“ r0, T s ˆ

M , for a finite positive time horizon T . Given α P R, we denote by Cα the space of
α-Hölder functions on M , defined as the Besov space Bα

88, and write Cα for the parabolic
Hölder spaces. We refer the reader to Appendix A for more information about these spaces.

– It will be useful sometimes to denote by pβq an element of the parabolic Hölder space
Cβ with exponent β P R, whose only noticeable feature is its regularity.

– We will denote by J0, bK the set of integers of the interval r0, bs, for any real number
b.

2 – Paracontrolled calculus

We introduce in this section the tools from (the high order) paracontrolled calculus
that we need to build a setting for the study of the quasilinear equation (1.1). The tools
developed so far in [2, 3, 4] are not sufficient for our needs but only a little more is
needed; it is given in Section 2.2. Paracontrolled calculus uses as a basic tool paraproduct
and resonant operators. We recall the reader of the essential features of these bilinear
operators before describing in a nutshell the paracontrolled approach to the study of
singular semilinear parabolic PDEs. Our starting point for the analysis of (1.1) is a
rewriting of this equation as a semilinear-like equation, equation (2.7) below. The special
features of quasilinear equations appears clearly on this rewriting. Section 2.1 introduces
the notion of paracontrolled system needed for the study of quasilinear equations and
Section 2.2 completes our toolkit from [4] to control the operators that pop out only in
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the quasilinear setting. The study of equation (1.1) with these tools is the subject of
Section 3.

As said in the introduction, in order to treat the free propagation of the initial condition
as a remainder term in the paracontrolled analysis we will assume in this work that the
initial condition u0 has Hölder regularity 4α. We would otherwise need to work with
spaces whose norms involve time weights. We refrain from doing so to keep concentrated
on the quasilinear feature of the equation and emphasize the simplicity of our approach.

˝ Paraproduct and resonant operators. Singular stochastic PDEs are characterized by the
fact that they involve ill-defined products. Whatever notion of regularity is chosen (Hölder,
Besov, Triebel-Lizorkin. . . ) it happens indeed that the product of two distributions of
regularity r1 and r2 makes sense as a continuous function of its arguments if and only if
r1 ` r2 ą 0. Recall we work with a spacetime noise ζ of parabolic regularity α ´ 2, for
α ă 1{2. One has multiplication problems in equation (1.1) in the terms dpuq∆u and
fpuqζ, as one cannot expect from any solution theory that it gives u a regularity better
than α while α ` pα ´ 2q ă 0. The starting point of the paracontrolled approach to the
study of singular stochastic PDEs is the use of the paraproduct and resonant operators to
disentangle this product problem. We describe them here in the simple setting of a finite
dimensional torus to give the reader an elementary idea of what these operators are and
some of their properties.

On the torus the Paley-Littlewood decomposition allows to represent any distribution
f as a sum of smooth functions

f “
ÿ

iě´1

∆ipfq,

with the Fourier transform of ∆ipfq being essentially supported on the set of frequencies
of order 2i. This decomposition can be used formally to split a product as

fg “
ÿ

i,jě´1

∆ipfq∆jpgq “
ÿ

iăj´1

∆ipfq∆jpgq `
ÿ

|i´j|ď1

∆ipfq∆jpgq `
ÿ

i´1ąj

∆ipfq∆jpgq

“: Pfg `Πpf, gq ` Pgf.
(2.1)

The bilinear operator P defined here is called the paraproduct operator and the bilinear
operator Π is called the resonant operator. They were first introduced by Bony in his
seminal work [10]. The interest of this decomposition is that the paraproduct operator
is well-defined whatever distributions f and g are given as its arguments. It even sends
continuously Cα ˆ Cβ into Cβ`0^α. On the other hand the resonant operator Π is well-
defined and continuous on CαˆCβ only if α`β ą 0, in which case it takes values in Cα`β
– in accordance with the above mentioned rule on the well-posed character of the product
operation. (We refer the reader to [5] for the basics on Littlewood-Paley decomposition
and paraproduct and resonant operators in a Euclidean space.)

The definition of the actual paraproduct and resonant operators that we will use in the
sequel is more involved as it provides parabolic operators and is tailor made to the equa-
tion we will study. The above Fourier-transform based Littlewood-Paley decomposition
is in particular replaced by the Calderón decomposition associated with the semigroup
generated by the second order differential operator L in (2.7). The reader will find in Ap-
pendix A a description of what is involved here. (The work [28] contains a self-contained
introduction to these operators in a geometric elliptic setting.) There is in any case no
need to masterize the details of the construction of these operators to use them efficiently.

˝ Solving semilinear singular PDEs using paracontrolled calculus. Following [3] one can
associate to any sufficiently regular second order differential operator L in Hörmander
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form its parabolic operator
L :“ Bt ` L

with inverse map L ´1 : v ÞÑ u, giving the solution of the equation L u “ v with zero
intial condition, and a paraproduct P and its companion paraproduct rP, intertwined to P
by the relation

L ´1 ˝ P “ rP ˝L ´1. (2.2)
A resonant operator Π is also constructed from L. One can describe as follows the para-
controlled approach to the study of a generic semilinear singular parabolic PDE of the
form

L u “ fpu, Bu, ζq,

with a function f that is affine in its ζ-argument. Denote by F the resolution operator of
the free heat equation

Fu0 :“ pτ, xq ÞÑ
`

e´τLu0

˘

pxq.

1. Paracontrolled ansatz. The irregularity of the noise ζ dictates the choice of a
solution space made up of functions/distributions of the form

u “
k0
ÿ

i“1

rPuiZi ` u
7, (2.3)

for reference functions/distributions Zi of regularity iα that depend formally only
on ζ, to be determined later. The order of the expansion is chosen in such a way
that pk0 ` 1qα` pα´ 2q ą 0. The ‘derivatives’ ui of u also need to satisfy similar
structure equations to a lower order; their ‘derivatives’ as well, and so on. Denote
by pu7 the datum of all the remainders in these expansions; together with the Zi’s
they determine entirely this triangular system.

2. Right hand side. Rewrite the right hand side fpu, Bu, ζq of the equation in the
canonical form

f
`

u, Bu, ζ
˘

“

k0
ÿ

j“1

PvjYj ` p5q (2.4)

where p5q is a nice remainder and the distributions Yj depend only on ζ and the Zi.
Both the vj and p5q depend explicitly on u and all its derivatives, that is on pu7.

3. Fixed point. The fixed point relation

u “ Fu0 `L ´1
`

fpu, Bu, ζq
˘

“ Fu0 `

k0
ÿ

j“1

L ´1
´

PvjYj

¯

`L ´1p5q

“ Fu0 `

k0
ÿ

j“1

rPvjZj `L ´1p5q,

imposes a number of consistency relations on the choice of the Zi “ L ´1pYiq that
define them uniquely as functions of ζ, and induces a fixed point relation for pu7.

‚ We illustrate this mechanics on the example of the 2-dimensional parabolic Anderson
model equation on the torus

L u “ uζ “ Puζ ` Pζu` Πpu, ζq, (2.5)
with constant initial condition u0 “ c ‰ 0 and with L “ ∆. The noise ζ is almost surely
in the parabolic Hölder space Cα´2, for α any positive real number strictly smaller than
1. (This is specific of dimension 2.) Whereas the paraproduct terms in (2.5) always make
sense for arguments in Hölder spaces of positive or negative exponents, the resonant term
is well-defined only if the sum of the Hölder regularity exponents of u and ζ add up to a
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positive real number. With ζ of Hölder regularity α´2 and α ă 1, one has α`pα´2q ă 0,
and we fall short of fulfilling this positivity constraint. Rather than looking for a solution
of the equation in the class Cα of α-Hölder parabolic function we look for a solution in a
restricted class of Cα functions of the form

u “ rPu1Z ` u
7, (2.6)

for a reference function Z P Cα, to be determined from the noise only and from the
equation, with a remainder u7 P C2α of parabolic Hölder regularity 2α. With the notations
of (2.3) one has here k0 “ 1 and Z1 “ Z. Given Z the unknown becomes the pair pu1, u7q,
with u1 in a well-chosen function space. The special paracontrolled form of u allows to make
sense of the a priori ill-defined resonant term Πpu, ζq under the assumption that ΠpZ, ζq
is given as an element of C2α´2 – this is Gubinelli, Imkeller and Perkowski’s fundamental
‘commutator lemma’, Lemma 2.4 in [20]. We write

L u “ Puζ ` p2α´ 2qpu1, u7q,

for a function p2α ´ 2qpu1, u7q depending implicitly on ζ, Z and ΠpZ, ζq, as a continuous
function of all its arguments. With the notations of equation (2.4) one has v1 “ u, Y1 “ ζ
and p5q “ p2α ´ 2qpu1, u7q. From the defining intertwining relation (2.2), the fixed point
formulation of equation (2.5) then reads

rPu1Z ` u
7 “ u “ rPupL

´1ζq `L ´1
`

p2α´ 2qpu1, u7q
˘

` c,

– recall we assume for simplicity u0 “ c ‰ 0 is constant. We now identify the terms
on both sides of the equality according to their regularity so as to have a paracontrolled
expression stable under the fixed point map. One then has Z “ L ´1pζq on the one hand,
and

u1 “ u “ rPu1Z ` u
7, u7 “ L ´1

`

p2α´ 2qpu1, u7q
˘

` c,

on the other hand. (Note that if we were working in this paragraph in dimension 3 the
noise would be pα ´ 2q-Hölder regular, with 2{5 ă α ă 1{2 and more work would be
required to defined the term p2α ´ 2qpu1, u7q; the tools of the high order paracontrolled
calculus can be used for that purpose.)

‚ Two different questions are addressed in Step 2. Making sense of the ill-defined
products, characteristic of singular PDEs, and putting the right hand side of the equation
in the form (2.4), for an easy formulation of the fixed point in Step 3. One of the main
findings of [4] is that, at the end of the day, each of these two tasks are dealt with
repeating essentially only one operation for each. See Section 2.2.4 for an explanation of
the mechanics.

˝ A special feature of quasilinear equations. One can rewrite equation (1.1) as a semilinear-
like equation. The high order paracontrolled calculus developed in [4] requires that we
work with an operator in Hörmander form involving vector fields with sufficient regularity.
This is not a constraint in so far as smooth second order differential operators always have
that form up to the addition of a vector field, so

A “
ÿ̀

i“1

A2
i `A0,

for smooth vector fields A0, Ai. (What follows works for vector fields of class C6. As
we are not interested here in optimizing the degree of regularity of thedifferent objects
involved in the analysis we stick to the smooth setting. As a matter of fact we could even
write A as a sum of square of vector fields, without the drift A0. This refined description
of A would make no difference for us here.) With this in mind, let us introduce a smooth
function u0 close enough to u0 – this will be quantified later, in the proof of Theorem 10,
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and a solution-independent operator

L :“ ´
ÿ̀

i“1

V 2
i , Vi :“

a

dpu0qAi.

We rewrite equation (1.1) under the form of an evolution equation

L u :“ pBt ` Lqu “fpuqζ `
`

dpuq ´ dpu0q
˘

Au`
ÿ̀

i“1

Ai
`

dpu0q
1{2

˘

Viu

“ fpuqζ ´ dpu0q
´1
`

dpuq ´ dpu0q
˘

Lu

`
ÿ̀

i“1

´

1´ dpu0q
´1
`

dpuq ´ dpu0q
˘

¯

Ai
`

dpu0q
1{2

˘

Viu

` dpuqA0u,

involving the solution-independent operator L in Hörmander from. We write this equation
as

L u “: fpuqζ ` εpu, ¨qLu`
ÿ̀

i“0

aipu, ¨qViu. (2.7)

As its name suggests the quantity εp¨q is expected to be small. The nonlinear term
εpu, ¨qLu “ dpu0q

´1
`

dpuq ´ dpu0q
˘

Lu

in the right hand side still involves a second order term, a feature of quasilinear equations.
(The dot sign in εpu, ¨q stands for the dependence on x P M of ε, via dpu0q.) This
formulation of the quasilinear equation (1.1) in the semilinear-like form (2.7) involves the
second order term εpu, ¨qLu, specific to the quasilinear setting. This is why equation (2.7)
is not a semilinear equation. Writing

εpu, ¨qLu “ Pεpu,¨qLu` PLuεpu, ¨q ` Π
`

εpu, ¨q, Lu
˘

, (2.8)
the operators

PLab, ΠpLa, bq

that appear in the last two terms of the right hand side of identity (2.8) turn out to be of
the same type as the resonant operator pa, bq ÞÑ Πpa, bq. Their analysis is thus similar to
what was done in [4] for the resonant operator via the introduction of the corrector C and
its iterates. (Similar things happen in the analysis of the (KPZ) equation with the terms
PBuBu and ΠpBu, Buq.) The operator

PapLbq

that appears in the first term of the right hand side of (2.8) does not show up in the study
of semilinear singular PDEs and requires a specific treatment. The analysis of these terms
will be the object of Section 2.2.

2.1 Paracontrolled systems for quasilinear equations

We introduce in Section 2.1.2 the particular paracontrolled structure that we use for
the study of quasilinear singular PDEs. Unlike Furlan & Gubinelli’s paracomposition
approach [16] or their regularity structures counterparts [31, 30, 32, 18] our paracontrolled
structure does not have the form of a parametric finite paracontrolled structures. Rather
it involves series in the paracontrolled expansion, as opposed to the finite expansion used
for the study of semilinear singular PDEs. To motivate this structure we first test on a
model quasilinear singular equation the above three step methodogy that was designed for
the study of semilinear singular PDEs. Its implementation leads naturally to the structure
introduced in Section 2.1.2.
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2.1.1 – A naive trial on a model case. Recall our discussion of the paracontrolled ap-
proach to the parabolic Anderson model equation and the form (2.5) that we gave to the
quasilinear equation (1.1). The main feature of the quasilinear setting is the presence of
a second order term Lu in the right hand side of the equation. Consider, as a motivation,
the model equation

L u “ uζ ` uLu

“ Puζ ` PupLuq `
´

Pζu` Πpu, ζq ` PLuu` Πpu, Luq
¯

,
(2.9)

still in the setting where 2{3 ă α ă 1 is close to 1. As above, one problem is to make sense
of the resonant term Πpu, Luq; this can be done assuming that the term Π

`

Z,LZ
˘

makes
sense as an element of the parabolic Hölder space of exponent 2α ´ 2. This assumption
allows to define the term in parentheses in the right hand side of (2.9) as an element of
C2α´2. One can further see that for u of paracontrolled form (2.6) one has

PupLuq » Pu1upLZq,

up to a term in C2α´2. A naive fixed point formulation of equation (2.9) then reads
rPu1Z ` u

7 “ rPu
`

L ´1pζq
˘

` rPu1u
`

L ´1pLZq
˘

` p2αqpu1, u7q ` c. (2.10)
Note that the operator L ´1L sends any Cβ into itself, with no regularization property.
Since we want to have a paracontrolled expression stable under the fixed point map
encoded in identity (2.10) it imposes that Z is actually made up of two components
Z “

`

Zp1q, Zp2q
˘

, with Zp1q “ L ´1pζq and Zp2q “ L ´1pLZp1qq. The function u1 should
have as a consequence two components as well so equation (2.9) rewrites

2
ÿ

k“1

rPu1kZ
pkq ` u7 “ rPu

`

L ´1pζq
˘

`

2
ÿ

k“1

rPu1ku
`

L ´1pLZpkqq
˘

` p2αqpu1, u7q ` c,

with terms L ´1
`

ΠpZpiq, LZpjqq
˘

inside the remainder p2αqp¨ ¨ ¨ q given a priori. The first
two terms in the right hand side are taken care of by the Zp1q and Zp2q terms in the
left hand side. This is not the case of the term rPu12uL

´1pLZp2qq in the right hand side.
Consistency then imposes that we actually add a third component to Z and u1, to take
care of rPu12uL

´1pLZp2qq. The story then repeats itself and we are led to consider as a
priori form for the solution an infinite paracontrolled expansion

u “
ÿ

kě1

rPu1kZ
pkq ` u7,

with Zpkq “ pL ´1Lqk´1Zp1q for k ą 1, and Zp1q “ L ´1pζq. All the Zpkq are elements of
Cα here since the operator L ´1L does not improve nor worsen the regularity. This infi-
nite dimensional paracontrolled structure is a characteristic feature of the paracontrolled
approach of quasilinear singular equations. The convergence of the preceding sum needs
to be built in the setting, together with the a priori data of the terms ΠpZpiq, LZpjqq as
elements of C2α´2. Anticipating over the results to follow, the reference functions in the
paracontrolled expansion of a solution to equation (1.1) have the same tree-like structure
as the reference functions of the corresponding semilinear equation. This comes from their
inductive definition. However, each edge in a ‘tree’ now has a length, corresponding to
composing first the operator represented by the edge by the operator pL ´1Lqk, for some
k ě 0. This echoes Gerencsér and Hairer’s work [18], where each symbol represents an
infinite dimensional space. This is the quasilinear effect. The approach works under the
quantitative assumption that each a priori term has a natural norm bounded above by
a constant multiple of Ck, for a constant C ą 1, and k the number of times that the
operator L ´1L appears in the formal definition of the term – the total “length” of the
tree.
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2.1.2 – Paracontrolled systems for quasilinear equations. Motivated by the analysis of
Section 2.1.1 we set up in this section the notations needed to describe solution spaces
based on infinite paracontrolled systems. Fix 0 ă α ă 1. Let an integer n ě 1 be given,
together with countable families T1, . . . ,Tn of real-valued non-null functions on r0, T sˆM
with each rτ s P Ti of parabolic Hölder regularity |τ | :“ iα. We distinguish the function
rτ s from its label τ by using brackets to denote the function. Write

T :“ T1 Y ¨ ¨ ¨ YTn.

A generic finite word with letters in T will be denoted by w “ τ1 . . . τk and assigned a
homogeneity

|w| :“ |τ1| ` ¨ ¨ ¨ ` |τk|.

Define
W :“ HY

!

w “ τ1 . . . τk ; k ě 1, |w| ď nα
)

.

This is the set of words with letters in the alphabet T and homogeneity no greater than
nα. This set depends on n, which will be fixed in each application. We do no record the
dependence of W on n in the notation. For a word w “ τ1 . . . τk P W and τ P T we
denote by wτ the concatenation of w and τ , so |wτ | “ |w| ` |τ |. Set LHM :“ 1, and for
w “ τ1 . . . τk P W , set

LwM :“ Lτ1 . . . τkM :“
›

›rτ1s
›

›

C|τ1| . . .
›

›rτks
›

›

C|τk| ;

this is not a norm. The following definition of a paracontrolled system coincides with the
notion used in the study of semilinear singular PDEs, where T can be chosen to be a
finite set rather than infinite countable set.

Definition 1. Let pβwqwPW be a family of positive real numbers. A system paracontrolled
by T at order n is a family pu “ puwqwPW of parabolic functions such that one has

uw “
ÿ

τPT ;|wτ |ďnα

rPuwτ rτ s ` u
7
w, (2.11)

with u7w P Cnα`βw´|w| for all w P W , and
~pu~ :“

ÿ

wPW

LwM }u7w}Cnα`βw´|w| ă 8. (2.12)

The convergence condition (2.12) is always fulfilled in a semilinear setting where one
can work with a finite set T , so W is finite. In the case where W is infinite the weights
LwM in (2.12) are here to guarantee the convergence in a proper space of the sum (2.11).
A reasonable choice for the constants βw would be to take them all equal to α. This is
not a convenient choice from the technical point of view and all of them will be chosen
in the interval p2{5, αq in a particular way explained in Section 3 before Theorem 10.
In particular, they satisfy βw ă βw1 for any w,w1 P W with w a subword of w1. These
regularity exponents play a crucial role in proving that the fixed point formulation of
the equation involves a contracting map. We note that all uw with |w| ă nα are Cα,
while the uw with |w| “ nα, are elements of Cβw . Notice that a paracontrolled system is
triangular: The bigger |w| the lesser we expand uw. The study of the quasilinear equation
(1.1) will require below the use of systems paracontrolled at order 3. Note also that a
paracontrolled system is actually determined by the set pu7 :“ pu7wqwPW of all remainders
in the paracontrolled expansion (2.11). Putting together all the contributions from each
Ti each uw in a paracontrolled system is in particular required to have an expansion of
the form

uw “ pαq ` p2αq ` . . .`
`

nα` βw ´ |w|
˘

as will be proved in the following proposition.
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Proposition 2. Let pu be a system paracontrolled by T at order n. One has
ÿ

wPW

LwM }uw}Cβw À ~pu~.

This implies in particular that one has for all w P W the estimate
}uw}Cβw À ~pu~.

Proof – Let w P W . We proceed by a finite induction. The case where |w| “ nα is well
controlled. For |w| ă nα, we have

}uw}Cβw À
ÿ

τPT ;|wτ |ďnα

}uwτ }Cβwτ }τ}C|τ | ` }u
7
w}Cβw

À
ÿ

w1PW ;|ww1|ďnα

Lw1M }u7ww1}Cβww1

and Tthis yields
ÿ

wPW

LwM }uw}Cβw À
ÿ

w2PW

Lw2M }u7w2}Cβw2 À ~pu~.

B

We note here for later use that if pu is paracontrolled at order 3 then for any function
h P C6

b then hpuq is the H-component of a paracontrolled system at order 2. Indeed,
identity (36) of [4] tells us first that there is an element p7q P C3α such that

hpuq “ Ph1puqu`
1

2

´

Php2qpuqu
2 ´ Php2qpuquu

¯

` p7q.

Denote by p3αq an element of C3α that may change from line to line. If one sets

Rp1, b, cq :“ rPbc´ Pbc, R˝pa, b, cq :“ Pa
`

Pbc
˘

´ Pabc,

and one uses the properties of these operators proved in Proposition 3 of [4], together with
the properties of the D operator proved in Proposition 2 therein, one sees that

hpuq “ Ph1puq
`

rPuτ rτ s
˘

`
1

2
Php2qpuquτ1uτ2

`

Πprτ1s, rτ2sq
˘

` p3αq

“ Ph1puquτ rτ s ` Ph1puq
`

Rp1, uτ , rτ sq
˘

`
1

2
Php2qpuquτ1uτ2

`

Πprτ1s, rτ2sq
˘

` p3αq

“ Ph1puquτ rτ s ` Ph1puquτσ
`

Rp1, rσs, rτ sq
˘

`
1

2
Php2qpuquτ1uτ2

`

Πprτ1s, rτ2sq
˘

` p3αq.

(2.13)
The implicit sums are restricted to indices τ P W with |τ | ď 2α in the first term, to
τ, σ P W such that |τ | “ |σ| “ α in the second term, and to τ1, τ2 P W such that
|τ1| “ |τ2| “ α in the third term. We obtain directly from the identity (2.13) the full
description of the paracontrolled system at order 2 corresponding to hpuq.

We described in the three step scheme of the introduction of Section 2 the paracontrolled
approach to solving semilinear singular PDEs. In this scheme the paracontrolled structure
of the elements of the solution space is used to take profit from the continuity properties of a
number of operators that come in the analysis of the product problem. In a nutshell, while
some operator Mp¨q may not make sense on a Cβ space it can make sense on a subspace
of Cβ whose elements are of paraproduct form Pab, or sums of such terms, up to a regular
enough remainder term, provided the quantities Mpbq are given off-line. The product
εpu, ¨qLu in (2.7) is specific to the quasilinear setting and its analysis requires the use of
a number of continuity results for some new operators. The next section presents these
results. They will be used jointly with the infinite dimensional paracontrolled structure
of Definition 1 in Section 3 to give a proof of the locally well-posed character of equation
(1.1).
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2.2 Additional correctors

We saw above that the analysis of the quasilinear equation (2.7) requires in addition to
the study of terms already encountered in a semilinear setting the study of operators of
the form

PapLbq, PLab, ΠpLa, bq.

This section is dedicated to the study of these quantities and their expansion properties
– when the a argument is of paracontrolled form. Our results come under the form of
a number of continuity results whose proofs are given in Appendix B; all the proofs are
variations on the pattern of proofs of continuity results from [4]. The continuity results
from this section are all we need in addition to the results of [4] to study equation (1.1),
and more generally a whole class of quasilinear singular PDEs. The reader is welcome to
skip the proofs of the different statements below and directly jump to Section 3 to see
them in action.

Given that the technical setting of [3, 4] is likely not to be familiar to most readers we
give in this section the proofs of some of the statements in the time-independent model
setting of the 3-dimensional flat torus. The paraproduct and resonant operators Pab and
Πpa, bq are defined classically in terms of Fourier projectors as in (2.1).

2.2.1 – Operators PLab and ΠpLa, bq. These two operators are defined by similar formulas
as the resonant operator in terms of the parabolic approximation operators Qt from [4].
It is thus natural that they satisfy expansion rules similar to the expansion rules satisfied
by the resonant operator. Introduce for that purpose the operators

C´L

´

pa1, a2q, b
¯

:“ P
LrPa1a2

b´ a1PLa2b,

C`L

´

a, pb1, b2q
¯

:“ PLa

´

rPb1b2

¯

´ b1PLab2,

CL

´

pa1, a2q, b
¯

:“ Π
´

LrPa1a2, b
¯

´ a1Π
´

La2, b
¯

.

We choose the notation ´ in the exponent of C´L to emphasize that the paraproduct
term is in the low ‘frequency’ part of the operator, while it is in the high ‘frequency’ part
in C`L . The following theorem is proved here in the time-independent model setting of the
flat torus; see Appendix B for a proof in the parabolic setting.

Theorem 3. The following two statements hold true.
‚ Let α1 P p0, 1q and α2, β P p´3, 3q be such that α1 ` α2 P p´3, 3q. If

α2 ` β ´ 2 ă 0 and α1 ` α2 ` β ´ 2 ą 0 (2.14)
then the operators C´L and CL extend as continuous operators from Cα1 ˆ Cα2 ˆ Cβ
into Cα1`α2`β´2.

‚ Let β1 P p0, 1q and α, β2 P p´3, 3q be such that β1 ` β2 P p´3, 3q. If
α` β2 ´ 2 ă 0 and α` β1 ` β2 ´ 2 ą 0

then the operator C`L extends as a continuous operator from Cα ˆ Cβ1 ˆ Cβ2 into
Cα`β1`β2´2.

It is possible to explain in a non-technical way the mechanics at work in the proof of
Theorem 3. Following [4] we define the outer centering operator C as an operator acting
on a space of operators on functions by

pCMqpfqpxq :“M
`

f ´ fpxq
˘

pxq

and set also
pC fqpxq :“ fp¨q ´ fpxq.
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One can rewrite in terms of C the corrector
Cpf, g, hq “ ΠprPfg, hq ´ fΠpg, hq

as
Cpf, g, hq “ Π

`

rPC fg, h
˘

.

The iterated corrector
C
`

pf1, f2q, g, h
˘

:“ C
`

rPf1f2, g, h
˘

´ f1Cpf2, g, hq

from [4] writes in those terms

C
`

pf1, f2q, g, h
˘

:“ Π
´

rPCPCf1
f2g, h

¯

Similarly, one has
C´L

`

pa1, a2q, b
˘

“ P
LrPCa1

a1
b,

C`L
`

a, pb1, b2q
˘

“ PLa
`

rPC b1b2
˘

,

CL
`

pa1, a2q, b
˘

“ Π
`

LrPCa1a1, b
˘

.

On a general basis a paraproduct rPfg has the same regularity as g if f has positive
regularity. So for f P Ca, g P Cb, h P Cc the quantity Cpf, g, hq should for instance only
make sense if b` c ą 0. The effect of the outer recentering is that rPC fg behaves inside the
resonant operator as a function of regularity a` b. This dovetails nicely with the fact that
the corrector makes sense if a` b` c ą 0. The very same thing happens for the operators
C´L ,C

`
L ,CL.

Proof – Write ∆ for the usual Laplace operator on the flat d-dimensional torus and denote
here by Cβ the associated Hölder spaces, for any β P R.

‚ Set
C∆pa1, a2, bq :“ Π

`

∆Pa1a2, v
˘

´ a1Πp∆a2, bq.

We prove that for α1, α2 and β such that inequalities (2.14) hold true, the operator
C∆ is continuous from Cα1 ˆ Cα2 ˆ Cβ into Cα1`α2`β´2. We have

C∆pa1, a2, bq “
ÿ

|i´j|ă1

∆i pPa1a2q∆jpbq ´ a1∆ipa2q∆jpbq.

Setting
εi :“ ∆i

`

∆Pa1a2

˘

´ a1∆ip∆a2q,

we have
C∆pa, b, cq “

ÿ

|i´j|ă1

εi ∆jpbq.

As in the proof of the estimate for the classic corrector C, one sees that one has
}∆kεi}L8 À 22i 2´iα22´maxpi,kqα1 }a1}Cα1 }a2}Cα2 ;

the factor 22i comes from the ∆ operator. Writing
∆k pC∆pa1, a2, bqq “

ÿ

|i´j|ď1

∆k

`

εi ∆jpbq
˘

“
ÿ

jăk´2
|i´j|ď1

∆kpεiq∆jpbq `
ÿ

kăj´2
|i´j|ď1

∆k

`

∆ipεiq∆jpbq
˘

`
ÿ

|k´j|ď1
|i´j|ď1

∆k

`

Sipεiq∆jpbq
˘

,

we see that
›

›

›
∆k pC∆pa1, a2, bqq

›

›

›

L8
À

ÿ

iăk´2

2´ipα2`β´2q2´kα1 `
ÿ

kăi´2

2´ipα1`α2`β´2q `
ÿ

|i´k|ď1

2´ipα1`α2`β´2q

À 2´kpα1`α2`β´2q
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using that pα2 ` β ´ 2q ă 0 and pα1 ` α2 ` β ´ 2q ą 0. The implicit multiplicative
factor is a multiple of }a1}Cα1 }a2}Cα2 }b}Cβ .
‚ Set now

C´∆pa1, a2, bq :“P∆Pa1a2
b´ a1P∆a2b “

ÿ

iăj´2

εi ∆jpbq.

We prove that for α1, α2 and β such that inequalities (2.14) hold true, C´∆ is continuous
from Cα1 ˆ Cα2 ˆ Cβ into Cα1`α2`β´2. This can be seen by writing

∆k

`

C´∆pa1, a2, bq
˘

“
ÿ

jăk´2
iăj´2

∆kpεiq∆jpbq `
ÿ

kăj´2
iăj´2

∆k

`

∆ipεiq∆jpbq
˘

`
ÿ

|k´j|ď1
iăj´2

∆k

`

Sipεiq∆jpbq
˘

,

from which one sees that
›

›∆k

 

C´∆pa1, a2, bq
(
›

›

L8
is bounded above by a multiple of

ÿ

jăk´2

2´ipα2`β´2q2´kα1 `
ÿ

kăj´2

2´ipα1`α2`β´2q `
ÿ

|j´k|ď1

2´ipα1`α2`β´2q

À 2´kpα1`α2`β´2q,

for an implicit multiplicative constant proportional to }a1}Cα1 }a2}Cα2 }b}Cβ . B

We also have continuity estimates on iterated C`,´L correctors, as in [4]. Given the proof
of Theorem 3 given in Appendix B it will be clear to the reader that their statements and
proofs are identical to what is done in [4] for the iterated correctors – see Section 3.1.3
therein. We leave their statements and proofs to the reader.

The continuity results on the corrector and its iterates, or on the operators C
p˘q

L and their
iterates, are used in the analysis of singular PDEs to take profit from the paracontrolled
structure of a potential solution to get expansions of the form

M
`

rPuτ rτ s
˘

“ uτMprτ sq `M
1puτ q

“ PuτMprτ sq ` PMprτ sq `M
2puτ q,

for operators M 1,M2 that have the same expansion properties as M itself. So one can
iterate the expansion as long as uτ and its ‘derivatives’ have a paracontrolled structure.
The paracontrolled structure of a potential solution will however involve remainder terms
for which one cannot use expansions of the previous kind as the only information we have
on these remainders are their regularity. One defines ‘refined correctors’ to take profit
from their good regularity properties.

The continuity results from Theorem 3 can only take profit only from the Hölder regular-
ity of the arguments a1 or b1 of C´L

`

pa1, a2q, b
˘

or C´L
`

pa, pb1, b2q
˘

for regularity exponents
in p0, 1s. As in the semilinear case we need to introduce refined correctors to refine the
estimates if a1 or b1 is α1 or β1-Lipscthiz, with α1 or β1 of regularity exponent in the
interval p1, 2q. We set for that purpose, for a generic spacetime point e,

C´L,p1q

´

a1, a2, b
¯

peq :“ C´L pa1, a2, bqpeq ´ d
`

u0peq
˘´1

ÿ̀

i“1

pVia1qpeq
´

P
LrPδipe,¨qa2

b
¯

peq,

C`L,p1q

´

a, b1, b2

¯

peq :“ C`L pa, b1, b2qpeq ´ d
`

u0peq
˘´1

ÿ̀

i“1

pVib1qpeq
´

PLarPδipe,¨qb2

¯

peq,

CL,p1q

´

a1, a2, b
¯

peq :“ CLpa1, a2, bqpeq ´ d
`

u0peq
˘´1

ÿ̀

i“1

pVia1qpeqΠ
´

LrPδipe,¨qa2, b
¯

peq,
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where the functions δi are defined in Appendix B. Keep in mind right now that in the
setting of the flat torus one has

d
`

u0peq
˘´1

Vi “ Bi,

the partial derivative in the ith space direction, and

δipe, e
1q “ d

`

u0pxq
˘1{2

pxi ´ x
1
iq,

for spacetime points e “ pt, xq and e1 “ pt1, x1q. The rationale for the introduction of these
refined correctors is that they correspond to refined recentering operators for which C f
corresponds to removing from f its first order Taylor expansion at the running point x
rather than just removing its value at x.

Theorem 4. The following two statements hold true.
‚ Let α1 P p1, 2q and α2, β P p´3, 3q such that α1 ` α2 P p´3, 3q. If

α2 ` β ´ 2 ă 0 and α1 ` α2 ` β ´ 2 ą 0

then the operators C´L,p1q and CL,p1q extends as continuous operators from Cα1 ˆ

Cα2 ˆ Cβ into Cα1`α2`β´2.
‚ Let β1 P p1, 2q and α, β2 P p´3, 3q such that β1 ` β2 P p´3, 3q. If

α` β2 ´ 2 ă 0 and α` β1 ` β2 ´ 2 ą 0

then the operator C`L,p1q extends as a continuous operator from Cαˆ Cβ1 ˆ Cβ2 into
Cα`β1`β2´2.

2.2.2 – L operator. We define the operator
Lpa, bq :“ LprPabq ´ PapLbq.

Continuity results on this operator will allow us to get from a paracontrolled expansion
for u an expansion for Lu of the form

Lu “
ÿ

Pu1τ pLrτ sq ` p4α´ 2q,

for some u1τ . A paracontrolled expansion for a term of the form PapLuq can then be
obtained.

Theorem 5. The following statements hold true.
‚ Let α P p0, 1q and β P p´3, 3q, be such that α ` β ă 3, and α ` β ´ 2 P p´3, 3q.

Then the operator L extends as a continuous operator from Cα ˆ Cβ into Cα`β´2.
‚ Let α1, α2 P p0, 1q and β P p´3, 3q such that α1`β ă 3 and α1`α2`β´2 P p´3, 3q.

Then the iterated operator
L
`

pa1, a2q, b
˘

:“ L
`

rPa1a2, b
˘

´ a1Lpa2, bq (2.15)
extends as a continuous operator from Cα1 ˆ Cα2 ˆ Cβ into Cα1`α2`β´2.

‚ Let α1, α2, α3 P p0, 1q and β P p´3, 3q such that α1 ` α2 ` β ă 3, α2 ` β ă 3 and
α1 ` α2 ` β ´ 2 P p´3, 3q. Then the iterated operator

L
´

`

pa1, a2q, a3

˘

, b
˘

:“ L
`

prPa1a2, a3q, b
˘

´ a1L
`

pa2, a3q, b
˘

extends as a continuous operator from Cα1 ˆ Cα2 ˆ Cα3 ˆ Cβ into Cα1`α2`α3`β´2.

The mechanics behind this statement is easy to understand on the following example
set in the torus with the elementary paraproduct operator P from (2.1). One sees indeed
on the formula

∆pPabq ´ Pap∆bq “ P∆ab` 2P∇ap∇bq (2.16)
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that this operator takes its values in Cα`β´2 if a P Cα, b P Cβ and 0 ď α ă 2. Dealing with
parabolic paraproducts and conjugated operators P, rP only adds a layer of technicality and
does not change the mechanics. We see on formula (2.16) that the reason why L has the
expansion property (2.15) is because the operators P∆ab and P∇ap∇bq have that property
– see Section 3.3 in [4] for an explanation.

The continuity result for L and its iterate stated in the first two items of Theorem 5 do
not allow to take profit of a possible better regularity exponent for a. It happens however
to be necessary for the analysis of singular PDEs. One has to define for that purpose the
refined operator

Lp1qpa, bq :“ LprPabq ´ PapLbq ´
ÿ̀

i“1

P
piq
dpu0q´1Via

pLbq

to deal with arguments a in Lpa, bq with regularity exponent greater in the interval p1, 2q.
(We also had to define in Section 3.1.2 of [4] a refined corrector to deal with ‘high’ regularity
arguments in a resonant term.) The operators Ppiq are defined by for any e in the parabolic
space M by

´

Ppiqa b
¯

peq :“

ż

e1,e2PM
Kpe; e1, e2qape1q

´

rPδip¨,e1qb
¯

pe2q νpde1qνpde2q

with K the kernel of the bilinear operator pa, bq ÞÑ Pab. See Appendix A for the notations
and details on the parabolic setting – these details are not so important when it comes
to using the continuity results stated here or in [4], as opposed to proving them. The
following theorem is proved in Appendix B.

Theorem 6. Let α P p1, 2q and β P p´3, 3q, be such that α`β ă 3, and pα`β´2q P p´3, 3q.
Then the operator Lp1q extends as a continuous operator from Cα ˆ Cβ into Cα`β´2.

Theorem 3, Theorem 4 and Theorem 5-6 take care of the specific features of quasilinear
equations, compared to their semilinear analogue. Formulation (2.7) also involves the
term aipu, ¨qViu that can appear in a semilinear setting as well. The last paragraph of this
section state the results that we need about it.

2.2.3 – Dealing with the term aipu, ¨qViu. We have the following continuity results for the
operators

C´Vi

´

a1, a2, b
¯

:“ P
VirPa1a2

b´ a1PVia2b,

C`Vi

´

a, b1, b2

¯

:“ PVia

´

rPb1b2

¯

´ b1PViab2,

CVi

´

a1, a2, b
¯

:“ Π
´

VirPa1a2, b
¯

´ a1Π
´

Via2, b
¯

;

see Appendix B for a proof.

Theorem 7. The following two statements hold true.
‚ Let α1 P p0, 1q and α2, β P p´3, 3q such that α1 ` α2 P p´3, 3q. If

α2 ` β ´ 1 ă 0 and α1 ` α2 ` β ´ 1 ą 0 (2.17)
then the operators C´Vi and CVi have natural extensions as continuous operators
from Cα1 ˆ Cα2 ˆ Cβ into Cα1`α2`β´1.

‚ Let β1 P p0, 1q and α, β2 P p´3, 3q such that β1 ` β2 P p´3, 3q. If
α` β2 ´ 1 ă 0 and α` β1 ` β2 ´ 1 ą 0

then the operator C`Vi has a natural extension as a continuous operator from Cα ˆ
Cβ1 ˆ Cβ2 into Cα`β1`β2´1.



16

Proof – We prove here this continuity result for a simplified version of the operator CVi
in the time-independent case of the flat torus, with the constant vector field B1 in the
role of Vi; we refer the reader to Appendix B for the proof of Theorem 7 in the general
setting. Set

CB1pa, b, cq :“ Π
`

B1Pab, c
˘

´ aΠpB1b, cq.

We prove that for α, β and γ such that inequalities (2.17) hold true, the operator CB1
is continuous from Cα ˆ Cβ ˆ Cγ into Cα`β`γ´2. Using that ∆ipB1fq » Op2iq∆ipfq,
for a function Op2iq with uniform norm of order 2i, we have

CB1pa, b, cq »
ÿ

|i´j|ă1

Op2iq∆i pΠabq∆jpcq ´ aOp2
iq∆ipbq∆jpcq,

so
CB1pa, b, cq “

ÿ

|i´j|ă1

Op2iqεi∆jpcq.

The same computations as above then yield the estimate
›

›∆k

`

CV pa, b, cq
˘›

›

L8
À 2´kpα`β`γ´1q}a}Cα}b}Cβ}c}Cγ .

B

Associate with each vector field Vi the operator
Vipa, bq :“ Vi

`

rPab
˘

´ PapVibq.

Theorem 8. The following two statements hold true.
‚ Let α, β P p´3, 3q such that α`β´1 P p´3, 3q. Then the operator Vi has a natural

extension as a continuous operator from Cα ˆ Cβ to Cα`β´1.
‚ Let α1, α2 P p0, 1q and β P p´3, 3q such that α1`β ă 3 and α1`α2`β´1 P p´3, 3q.

Then the iterated operator
Vippa1, a2q, bq :“ ViprPa1a2, bq ´ a1Vipa2, bq (2.18)

extends as a continuous operator from Cα1 ˆ Cα2 ˆ Cβ to Cα1`α2`β´1.

Like for the operator L the mechanics behind this statement is easy to understand on
the following example set in the torus, where one has the formula

BipPabq ´ PapBibq “ PBiab. (2.19)
We see on formula (2.19) that the reason why Vi has the expansion property (2.18) is
because the operator PViab have that property.

2.2.4 – A convenient formalism. One can conveniently use a synthetic notation and encode
the expansion rules satisfied by the operators

Πpa, bq, ΠpLa, bq, PLab, PViab, ΠpVia, bq,

as functions of a, encoded in the statements of the preceding sections. Fix b and consider
any of the preceding operators as a function of a,. For a “ rPa1a2, under proper regularity
conditions specified by the above statements one has the expansion property

E
`

rPa1a2

˘

“ a1Epa2q ` E1pa1, a2q, (2.20)
for another operator E1. The rule of thumb is that the argument a2 in our computations
will always depend only on the noise so it will be convenient to skip it from the notations
and only keep track of its regularity. The variable of interest in the expansion will be a1.
The operator E1, seen as a function of a1, will enjoy the same type of expansion property
as the operator E. We will use the notation Eβpaq to denote an operator that sends C|a|
into C|a|`β under proper regularity assumptions on its argument. One has for instance

Πp¨, cq “ E|c|p¨q,
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for c P C|c|. In those terms, for a2 P C|a2|, identity (2.20) rewrites

Eβ
`

rPa1a2

˘

“ a1Eβpa2q ` Eβ`|a2|pa1q.

The operators Pba,PbLa and D and S from [4], satisfy a different type of expansion
rule. As above, we are interested in the case where b, or other arguments as in D and S,
depends only on the noise and a can have a paracontrolled structure. If, for b fixed, the
operator sends continuously any space C|a| into C|a|`β we denote it by Fβpaq. One has for
instance

Pζa “ Fα´2paq.

The expansion rule for such operators is
Fβ

`

rPa1a2

˘

“ Pa1
`

Fβpa2q
˘

` Fβ`|a2|pa1q,

for another operator Fβ`|a2| enjoying the same type of expansion rule as Fβ, with β replaced
by β ` |a2|.

If one agrees to use the same letter for objects that are possibly different but have the
same expansion rule, one has for instance the identity

Eβ
`

rPa1a2

˘

“ a1 Eβpa2q ` Eβ`|a2|pa1q

“ Pa1
`

Eβpa2q
˘

` PEβpa2qa1 ` Π
`

a1,E
βpa2q

˘

` Eβ`|a2|pa1q

“ Pa1
`

Eβpa2q
˘

` Fβ`|a2|pa1q ` Eβ`|a2|pa1q.

We can see on this expression that if a1 itself is given in paracontrolled form then we can
re-expand the E and F functions of a1 above. This is the core of the machinery of the high
order paracontrolled calculus, the mechanics that allows to run step 2 in the three step
resolution scheme of semilinear singular PDEs described in the introduction of Section 2.

3 – Quasilinear generalised (PAM) equation

We use the generic three step process from Section 2 to solve the quasilinear generalised
(PAM) equation (2.7). Recall that in the end we want to have an infinite paracontrolled
system stable under the fixed point formulation and to correctly tune the family pβaqaPW
of regularity exponents in Definition 1 to get a contraction for a small enough horizon
time T .

‚ Step 1. We have 2{5 ă α ă 1{2, so we choose to work with a third order paracontrolled
expansion, with a remainder term u7 P C4α in the paracontrolled expansion of u whose
product with any distribution of Hölder regularity α´ 2 is well-defined, since 5α´ 2 ą 0.

‚ Step 2. We use the continuity results for correctors, commutators and their iterates
proved in [4] and in Section 2.2 to put the right hand side of equation (2.7) in the canonical
form (2.4).

This is what the next statement does. Recall d0p¨q “ dpu0p¨qq is smooth. Indices
w,w1, w2 below are in W while rτ s P T . We use below the notation s in ζ

p1q
psq , ζ

p2q
psq for a

‘sentence’ of the form w, pw,w1q or pw,w1, w2q, for words w,w,1 , w2 P W .
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Proposition 9. Assume we are given a system puwqwPW paracontrolled by a family T at
order 3. Then

fpuqζ ` εpu, ¨qLu`
ÿ̀

i“0

aipu, ¨qViu

“ Pfpuqζ `
ÿ

|w|ď2α

Pf 1puquw
`

ζp1qw
˘

`
ÿ

|ww1|ď2α

Pf p2qpuquwuw1
`

ζ
p1q
pw,w1q

˘

`
ÿ

τPT

Pεpu,¨quτ
`

Lrτ s
˘

`
ÿ

|w|ď3α;wPW zT

Pεpu,¨quw
`

ζp2qw
˘

`
ÿ

|ww1|ď3α

Pd´1
0 d1puquwuw1

`

ζ
p2q
pw,w1q

˘

`
ÿ

|ww1w2|ď3α

Pd´1
0 dp2qpuquwuw1uw2

`

ζ
p2q
pw,w1,w2q

˘

`
ÿ

|τ |“α;1ďjď`

Pajpu,¨quτ
`

ζj,τ
˘

` p7q,

(3.1)

for distributions ζp1qs , ζ
p2q
s , ζj,τ that depend only on ζ and T , with ζp1qs of regularity |s|`α´2,

with ζp2qs of regularity |s|´2 and ζj,τ of regularity |τ |´1. The remainder p7q is an element
of C4α´2.

In (3.1), the terms with exponent p1q come from the analysis of the product fpuqζ while
the terms with exponent p2q come from the analysis of the product εpu, ¨qLu. Proposition 9
is the analog of the paracontrolled expansion of fpuqξ for the semilinear generalised (PAM)
equation for an arbitrary paracontrolled system pu – Proposition 4 in [4]. As always in the
analytic part of the study of a singular PDE, one needs to assume that the distributions
ζ
p1q
s , ζ

p2q
s , ζj,τ are given off-line as elements of their natural spaces. The remainder term

p7q also involves off-line data. The point with stochastic singular PDEs is that one can
construct these data by probabilistic means; this is what renormalization is about. It
comes as a by-product of the proof that the remainder p7q in (3.1) is the sum of a term
of regularity 4α ´ 2 involving the off-line data and a term of regularity 5α ´ 2 that is a
continuous function of the paracontrolled system pu and all the off-line data.

Proof – Below we invite the reader to check the convergence of all implicit infinite sums
of T using the convergence condition (2.12) in the definition of a paracontrolled
system; we do not do that explicitly each time. Recall we denote by pβq an element of
the parabolic Hölder space Cβ with regularity exponent β P R whose only noticeable
feature is its regularity. Its expression may change from line to line. Recall also from
Appendix A the definition of the operator

R˝pa, b, cq “ PapPbcq ´ Pabc,

its continuity and expansion properties. To shorten notations, we sometimes use
implicit summation on repeated indices.
‚ The term fpuqζ is the same as in the semilinear (gPAM) equation so its decom-

position is given by proposition 17 of [4], that is

fpuqζ “ Pfpuqζ `
ÿ

|w|ď2α

Pf 1puquw
`

ζp1qw
˘

`
ÿ

|ww1|ď2α

Pf p2qpuquwuw1
`

ζ
p1q
ww1

˘

` p4α´ 2q.

We now deal with the analysis of the term εpu, ¨qLu by looking first at Pεpu,¨qpLuq and
then at PLuεpu, ¨q and Π

`

εpu, ¨q, Lu
˘

.

‚ For the term Pεpu,¨qpLuq we have from Theorem 5



19

Lu “ L
`

rPuτ rτ s
˘

` p4α´ 2q

“ Puτ pLrτ sq ` L
`

uτ , rτ s
˘

` p4α´ 2q

“ Puτ prLτ sq ` PuτσL
`

rσs, rτ s
˘

` L
`

puτσ, rσsq, rτ s
˘

` p4α´ 2q

“ Puτ prLτ sq ` PuτσL
`

rσs, rτ s
˘

` PuτσγL
`

prγs, rσsq, rτ s
˘

` p4α´ 2q.

(3.2)

One takes care of remainder terms in the expansions of the uτ ’s with |τ | “ α, in
the expression Lpuτ , rτ sq, using the operator Lp1q. This remainder term L

`

uτ , rτ s
˘

provides an element of C4α´2 that goes in the term p4α´ 2q. Write identity (3.2)
under the form

Lu “: Puwξ
p2q
w ` p4α´ 2q,

with ξp2qw of regularity |w|´ 2. Keeping in mind that the expression p4α´ 2q may
change from line to line, this yields

Pεpu,¨qpLuq “ Pεpu,¨q
`

Puwξ
p2q
w

˘

` p4α´ 2q

“ Pεpu,¨quw
`

ξp2qw
˘

` R˝
`

εpu, ¨q, uw, ξ
p2q
w

˘

` p4α´ 2q

“ Pεpu,¨quw
`

ξp2qw
˘

` R˝
`

εpu, ¨q, uτ , Lrτ s
˘

` p4α´ 2q

using the definition (3.2) of the ξp2qw and the fact that the terms where |w| ą α
go in the remainder. Using that each uτ is itself paracontrolled, we get

Pεpu,¨qpLuq “ Pεpu,¨quw
`

ξp2qw
˘

` R˝
`

εpu, ¨quτσ, rσs, Lrτ s
˘

` p4α´ 2q

“ Pεpu,¨quw
`

ξp2qw
˘

` Pd´1
0 d1puquγuτσ`εpu,¨quτσγ

R˝
`

rγs, rσs, Lrτ s
˘

` p4α´ 2q

“ Pεpu,¨quw
`

ζp2qw
˘

` Pd´1
0 d1puquγuτσ

R˝
`

rγs, rσs, Lrτ s
˘

` p4α´ 2q.

(Here again remainders in a paracontrolled expansion contribute as remainder
terms that go inside the p4α´ 2q term.) In the last equality, the term

Pεpu,¨quτσγ

´

R˝
`

rγs, rσs, Lrτ s
˘

¯

has been added to Pεpu,¨quw
`

ξ
p2q
w

˘

, with w “ τσγ, resulting in changing ξ
p2q
w to

ζ
p2q
w . We rewrite this formula under the form

Pεpu,¨qpLuq “
ÿ

τPT

Pεpu,¨quτ
`

Lrτ s
˘

`
ÿ

wPW zT ,|w|ď3α

Pεpu,¨quw
`

ζp2qw
˘

` Pd´1
0 d1puquγuτσ

R˝
`

rγs, rσs, Lrτ s
˘

` p4α´ 2q.

Note that the terms with |τ | “ α are the only terms in the right hand side of
equation (2.7) that have the same regularity as the noise ζ.

‚ We deal with the terms
PLuεpu, ¨q “ PLu

`

d´1
0 dpuq

˘

´ PLu1 “ PLu
`

d´1
0 dpuq

˘

` p4α´ 2q

and
Π
`

εpu, ¨q, Lu
˘

“ Π
`

d´1
0 dpuq, Lu

˘

´ Πp1, Luq “ Π
`

d´1
0 dpuq, Lu

˘

` p4α´ 2q

using the correctors C,C´L ,C
`
L and CL, to take care of paraproducts that appear

in the paraproduct plus resonant decomposition of the product d´1
0 dpuq. The

refined versions of the correctors will be used to take care of remainder terms in
paracontrolled expansions.
Recall from Section 2.2.4 the E{F-type form of the continuity statements on these
operators and let us agree to denote by Eβp¨, ¨q a bilinear operator that has the
E-type expansion property with respect to each of its two variables. We use the
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same convention for a trilinear operator Eβp¨, ¨, ¨q. Let us also agree to denote here
by Eβ, with no argument, an element of Cβ. Last, recall also that the functions
d0p¨q and d´1

0 p¨q are smooth. Using the E-notation for operators of E-type, such
as in the introduction of Section 2, we have

PLu
`

d´1
0 dpuq

˘

` Π
`

d´1
0 dpuq, Lu

˘

“ E´2
`

d´1
0 dpuq, u

˘

“ d´1
0 d1puqE´2pu, uq ` d´1

0 dp2qpuqE´2pu, u, uq ` p4α´ 2q.

The analysis of the term E´2pu, uq is conveniently done as follows. (This com-
putation was already done at length in [4].) We first write the term E´2pu, uq in
multiplicative form

E´2pu, uq “ uτ1E´2`|τ1|puq ` E´2`|τ1|puτ1 , uq ` p5α´ 2q

“

!

uτ1uτ2E´2`|τ1|`|τ2| ` uτ1E´2`|τ1|`|τ2|puτ2q ` p5α´ 2q
)

`

!

uτ1σ1E´2`|τ1|`|σ1|puq ` E´2`|τ1|`|σ1|puτ1σ1 , uq ` p5α´ 2q
)

` p5α´ 2q

“

!

uτ1uτ2E´2`|τ1|`|τ2| ` uτ1uτ2σ2E´2`|τ1|`|τ2|`|σ2|

` uτ1uτ2σ2µ2E´2`|τ1|`|τ2|`|σ2|`|µ2| ` p5α´ 2q
)

`

!

uτ1σ1E´2`|τ1|`|σ1|`|τ2| ` uτ1σ1uτ2σ2E´2`|τ1|`|σ1|`|τ2|`|σ2| ` p5α´ 2q

` uτ1σ1µ1uτ2E´2`|τ1|`|σ1|`|µ1|`|τ2| ` p5α´ 2q
)

` p5α´ 2q.

(All the remainder terms p5α´ 2q are well-defined.) Each term above that is not
a remainder p5α´ 2q is of the form

p‹qEβ “ Pp‹qE
β ` Fβp‹q ` Eβp‹q,

fordifferent values of β, with Eβ depending only on the noise and the reference
functions rτ s in the paracontrolled structure and p‹q either of the form uw or
uwuw1 , with w,w1 P W . The term Pp‹qE

β has the expected form. We use the
paracontrolled structure of uw and the F-expansion property to deal with Fβpuwq.
To deal with Fβpuwuw1q, write first

Fβpuwuw1q “ Fβ
`

Puwuw1
˘

` Fβ
`

Puw1uw
˘

` Fβ
`

Πpuw, uw1q
˘

,

and use the F-expansion property for the first two terms. For the resonant term,
we use the commutator operator D and its continuity properties, recalled in Ap-
pendix A, to expand first the resonant term in the form

Πpuw, uw1q “ PuwτΠprτ s, uw1q ` D
`

uwτ , rτ s, uw1
˘

,

and then expand the paraproduct inside the operators Π and D using the para-
controlled forms of uw1 and uwτ . We leave the details to the reader as these
computations were already done at length in sections 3 and 4 of [4]. All these
operations are only done up to remainders of positive regularity 5α ´ 2. These
computations give in the end an expansion of the form

PLu
`

d´1
0 dpuq

˘

` Π
`

d´1
0 dpuq, Lu

˘

“ Pd´1
0 d1puquwuw1

`

ζ
p2q
ww1

˘

` Pd´1
0 dp2qpuquwuw1uw2

`

ζ
p2q
ww1w2

˘

` p4α´ 2q,

for functionals ζp2qww1 and ζ
p2q
ww1w2 of ζ and the rτ s P T .
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‚ For the terms involving the vector fields aipu, ¨qViu we simply note that
PViuaipu, ¨q ` Πpaipu, ¨q, Viuq “ p2α´ 1q “ p4α´ 2q,

since 2α´ 1 ą 4α´ 2, and use Theorem 8 to write
Viu “ Vi

`

rPuτ τ
˘

` p4α´ 2q

“ Puτ pViτq ` Vipuτ , τq ` p4α´ 2q

“ Puτ pViτq ` p4α´ 2q.

B

We insist again on the fact that all the implicit sums on repeated indices above converge
as a consequence of the bound (2.12) satisfied by paracontrolled systems and from the
continuity estimates from Section 2.2.

Remark – A reader familiar with the setting of regularity structures may wonder what plays
here the role of the polynomial component of a modelled distribution and the role of the
symbols XΞ and XIpΞqξ that already appear in the analysis of the semilinear generalised
(PAM) equation. For u itself it is the C1 part of that function, given by

up1q :“ u´
ÿ

|τ |ď2α

Puτ rτ s “
ÿ

|τ |“3α

Puτ rτ s ` u
7.

This C1 is in particular a non-local functional of pu7 since the paraproduct operator is non-
local. This echoes the non-local character of the polynomial part of the lift to a regularity
structure of the spacetime convolution operator with the heat kernel. Similar explicit for-
mulas for the C1 part of functions gpuq of u can be given using the high order paracontrolled
expansion formula from Theorem 2 of [4] – see Section 3.5.1 therein. While the contribu-
tion of the X component of a modelled distribution is associated with the two symbols XΞ
and XIpΞqΞ the contribution of up1q in the paracontrolled analysis appears differently as
the contributions of the terms uτ with |τ | “ 3α and u7. Note of the distributions ζp1qs or
ζ
p2q
s correspond in particular to one of the symbols. Rather it is a linear combination of

the ζp1qs or ζp2qs that would correspond to each of them.

‚ Step 3. Consistency of the fixed point relation

u “ Fu0 `L ´1
´

fpuqζ ` εpu, ¨qLu`
ÿ̀

i“0

aipu, ¨qViu
¯

imposes the choice of T and induces a fixed point relation for pu7.

˝ Constructing T . One identifies from equation (3.1) a number of constraints that T “

T1YT2YT3 needs to satisfy to write a consistent fixed point formulation of equation (2.7).
Denote by s “ pw1, . . . , wkq a generic sentence with words in W , with |s| :“ |w1|`¨ ¨ ¨`|wk|.
Consistency imposes that one has

$

’

’

’

’

&

’

’

’

’

%

L ´1pζq P T1,
`

L ´1L
˘

pTiq Ă Ti, for all 1 ď i ď 3,

L ´1
`

ζ
p1q
s

˘

Ă Ti`1, for all |s| “ iα ď 2α,

L ´1
`

ζ
p2q
s

˘

Ă Ti, for all |s| “ iα ď 3α, and s R T ,
L ´1

`

ζj,T1

˘

Ă T3.

(3.3)

Requiring further
"

Π
`

rτ s, rσs
˘

, rPrτ srσs ´ Prτ srσs ; τ, σ P T1

*

Ă T2, (3.4)

ensures moreover that for u paracontrolled to order 3 by the reference set T all the func-
tions fpuq, f 1puqua, f p2qpuquaub, etc. that appear as lower arguments of the paraproducts
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in the paracontrolled expansion (3.1) of the right hand side of (2.7) have a second order
paracontrolled expansion with respect to that reference set T .

We define T “ T1YT2YT3, as the smallest set of reference functions satisfying (3.3)
and (3.4).

Let us emphasize the triangular/iterative nature of (3.3)-(3.4) behind the notations
ζ
p1q
s , ζ

p2q
s and ζj,τ . The elements of Ti`1 are only built from ζ and elements of Ti. This con-

struction recipe for T gives back the finite set T ˝ used for the study of the 3-dimensional
semilinear generalised (PAM) equation in [4] if one replaces the preceding infinite set T1

be the one point set
 

L ´1pζq
(

. In a sense, one can see T ˝ as the ‘skeleton’ of T , where
each occurence of L ´1pζq in an element of T ˝ is in T any of the elements of T1. Given
rτ s P T denote by nτ the total number of times that the operator L ´1L appears in the
formal expression for rτ s.

A proper definition of T when the noise ζ is space white noise requires the implementa-
tion of a renormalization procedure. The works [12, 14] by Bruned, Hairer and Zambotti
and Chandra & Hairer provide a systematic approach of that question in a semilinear
setting in the context of regularity structures. While [7] gives a strong hint that this
result can be translated from the regularity structure world to the paracontrolled world a
purely paracontrolled analysis of the renormalization problem is still missing. A number
of investigations on the renormalization problem in a quasilinear setting have been done
[18, 17]. Given these first results, it is most likely that an ad hoc renormalization process
for the quasilinear setting will be given by the same renormalization process as in the
semilinear setting, with trees with branches of ad hoc length used instead of their skeleton
‘semilinear’ trees. As a consequence, one expects estimates of the form

}τ}C|τ | ď kτ˝ C
nτ ,

with τ˝ the skeleton tree corresponding to τ in the semilinear setting and C ą 1 a constant
depending only on the operator L ´1L. As there are only finitely many trees τ˝ in a
subcritical regime one should be able to take a uniform constant k instead of kτ˝ . We
capture this discussion under the form of an assumption – which holds true when the
noise is smooth.

Assumption (A). There exists positive constants k and C ą 1 such that one has
}τ}C|τ | ď k Cnτ

for all τ P T .

˝ Fixed point formulation of the equation. With that choice of reference set T and given
a system pu paracontrolled by T at order 3, the function

L ´1

˜

fpuqζ ` εpu, ¨qLu`
ÿ̀

i“1

aipu, ¨qViu

¸

is the first element of a system paracontrolled by T that we denote by Ψ
`

pu
˘

. Write

Φ
`

pu7
˘

P
ź

wPW

C3α`βw´|w|

for the associated map that gives the collection of all the remainders in the paracontrolled
expansion of the different elements of Ψ

`

pu
˘

. Note that the fixed point identity

u “
ÿ

τPT

rPuτ τ ` u
7 “ L ´1

´

fpuqζ ` εpu, ¨qLu`
ÿ̀

i“1

aipu, ¨qViu
¯

` Fu0

identifies then each uτ in the left hand side to an explicit function hτ puq of u only. One
has for instance

εpu, ¨qkfpuq, for τ “ uτ “ pL
´1Lqk

`

L ´1pζq
˘

.
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More generally formula (2.13) can be used to identify explicit functions hw such that
uw “ hwppuq.

We can distinguish three generic methods we could be used to prove that a map like
Φ is a contraction provided the time horizon T is small enough. In a setting where we
work with time weighted functional spaces, like in regularity structures, one can use a
form of Schauder estimate telling in particular that our map takes values in a space of
functions with better behaviour near time 0. This gain in the explosion weight give a
small constant over a small time interval. We do not choose this strategy as we have
chosen not to work with time weighted functional spaces. In a different direction one can
try and use scaling arguments as in [20]. This strategy is efficient only when coupled
with the scaling property of a random noise provided the spacetime scaling and the noise
scaling work appropriately. We do not use that strategy as we stick here to a deterministic
setting. We take a different road and work with well-chosen sub-optimal functional spaces
for the remainders

ś

wPW C3α`βw´|w| in order to take profit from the a priori fact that the
solution of the fixed point equation will actually have better regularity. We will use for
that purpose the elementary fact that if 0 ă β1 ă β ă 1 and v P Cβ is null at time 0 then

}v}Cβ1 À T
β2´β1

2 }v}Cβ2 . (3.5)
This gain of parabolic regularity will provide us with a small factor that will give in the
end the contraction property.

A choice of regularity exponents – We choose the exponents pβwqwPW in p2{5, αq in such
a way that βw ą βw1 if the word w has more letters that w1, and βw ą βw1 if w and w1

have the same number of letters and |w| ă |w1|. Given the above skeleton picture of T ,
this can be done in such a way that the βw take only finitely many values.

Denote by pu7 “ pu7wqwPW a generic element of the product space
ź

wPW

C3α`βw´|w|,

endowed with the norm
~pu7~ :“

ÿ

wPW

LwM }u7w}C3α`βw´|w| ,

so if one denotes by pu the paracontrolled system associated by (2.11) to the collection pu7

of remainders then one has ~pu7~ “ ~pu~. Given u0 P C
4α set hHpu0q :“ u0, and define

Spu0q :“
!

pu7; ~ pu7~ ă 8, and u7w |t“0
“ hwpu0q, @w P W

)

;

this is a closed subspace of
´

ś

wPW C3α`βw´|w|,~ ¨ ~
¯

.

Theorem 10. The map Φ is a contraction of Spu0q provided the positive time horizon T
is small enough.

This statement means that equation (1.1) has a unique local in time solution in the
space Spu0q; it depends continuously on T . The choice of u0 is made at the end of point
(i) of the proof.

Proof – Recall we use exclusively the symbols τ, σ for letters from the alphabet T , while
we write w,w1, w2 for elements of W – possibly words with only one lettre.
‚ We first prove that Φ is a well-defined map from Spu0q into itself. This means that
the condition

ÿ

wPW

LwM }u7w}C3α´|w|`βw ă 8

is stable by Φ. We decompose this sum according to the value of |w|.



24

– For |w| “ 3α, one has vw “ v7w P Cβw and the condition reads
ÿ

|w|“3α

LwM }vw}Cβw ă 8.

We read on formula (3.1) the different possibilities for w, of the form L ´1pζ
p1q
s q,

with s P tw1, pw2, w3quw1,w2,w3PW and |w1| “ 2α or |w2w3| “ 2α, etc. If for instance
w “ L ´1pζ

p1q
w1 q with |w1| “ 2α we need to show that

ÿ

|w1|“2α

›

›g1puquw1

›

›

Cβw1

›

›L ´1pζp1qw1
q
›

›

C2α ă 8.

This can be seen from a direct computation
ÿ

|w1|“2α

›

›f 1puquw1

›

›

Cβw1

›

›L ´1pζp1qw1
q
›

›

C2α

“
ÿ

|τ |“2α

›

›f 1puquτ
›

›

Cβw1

›

›L ´1pζp1qτ q
›

›

C2α `
ÿ

|σ|“|γ|“α

}f 1puquσγ}Cβw1

›

›L ´1pζp1qσγ q
›

›

C2α

À }f 1puq}Cα

¨

˝

ÿ

|τ |“2α

Lw1M }uτ }Cβw1
`

ÿ

|σ|“|γ|“α

LσγM }uσγ}Cβw1

˛

‚

À
ÿ

|τ |“2α

LτM }uτ }βτ `
ÿ

|σ|“|γ|“α

LσγM }uσγ}Cβσγ

À ~pu7~ ă 8,

using that βσ ą βw1 since |σ| ă |w1| and βσγ ą βw1 . Another example is given by
in the case where w is a word with only one letter τ and we have τ “ pL ´1Lqσ for
|σ| “ 3α and we need to show that

ÿ

|σ|“3α

}εpu, ¨quσ}Cβσ }pL
´1Lqσ}C3α ă 8.

This indeed holds with
ÿ

|σ|“3α

}εpu, ¨quσ}Cβτ }pL
´1Lqσ}C3α À

ÿ

|σ|“3α

}uσ}Cβτ }εpu, ¨q}pL
´1Lqσ}C3α

À
ÿ

|σ|“3

}uσ}Cβτ LσM

À ~pu7~ ă 8,

using that βτ “ βσ since |τ | “ |σ|. Remark that this term corresponds to the quasi-
linear character of the equatiton. We let the reader check the other cases.

– For |w| “ 2α, we need to show
ÿ

|w|“2α

LwM }v7w}α`βw ă 8.

So we need to compute the remainders v7w for all such w; they are given by the formula
vw “

ÿ

|τ |“α

rPvwτ τ ` v
7
w.

Here again different cases can happen depending on w. If for instance w “ L ´1pζ
p1q
w1 q,

with |w1| “ α so w1 “ σ P T1, we have vw “ f 1puquσ and
f 1puquσ “ Pf 1puquσ ` Puσ

`

f 1puq
˘

` Π
`

f 1puq, uσ
˘
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f 1puquσ “ rPf 1puquσγ`f p2qpuquσuγ
`

rγs
˘

`

"

R
`

f 1puq, uσγ , rγs
˘

` R
`

1, f 1puquσγ , γ
˘

` R
`

f p2qpuquσ, uγ , rγs
˘

` Rp1, f p2qpuquσuγ , rγs
˘

` Puσ
`

f 1puq7
˘

` Π
`

f 1puq, uσ
˘

*

“: rPvwγ
`

rγs
˘

` v7w

where all term in the remainder v7w satisfies the convergence condition. As an example,
we have
ÿ

|σ|“α

ÿ

|γ|“α

LσM
›

›Rp1, f 1puquσγ , γq
›

›

α`βw
À }g1puq}α

ÿ

|σ|“|γ|“α

LσγM }uσγ}βσγ À ~pu
7~ ă 8.

Another example is given by w “ L ´1
`

ζ
p2q
w1

˘

with |w1| “ 2α. If w1 “ τ P T2, the
computation is similar to the one where |w1| “ 3α thus we consider the case w1 “ τσ
with τ, σ P T1. We have vw “ εpu, ¨quw1 and the similar computation

εpu, ¨quτσ “ Pεpu,¨quτσ ` Puτσ
`

εpu, ¨q
˘

` Π
`

εpu, ¨q, uτσ
˘

“ rPεpu,¨quτσγ`d´1
0 d1puquτσuγ

`

rγs
˘

`

"

R
`

εpu, ¨q, uτσγ , rγs
˘

` R
`

1, εpu, ¨quτσγ , γ
˘

` R
`

d´1
0 d1puquτσ, uγ , rγs

˘

` R
`

1, d´1
0 d1puquτσuγ , rγs

˘

` Puσ
`

εpu, ¨q7
˘

` Π
`

εpu, ¨q, uτσ
˘

*

“: rPvwγ
`

rγs
˘

` v7w

with εpu, ¨q7 the remainder given by the nonlinear paracontrolled expansion of εpu, ¨q.
Again, the remainder v7w satisfies the convergence condition with a similar computa-
tion. The reader is invited to check the other cases.
– A direct computation also shows that

ÿ

|w|“α

LwM }v7w}2α`βw ă 8.

The remaining details are left to the reader.

‚ We now prove that Φ is a contraction of Spu0q if T small enough. Pick pu7 and pv7

in Spu0q, with associated paracontrolled systems pu and pv. Since both paracontrolled
systems are in the solution space, the system

pz :“ Φppuq ´ Φppvq

is also paracontrolled by T at order 3 and its has all its remainders null at time
0. This fact will allow us to use the estimate (3.5) and gain a factor T pγ1´γq{2 when
comparing the norms of such functions in two different parabolic Hölder spaces with
respective exponents γ and γ1. From Proposition 9, we have

pzH “
ÿ

|τ |ď3α

rPzτ τ ` z
7

with explicit formulas for the components zτ “ Φppuqτ´Φppvqτ of pz. In the expansion of
pzH we need to control (i) the terms }zτ }βτ for |τ | “ 3α and (ii) the terms }z7τ }3α`βτ´|τ |
for |τ | ď 2α.
(i) We first consider the terms zτ . For example, we need to control

›

›f 1puquw ´ f
1pvqvw

›

›

βτ
, with |w| “ 2α, and τ “ L ´1pζp1qw q,
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with w P W . This is done writing
›

›f 1puquw ´ f
1pvqvw

›

›

βσ
À

›

›

`

f 1puq ´ f 1pvq
˘

uw
›

›

βσ
`
›

›f 1pvqpuw ´ vwq
›

›

βσ

À T
α´βσ

2

›

›f 1puq ´ f 1pvq
›

›

α
}uw}βσ ` T

βw´βσ
2

›

›f 1pvq
›

›

α
}uw ´ vw}βw

À T
α´βσ

2

´

}f}C2
b

`

1` }u}α
˘

}uw}βσ

¯

}u´ v}α ` T
βw´βσ

2 }f 1pvq}α}uw ´ vw}βw

À

!

T
α´βσ

2

´

}f}C2
b

`

1` }u}α
˘

}uw}βσ

¯

` T
βw´βσ

2 }f 1pvq}α

)

~pu7 ´ pv7~.

Another example is
›

›f p2qpuquwuw1 ´ f
p2qpvqvwvw1

›

›

βσ

with |w| ` |w1| “ 2α and σ P T given by L ´1
´

ζ
p1q
ww1

¯

. It is dealt with writing
›

›f p2qpuquwuw1 ´ f
p2qpvqvwvw1

›

›

βσ

À

›

›

›

´

f p2qpuq ´ f p2qpvq
¯

uwuw1
›

›

›

βσ
`
›

›f p2qpvqpuwuw1 ´ vwvw1q
›

›

βσ

À T
α´βσ

2 }f p2qpuq ´ f p2qpvq}α}uwuw1}βσ

` T
minpβw,βw1

q´βσ

2

›

›f p2qpvq
›

›

βσ

›

›uwuw1 ´ vwvw1
›

›

minpβw,βw1 q

À

ˆ

T
α´βσ

2 }f}C3
b
}uwuw1}βσ ` T

minpβw,βw1
q´βσ

2 }f p2qpvq}βσ

˙

~pu7 ´ pv7~.

All the other terms are dealed with using the following four inequalities.
‚ One has

›

›

›
εpu, ¨quw ´ εpv, ¨qvw

›

›

›

βσ
À T

α´βσ
2

›

›εpu, ¨q ´ εpv, ¨q
›

›

α
}uw}βσ ` T

βw´βτ
2 }εpv, ¨q}α}uw ´ vw}βw

for w R T , |w| “ 3α and σ P T given by L ´1
´

ζ
p2q
w

¯

.
‚ One has

›

›d´1
0 d1puquwuw1 ´ d

´1
0 d1pvqvwvw1

›

›

βσ
À T

α´βσ
2

›

›d´1
0 d1puq ´ d´1

0 d1pvq
›

›

α
}uwuw1}βσ

` T
minpβw,βw1

q´βσ

2

›

›d´1
0 d1pvq

›

›

βσ

›

›uwuw1 ´ vwvw1
›

›

minpβw,βw1 q

for |w| ` |w1| “ 3α and σ P T given by L ´1
´

ζ
p2q
ww1

¯

.
‚ One has

›

›d´1
0 dp2qpuquwuw1uw2 ´ d

´1
0 dp2qpvqvwvw1vw2

›

›

βσ

À T
α´βσ

2

›

›d´1
0 dp2qpuq ´ d´1

0 dp2qpvq
›

›

α
}uwuw1uw2}βσ

` T
minpβw,βw1

,β
w2
q´βτ

2

›

›d´1
0 dp2qpvq

›

›

βσ

›

›uwuw1uw2 ´ vwvw1vw2
›

›

minpβa,βb,βcq

for |w| ` |w1| ` |w2| “ 3α and σ P T given by L ´1
´

ζ
p2q
ww1w2

¯

.
‚ One has

›

›d`pu, ¨quτ´d`pv, ¨qvσ
›

›

βσ
À T

α´βσ
2

›

›d`pu, ¨q´d`pv, ¨q
›

›

α
}uτ }βσ`T

βτ´βσ
2

›

›d`pv, ¨q
›

›

βσ

›

›uτ´vτ
›

›

βτ

for |τ | “ α and σ P T given by L ´1pζj,τ q.

There is only one case where we use the fact that εpu, ¨q is small when T is small. We
use it to estimate

›

›

›
εpu, ¨quτ ´ εpv, ¨qvτ

›

›

›

βσ
À

›

›

`

εpu, ¨q ´ εpv, ¨q
˘

uτ
›

›

βσ
`
›

›εpv, ¨qpuτ ´ vτ q
›

›

βσ
. (3.6)

While we have indeed
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›

›

`

εpu, ¨q ´ εpv, ¨q
˘

uτ
›

›

βσ
À T

α´βσ
2

›

›εpu, ¨q ´ εpv, ¨q
›

›

α
}uτ }βσ,

we do not gain a T -dependent fact using the regularity of uτ ´ uσ in the second term
of the right hand side of inequality (3.6) since βτ “ βσ. We write instead
›

›εpv, ¨qpuτ ´ vτ q
›

›

βσ
À }εpv, ¨q}βτ }uτ ´ vτ }βτ

À

´

›

›dpvq ´ dpu0q
›

›

βτ
`
›

›dpu0q ´ dpu0q
›

›

βτ

¯

}uτ ´ vτ }βτ

À

´

T
βτ´α

2

›

›dpvq ´ dpu0q
›

›

α
`
›

›dpu0q ´ dpu0q
›

›

βτ

¯

}uτ ´ vτ }βτ

using estimate (3.5) to get the T -factor in the last line since dpvq ´ dpu0q is null at
time 0. The factor }dpu0q ´ dpu0q}βτ is as small as we want for u0 close enough to
u0 in Cα. This is the place where we choose u0 as a function of u0. (Note that it is
only the regularity of u0 as an element in Cα that matters here. We asked u0 P C

4α

to treat the free propagation of the initial condition Fu0 as a remainder term in the
paracontrolled analysis and avoid the use of time weighted norms.)

(ii) This case is concerned with the remainder terms }z7τ }3α`βτ´|τ |. Let us consider
the case |τ | “ 2α for example. Then zτ is written as

zτ “
ÿ

γPT1

rPzτγ prγsq ` z
7
τ .

In the case τ “ L ´1pζ
p1q
σ q for σ P T1, the computation at the begining of the proof

gives the explicit remainder z7τ with
zτ “ f 1puquσ ´ f

1pvqvσ

“ rPf 1puquσγ`f p2qpuquσuγ´pf 1pvqvσγ`f p2qpvqvσvγq
`

rγs
˘

`

"

R
`

f 1puq, uσγ , rγs
˘

` R
`

1, f 1puquσγ , γ
˘

` R
`

f p2qpuquσ, uγ , rγs
˘

` Rp1, f p2qpuquσuγ , rγs
˘

` Puσ
`

f 1puq7
˘

` Π
`

f 1puq, uσ
˘

*

´

"

R
`

f 1pvq, vσγ , rγs
˘

` R
`

1, f 1pvqvσγ , γ
˘

` R
`

f p2qpvqvσ, vγ , rγs
˘

` Rp1, f p2qpvqvσvγ , rγs
˘

` Pvσ
`

f 1pvq7
˘

` Π
`

f 1pvq, vσ
˘

*

“: rPzτγ
`

rγs
˘

` z7τ

with implicit sums over γ P T1. From here, the analysis of the general terms pzw, with
w P W , is similar or easier to the computations done in (i). It is left to the reader.

We obtain the contacting character of the map Φ from the fact that the exponents βw
only take finitely many different values. B

Remarks – 1. The quasilinear (gPAM) equation dealt with in [6] involved a space white
noise ζ on the two-dimensional torus – as opposed to a spacetime noise as in the present
work and the other works [16, 31, 18]. The fact that ζ depends only on space allows to
write

L ´1pζqptq “ L´1pζq ´

ż 8

t
e´rLpζq dr

as a perturbation of L´1pζq in a time weighted functional setting. Taking Z1 :“ L´1pζq
one has indeed

L ´1
`

LpZ1q
˘

» Z1,
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up to a remainder term a time weighted functional space. It is that fact that allowed
the authors of [6] to work with a usual first order paracontrolled structure and avoid the
infinite dimensional feature of the other approaches [16, 31]. Since T reduces to T1 in
the two-dimensional setting this simplifies greatly the analysis. The fact that the term
ş8

t e
´rLpζq dr can be treated as a remainder term is specific to the 2-dimensional setting.

2. It is possible to use the results of [4] and the extended toolkit for the high order
paracontrolled calculus from Section 2.2 to handle the analytic part of the study of the
generalized (KPZ) equation.

A – Basics on high order paracontrolled calculus

We recall in this appendix a number of results from [3, 4] that we use in this work.
This should help the reader understanding the computations of Appendix B and their
mechanics.

We first describe some approximation operators Pt and Qt that we use in place of the
usual Littlewood-Paley projectors

ř

jďn ∆j and ∆n, in which the heat semigroup plays
the role of Fourier theory. The parabolic Hölder space are defined from these operators.
We also recall the form of the space-time paraproduct and resonant operators that we use
and give a number of the continuity estimates on different correctors/commutators and
their iterated versions.

Recall that we denote by M a 3-dimensional closed Riemannian manifold and set
M :“ r0, T s ˆM,

for a finite positive time horizon T . We denote by ρp¨, ¨q the parabolic distance on M and
by e “ pτ, xq a generic spacetime point. Denote by µ the Riemannian volume measure
and define the parabolic measure

ν :“ dtb µ.

Recall the reformulation (2.7) of equation (1.1), where the operator L “ ´
ř`
i“1 V

2
i is a

second order differential operator in Hörmander form.

A.1 Approximation operators and parabolic Hölder spaces

In the flat setting of the torus, we can use Fourier theory to approximate Schwartz
distributions by smooth functions. We have

f “ lim
nÑ8

Snpfq “
ÿ

iě´1

∆ipfq

with ∆j the Paley-Littlewood projectors. Refer e.g. to [5] for basics on Littlewood-Paley
theory. Using the heat semigroup, one has in a more general geometric framework

f “ lim
tÑ0

P
pbq
t f “

ż 1

0
Q
pbq
t f

dt

t
` P

pbq
1 f

where
Q
pbq
t :“

ptLqbe´tL

pb´ 1q!
and ´ tBtP

pbq
t :“ Q

pbq
t

with P0 “ Id. One can show that there exists a polynomial pb of degree pb´ 1q such that
P
pbq
t “ pbptLqe

´tL and pbp0q “ 1. The operators Qpbqt and P
pbq
t play the role of Paley-

Littlewood projector and Fourier series, respectively. Indeed, if one works on the torus,
then

y

Q
pbq
t pλq “

`

t|λ|2
˘b

pb´ 1q!
e´|λ|

2t and y

P
pbq
t pλq “ pb

`

t|λ|2
˘

e´|λ|
2t
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so we see that Qpbqt localize in frequency around the annulus |λ| „ t´
1
2 and P

pbq
t localize

in frequency on the ball |λ| À t´
1
2 . Since the measure dt{t gives unit mass to each

interval r2´pi`1q, 2´is, the operator Qpbqt is a multiplier that is approximately localized at
‘frequencies’ of size t´

1
2 . However, this decomposition using a continuous parameter does

not satisfy the perfect cancellation property ∆i∆j “ 0 for |i´ j| ą 1, but the identity

Q
pbq
t Qpbqs “

ˆ

ts

pt` sq2

˙b

Q
p2bq
t`s

for any s, t P p0, 1q. The parameter b encodes a ‘degree’ of cancellation. In order to
deal with time approximation, define for m P L1pRq, with support in R`, the convolution
operator

m‹pfqpτq :“

ż 8

0
mpτ ´ σqfpσqdσ and mtp¨q :“

1

t
m
´

¨

t

¯

for τ P R and a positive scaling parameter t. Given I “ pi1, . . . , inq P t1, . . . , `u
n, define

the nth-oder differential operator
VI :“ Vin . . . Vi1 .

We say that a family pQtqtPp0,1s of operators is Gaussian if each the kernel of each Qt is
bounded pointwisely by the reference Gaussian kernel Gt. (We do not recall its explicit
expression here and refer the reader to Section 3.2 of [3]. It behaves as one expects.)

Definition – Let a P J0, 2bK. We define the standard collection StGCa of operators with
cancellation of order a as the family of operators

ˆ

`

t
|I|
2 VI

˘`

tL
˘

j
2P

pcq
t b ϕ‹t

˙

tPp0,1s

where a “ |I|`j`2k, c P J1, bK and ϕ a smooth function supported in r2´1, 2s with bounded
first derivative by 1 such that

ż

τ iϕpτqdτ “ 0 for every 0 ď i ď k ´ 1.

These operators are uniformly bounded in LppMq for every p P r1,8s, as functions of the
parameter t P p0, 1s. We also set

StGCr0,2bs :“
ď

0ďaď2b

StGCa.

A standard family of operator Q P StGCa can be seen as a bounded map t ÞÑ Qt from
p0, 1s to the space of bounded linear operator on LppMq. Since ViVj ‰ VjVi, the operators
Vi do not commute with L so

VIL
be´tL ‰ Lbe´tLVI .

We introduce for the needs of the next proposition the notation
´

VIψpLq
¯‚

:“ ψpLqVI

for any holomorphic function ψ. This notation is not related to any notion of duality.

Proposition 11. Consider Q1 P StGCa1 and Q2 P StGCa2 two standard collections with
cancellation. Then for every s, t P p0, 1s, the composition Q1

s ˝Q2‚
t has a kernel pointwisely
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bounded by
ˇ

ˇ

ˇ
KQ1

s˝Q2‚
t
pe, e1q

ˇ

ˇ

ˇ
À

#

´s

t

¯

a1
2
1săt `

ˆ

t

s

˙

a2
2

1sět

+

Gt`spe, e1q

À

ˆ

ts

ps` tq2

˙
a
2

Gt`spe, e1q

(A.1)

with a :“ minpa1, a2q.

Estimate (A.1) encodes a cancellation property that is in our setting the counterpart of
the property ∆i∆j “ 0 for |i´j| ą 1. We also need operators that are not in the standard
form but still have a useful cancellation property.

Definition – Let a P J0, 2bK. We define the collection GCa of operators with cancellation
of order a as the set of families of Gaussian operators Q such as the following property
holds. For every s, t P p0, 1s and every S P StGCa1 with a ă a1 ď 2b, the composition Qs˝S‚t
has a kernel pointwisely bounded by

ˇ

ˇKQs˝S‚t pe, e
1q
ˇ

ˇ À

ˆ

ts

pt` sq2

˙
a
2

Gt`spe, e1q.

Definition – Given any α P p´3, 3q, we define the parabolic Hölder spaces CαpMq as
the set of distribution f P D1pMq such that

}f}Cα :“
›

›e´Lf
›

›

L8
` sup

QPStGCk
|α|ăkď2b

sup
tPp0,1s

t´
α
2 }Qtf}L8 ă 8.

A.2 Parabolic paraproducts, correctors and commutators

The Paley-Littlewood decomposition can be used to describe a product as
fg “ lim

nÑ8
SnpfqSnpgq

“
ÿ

iăj´2

∆ipfq∆jpgq `
ÿ

|i´j|ď1

∆ipfq∆jpgq `
ÿ

iąj`1

∆ipfq∆jpgq

“
ÿ

i

∆ăipfq∆ipgq `
ÿ

|i´j|ď1

∆ipfq∆jpgq `
ÿ

i

∆ipfq∆ăipgq

“ P 0
f g `Π0pf, gq ` P 0

g f.

The paraproducts P 0
f g and P 0

g f are always well-defined unlike the resonant term Π0pf, gq.
We use here a slightly different identity

fg “ lim
tÑ0

Ppbqt
´

Ppbqt f ¨ Ppbqt g
¯

“

ż 1

0

!

Qpbqt
`

Ppbqt f ¨ Ppbqt g
˘

` Ppbqt
`

Qpbqt f ¨ Ppbqt g
˘

` Ppbqt
`

Ppbqt f ¨Qpbqt g
˘

) dt

t

` Ppbq1

´

Ppbq1 f ¨ Ppbq1 g
¯

,

(A.2)

which corresponds to writing
fg “ lim

nÑ8
Sn

`

SnpfqSnpgq
˘

.

Since Ppbqt plays the role of ∆ăi and Qpbqt the role of ∆i we want to manipulate this
expression to get terms of the following forms
ż 1

0
P1‚
t

`

Q1
t f ¨Q2

t g
˘ dt

t
, or

ż 1

0
Q1‚
t

`

Q2
t f ¨ P1

t g
˘ dt

t
, and

ż 1

0
Q1‚
t

`

P1
t f ¨Q2

t g
˘ dt

t
,
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where Q1,Q2 P StGCc encode some cancellation, so c ą 0, and P1 P StGCr0,ds can encode
no cancellation. This is done using repeatedly the Leibnitz rule Vipfgq “ Vipfqg` fVipgq.
We have for instance
ż 1

0
Ppbqt

ˆ

b´1ptLqQpb´1q
t f ¨ Ppbqt g

˙

dt

t

“ b´1

ż 1

0
Ppbqt ptLq

´

Qpb´1q
t f ¨ Ppbqt g

¯ dt

t
´ b´1

ż 1

0
Ppbqt

´

Qpb´1q
t f ¨ ptLqPpbqt g

¯ dt

t

´ 2b´1
ÿ̀

i“1

ż 1

0
Ppbqt p

?
tViq

´

Qpb´1q
t f ¨ p

?
tViqPpbqt g

¯ dt

t

where we ‘take’ some cancellation from Qpbqt to the other terms. Starting from identity
(A.2) repeated use of this kind of decompositions allows to rewrite the product fg as

fg “ Pfg ` Πpf, gq ` Pgf,

where Pfg is a linear combination of terms of the form
ż 1

0
Q1‚
t

`

P1
t f ¨Q2

t g
˘ dt

t
,

and Πpf, gq is a linear combination of terms of the form
ż 1

0
P1‚
t

`

Q1
t f ¨Q2

t g
˘ dt

t
,

with Q1,Q2 P StGC
b
2 and P1 P StGCr0,2bs, up to the smooth term Ppbq1

´

Ppbq1 f ¨ Ppbq1 g
¯

.
All the details on this construction and the classical estimates on the paraproduct P and
the resonant Π operators can be found in Section 4 of [3]. It is useful to introduce the
conjugated paraproduct operator

rPfg “ L ´1
`

Pf pL gq
˘

for any functions/distributions f and g. One can show that rPfg is given as a linear
combination of operators of the form

ż 1

0

rQ1‚
t

`

P1
t f ¨Q2

t

˘ dt

t

with rQ1 P GC
b
4
´2, Q2 P StGC

b
2 and P1 P StGCr0,2bs. The only difference is that rQ1 is not

given by a standard form but still encodes some cancellation. This is however sufficient
for rP to enjoy the same continuity properties as P. (See again Section 4 of [4].)

The study of semilinear singular SPDEs using paracontrolled calculus relies on a number
of continuity estimate for different operators. We recall three of them here and refer the
reader to [4] for a thorough account. Define the E-type operator

Cpa, b, cq :“ Π
´

rPab, c
¯

´ aΠ
`

b, c
¯

and its iterate
C
´

pa, bq, c, d
¯

:“ C
´

rPab, c, d
¯

´ aC
´

b, c, d
¯

.

Proposition 12. The following two facts hold true.
‚ Let α P p0, 1q and β, γ P p´3, 3q such that

β ` γ ă 0 and 0 ă α` β ` γ ă 1.

Then the corrector C has a unique extension as a continuous operator from Cα ˆ
Cβ ˆ Cγ to Cα`β`γ.
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‚ Let α1, α2 P p0, 1q and β, γ P p´3, 3q such that
α1 ` β ` γ ă 0, α2 ` β ` γ ă 0 and 0 ă α1 ` α2 ` β ` γ ă 1.

Then the iterated corrector C has a unique extension as a continuous operator from
Cα1 ˆ Cα2 ˆ Cβ ˆ Cγ to Cα1`α2`β`γ.

Note that the Hölder regularity exponent of the first argument in the corrector C has to
be less than 1 in the above statement. In order to gain more information from a regularity
exponent in the interval p1, 2q one needs to consider the refined corrector given for any
e PM by

Cp1q

´

a, b, c
¯

peq :“ C
´

a, b, c
¯

peq ´
ÿ̀

i“1

γi
`

Via
˘

peqΠ
´

rPδipe,¨qb, c
¯

peq

where the functions δip¨q are given by
δipe, e

1q :“ χ
`

dpx, x1q
˘

xVipxq, πx,x1yTxM , e “ pτ, xq, e1 “ pτ 1, x1q,

with χ a smooth non-negative function on r0,`8q equal to 1 in a neighbourhood of 0
with χprq “ 0 for r ě rm, the injectivity radius of the compact Riemannian manifold M ,
and πx,x1 a tangent vector of TxM of length dpx, yq whose associated geodesic reaches y
at time 1. The functions γi are defined from the identity

∇f “
ÿ̀

i“1

γipVifqVi,

for all smooth real-valued functions f on M .

Proposition 13. Let α P p1, 2q and β, γ P p´3, 3q such that
α` β ` γ ą 0 and β ` γ ă 0.

Then the operator Cp1q has a unique extension as a continuous operator from CαˆCβˆCγ

to Cα`β`γ.

Set
Dpa, b, cq :“ Π

`

rPab, c
˘

´ Pa
`

Πpb, cq
˘

,

Rpa, b, cq :“ PaprPbcq ´ Pabc,

R˝pa, b, cq :“ PapPbcq ´ Pabc.

Proposition 14. The following two facts hold true.
‚ Let α, β, γ P p0, 3q. Then the commutator D is continuous from Cα ˆ Cβ ˆ Cγ to
Cα`β`γ.

‚ Let β P p0, 1q and γ P p´3, 3q such that β ` γ P p´3, 3q. Then the operators R and
R˝ are continuous from L8 ˆ Cβ ˆ Cγ to Cβ`γ.

‚ Let α, β P p0, 1{2q and γ P p´3, 3q. Then the operator R˝ is continuous from
Cα ˆ Cβ ˆ Cγ to Cα`β`γ.

We also need continuity estimates on iterates of the operator R˝. However in this case
the expansion rule isdifferent depending on which argument we expand.

Proposition 15. The following two facts hold true.
‚ Let α1, α2 P p0, 1q and γ P p´3, 3q. Then the operator

R˝
`

pa1, a2q, b, c
˘

:“ R˝
`

rPa1a2, b, c
˘

´ Pa1R˝pa2, b, cq

is continuous from Cα1 ˆ Cα2 ˆ L8 ˆ Cγ to Cα1`α2`γ.
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‚ Let β1, β2 P p0, 1q and γ P p´3, 3q. Then the operator

R˝
`

a, pb1, b2q, c
˘

:“ R˝
`

a, rPb1b2, c
˘

´ R˝pab1, b2, cq

is continuous from L8 ˆ Cβ1 ˆ Cβ2 ˆ Cγ to Cβ1`β2`γ.

B – Correctors and commutators

In order to simplify the notation we write here } ¨ }α for } ¨ }Cα . The proofs of the
corrector estimates follow the line of reasoning of similar estimates proved in [4]. Recall
from Section 2.2.1 the definitions of the operators

C´L

´

a1, a2, b
¯

“ P
LrPa1a2

b´ a1PLa2b,

C`L

´

a, b1, b1

¯

“ PLa

´

rPb1b2

¯

´ b1PLab2,

CL

´

a1, a2, b
¯

“ Π
´

LrPa1a2, b
¯

´ a1Π
´

La2, b
¯

.

Proof of Theorem 3 – We give here the details for the continuity estimate on CL and
explain how to adapt the proof for C´L ,C

`
L ,CVi ,C

´
Vi

and C`Vi .

We want to compute the regularity of CLpa1, a2, bq using a family Q of StGCr with
r ą |α1`α2`β´2|. Recall that a term ΠpLa, bq can be written as a linear combination
of terms of the form

ż 1

0
P1‚
t pQ1

t ptLqa ¨Q2
t bq

dt

t2
,

while rPba is a linear combination of terms of the form
ż 1

0

rQ3‚
t

`

rQ4
ta ¨ P2

t b
˘dt

t

with Q1,Q2, rQ4 P StGC
3
2 , rQ3 P GC

3
2 and P1,P2 P StGCr0,3s. For the terms where

P2 P StGCr1,3s, we already have the correct regularity since
ż 1

0

ż 1

0
QuP1‚

t

´

Q1
t ptLq

rQ3‚
s

´

P2
sa1 ¨ rQ4

sa2

¯

¨Q2
t b
¯ ds

s

dt

t2

À }a1}α1}a2}α2}b}β

ż 1

0

ż 1

0

ˆ

ut

pt` uq2

˙
r
2
ˆ

ts

ps` tq2

˙
3
2

s
α1`α2

2 t
β
2
ds

s

dt

t2

À }a1}α1}a2}α2}b}β u
α1`α2`β´2

2

using that α1 P p0, 1q. We only consider P2 P StGC0 for the remainder of the proof.
For all e PM, we have

CLpa1, a2, bqpeq “ Π
´

LrPa1a2, b
¯

peq´a1peq¨ΠpLa2, bqpeq “ Π
´

LrPa1a2 ´ a1peq ¨ La2, b
¯

peq,

since Π is bilinear and a1peq is a scalar. This yields that CLpa1, a2, bqpeq is a linear
combination of terms of the form

ż 1

0

ż 1

0
P1‚
t

ˆ

Q1
t ptLq

rQ3‚
s

´

`

P2
sa1 ´ a1peq

˘

¨ rQ4
sa2

¯

¨Q2
t b

˙

peq
ds

s

dt

t2

using that
ż 1

0
L rQ3‚

s
rQ4
s

ds

s
“ L up to smooth terms. This gives

`

QuCLpa1, a2, bq
˘

peq as
a linear combination of terms of the form
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ż

KQupe, e
1qP1‚

t

ˆ

Q1
t ptLq

rQ3‚
s

´

`

P2
sa1 ´ a1pe

1q
˘

¨ rQ4
sa2

¯

¨Q2
t b

˙

pe1q
ds

s

dt

t2
νpde1q

“

ż

KQu
pe, e1qKP1‚

t
pe1, e2q

ˆ

Q1
t ptLq

rQ3‚
s

´

`

P2
sa1 ´ a1pe

2q
˘

¨ rQ4
sa2

¯

¨Q2
t b

˙

pe2q
ds

s

dt

t2
νpde1qνpde2q

`

ż ż u

0

KQu
pe, e1qKP1‚

t
pe1, e2q

´

a1pe
2q ´ a1pe

1q

¯

`

Q1
t ptLqa2 ¨Q2

t b
˘

pe2q
dt

t2
νpde1qνpde2q

`

ż ż 1

u

KQu
pe, e1qKP1‚

t
pe1, e2q

´

a1pe
2q ´ a1pe

1q

¯

`

Q1
t ptLqa2 ¨Q2

t b
˘

pe2q
dt

t2
νpde1qνpde2q

“: A`B ` C.

The term A is bounded using cancellations properties. We have

|A| “

ż

KQuP1‚
t
pe, e1q

ˆ

Q1
t ptLq

rQ3‚
s

´

`

P2
sa1 ´ a1pe

1q
˘

¨ rQ4
sa2

¯

¨Q2
t b

˙

pe1q
ds

s

dt

t2
νpde1q

À }a1}α1}a2}α2}b}β

˜

ż u

0

ż 1

0

ˆ

st

ps` tq2

˙
3
2

ps` tq
α1
2 s

α2
2 t

β
2
ds

s

dt

t2

`

ż 1

u

ż 1

0

ˆ

tu

pt` uq2

˙
r
2
ˆ

st

ps` tq2

˙
3
2

ps` tq
α1
2 s

α2
2 t

β
2
ds

s

dt

t2

¸

À }a1}α1}a2}α2}b}β u
α1`α2`β´2

2 ,

using that α1 P p0, 1q,P2 P StGC0 and pα1 ` α2 ` β ´ 2q ą 0.
For the term B, we have

|B| À }a1}α1}a2}α2}b}β

ż

e1,e2

ż u

0
KQupe, e

1qKP1‚
t
pe1, e2qρpe1, e2qα1t

α2`β
2

dt

t2
νpde1qνpde2q

À }a1}α1}a2}α2}b}β

ż u

0
t
α1`α2`β´2

2
dt

t

À }a1}α1}a2}α2}b}β u
α1`α2`β´2

2 ,

using again that α1 P p0, 1q and pα1 ` α2 ` β ´ 2q ą 0.
Finally for C, we also use cancellations properties to get

|C| À }a1}α1}a2}α2}b}β

"
ż

e1,e2

ż 1

u
KQupe, e

1qKP1‚
t
pe1, e2q

ˇ

ˇ

ˇ
a1peq ´ a1pe

1q

ˇ

ˇ

ˇ
t
α2`β

2
dt

t2
νpde1qνpde2q

`

ż

e1,e2

ż 1

u
KQupe, e

1qKP1‚
t
pe1, e2q

ˇ

ˇ

ˇ
a1pe

1q ´ a1pe
2q

ˇ

ˇ

ˇ
t
α2`β

2
dt

t2
νpde1qνpde2q

*

À }a1}α1}a2}α2}b}β

"
ż

e1,e2

ż 1

u
KQupe, e

1qKP1‚
t
pe1, e2qρpe, e1qα1t

α2`β
2

dt

t2
νpde1qνpde2q

`

ż

e1,e2

ż 1

u
KQupe, e

1qKP1‚
t
pe1, e2qρpe1, e2qα1t

α2`β
2

dt

t2
νpde1qνpde2q

*

À }a1}α1}a2}α2}b}β

"

u
α1
2

ż 1

u
t
α2`β´2

2
dt

t
`

ż 1

u

ˆ

tu

pt` uq2

˙
r
2

t
α1`α2`β´2

2
dt

t

*

À }a1}α1}a2}α2}b}β u
α1`α2`β´2

2 ,

using that α1 P p0, 1q and pα2 ` β ´ 2q ă 0. In the end, we have
›

›

›
QuCLpa1, a2, bq

›

›

›

8
À }a1}α1}a2}α2}b}β u

α1`α2`β´2
2
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uniformly in u P p0, 1s, so the proof is complete for CL. The proofs for CăL and CąL are
then easy to obtain since PLab has the same form as ΠpLa, bq. Indeed, PLab is a linear
combination of

ż 1

0
Q1‚
t

´

P1
t ptLqa ¨Q2

t b
¯ dt

t2

where Q1,Q2 P StGC
3
2 ,P1 P StGCr0,3s and we have

`

P1
t ptLq

˘

0ătď1
P StGC2.

The proofs for CVi ,C
´
Vi

and C`Vi also follow from the same argument and using the
Leibniz rule as for the corrector CB used in Section 3.3 of [4] to solve the generalised
(KPZ) equation. B

Proof of Theorem 4 – For the continuity estimate of CL,p1q, we also want to compute the
regularity using a family Q of StGCr with r ą |α1`α2`β´2|. Again a term ΠpLa, bq
can be written as a linear combination of terms of the form

ż 1

0
P1‚
t

`

Q1
t ptLqa ¨Q2

t b
˘dt

t2
,

while rPba is a linear combination of terms of the form
ż 1

0

rQ3‚
t p

rQ4
ta ¨ P2

t bq
dt

t
,

with Q1,Q2, rQ3, rQ4 P StGC
3
2 and P1,P2 P StGCr0,3s. For the terms where P2 P

StGCr2,3s, we already have the correct regularity since
ż 1

0

ż 1

0
QuP1‚

t

´

Q1
t ptLq

rQ3‚
s

´

P2
sa1 ¨ rQ4

sa2

¯

¨Q2
t b
¯ ds

s

dt

t2

À }a1}α1}a2}α2}b}β

ż 1

0

ż 1

0

ˆ

ut

pt` uq2

˙
r
2
ˆ

ts

ps` tq2

˙
3
2

s
α1`α2

2 t
β
2
ds

s

dt

t2

À }a1}α1}a2}α2}b}β u
α1`α2`β´2

2

using that α1 P p1, 2q so we only consider P2 P StGCr0,1s. For P2 P StGC0, we control
it using the term a1ΠpLa2, bq as in the proof of the continuity estimate of C. We are
left with

ż

P1‚
t

˜

Q1
t ptLq

rQ3‚
s

˜˜

P2
s

´

a1 ´ d
`

u0peq
˘´1

ÿ̀

i“1

pVia1qpeqδip¨, eq
¯

¸

¨ rQ4
sa2

¸

¨Q2
t b

¸

peq
ds

s

dt

t2

with P2 P StGC1. Then the result follows with the same proof using that P2
s 1 “ 0

since it encodes some cancellation and the first order Taylor expansion
ˇ

ˇ

ˇ

ˇ

ˇ

a1pe
1q ´ a1peq ´ dpu0q

´1
ÿ̀

i“1

pVia1qpeqδipe
1, eq

ˇ

ˇ

ˇ

ˇ

ˇ

À ρpe, e1qα.

We let the reader prove the continuity resuls for C´L,p1q and C`L,p1q; they can be proved
by the same argument as above. B

Proof of Theorems 5-8 / Elements – We give the proof for the continuity estimate on
L and Lp1q. We let the reader adapt the proof from [4] for the iterated operators of L
since it relies on the same argument. The same holds for Vipa, bq and its first iteration.

We want to compute the regularity of Lpa, bq “ LrPab´PaLb using a family Q P StGCr

with r ą |α` β ´ 2|. We write rPab and Pab respectively as linear combination of
ż 1

0

rQ3‚
s

´

P2
sa ¨

rQ4
sb
¯ ds

s
and

ż 1

0
Q1‚
t

`

P1
t a ¨Q2

t b
˘ dt

t
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with Q1,Q2, rQ4 P StGC
3
2 , rQ3 P GC

3
2 and P1,P2 P StGCr0,3s. As done for C, we only

have to consider P1,P2 P StGC0 since the other terms already have the right regularity
using that α P p0, 1q. We consider a term

ż 1

0
L rQ3‚

s

´

P2
sa ¨

rQ4
sb
¯ ds

s
´

ż 1

0
Q1‚
t

`

P1
t a ¨Q2

t ptLqb
˘ dt

t2
.

We use that
ż 1

0
Q1‚
t Q2

t

dt

t
“

ż 1

0

rQ3‚
s

rQ4
s

ds

s
“ Id, up to smooth term, to get

ż 1

0

ż 1

0
Q1‚
t

´

Q2
t ptLq

rQ3‚
s

´

P2
sa ¨

rQ4
sb
¯

´ P1
t a ¨Q2

t ptLq
rQ3‚
s

rQ4
sb
¯ dt

t2
ds

s

“

ż 1

0

ż 1

0
Q1‚
t

´

Q2
t ptLq

rQ3‚
s

´

`

P2
sa´ P1

t ap¨q
˘

¨ rQ4
sb
¯¯ dt

t2
ds

s

where the variable of P1
t ap¨q is frozen as before, in the sense that Q2

t ptLq
rQ3‚
s does not

act on it. Since α P p0, 1q, we can use that for any e, e1
ˇ

ˇP2
sape

1q ´ P1
t apeq

ˇ

ˇ ď
ˇ

ˇP2
sape

1q ´ ape1q
ˇ

ˇ` |ape1q ´ apeq| `
ˇ

ˇapeq ´ P1
t apeq

ˇ

ˇ ,

to get
ż 1

0

ż 1

0
QuQ1‚

t

´

Q2
t ptLq

rQ3‚
s

´

`

P2
sa´ P1

t ap¨q
˘

¨ rQ4
sb
¯¯ dt

t2
ds

s

À }a}α}b}β

ż 1

0

ż 1

0

ˆ

tu

pt` uq2

˙
r
2
ˆ

st

ps` tq2

˙
3
2

pt` sqαsβ
dt

t2
ds

s

À }a}α}b}β u
α`β
2

which complete the proof for Lpa, bq.
We finally prove the estimate for the refined commutator Lp1qpa, bq that is given for
any e PM by

Lp1qpa, bqpeq “
`

LrPab
˘

peq ´
`

PaLb
˘

peq ´
ÿ̀

i“1

`

P
piq
dpu0q´1Viaq

b
˘

peq.

where
`

Ppiqa b
˘

peq “

ż

e1,e2
Kpe; e1, e2qape1q

´

rPδip¨,e1qb
¯

pe2qνpde1qνpde2q,

with K the kernel of the bilinear operator pa, bq ÞÑ Pab. As in the proof of CL,p1q, we
are left with

ż

KQ1‚
t
pe, e1q

"

Q2
t ptLq

rQ3‚
s

`

P2
sa ¨

rQ4
sb
˘

´
ÿ̀

i“1

`

P1
t pdpu0q

´1Viaq
˘

pe1q ¨Q2
t ptLq

rQ3‚
s

`

P2
s δip¨, e

1q ¨ rQ4
sb
˘

*

pe1q
dt

t2
ds

s
νpde1q

“

ż

KQ1‚
t
pe, e1q

˜

Q2
t ptLq

rQ3‚
s

˜

P2
s

´

a´
ÿ̀

i“1

P1
t

`

dpu0qa
˘

pe1q
˘

δip¨, e
1q

¯

¨ rQ4
sb

¸¸

pe1q
dt

t2
ds

s
νpde1q

with P1,P2 P StGC1. The result follows with the same proof using that P2
s 1 “ 0 since

it encodes some cancellation and the first order Taylor expansion for a. B
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C – Paracontrolled expansion

We use in the body of the text the following variation on the high order paracontrolled
expansion formula from [4], Theorem 4 therein.

Theorem 16. Let f : R Ñ R be a C4 function and let u and v be respectively Cα and C4α

functions on r0, T s ˆ T3 with α P p0, 1q. Then

fpuqv “ Pf 1puqvu`
1

2

!

Pf p2qpuqvu
2 ´ 2Pf p2qpuquvu

)

`
1

3!

!

Pf p3qpuqvu
3 ´ 3Pf p3qpuquvu

2 ` 3Pf p3qpuqu2vu
)

` fvpuq
7

for some remainder fvpuq7 P C4α.

Proof – We need to prove that

R :“ vfpuq ´ Pvf 1puqu´
1

2

!

Pvf p2qpuqu
2 ´ 2Pvf p2qpuquu

)

´
1

3!

!

Pvf p3qpuqu
3 ´ 3Pvf p3qpuquu

2 ` 3Pvf p3qpuqu2u
)

is a 3α-Hölder function. Using that P1vfpuq “ vfpuq up to smooth term and that
Pab is the sum of terms of the form

ż 1

0
Q1‚
t pQ2

ta ¨ P1
t bq

dt

t

with Q1,Q2 P StGC
3
2 and P1 P StGCr0,3s, R is a sum of terms of the form

ş1
0 Q

1‚
t prtq

dt
t

with

rt :“ Q2
t

´

vfpuq
¯

´Q2
t

´

vf 1puq
¯

P1
t puq ´

1

2
Q2
t

´

vf p2qpuq
¯

P1
t pu

2q `Q2
t

´

vf p2qpuqu
¯

P1
t puq

`
1

6
Q2
t

´

vf p3qpuq
¯

P1
t pu

3q `
1

2
Q2
t

´

vf p3qpuqu
¯

P1
t pu

2q ´
1

2
Q2
t

´

vf p3qpuqu2
¯

P1
t puq.

We need to get a bound on rt in L8pMq. We have for e PM

rtpeq “

ż

M2

KQ2
t
pe, e1qKP1

t
pe, e2q

!´

vfpuq
¯

pe1q ´
´

vf 1puq
¯

pe1qupe2q ´
1

2

´

vf p2qpuq
¯

pe1qu2pe2q

`

´

vf p2qpuqu
¯

pe1qupe2q `
1

6

´

vf p3qpuq
¯

pe1qu3pe2q `
1

2

´

vf p3qpuqu
¯

pe1qu2pe2q

´
1

2

´

vf p3qpuqu2
¯

pe1qupe2q
)

νpde1qνpde2q.

Using a Taylor expansion for f , we have

rtpeq “

ż

r0,1s4
f p4q

´

upe2q ` s4s3s2s1

`

upe1q ´ upe2q
˘

¯

s3s2s1

`

upe1q ´ upe2q
˘4
ds4ds3ds2ds1

` vpe1q
´

fpupe2qq ` upe2qf 1pupe2qq `
1

2
u2pe2qf p2qpupe2qq `

1

3!
u3pe2qf p3qpupe2qq

¯

“ p1q ` p2q.

For the first term, we have
p1q ď }u}4α t

4α
2

and for the second term
p2q ď }u}L8}v}4α t

4α
2

which allows us to conclude. B
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