Paracontrolled calculus for quasilinear
singular PDEs

|. BAILLEULf and A. MOUZARD

Abstract. We develop further in this work the high order paracontrolled calculus setting to
deal with the analytic part of the study of quasilinear singular PDEs. Continuity results for a
number of operators are proved for that purpose. Unlike the regularity structures approach of
the subject by Gerencser & Hairer and Otto, Sauer, Smith & Weber, or Furlan & Gubinelli’
study of the two dimensional quasilinear parabolic Anderson model equation, we do not use
parametrised families of models or paraproducts to set the scene. We use instead infinite
dimensional paracontrolled structures that we introduce here.

1 — Introduction

This work is dedicated to the study of the quasilinear singular partial differential equa-
tion (PDE)
oru — d(u)Au = f(u)¢, (1.1)
where (¢ stands for a spacetime noise of parabolic Holder regularity o — 2, with 2/5 <
a < 1/2, with a real-valued unknown u defined on a 3-dimensional closed Riemannian
smooth manifold M and A a smooth elliptic operator on M. The function d(-) — for
diffusivity, is supposed to be smooth enough and to take its values in a compact subset
of (0,+00). We assume here for simplicity that the initial condition ug in equation
is regular enough to treat the free propagation of the initial condition as a remainder
term and avoid the technical use of weighted norms. The problems in the resolution of
such equations are twofold. First, the low regularity of the noise ( allows only a low
regularity of the potential solutions u, which is not sufficient to make sense of a number
of the terms d(u)Lu and f(u)(. This type of multiplication problems is commom to a
whole class of equations that has received a lot of attention over the past years with
the concomitant introduction of regularity structures [24] by Hairer and of paracontrolled
calculus [20] by Gubinelli, Imkeller and Perkowski. This class of equations is now referred
to as singular stochastic PDEs and general methods for solving (subcritical) semilinear
stochastic PDEs have been devised, following both approaches. For quasilinear equation a
serious additionnal difficulty arises since the nonlinearity in the leading order term is itself
ill-defined. In the present work we extend the tools of paracontrolled calculus to deal with
the analytic part of the study of such equations. The reader acquainted with the results
of Bailleul and Bernicot’s work [3] on the high order paracontrolled calculus will see that
our method for the study of equation , and the tools introduced along the way, give
a direct access to the analysis of the quasilinear generalised (KPZ) equation

oru — d(u)d2u = f(u)¢ + g(u)|dyul?,

or any other quasilinear version of parabolic semilinear equations, or systems of equations,
that can be studied within the setting of the high order paracontrolled calculus. Like the
works [30], 32], the present work is purely analytical and does not consider the important
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problem of renormalization. This amounts here to assuming that a sequence of multilinear
functions of the noise are given a priori as elements of their natural spaces with natural
bounds on their norms. In particular, we dot explain how to build these random variables
as limits of random variables built from a regularized noise and how to relate the notion
of solution that we capture here to the solutions to a family of renormalized equations
driven by the regularized noises.

Paracontrolled calculus was introduced in Gubinelli, Imkeller and Perkowski’ seminal
work [20] as a first order ‘expansion machinery’ for the study of a number of singular
stochastic PDEs. Despite the first order limitation the paracontrolled approach to the
study of singular PDEs has been very successful, as testify, amongst others, the works of
Gubinelli and Perkowski [22], 23] on the KPZ and stochastic Burgers equations, Catellier-
Chouk, Mourrat-Weber and Gubinelli & co-authors works [13] 26], 27, 9, 19, 25] on the
®* scalar equation from quantum field theory, the works [I, [15] of Chouk and co-authors
on the spectral theory for the two-dimensional Laplacian with white noise potential, and
the very recents works on hyperbolic singular PDEs [21], 29]. The scope of the first order
paracontrolled calculus was much extended in [2], 3, 4], and the high order paracontrolled
calculus offers now a convenient setting for the study of a whole class of singular parabolic
PDEs, in diverse geometric settings. The high order paracontrolled calculus was for in-
stance used in [28] to prove Weyl law for the counting function of the Anderson operator
on two-dimensionnal closed Riemannian manifolds.

The study of quasilinear singular PDEs was launched by the works [31] of Otto and We-
ber, [16] of Furlan and Gubinelli, and [6] of Bailleul, Debussche and Hofmanové, that all
appeared within a few months. Interestingly, each of these works used different methods to
tackle the same equation: The 2-dimensional quasilinear parabolic Anderson model equa-
tion. Otto and Weber introduced a rough paths flavoured variant of regularity structures
while Furlan and Gubinelli introduced a variant of the first order paracontrolled calculus
using paracomposition operators instead of paraproducts; both methods rely on a para-
metric Ansatz. Bailleul, Debussche and Hofmanové showed that the original first order
paracontrolled calculus is sufficient to prove well-posedness of the equation on a small time
interval, for an equation involving a spatial noise. Gerencsér and Hairer then showed in
[18] that the study of a whole class of quasilinear singular parabolic PDEs can be done
within the setting of regularity structures, in the regime 2/5 < oo < 1/2 for the regularity
exponent «, giving results way beyond the scope of what was proved in [31] [16) [6] and
Otto, Sauer, Smith and Weber’s followup work [30]. The only caveat to their remarkable
results is the fact that their formulation of the quasilinear equation does not allow for a
clean treatment of the renormalization problem yet. See however Gerencsér’s recent work
[17] for a first result in this direction.

By adding a few results to the toolkit of the high order paracontrolled calculus [4]
we are able to prove a local in time well-posedness result for equation , with the
same line of attack as in [6]. The latter used the classical space paraproduct on the 2-
dimensional torus. By working with the spacetime paraproducts from [3] and the high
order paracontrolled calculus from [4] we are able here to work with spacetime noises on a
manifold. Note that the method works mutatis mutandis for the study of the quasilinear
generalised (KPZ) equation or the quasilinear version of the geometric stochastic heat
equation. We reformulate the quasilinear equation under a semilinear-like form

l
(0 + L)u = f(u)¢ +e(u, ) Lu+ Y ai(u, ) Viu,
i=0

for a smooth second order differential operator L, smooth vector fields V; and functions
a;(-),e(-) of u and the space argument. As the name suggests the function e(-) will be
small. At first sight this type equation seems to be critical, in the sense that one does not
get any regularizing/contraction effect from the fixed point formulation of the equation



due to the second order differential operator L in the right hand side. However, each
iteration of the fixed point will come with a factor £(u,-) close to 0 at time 0. Working
with the a priori knowledge that u is of positive Holder regularity this term will indeed be
small for a small time horizon and this will allow us to get around the ‘criticality’ problem.
We will be able to define a paracontrolled structure and formulate the equation as a fixed
point for a contracting map defined on this structure. The well-posedness result obtained
from that formulation of equation will be our main result, stated in Theorem The
other approaches developed so far for the study of quasilinear singular PDEs all require
an infinite dimensional ingredient that involves a parametrized family of symbols [I8] or
operators [31, [I6]. This is the quasilinear effect. It takes adifferent form here, where we
use paracontrolled structures involving series rather that a finite number of terms as in
the setting of semilinear singular PDEs. The introduction of this structure is our main
technical insight; it pops out naturally as explained in Section [2.1} In retrospect, it looks
fortunate that the authors of [6] were able to use a usual, finite, paracontrolled structure
to study the 2-dimensional quasilinear (PAM) equation driven by a space white noise,
rather than an infinite dimensional paracontrolled structure. This is only due to the fact
that the noise in the equation was time-independent and the dimension of the manifold
equal to 2. Infinite dimensional structures are needed if one works with a time-dependent
noise, even in dimension 2, or if the dimension is equal to 3, as is the case here. This will
be explained after the proof of our main result, Theorem [I0}

We set the scene of paracontrolled calculus in Section [2}, in the form that we need here.
Section [3] is dedicated to the proof of the well-posedness result in small time for equation
, stated in Theorem We give in Appendix [A|a bird’s eye view on the results from
[4] on the high order paracontrolled calculus that we use here. The proofs of a number
of new continuity results for operators needed for the study of quasilinear equations are
collected in Appendix [B] and Appendix [C} A minimum of familiarity with the tools of
paracontrolled calculus is needed to get the best of what is presented here.

Notations. We gather here a number of notations used below.

— We denote by M a 3-dimensional closed Riemannian manifold and set M := [0,T] x
M, for a finite positive time horizon T. Given o € R, we denote by C* the space of
a-Holder functions on M, defined as the Besov space BS. ,,, and write C* for the parabolic
Holder spaces. We refer the reader to Appendiz[4] for more information about these spaces.

— It will be useful sometimes to denote by (8) an element of the parabolic Hélder space

CP with exponent 5 € R, whose only noticeable feature is its reqularity.

— We will denote by [0,b] the set of integers of the interval [0,b], for any real number
b.

2 — Paracontrolled calculus

We introduce in this section the tools from (the high order) paracontrolled calculus
that we need to build a setting for the study of the quasilinear equation . The tools
developed so far in [2, Bl 4] are not sufficient for our needs but only a little more is
needed; it is given in Section [2.2] Paracontrolled calculus uses as a basic tool paraproduct
and resonant operators. We recall the reader of the essential features of these bilinear
operators before describing in a nutshell the paracontrolled approach to the study of
singular semilinear parabolic PDEs. Our starting point for the analysis of is a
rewriting of this equation as a semilinear-like equation, equation below. The special
features of quasilinear equations appears clearly on this rewriting. Section [2.1] introduces
the notion of paracontrolled system needed for the study of quasilinear equations and
Section completes our toolkit from [4] to control the operators that pop out only in



the quasilinear setting. The study of equation (1.1) with these tools is the subject of
Section Bl

As said in the introduction, in order to treat the free propagation of the initial condition
as a remainder term in the paracontrolled analysis we will assume in this work that the
initial condition ug has Holder regularity 4a. We would otherwise need to work with
spaces whose norms involve time weights. We refrain from doing so to keep concentrated
on the quasilinear feature of the equation and emphasize the simplicity of our approach.

o Paraproduct and resonant operators. Singular stochastic PDEs are characterized by the
fact that they involve ill-defined products. Whatever notion of regularity is chosen (Holder,
Besov, Triebel-Lizorkin...) it happens indeed that the product of two distributions of
regularity 1 and ro makes sense as a continuous function of its arguments if and only if
r1 + ro > 0. Recall we work with a spacetime noise ¢ of parabolic regularity a — 2, for
a < 1/2. One has multiplication problems in equation in the terms d(u)Au and
f(u)¢, as one cannot expect from any solution theory that it gives u a regularity better
than o while o + (v — 2) < 0. The starting point of the paracontrolled approach to the
study of singular stochastic PDEs is the use of the paraproduct and resonant operators to
disentangle this product problem. We describe them here in the simple setting of a finite
dimensional torus to give the reader an elementary idea of what these operators are and
some of their properties.

On the torus the Paley-Littlewood decomposition allows to represent any distribution
f as a sum of smooth functions

=2 M),
i=—1

with the Fourier transform of A;(f) being essentially supported on the set of frequencies
of order 2¢. This decomposition can be used formally to split a product as

fog=> AHA9) = D) MDA + D AiHA(9) + D AiH)A(9)
i,j=—1 i<j—1 li—j|<1 i—1>j
=: Prg+1I(f,9) + Py f.
(2.1)

The bilinear operator P defined here is called the paraproduct operator and the bilinear
operator II is called the resonant operator. They were first introduced by Bony in his
seminal work [I0]. The interest of this decomposition is that the paraproduct operator
is well-defined whatever distributions f and g are given as its arguments. It even sends
continuously C® x C# into C8+02% On the other hand the resonant operator II is well-
defined and continuous on C® x C? only if a+ 8 > 0, in which case it takes values in C**#
— in accordance with the above mentioned rule on the well-posed character of the product
operation. (We refer the reader to [5] for the basics on Littlewood-Paley decomposition
and paraproduct and resonant operators in a Euclidean space.)

The definition of the actual paraproduct and resonant operators that we will use in the
sequel is more involved as it provides parabolic operators and is tailor made to the equa-
tion we will study. The above Fourier-transform based Littlewood-Paley decomposition
is in particular replaced by the Calderén decomposition associated with the semigroup
generated by the second order differential operator L in . The reader will find in Ap-
pendix |A| a description of what is involved here. (The work [28] contains a self-contained
introduction to these operators in a geometric elliptic setting.) There is in any case no
need to masterize the details of the construction of these operators to use them efficiently.

o Solving semilinear singular PDFEs using paracontrolled calculus. Following [3] one can
associate to any sufficiently regular second order differential operator L in Hérmander



form its parabolic operator
L =0+ L

with inverse map Z~! : v — wu, giving the solution of the equation .ZPu = v with zero
intial condition, and a paraproduct P and its companion paraproduct E’, intertwined to P
by the relation

L ToP=Pog (2.2)
A resonant operator I is also constructed from L. One can describe as follows the para-
controlled approach to the study of a generic semilinear singular parabolic PDE of the
form

ZLu = f(u,du,(),
with a function f that is affine in its (-argument. Denote by F the resolution operator of
the free heat equation
Fug := (1,2) — (e_TLuo) (z).

1. Paracontrolled ansatz. The irregularity of the noise  dictates the choice of a
solution space made up of functions/distributions of the form

ko
u = 2 Pu, Zi + ul, (2.3)
i=1
for reference functions/distributions Z; of reqularity i that depend formally only
on (, to be determined later. The order of the expansion is chosen in such a way
that (ko + 1)+ (aw — 2) > 0. The ‘derivatives’ u; of u also need to satisfy similar
structure equations to a lower order; their ‘derivatives’ as well, and so on. Denote
by @' the datum of all the remainders in these expansions; together with the Z;’s
they determine entirely this triangular system.

2. Right hand side. Rewrite the right hand side f(u,0du,() of the equation in the
canonical form

ko
Flu,0u,¢) = > Py Y, + () (2.4)
j=1

where (9) is a nice remainder and the distributions Y; depend only on ¢ and the Z;.
Both the vj and (b) depend explicitly on w and all its derivatives, that is on ot

3. Fixed point. The fized point relation

ko
w=Fug+ 2 (f(u,0u,Q)) = Fug + > .2 (ijyj) a0

=1

ko
= FUO + Z PUij + gil(b)v
j=1
imposes a number of consistency relations on the choice of the Z; = £~ 1(Y;) that
define them uniquely as functions of ¢, and induces a fized point relation for G.

e We illustrate this mechanics on the example of the 2-dimensional parabolic Anderson
model equation on the torus

ZLu = ul =Py + Peu+ Ny, (), (2.5)

with constant initial condition ug = ¢ # 0 and with L. = A. The noise ( is almost surely
in the parabolic Hélder space C*~2, for o any positive real number strictly smaller than
1. (This is specific of dimension 2.) Whereas the paraproduct terms in always make
sense for arguments in Holder spaces of positive or negative exponents, the resonant term
is well-defined only if the sum of the Holder regularity exponents of v and ¢ add up to a



positive real number. With ¢ of Holder regularity « —2 and o < 1, one has a+ (a—2) < 0,
and we fall short of fulfilling this positivity constraint. Rather than looking for a solution
of the equation in the class C% of a-Holder parabolic function we look for a solution in a
restricted class of C* functions of the form

u=PyZ+u, (2.6)

for a reference function Z € C%, to be determined from the noise only and from the
equation, with a remainder u! € C2* of parabolic Holder regularity 2. With the notations
of one has here kg = 1 and Z; = Z. Given Z the unknown becomes the pair (u/, u?),
with «’ in a well-chosen function space. The special paracontrolled form of u allows to make
sense of the a priori ill-defined resonant term IM(u, () under the assumption that M(Z, ()
is given as an element of C2*~2 — this is Gubinelli, Imkeller and Perkowski’s fundamental
‘commutator lemma’, Lemma 2.4 in [20]. We write

Lu =Pyl + (20 — 2)(u/, uf),

for a function (2cc — 2)(u/, uf) depending implicitly on ¢, Z and N(Z, (), as a continuous
function of all its arguments. With the notations of equation one has v; = u, Y] =(
and (0) = (2o — 2)(u/,u*). From the defining intertwining relation (2-2)), the fixed point
formulation of equation then reads

ﬁu/Z + uﬁ =Uu= F)11(9%_14) + g_l((Qa - 2)(u,7uﬁ)) +c

— recall we assume for simplicity ugp = ¢ # 0 is constant. We now identify the terms
on both sides of the equality according to their regularity so as to have a paracontrolled
expression stable under the fixed point map. One then has Z = #~!({) on the one hand,
and
W =u=PyZ+ut, uf= 27 (2a - 2)(u,u?)) +c,

on the other hand. (Note that if we were working in this paragraph in dimension 3 the
noise would be (a — 2)-Holder regular, with 2/5 < o < 1/2 and more work would be
required to defined the term (2o — 2)(u', u®); the tools of the high order paracontrolled
calculus can be used for that purpose.)

e Two different questions are addressed in Step 2. Making sense of the ill-defined
products, characteristic of singular PDEs, and putting the right hand side of the equation
in the form , for an easy formulation of the fixed point in Step 3. One of the main
findings of [4] is that, at the end of the day, each of these two tasks are dealt with
repeating essentially only one operation for each. See Section 2.2.4 for an explanation of
the mechanics.

o A special feature of quasilinear equations. One can rewrite equation as a semilinear-
like equation. The high order paracontrolled calculus developed in [4] requires that we
work with an operator in Hérmander form involving vector fields with sufficient regularity.
This is not a constraint in so far as smooth second order differential operators always have
that form up to the addition of a vector field, so
l
A=Z£+%,
i=1

for smooth vector fields Ag, A;. (What follows works for vector fields of class C%. As
we are not interested here in optimizing the degree of regularity of thedifferent objects
involved in the analysis we stick to the smooth setting. As a matter of fact we could even
write A as a sum of square of vector fields, without the drift Ag. This refined description
of A would make no difference for us here.) With this in mind, let us introduce a smooth
function g close enough to ug — this will be quantified later, in the proof of Theorem [10]



and a solution-independent operator

l
L:i==YV?  Vi:=+/d(u) A
i=1

We rewrite equation (|1.1)) under the form of an evolution equation

14
L= (0 + Lyu =f(u)¢ + (d(u) - d(g)) Au + Y A;(d(ug)"?) Viu

i=1

= F(u)¢ — d(@5) " (d(u) — d(7)) Lu
J4
£33 (1= d@) ! (dlw) - d(m)) ) Ai(d(@m) ") Vi

+ d(u)Agu,

involving the solution-independent operator L in Hormander from. We write this equation
as

¢
ZLu=: f(u)¢ +e(u,-)Lu + Z a;(u, ) Viu. (2.7)
i=0

As its name suggests the quantity £(+) is expected to be small. The nonlinear term
e(u, ) Lu = d(zTo)_l (d(u) — d(%))Lu

in the right hand side still involves a second order term, a feature of quasilinear equations.
(The dot sign in e(u,-) stands for the dependence on x € M of e, via d(ug).) This
formulation of the quasilinear equation in the semilinear-like form involves the
second order term &(u, -) Lu, specific to the quasilinear setting. This is why equation
is not a semilinear equation. Writing

e(u,)Lu = P (. Lu + Prye(u,-) + N(e(u, ), Lu), (2.8)

the operators

Prob, TM(La,b)
that appear in the last two terms of the right hand side of identity turn out to be of
the same type as the resonant operator (a,b) — [1(a,b). Their analysis is thus similar to
what was done in [4] for the resonant operator via the introduction of the corrector C and
its iterates. (Similar things happen in the analysis of the (KPZ) equation with the terms
Poy0u and M(0u, du).) The operator

Po(Lb)

that appears in the first term of the right hand side of does not show up in the study
of semilinear singular PDEs and requires a specific treatment. The analysis of these terms
will be the object of Section

2.1 Paracontrolled systems for quasilinear equations

We introduce in Section 2.1.2 the particular paracontrolled structure that we use for
the study of quasilinear singular PDEs. Unlike Furlan & Gubinelli’s paracomposition
approach [16] or their regularity structures counterparts [31, 30} 32, [I8] our paracontrolled
structure does not have the form of a parametric finite paracontrolled structures. Rather
it involves series in the paracontrolled expansion, as opposed to the finite expansion used
for the study of semilinear singular PDEs. To motivate this structure we first test on a
model quasilinear singular equation the above three step methodogy that was designed for
the study of semilinear singular PDEs. Its implementation leads naturally to the structure
introduced in Section 2.1.2.



2.1.1 — A naive trial on a model case. Recall our discussion of the paracontrolled ap-
proach to the parabolic Anderson model equation and the form that we gave to the
quasilinear equation . The main feature of the quasilinear setting is the presence of
a second order term Lu in the right hand side of the equation. Consider, as a motivation,
the model equation

ZLu=ul +ulu

= PuC + Pu(Lu) + (Pcu +M(u, ¢) + Prau + n(u,Lu)), (29)

still in the setting where 2/3 < o < 1 is close to 1. As above, one problem is to make sense
of the resonant term IM(u, Lu); this can be done assuming that the term IM(Z, LZ) makes
sense as an element of the parabolic Holder space of exponent 2a. — 2 This assumption
allows to define the term in parentheses in the right hand 81de of as an element of
C?*~2_ One can further see that for u of paracontrolled form one has

Pu(Lu) ~ Py (LZ),
up to a term in C2*~2. A naive fixed point formulation of equation (2.9) then reads
PuZ +uf =Py (ZL7HC)) + Py (L7HLZ)) + (20)(W, 4F) + c. (2.10)

Note that the operator .Z 'L sends any C? into itself, with no regularization property.
Since we want to have a paracontrolled expression stable under the fixed point map
encoded in identity it imposes that Z is actually made up of two components
Z = (zW,z®), with ZV = £71(¢) and Z? = £~ 1(LZW). The function v’ should

have as a consequence two components as well so equation ([2.9)) rewrites

Z:I5 wZ t =P, EP / “L(Lz® )))+(2a)(u’,uﬂ)+c,

with terms .2~ 1(N(Z®, LZ)) inside the remainder (2a)(---) given a priori. The first
two terms in the right hand side are taken care of by the Z(1) and Z® terms in the
left hand side. This is not the case of the term FN’UIQ v HLZP) in the right hand side.
Consistency then imposes that we actually add a third component to Z and v/, to take
care of ﬁuguiﬂ ~“1(LZ®). The story then repeats itself and we are led to consider as a
priori form for the solution an infinite paracontrolled expansion

U= Z F’%Z(k) +uf,
k=1

with Z®) = (Z-10)e=1ZM for k > 1, and Z) = 271(¢). All the Z*) are elements of
C® here since the operator .2 ~'L does not improve nor worsen the regularity. This infi-
nite dimensional paracontrolled structure is a characteristic feature of the paracontrolled
approach of quasilinear singular equations. The convergence of the preceding sum needs
to be built in the setting, together with the a priori data of the terms ﬂ(Z(i), LZ(j)) as
elements of C?*~2. Anticipating over the results to follow, the reference functions in the
paracontrolled expansion of a solution to equation have the same tree-like structure
as the reference functions of the corresponding semilinear equation. This comes from their
inductive definition. However, each edge in a ‘tree’ now has a length, corresponding to
composing first the operator represented by the edge by the operator (Z~'L)*, for some
kE = 0. This echoes Gerencsér and Hairer’s work [I8], where each symbol represents an
infinite dimensional space. This is the quasilinear effect. The approach works under the
quantitative assumption that each a priori term has a natural norm bounded above by
a constant multiple of C¥, for a constant C' > 1, and %k the number of times that the
operator .21 L appears in the formal definition of the term — the total “length” of the
tree.



2.1.2 — Paracontrolled systems for quasilinear equations. Motivated by the analysis of
Section 2.1.1 we set up in this section the notations needed to describe solution spaces
based on infinite paracontrolled systems. Fix 0 < o < 1. Let an integer n > 1 be given,
together with countable families .77, ..., 7, of real-valued non-null functions on [0, T"] x M
with each [7] € Z; of parabolic Holder regularity |7| := ia. We distinguish the function
[7] from its label 7 by using brackets to denote the function. Write

T =Au--uUT,.

A generic finite word with letters in 7 will be denoted by w = 71 ...7; and assigned a
homogeneity
]w\ = ‘Tl‘ + -+ |Tk’
Define
W::@u{w:n...m k=1, |wl gna}.

This is the set of words with letters in the alphabet .7 and homogeneity no greater than
na. This set depends on n, which will be fixed in each application. We do no record the
dependence of # on n in the notation. For a word w = 71...7, € # and 7 € . we
denote by wr the concatenation of w and 7, so |wr| = |w| + |7]. Set (&) := 1, and for
w="T...Tx €W, set

(w) := (m1...7%]) := H[Tl]Hcml H [Tk]HCW‘;
this is not a norm. The following definition of a paracontrolled system coincides with the
notion used in the study of semilinear singular PDEs, where .7 can be chosen to be a
finite set rather than infinite countable set.

Definition 1. Let (By)wew be a family of positive real numbers. A system paracontrolled
by .7 at order n is a family U = (uy)wey of parabolic functions such that one has

wy = . Py, [r] 4+, (2.11)

TET;|wT|<na
with ub, € CretBu=lvl for allwe W, and

Il == D (b ey [ gnospurur < 0. (2.12)

The convergence condition is always fulfilled in a semilinear setting where one
can work with a finite set 7, so # is finite. In the case where # is infinite the weights
(w) in are here to guarantee the convergence in a proper space of the sum .
A reasonable choice for the constants (5, would be to take them all equal to «. This is
not a convenient choice from the technical point of view and all of them will be chosen
in the interval (2/5,«) in a particular way explained in Section [3| before Theorem
In particular, they satisfy 3, < B, for any w,w’ € # with w a subword of w’. These
regularity exponents play a crucial role in proving that the fixed point formulation of
the equation involves a contracting map. We note that all w,, with |w| < na are C%,
while the w,, with |w| = na, are elements of C%». Notice that a paracontrolled system is
triangular: The bigger |w| the lesser we expand wu,,. The study of the quasilinear equation
will require below the use of systems paracontrolled at order 3. Note also that a
paracontrolled system is actually determined by the set af := (uiﬁv)weyy of all remainders
in the paracontrolled expansion . Putting together all the contributions from each
; each u,, in a paracontrolled system is in particular required to have an expansion of
the form

uy = (a) + (2a) + ... + (na + By — |wl)
as will be proved in the following proposition.
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Proposition 2. Let 4 be a system paracontrolled by 7 at order n. One has

2, (b fuwles. < N1l

weW
This implies in particular that one has for all w € # the estimate

[uwlesw < llall-

Proof — Let w € #'. We proceed by a finite induction. The case where |w| = na is well
controlled. For |w| < na, we have

lwwleso Y luwwrleswr ITleint + [l lcsw
TET;|lwT|<na

S S (7 N Y

w'eW;lww’|<na

and Tthis yields
2w wwlese < D) (@) ubles,n < 8-

weW w'eW
>

We note here for later use that if @ is paracontrolled at order 3 then for any function
h € Cg then h(u) is the J-component of a paracontrolled system at order 2. Indeed,
identity (36) of [4] tells us first that there is an element (f) € C3¢ such that

1
h(u) = Pryu+ 5 (Ph(2)(u)u2 - Ph@)(u)uU) + (8).
Denote by (3a) an element of C3* that may change from line to line. If one sets
R(1,b,c) := Isbc — Pye, R°(a,b,c) := Pa(Pbc) — Pue,

and one uses the properties of these operators proved in Proposition 3 of [4], together with
the properties of the D operator proved in Proposition 2 therein, one sees that

() = Py (P I71) + 5 Py, (N[, [2]) + (30)
= Ph’(u)uT [T] + Ph/(u) (R(L Ur, [T])) + % Ph(2)(u)u-r1u72 (n([Tl]’ [TQD) + (3&)

= Pr(uyu, [7] + P (uyu,, (R [0], [7])) + % Phe (i, ury, (M7, [72])) + (30).

(2.13)
The implicit sums are restricted to indices 7 € # with |7| < 2« in the first term, to
7,0 € W such that 7| = |0| = « in the second term, and to 71,7 € # such that

|71] = |m2| = a in the third term. We obtain directly from the identity (2.13|) the full
description of the paracontrolled system at order 2 corresponding to h(u).

We described in the three step scheme of the introduction of Section [2]the paracontrolled
approach to solving semilinear singular PDEs. In this scheme the paracontrolled structure
of the elements of the solution space is used to take profit from the continuity properties of a
number of operators that come in the analysis of the product problem. In a nutshell, while
some operator M(-) may not make sense on a C? space it can make sense on a subspace
of C# whose elements are of paraproduct form P,b, or sums of such terms, up to a regular
enough remainder term, provided the quantities M (b) are given off-line. The product
e(u,-)Lu in is specific to the quasilinear setting and its analysis requires the use of
a number of continuity results for some new operators. The next section presents these
results. They will be used jointly with the infinite dimensional paracontrolled structure
of Definition [I] in Section [3]| to give a proof of the locally well-posed character of equation

im)}
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2.2 Additional correctors

We saw above that the analysis of the quasilinear equation requires in addition to
the study of terms already encountered in a semilinear setting the study of operators of
the form

Po(Lb), Preb, T(La,b).

This section is dedicated to the study of these quantities and their expansion properties
— when the a argument is of paracontrolled form. Our results come under the form of
a number of continuity results whose proofs are given in Appendix [B; all the proofs are
variations on the pattern of proofs of continuity results from [4]. The continuity results
from this section are all we need in addition to the results of [4] to study equation ,
and more generally a whole class of quasilinear singular PDEs. The reader is welcome to
skip the proofs of the different statements below and directly jump to Section [3] to see
them in action.

Given that the technical setting of [3| [4] is likely not to be familiar to most readers we
give in this section the proofs of some of the statements in the time-independent model
setting of the 3-dimensional flat torus. The paraproduct and resonant operators P,b and
II(a,b) are defined classically in terms of Fourier projectors as in .

2.2.1 — Operators Pr,b and MN(La,b). These two operators are defined by similar formulas
as the resonant operator in terms of the parabolic approximation operators Q; from [4].
It is thus natural that they satisfy expansion rules similar to the expansion rules satisfied
by the resonant operator. Introduce for that purpose the operators

C; ((al, as), b) =P s, b= 1P,
Ct (0. (b1,02)) 1= Pra(Po,b2) — biPrabe,

CL((al,ag),b> = n(Lﬁalag,b) . aﬂ'l(L@,b).

We choose the notation — in the exponent of C; to emphasize that the paraproduct
term is in the low ‘frequency’ part of the operator, while it is in the high ‘frequency’ part
in C{. The following theorem is proved here in the time-independent model setting of the
flat torus; see Appendix [B] for a proof in the parabolic setting.

Theorem 3. The following two statements hold true.
o Let aq € (0,1) and ag, 5 € (—3,3) be such that oy + g € (—3,3). If
ar+pB—2<0 and a3 +as+p5—-2>0 (2.14)

then the operators C; and Cy, extend as continuous operators from C* x C*? x ch
into Co1+a2+f=2,

o Let B1 € (0,1) and «, Bz € (—3,3) be such that By + B2 € (—3,3). If
a+Ps—2<0 and a+pB1+8,—-2>0

then the operator C}: extends as a continuous operator from C® x CP' x CP2 into
cotPrtpa—2

It is possible to explain in a non-technical way the mechanics at work in the proof of
Theorem [3| Following [4] we define the outer centering operator € as an operator acting
on a space of operators on functions by

(@M)(f)(x) :== M(f — f(2))(z)
and set also

(€ 1) (@) = f() = fla).
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One can rewrite in terms of ¥ the corrector

C(f,g.h) =N(Prg,h) — fN(g, h)
as N
C(f,g,h) = I_I(P%)fg, h).
The iterated corrector

C((f1, f2), 9. 1) := C(P, f2,9.h) — f1C(f2, 9. 1)

from [4] writes in those terms

C((f1. £2),9:1) i= T (Ppy 1.9 1)
Similarly, one has
CZ((al,ag),b) = PLIigalalb’
C; (a, (b1, b)) = Pra(Pgn, b2),
Cr((a1,a2),b) = N(LPgq,a1,0).

On a general basis a paraproduct P rg has the same regularity as g if f has positive
regularity. So for f € C% g € C’,h € C® the quantity C(f,g,h) should for instance only

make sense if b+ c > 0. The effect of the outer recentering is that P4 ;g behaves inside the
resonant operator as a function of regularity a +b. This dovetails nicely with the fact that
the corrector makes sense if a + b+ ¢ > 0. The very same thing happens for the operators
C;,CH, Cp.

L>“L>

Proof — Write A for the usual Laplace operator on the flat d-dimensional torus and denote
here by C# the associated Holder spaces, for any /3 € R.

e Set
Ca(ai,az,b) := H(APalag,v) — a111(Aag, b).
We prove that for o, as and 8 such that inequalities (2.14) hold true, the operator
Ca is continuous from C! x C*2 x CP into C*1+*2t5~2 We have
Calar,ag,0) = > Ay (Payaz) Aj(b) — a1Ai(az) Ay (D).
li—jl<1
Setting
Ej 1= Ai(APalag) - alAi(Aag),
we have
Cala,bye) = > & Aj(b).
li—j]<1
As in the proof of the estimate for the classic corrector C, one sees that one has
|Ageilre < 2% 2770227 mxERA gy oy lag oo
the factor 2% comes from the A operator. Writing

Ak (Calar,az,b)) = Z A (ei Aj(b))

li—jl<1
= D0 Ap(E)A0) + ) Ap(AiE)A;0) + Y Ak(Si(ei)A;(0)),
j<k—2 k<j—2 |k—j|<1

li—jl<1 li—jl<1 li—j|<1

we see that
HAk’ (CA(al, as, b)) H S Z 27i(a2+572)27k041 + Z 272’(0&1+O{2+B72) + Z 27’L’(D¢1+042+ﬁ72)
L i<k—2 k<i—2 l[i—k|<1
S 27}6(0[1#»0(24’&72)
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using that (a2 + 8 —2) < 0 and (o + a2 + 5 —2) > 0. The implicit multiplicative
factor is a multiple of |a | ce1 |azl|cez |bllcs-
e Set now
C&(al,ag,b) 2:PApa1a2b—a1PAa2b: &; A](b)
i<j—2
We prove that for a1, ap and 8 such that inequalities (2.14)) hold true, C', is continuous
from C* x C*? x C# into C*1+*2+A=2 This can be seen by writing

Ay (Cxlar,a2,b)) = > Ap(e)Aib) + Y Ap(Ai(e)A(b))

j<k—2 k<j—2
i<j—2 i<j—2

+ D AR(Si(e)A(b)),

from which one sees that HAk {C& (a1, aq, b)} H 1 18 bounded above by a multiple of

Z 27i(a2+ﬁ72)27ko¢1 + Z 27i(a1+o¢2+ﬁ72)+ Z 27i(a1+a2+ﬁ72)
j<k—2 k<j—2 l7—kI<1
< 27k(a1+o¢2+['372)’

for an implicit multiplicative constant proportional to |laj|ce: |laz|cez bl cs- >

We also have continuity estimates on iterated Cz’_ correctors, as in [4]. Given the proof
of Theorem [3| given in Appendix [B]it will be clear to the reader that their statements and
proofs are identical to what is done in [4] for the iterated correctors — see Section 3.1.3
therein. We leave their statements and proofs to the reader.

The continuity results on the corrector and its iterates, or on the operators C(Li)and their
iterates, are used in the analysis of singular PDEs to take profit from the paracontrolled
structure of a potential solution to get expansions of the form

M (P, [7]) = u-M([7]) + M'(us)
= PUTM([T]) + PM([T]) + M”(UT)v

for operators M’, M” that have the same expansion properties as M itself. So one can
iterate the expansion as long as u, and its ‘derivatives’ have a paracontrolled structure.
The paracontrolled structure of a potential solution will however involve remainder terms
for which one cannot use expansions of the previous kind as the only information we have
on these remainders are their regularity. One defines ‘refined correctors’ to take profit
from their good regularity properties.

The continuity results from Theorem [3|can only take profit only from the Holder regular-
ity of the arguments a; or by of C, ((al, az), b) or C ((a, (b1, bg)) for regularity exponents
in (0,1]. As in the semilinear case we need to introduce refined correctors to refine the
estimates if a; or by is ay or [i-Lipscthiz, with o1 or B; of regularity exponent in the
interval (1,2). We set for that purpose, for a generic spacetime point e,

4
Cp o (01:02,0) () i= €L (a1, a2, 0)(e) — d(@i(e)) " Y, (Vian)(e) (Prp, . ,b) (€,

i=1
4
Ch 1y (a:01.82) () 1= Cf (0, b1, ba)(e) = d(@a(e) ™ 2 (Vib)(e) (PraPeb2) (o),
i=1

4
o <a1, ap, b) (€) := Crlar, as, b)(e) — d(mm(e) " Y (Viar)(e) T (Lﬁgi(e,m, b) (e),
=1
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where the functions §; are defined in Appendix Keep in mind right now that in the
setting of the flat torus one has

1
d(uo(e)) VZ = @2‘,
the partial derivative in the i*? space direction, and

12
bie, ') = d(@ ()" (@ - a}),
for spacetime points e = (¢t,z) and ¢’ = (¢, 2’). The rationale for the introduction of these
refined correctors is that they correspond to refined recentering operators for which € f
corresponds to removing from f its first order Taylor expansion at the running point x
rather than just removing its value at x.

Theorem 4. The following two statements hold true.
o Let aj € (1,2) and ag, B € (—3,3) such that oy + ag € (—3,3). If
ar+P3—-2<0 and a1 +as+5—-2>0
then the operators CZ’(I) and Cy, (1) extends as continuous operators from C* x
C*2 x CP into Corto2th-2
o Let 51 € (1,2) and «, B2 € (—3,3) such that p1 + B2 € (—3,3). If
a+Py—2<0 and a+p1+6—2>0
then the operator CJLF’(I) extends as a continuous operator from C* x CP' x CP2 into
CotBi+p2—2

2.2.2 — L operator. We define the operator
L(a,b) := L(P,b) — Po(Lb).

Continuity results on this operator will allow us to get from a paracontrolled expansion
for u an expansion for Lu of the form

Lu =) Py (L[7]) + (40 — 2),

for some u’. A paracontrolled expansion for a term of the form P,(Lu) can then be
obtained.

Theorem 5. The following statements hold true.
o Let a € (0,1) and B € (—3,3), be such that o« + f < 3, and a + 5 — 2 € (—3,3).
Then the operator L extends as a continuous operator from C® x CP into C*+P=2,
o Let aj, a0 € (0,1) and B € (—3,3) such that a1+ < 3 and a1 +as+5—2 € (—3,3).
Then the iterated operator
L((a1,az),b) := L(Isalag,b) —ail(az,b) (2.15)
extends as a continuous operator from C x C*? x CP into Co1+a2+8-2,

o Let ay, 9,3 € (0,1) and 8 € (—3,3) such that o + as + 5 < 3, as + < 3 and
a1+ ag + B —2€(—3,3). Then the iterated operator

L<((a1,a2),a3),b) = L((F’alaQ,ag),b) — alL((ag,ag),b)

extends as a continuous operator from C x C%2 x C® x CP into Cortoetas+h=2,

The mechanics behind this statement is easy to understand on the following example
set in the torus with the elementary paraproduct operator P from . One sees indeed
on the formula

A(Pyb) — P,(Ab) = Pagb + 2Py,(VD) (2.16)
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that this operator takes its values in C**#~2ifa e C% be CP and 0 < a < 2. Dealing with
parabolic paraproducts and conjugated operators P, P only adds a layer of technicality and
does not change the mechanics. We see on formula that the reason why L has the
expansion property is because the operators Pagb and Py,(Vb) have that property
— see Section 3.3 in [4] for an explanation.

The continuity result for L and its iterate stated in the first two items of Theorem [5| do
not allow to take profit of a possible better regularity exponent for a. It happens however
to be necessary for the analysis of singular PDEs. One has to define for that purpose the
refined operator

L
Ly (a,b) = L(Pub) — 2 P11 (LD)

to deal with arguments a in L(a,b) with regularity exponent greater in the interval (1,2).
(We also had to define in Section 3.1.2 of [4] a refined corrector to deal with ‘high’ regularity
arguments in a resonant term.) The operators P are defined by for any e in the parabolic
space M by

(pé@b) (e) := L .y K(e;e,eMa(e) (IS(;i(.,e/)b> (") v(de')v(de")

with K the kernel of the bilinear operator (a,b) — P,b. See Appendix |A|for the notations
and details on the parabolic setting — these details are not so important when it comes
to using the continuity results stated here or in [4], as opposed to proving them. The
following theorem is proved in Appendix [Bl

Theorem 6. Leta € (1,2) and € (—3,3), be such that a+ < 3, and (a+5-2) € (—3,3).
Then the operator Ly extends as a continuous operator from C* x CP into C+P—2

Theorem [3| Theorem [4] and Theorem [5}[6] take care of the specific features of quasilinear
equations, compared to their semilinear analogue. Formulation also involves the
term a;(u,-)V;u that can appear in a semilinear setting as well. The last paragraph of this
section state the results that we need about it.

2.2.83 — Dealing with the term a;(u,-)V;u. We have the following continuity results for the
operators

Gy, (ar,a2,0) == Py b= a1Prash,

¢l (ab1,be) = Pm(lﬁblbg) — b1Pv;abs,

Cy; (al,am b) =1 (Vilsalaz, b) —ayll (%% b);
see Appendix [B] for a proof.

Theorem 7. The following two statements hold true.
o Let oy € (0,1) and ag, 5 € (—3,3) such that oy + ag € (—3,3). If
as+—-1<0 and ai+as+B—-1>0 (2.17)
then the operators Cy. and Cy, have natural extensions as continuous operators
from C* x C%2 x CP into Co1To2th—1,
o Let B € (0,1) and «, B2 € (—3,3) such that 51 + B2 € (—3,3). If
a+PBy—1<0 and a+pB1+8—-1>0

then the operator CJr has a natural extension as a continuous operator from C* x
C™h x C2 into CO‘+51+62 L
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Proof — We prove here this continuity result for a simplified version of the operator Cy,
in the time-independent case of the flat torus, with the constant vector field d; in the
role of V;; we refer the reader to Appendix [Bffor the proof of Theorem [7|in the general
setting. Set

Ca,(a,b,c) := I1(01 Pyb, ¢) — all(d1b, c).
We prove that for «, 8 and 7 such that inequalities hold true, the operator Cp,
is continuous from C® x C? x C7 into C**A*+7=2, Using that A;(d1f) ~ O(2)A(f),
for a function O(2¢) with uniform norm of order 2!, we have
Ch, (a,b,c) ~ Z O(2)A; (Mgd) Aj(c) —aO(2)Ai(b)Aj(c),

li—jl<1
SO .

Co(a,b,c) = Do O(2)eiAj(c).

[i—jl<1

The same computations as above then yield the estimate

|Ak(Cy(a,0,0))| 0 < 27D cal|bl s el -

Associate with each vector field V; the operator

Vi(a,b) := V;(Pub) — Pu(Vib).

Theorem 8. The following two statements hold true.
o Let o, B € (—3,3) such that o+ —1€ (—3,3). Then the operator V; has a natural
extension as a continuous operator from C® x CP to C**tA~1,
o Letaj, a9 € (0,1) and B € (—3,3) such that a1+ < 3 and a1 +ag+—1€ (—3,3).
Then the iterated operator
Vi((al, ag), b) = Vi(isalag, b) — alvi(ag, b) (2.18)

extends as a continuous operator from C x C® x CP to Co1tazth—1,

Like for the operator L the mechanics behind this statement is easy to understand on
the following example set in the torus, where one has the formula

0;(Pub) — Po(0:) = Pa.ob. (2.19)

We see on formula (2.19) that the reason why V; has the expansion property (2.18) is
because the operator Py,,b have that property.

2.2.4 — A convenient formalism. One can conveniently use a synthetic notation and encode
the expansion rules satisfied by the operators

M(a,b), M(La,b), Prsb, Pyeb, MN(Via,b),
as functions of a, encoded in the statements of the precedinNg sections. Fix b and consider

any of the preceding operators as a function of a,. For a = P,, as, under proper regularity
conditions specified by the above statements one has the expansion property

E(ﬁalaQ) = a1E(az) + E,(ah as), (2.20)

for another operator E’. The rule of thumb is that the argument as in our computations
will always depend only on the noise so it will be convenient to skip it from the notations
and only keep track of its regularity. The variable of interest in the expansion will be a;.
The operator E’, seen as a function of a1, will enjoy the same type of expansion property
as the operator E. We will use the notation E?(a) to denote an operator that sends Cl¢
into Cl**8 under proper regularity assumptions on its argument. One has for instance

() = EFI(),



17

for c € Cl¢l. In those terms, for ay € Cl%2!, identity (2.20) rewrites
E’B(Isalag) = a1EP(ag) + EPHIa2l(qy).

The operators Pya,PyLa and D and S from [4], satisfy a different type of expansion
rule. As above, we are interested in the case where b, or other arguments as in D and S,
depends only on the noise and a can have a paracontrolled structure. If, for b fixed, the
operator sends continuously any space Cl%l into Cl4+# we denote it by F? (a). One has for
instance

Pca = F*2(a).
The expansion rule for such operators is
F? (Payaz) = P, (F7(az)) + FH1e2l(ay),

for another operator F2t192] enjoying the same type of expansion rule as F?, with 3 replaced
by 8 + |az|.

If one agrees to use the same letter for objects that are possibly different but have the
same expansion rule, one has for instance the identity

E? (Paya2) = a1 EP (a2) + EPT12l(ay)
= Pa, (E7(a2)) + Pes(upar + M(a1, E%(a2)) + 1%l (1)
= P, (E%(a2)) + FAFlezl (ay) 4 EFFlezl (qy).

We can see on this expression that if ay itself is given in paracontrolled form then we can
re-expand the E and F functions of a; above. This is the core of the machinery of the high
order paracontrolled calculus, the mechanics that allows to run step 2 in the three step
resolution scheme of semilinear singular PDEs described in the introduction of Section [2}

3 - Quasilinear generalised (PAM) equation

We use the generic three step process from Section [2] to solve the quasilinear generalised
(PAM) equation (2.7). Recall that in the end we want to have an infinite paracontrolled
system stable under the fixed point formulation and to correctly tune the family (84)qen
of regularity exponents in Definition [I| to get a contraction for a small enough horizon
time T

e Step 1. We have 2/5 < o < 1/2, so we choose to work with a third order paracontrolled
expansion, with a remainder term u! € C** in the paracontrolled expansion of u whose
product with any distribution of Holder regularity o — 2 is well-defined, since 5ae — 2 > 0.

e Step 2. We use the continuity results for correctors, commutators and their iterates
proved in [4] and in Section to put the right hand side of equation (2.7)) in the canonical

form (@4).

This is what the next statement does. Recall do(-) = d(up(-)) is smooth. Indices
w,w’, w” below are in # while [r] € 7. We use below the notation s in C((sl)), Cg)) for a
‘sentence’ of the form w, (w,w’) or (w,w’,w”), for words w,w,” ,w" € #'.
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Proposition 9. Assume we are given a system (uy)wey paracontrolled by a family T at
order 3. Then

l
fw)¢ + e(u,-)Lu + Z ai(u, ) Viu
i=0

=PraC+ 2 Prau C) 4 Y Prorwumuy, (o)

|w|<2a |lww’|<2a
+ 20 Pewyur (LIT) + 20 Pequua (65)
T€ET |w|<3a;weW\T
+ Z P, (C(2) ) + Z P, (C(Z) )
do d' () uwi, \S(w,w’) dy Hd@) (W) uwtyr uyr \>(w,w’ w”)
Jlww’|<3a |lww'w” | <3

+ > Pou (Gr) + @),

|T|l=as1<5 <t

(3.1)

for distributions g&”, §2), j,r that depend only on ¢ and 7, with gﬁl) of reqularity |s|+a—2,

with C§2) of reqularity |s| —2 and ;- of reqularity |T| —1. The remainder (§) is an element
Of C4a—2‘

In (3.1)), the terms with exponent (1) come from the analysis of the product f(u)¢ while
the terms with exponent (2) come from the analysis of the product e(u, -) Lu. Proposition|[9J]
is the analog of the paracontrolled expansion of f(u) for the semilinear generalised (PAM)
equation for an arbitrary paracontrolled system u — Proposition 4 in [4]. As always in the
analytic part of the study of a singular PDE, one needs to assume that the distributions
Cs(l), C§2), Gj,r are given off-line as elements of their natural spaces. The remainder term
(#) also involves off-line data. The point with stochastic singular PDEs is that one can
construct these data by probabilistic means; this is what renormalization is about. It
comes as a by-product of the proof that the remainder (§) in is the sum of a term
of regularity 4o — 2 involving the off-line data and a term of regularity 5o — 2 that is a
continuous function of the paracontrolled system % and all the off-line data.

Proof — Below we invite the reader to check the convergence of all implicit infinite sums
of .7 using the convergence condition in the definition of a paracontrolled
system; we do not do that explicitly each time. Recall we denote by () an element of
the parabolic Holder space C? with regularity exponent § € R whose only noticeable
feature is its regularity. Its expression may change from line to line. Recall also from
Appendix [A the definition of the operator

R°(a,b,c) = Py(Pyc) — Pupc,

its continuity and expansion properties. To shorten notations, we sometimes use
implicit summation on repeated indices.

e The term f(u)( is the same as in the semilinear (gPAM) equation so its decom-
position is given by proposition 17 of [4], that is

F)C=PraC+ D Ppuu (G) + D] P (wuwu,, () + (4o —2).

|lw|<2a |ww| <2«

We now deal with the analysis of the term e(u, -) Lu by looking first at P_(, .)(Lu) and
then at Pr,e(u,-) and M(e(u, ), Lu).

)

o For the term P_(, .y(Lu) we have from Theorem
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Lu=1L ( 7'])+ (4o — 2)
=P o 1) (d0 =2 )
wr ([L7]) + Pu, L([o], [7]) + L((tro, [0]), [7]) + (40 —2)
]

= PuT([LT ) + Pur,L([o], [7]) + Pu.,, L((I7]. [0]). [7]) + (4a —2).

One takes care of remainder terms in the expansions of the u,’s with |7| = a, in
the expression L(u,, [7]), using the operator L(;). This remainder term L (ur, [7])

provides an element of C4*~2 that goes in the term (4o —2). Write identity (3.2)
under the form
Lu =: Py &2 + (4o — 2),

with 573,2 ) of regularity |w| — 2. Keeping in mind that the expression (4o — 2) may
change from line to line, this yields

Pefuy(Lu) = Py (Pun€2) + (4o — 2)
= Pe(uyun (67) + R (e(u, ), t, €) + (4 — 2)
= Pe(uyun (62) + R (e(u, ), ur, L[7]) + (4o — 2)

using the definition (3.2 of the fw and the fact that the terms where |w| > «
go in the remainder. Using that each w, is itself paracontrolled, we get

Pe(u) (Lw) = Py yun (62) + R (e(u, )turo, [0], L[7]) + (4a — 2)
= Pa(u,~)uw (57312)) + Pdgld’(u)uquU-‘rs(u;)uTWY RO([’Y]a [O’], L[T]) + (4a - 2)
= Petuyun (CF) + Pt gy, RO (D) [0], LIT]) + (4 = 2).

(Here again remainders in a paracontrolled expansion contribute as remainder
terms that go inside the (4a — 2) term.) In the last equality, the term

Pt yurar (R (1 [0, LI71))

has been added to P (&(UQ )), with w = 707, resulting in changing &(1,2 ) to

( ) We rewrite this formula under the form

5(“7') u = Z Pa(u,~)ur T ) + 2 Pa(u,-)uw (Cq(uz))

e weW\T |w|<3a
+ Pty ur R°([],[c], L[7]) + (4 — 2).
Note that the terms with |7| = « are the only terms in the right hand side of
equation that have the same regularity as the noise (.
e We deal with the terms
Pruc(u, ) = Pry(dy'd(u)) — Pryl = Pry(dy'd(w)) + (4a — 2)
and
N(e(u, ), Lu) = N(dyd(u), Lu) — N(1, Lu) = N(dy 'd(u), Lu) + (4a — 2)

using the correctors C, C}, Cz and Cy, to take care of paraproducts that appear
in the paraproduct plus resonant decomposition of the product d Yd(u). The
refined versions of the correctors will be used to take care of remainder terms in
paracontrolled expansions.

Recall from Section 2.2.4 the E/F-type form of the continuity statements on these
operators and let us agree to denote by E?(-,-) a bilinear operator that has the
E-type expansion property with respect to each of its two variables. We use the
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same convention for a trilinear operator E°(-, -, -). Let us also agree to denote here
by EP, with no argument, an element of C?. Last, recall also that the functions
do(-) and dj'(-) are smooth. Using the E-notation for operators of E-type, such
as in the introduction of Section [, we have

Pru(dytd(u)) + M(dy d(u), Lu) = E2(dy d(u), u)
= dald/(u) Eiz(ua u) + do’ld@) (u) Efz(u, u,u) + (da — 2).

The analysis of the term E~2(u,u) is conveniently done as follows. (This com-
putation was already done at length in [4].) We first write the term E=2(u,u) in
multiplicative form

E~2(u,u) = ur E-2 M (0) + E724M (uyy, u) + (5o — 2)
- {uTluTzE_2+|TI|+|TQ| g B2 ) 4 (50— 2)}
o {tir o BRI ) 1 B2 ) 4+ (50— 2)}
+ (bav — 2)
- {unuTQE*%InIHTzI by Uy g, E-2F I T2I 0]
+ Upy Uryorapn E— 2+l + 2l +loza|+ 2] (5a — 2)}
4 {uTlglE—2+|n|+|al|+m| F Urygy Ungery, E-2F IO Im2l 2] (56— 9)

F g EH NI (50— 9))
+ (ba — 2).

(All the remainder terms (5 — 2) are well-defined.) Each term above that is not
a remainder (5o — 2) is of the form

(*) EP = PE? + FP(x) + EP (%),
fordifferent values of 3, with E depending only on the noise and the reference
functions [7] in the paracontrolled structure and (%) either of the form w, or
U Uy, With w,w’ € #'. The term P(*)Eﬁ has the expected form. We use the

paracontrolled structure of u,, and the F-expansion property to deal with F? ().
To deal with FP(uu,y), write first

Fﬁ(uwuw’) = FB(Puwuw’) + FB(Puw/uw) + Fﬁ(n(uwauw’))a

and use the F-expansion property for the first two terms. For the resonant term,
we use the commutator operator D and its continuity properties, recalled in Ap-
pendix [A] to expand first the resonant term in the form

M (U, Ugyr) = Py, N([T], wer) + D(uw.r, [T],uw/),
and then expand the paraproduct inside the operators 1 and D using the para-
controlled forms of u,s and u,.. We leave the details to the reader as these
computations were already done at length in sections 3 and 4 of [4]. All these

operations are only done up to remainders of positive regularity ba — 2. These
computations give in the end an expansion of the form

Pru(dy d(w)) + N (dg ' d(w), Lu)
- Pdald/(u)uwuw/ (C'lf’lzl') + Pdald(Z)(u)uwuw,uw,, (Cfuz'lz)’w”) + (40( — 2)7

for functionals {ﬁi, and ¢ @) - of ¢ and the [7] € J.

ww'w
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o For the terms involving the vector fields a;(u,-)V;u we simply note that
Pvuai(u, ) + N(a;i(u,-), Viu) = 2a — 1) = (da — 2),
since 2a — 1 > 4a — 2, and use Theorem [§] to write
Viu = V;(Py,7) + (4a — 2)
= Py, (ViT) + Vi(ur, 7) + (da = 2)
=Py, (ViT) + (4a — 2).
>

We insist again on the fact that all the implicit sums on repeated indices above converge
as a consequence of the bound ([2.12)) satisfied by paracontrolled systems and from the
continuity estimates from Section

Remark — A reader familiar with the setting of regularity structures may wonder what plays
here the role of the polynomial component of a modelled distribution and the role of the
symbols XZ and XIZ(E)E that already appear in the analysis of the semilinear generalised
(PAM) equation. For u itself it is the C* part of that function, given by

u® =y — Z Pu.[T] = Z Pu.[7] + ul.
|7|<2c |T|=3c

This C is in particular a non-local functional of G¥ since the paraproduct operator is non-
local. This echoes the non-local character of the polynomial part of the lift to a regularity
structure of the spacetime convolution operator with the heat kernel. Similar explicit for-
mulas for the C1 part of functions g(u) of u can be given using the high order paracontrolled
expansion formula from Theorem 2 of [4] — see Section 3.5.1 therein. While the contribu-
tion of the X component of a modelled distribution is associated with the two symbols X =
and XI(Z)= the contribution of u) in the paracontrolled analysis appears differently as
the contributions of the terms u, with |T| = 3« and uf. Note of the distributions Cs(l) or
CS(Z) correspond in particular to one of the symbols. Rather it is a linear combination of

the (s(l) or §2) that would correspond to each of them.

e Step 3. Consistency of the fixed point relation
¢
u= Fug+ L (f(u)( +e(u, ) Lu + Z a;(u, )Vm)
i=0

imposes the choice of T and induces a fized point relation for GF.

o Constructing 7. One identifies from equation (3.1)) a number of constraints that . =
T U Tou T3 needs to satisty to write a consistent fixed point formulation of equation (2.7)).

Denote by s = (wy, ..., w) a generic sentence with words in #, with |s| := |wq|+- - -+|wg].
Consistency imposes that one has
Z7¢) € A,
(£ 'L)(7) < 7, forall 1 << 3,
L7 5(1)) c 41, forall |s| =ia < 2a, (3.3)
7 (<S(2)) c 7, for all |s| = i < 3a, and s ¢ .7,
L Ga) < S
Requiring further
{n([T], [0]), Piylo] = Piylo]; T € ,71} < %, (3.4)

ensures moreover that for u paracontrolled to order 3 by the reference set .7 all the func-
tions f(u), f'(u)ug, @ (u)uqup, ete. that appear as lower arguments of the paraproducts
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in the paracontrolled expansion (3.1)) of the right hand side of (2.7)) have a second order
paracontrolled expansion with respect to that reference set 7.

We define T = 71 U T U T3, as the smallest set of reference functions satisfying (3.3))
and (3.4).
Let us emphasize the triangular/iterative nature of (3.3))-(3.4) behind the notations

e §1), q §2) and (j . The elements of .7; 1 are only built from ¢ and elements of .7;. This con-
struction recipe for .7 gives back the finite set .7° used for the study of the 3-dimensional
semilinear generalised (PAM) equation in [4] if one replaces the preceding infinite set .7}
be the one point set {£1(¢)}. In a sense, one can see 7° as the ‘skeleton’ of 7, where
each occurence of £ ~1(¢) in an element of .7° is in .7 any of the elements of .7;. Given
[7] € 7 denote by n, the total number of times that the operator £ 'L appears in the
formal expression for [7].

A proper definition of .7 when the noise € is space white noise requires the implementa-
tion of a renormalization procedure. The works [12, [14] by Bruned, Hairer and Zambotti
and Chandra & Hairer provide a systematic approach of that question in a semilinear
setting in the context of regularity structures. While [7] gives a strong hint that this
result can be translated from the regularity structure world to the paracontrolled world a
purely paracontrolled analysis of the renormalization problem is still missing. A number
of investigations on the renormalization problem in a quasilinear setting have been done
[18, [I7]. Given these first results, it is most likely that an ad hoc renormalization process
for the quasilinear setting will be given by the same renormalization process as in the
semilinear setting, with trees with branches of ad hoc length used instead of their skeleton
‘semilinear’ trees. As a consequence, one expects estimates of the form

|7l < ko C™7,

with 7° the skeleton tree corresponding to 7 in the semilinear setting and C' > 1 a constant
depending only on the operator .Z~!'L. As there are only finitely many trees 7° in a
subcritical regime one should be able to take a uniform constant k instead of k... We
capture this discussion under the form of an assumption — which holds true when the
noise is smooth.

Assumption (A). There exists positive constants k and C > 1 such that one has
[Tl < kC™
forall Te 7.

o Fized point formulation of the equation. With that choice of reference set .7 and given
a system u paracontrolled by .7 at order 3, the function

‘
71 (f(u){ +e(u, -)Lu + Z a;(u, )Vm)
i=1

is the first element of a system paracontrolled by 7 that we denote by \ll(ﬁ) Write
(I)(aﬂ) c H 3ot Bu—|w|
weW

for the associated map that gives the collection of all the remainders in the paracontrolled
expansion of the different elements of \If(ﬂ) Note that the fixed point identity

4
u = Z ﬁuTT + uﬁ — g_l (f(u)C + €(U, )L’U, + Z ai(u’ )‘/;u> + ]_‘uo

T€T i
identifies then each w; in the left hand side to an explicit function h;(u) of u only. One
has for instance

e(u, ) f(u), for 7= u, = (gflL)k(Zfl(C)).
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More generally formula (2.13) can be used to identify explicit functions h,, such that
Uy = hoy ().

We can distinguish three generic methods we could be used to prove that a map like
® is a contraction provided the time horizon T is small enough. In a setting where we
work with time weighted functional spaces, like in regularity structures, one can use a
form of Schauder estimate telling in particular that our map takes values in a space of
functions with better behaviour near time 0. This gain in the explosion weight give a
small constant over a small time interval. We do not choose this strategy as we have
chosen not to work with time weighted functional spaces. In a different direction one can
try and use scaling arguments as in [20]. This strategy is efficient only when coupled
with the scaling property of a random noise provided the spacetime scaling and the noise
scaling work appropriately. We do not use that strategy as we stick here to a deterministic
setting. We take a different road and work with well-chosen sub-optimal functional spaces
for the remainders [ [, ¢3atBuw—lwl in order to take profit from the a priori fact that the
solution of the fixed point equation will actually have better regularity. We will use for
that purpose the elementary fact that if 0 < 8; < 8 < 1 and v € C? is null at time 0 then

Ba—B1
[vles: < T2 ||vess- (3.5)
This gain of parabolic regularity will provide us with a small factor that will give in the
end the contraction property.

A choice of regularity exponents — We choose the exponents (By)wew in (2/5,a) in such
a way that By > By if the word w has more letters that w', and By, > By if w and w'
have the same number of letters and |w| < |w'|. Given the above skeleton picture of 7,
this can be dome in such a way that the By, take only finitely many values.

Denote by af = (’U,Eu)weyy a generic element of the product space

H C3a+6w7|w|7

weW
endowed with the norm
@8 =) Q) ol csat st
weW
so if one denotes by % the paracontrolled system associated by to the collection af
of remainders then one has [|@*|| = [|a]|. Given ug € C** set hgs(ug) := up, and define

S(ug) = {aﬁ; Il]| < oo, and wly, = hu(ug), Yw e W} :

ﬂ
wt=0

this is a closed subspace of <Hw€7/ ClatBu—lvl . H\)

Theorem 10. The map ® is a contraction of S(ug) provided the positive time horizon T
is small enough.

This statement means that equation (1.1) has a unique local in time solution in the
space S(ug); it depends continuously on 7. The choice of %y is made at the end of point
(i) of the proof.

Proof — Recall we use exclusively the symbols 7, o for letters from the alphabet .7, while
we write w,w’, w” for elements of # — possibly words with only one lettre.

o We first prove that ® is a well-defined map from S(ug) into itself. This means that
the condition

S o) [ oo i < o0

weW
is stable by ®. We decompose this sum according to the value of |w|.
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— For |w| = 3a, one has v,, = v, € CPv and the condition reads

S (w) [vwlles. < .

|w|=3a
We read on formula (3.1]) the different possibilities for w, of the form .Z~1( §1)),
with s € {wi, (w2, W3)}w, wowsew and |wi| = 2« or |wows| = 2, ete. If for instance
w = z—l(g&lﬂ) with |wy| = 2a we need to show that
|w1]|=2c

This can be seen from a direct computation

Z ”f,(“)“ﬂn HCBU’I Hf_l(C&ll))Hcaa

|wi|=2a
= 2 f@urfesn |27 ez + 20 1 Wtorllgsu, L7 e

|7[=2a lo|=[v|=a

SIf@les | D0 i lurlgsn, + 35 (07 oyl gsu

|7|=2a lo|=|v]=c
S 2 (7) llur g, + Z (oW oyl cson
|7|=2a lo|=[v|=a
< J1@)) < oo,
using that 8, > Sy, since |o| < |wi| and Bsy > By,. Another example is given by

in the case where w is a word with only one letter 7 and we have 7 = (£ ~!L)o for
|o| = 3a and we need to show that

D e Yuolless (L7 L)oflesa < co.

|o|=3c

This indeed holds with
D0 le(u Yugles (L L)olesa £ - Nugles: [(u, (L7 LYo csa

lo|=3a lo|=3c
< 3 Juoleslo}
lo|=3
< 1@ < o,

using that 8, = 3, since || = |o|. Remark that this term corresponds to the quasi-
linear character of the equatiton. We let the reader check the other cases.

— For |w| = 2a, we need to show

> () [vhlats, < oo

|w|=2a
So we need to compute the remainders vqﬁﬂ for all such w; they are given by the formula
VU = Z I?’UMT + va.
|T|=c

(1))

/

Here again different cases can happen depending on w. If for instance w = £ (¢ w
with [w'| = a so w' = 0 € 7, we have v, = f'(u)u, and

f/(u)ua = Pf’(u)ua + Pua (f/(u)) + n(f/(u)aua)
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(e =P g, 5 wyugu, (1)

i {R(f%u),um (V1) + R(L, £/ (W), 7) + R(FP (u)ug, us, [7])

+ R(L [P (w)uguy, [7]) + Pu, (f' () + ”(f/(U),uo)}

=: Isvw»y ([7]) + Ulﬁu
i

where all term in the remainder vy, satisfies the convergence condition. As an example,
we have

0 D5 ) [RA, f(Wttgys Nays, S 19 @la D (09 [uoyllg,, < 18] < oo
lo|=a|y|=c lo|=|v|=a

Another example is given by w = 3*1((1(02,)) with |w/| = 2a. If w' = 7 € J5, the

computation is similar to the one where |w’| = 3« thus we consider the case w’' = 7o
with 7,0 € 7. We have v,, = £(u, -)u,y and the similar computation

E(u, ')UTU = Ps(u,-)uTU + Puﬂ7 (E(Ua )) + I_I(g(ua ‘)7 UTU)

= P s 5 d (wuroy ()

+ {R(s(u, ), Urgrys [’y]) + R(l,a(u, -)uTﬂ,’)/) + R(dald’(u)uw,uw [’y])

+ R(l,dald’(u)umu% [’y]) + Py, (s(u, )ﬁ) + ﬂ(s(u, -),um)}

=: Isvwfy ([7]) + ,U?u

with e(u, -)* the remainder given by the nonlinear paracontrolled expansion of &(u, -).
f

Again, the remainder vy, satisfies the convergence condition with a similar computa-
tion. The reader is invited to check the other cases.

— A direct computation also shows that
D (@) [V [aats, < oo
|w|=a

The remaining details are left to the reader.

o We now prove that ® is a contraction of S(ug) if T small enough. Pick 4f and o
in S(up), with associated paracontrolled systems u and v. Since both paracontrolled
systems are in the solution space, the system

z:=®(u) — ¢(v)
is also paracontrolled by .7 at order 3 and its has all its remainders null at time
0. This fact will allow us to use the estimate (3.5) and gain a factor 7(*'=7)/2 when

comparing the norms of such functions in two different parabolic Holder spaces with
respective exponents v and /. From Proposition |§|, we have

,/Z\g = Z |SZT7' + Zﬁ
|T|<3c
with explicit formulas for the components z; = ®(u), —®(?), of Z. In the expansion of

Zgs we need to control (i) the terms | 2.3, for |7| = 3ac and (ii) the terms HnggaJrﬁT_m
for || < 2au.

(i) We first consider the terms z;. For example, we need to control

|/ (@ = f'@)vwl, ,  with w] = 2a, and 7 = 271 (D),
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with w € #. This is done writing
waww—mem%a$HU%W—JWWM%%U+MWwww—MOMU

1#/) = £ @) hals, + 757 £ @) o = vl
QN%U+WM)MM&)M—MM+TMBWf@NNwﬁWMm
s{ 5 (Il (1 + Jula) laulls, ) + T2 £ @)la } lla# = 5.

Another example is

0450'

1£® ()t — £ (0) 04000

Bo
with |w| + |w'| = 2a and 0 € F given by £~} <(§B},>. It is dealt with writing
Hf(2 (W) Uy Uy — )(U)Uwvw’ 8o
H( f(2) )) Uny Uy s + Hf(z)(v)(uwuw’ - Uwvw’)
D W) — FO W) ol w5,
min(Bw, 5 1)—Bo
+T Hf Hﬁo Huqu — VwUy Hmin(,@w,ﬁw/)
(6“’7 ~4 ~f
< (T U gl + 7 12w, ) 12 - .
All the other terms are dealed with using the following four inequalities.
e One has
B'LU BT
ey — v, () = £ )| walls, + 775 (v, alvw = vuls,

for w ¢ 7, |w| = 3a and o € .7 given by £~} (Q(,?)).

e One has

Jdg ' (W) — dg @' @)vwv |, < T2 |dg ' (w) — dg ' d' )] Juwar |,
min(Bu, BB
+T 2 |dy d ()] 5wt — vwvw | s, 509
for |w| + |w'| = 3 and 0 € J given by £ ! <C1(U2U)J,>.
e One has
Hdald<”<zolhuuuﬂuuw — dy ' d® (0) vy vy,
o d® (u) — dyd® (v) |ttt | 5,
mm(ﬁwﬁ 15By m)—Br —14(2)
+T “2 |dgtd® (v)| 4 | U Ut Uyr — VU Uy min(Ba,By,5e)

for |w| + |w'| + |w"] = 3a and 0 € T given by £~} (Cﬁl,wu).

e One has

0450'

Hdé H ”U’TH/BU +

Hdg(U, dﬁ UU”B HUT_UT

for |7| = a and 0 € F given by £~} (Cj,r)-

v ), ls.

There is only one case where we use the fact that e(u, -) is small when T is small. We
use it to estimate

Hs(u, Jur —e(v, vy
While we have indeed

5 < |(e(u,-) — e(v, -))uTHﬁJ +[e(v, ) (ur — UT)HBO“ (3.6)
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a—fBa

” (‘5(ua ) - 5(’”7 '))uﬂ'”@r ST HE(U, ) - 5(’”7 ')HaHuT”ﬁm
we do not gain a T-dependent fact using the regularity of u, — u, in the second term
of the right hand side of inequality (3.6]) since 3, = 5,. We write instead

Jew, e = vr)ly, < e, s, fur = vrls,
< (Jdw) = d(wo) | + |d(uo) — (@), ) ler = orls,

< (T |d(v) - d(wo)],, + |d(wo) — d(ws) ) lur = vr 5,

using estimate to get the T-factor in the last line since d(v) — d(ug) is null at
time 0. The factor ||d(ug) — d(uo)| s, is as small as we want for wy close enough to
ug in C%. This is the place where we choose ug as a function of ug. (Note that it is
only the regularity of ug as an element in C® that matters here. We asked ug € C4*
to treat the free propagation of the initial condition Fug as a remainder term in the
paracontrolled analysis and avoid the use of time weighted norms.)

(ii) This case is concerned with the remainder terms HzEHgaJrgT_M. Let us consider
the case |7| = 2« for example. Then z, is written as

se= 3 Pa () + 2

veSA

In the case 7 = £ 71( C(,l)) for o € 71, the computation at the begining of the proof
gives the explicit remainder zg with

zr = f(Wue — f'(v)vo
= P fr Wt + £ @ttty — (/)10 + £ () ([7])
" {R(f'(u),um, [V]) + R(l,f’(u)u(m,’y) + R(f(Q)(u)ua,uv, ['7])

RO S @i ) + Py (/) + (7 e |
— {R(f’(v),va,y, [7]) + R(l,f’(v)vm,’y) + R(f@)(v)vg,v,y, [7])

+R(1, P (0)v5v4, [7]) + P, (f/(0)F) + n(f’<v>,va)}

=: PZT’Y([’Y]) + Z?’
with implicit sums over v € ;. From here, the analysis of the general terms z,,, with

w € W, is similar or easier to the computations done in (i). It is left to the reader.

We obtain the contacting character of the map ® from the fact that the exponents [,
only take finitely many different values. >

Remarks — 1. The quasilinear (gPAM) equation dealt with in [6] involved a space white
noise ¢ on the two-dimensional torus — as opposed to a spacetime noise as in the present
work and the other works [16], BI, (I8]. The fact that { depends only on space allows to
write

270 =170 - [ e O

as a perturbation of L=Y({) in a time weighted functional setting. Taking Zy := L™'(()
one has indeed

L7HL(2)) ~ 2,
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up to a remainder term a time weighted functional space. It is that fact that allowed
the authors of [6] to work with a usual first order paracontrolled structure and avoid the
infinite dimensional feature of the other approaches [16], [31]. Since T reduces to F; in
the two-dimensional setting this simplifies greatly the analysis. The fact that the term

?O e "L(¢) dr can be treated as a remainder term is specific to the 2-dimensional setting.

2. It is possible to use the results of [4] and the extended toolkit for the high order

paracontrolled calculus from Section to handle the analytic part of the study of the
generalized (KPZ) equation.

A — Basics on high order paracontrolled calculus

We recall in this appendix a number of results from [3), 4] that we use in this work.
This should help the reader understanding the computations of Appendix [B] and their
mechanics.

We first describe some approximation operators P; and Q; that we use in place of the
usual Littlewood-Paley projectors Z] < Aj and A,, in which the heat semigroup plays
the role of Fourier theory. The parabolic Hdlder space are defined from these operators.
We also recall the form of the space-time paraproduct and resonant operators that we use
and give a number of the continuity estimates on different correctors/commutators and
their iterated versions.

Recall that we denote by M a 3-dimensional closed Riemannian manifold and set
M:=1[0,T] x M,

for a finite positive time horizon T'. We denote by p(-, -) the parabolic distance on M and
by e = (7,x) a generic spacetime point. Denote by p the Riemannian volume measure
and define the parabolic measure

vi=dtQ® pu.
Recall the reformulation of equation , where the operator L = — Zle VZisa
second order differential operator in Héormander form.

A.1  Approximation operators and parabolic Holder spaces

In the flat setting of the torus, we can use Fourier theory to approximate Schwartz
distributions by smooth functions. We have

f=lim S.(f) = > Ailf)
i=—1
with A; the Paley-Littlewood projectors. Refer e.g. to [5] for basics on Littlewood-Paley
theory. Using the heat semigroup, one has in a more general geometric framework

f=limPVf = f Q(b) @y POy
where —
b tL)’e”
QY .~ (tL)

(b—1)!

with Py = Id. One can show that there exists a polynomial p, of degree (b — 1) such that
Pt(b) = pp(tL)e ™ and py(0) = 1. The operators ng) and Pt(b) play the role of Paley-
Littlewood projector and Fourier series, respectively. Indeed, if one works on the torus,
then

and — t&tPt(b) = ng)

B (th)b

_ 2 /? _ 2
= 1)!6 M and Pt( )()\) =y (t|)\|2) e N
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so we see that ng) localize in frequency around the annulus |\| ~ =3 and Pt(b) localize

in frequency on the ball |\ < 2. Since the measure dt/t gives unit mass to each

interval [2_(”1), 27, the operator ng) is a multiplier that is approximately localized at
1

‘frequencies’ of size t~ 2. However, this decomposition using a continuous parameter does
not satisfy the perfect cancellation property A;A; = 0 for | — j| > 1, but the identity

b
®) () _ ts (2b)
Qt Qs <(t+8)2 Qt+s
for any s,t € (0,1). The parameter b encodes a ‘degree’ of cancellation. In order to

deal with time approximation, define for m € L!(R), with support in R, , the convolution
operator

% 1 )
m*(f) (1) := J m(r —o)f(o)doe and my(:):= Tm (;)
0
for 7 € R and a positive scaling parameter t. Given I = (i1,...,i,) € {1,...,£}", define

the n'"-oder differential operator
Vi=V,, ... V.

We say that a family (Qt>te(071] of operators is Gaussian if each the kernel of each Q; is
bounded pointwisely by the reference Gaussian kernel G;. (We do not recall its explicit
expression here and refer the reader to Section 3.2 of [3]. It behaves as one expects.)

Definition — Let a € [0,2b]. We define the standard collection StGC” of operators with
cancellation of order a as the family of operators

<(t£'v]) (tL)* P @ s02>

where a = |I|+j+2k, c € [1,b] and ¢ a smooth function supported in 271, 2] with bounded
first derivative by 1 such that

te(0,1]

fT%(T)dT =0 forevery0<i<k—1

These operators are uniformly bounded in LP(M) for every p € [1,0], as functions of the
parameter t € (0,1]. We also set

StGClo-20l . — U StGCe.

0<a<2b

A standard family of operator @ € StGC® can be seen as a bounded map t — Q; from
(0,1] to the space of bounded linear operator on LP(M). Since V;V; # V;V;, the operators
V; do not commute with L so

‘/ILbeftL - LbeftLVI.
We introduce for the needs of the next proposition the notation
(viv())" = w(o)vi

for any holomorphic function . This notation is not related to any notion of duality.

Proposition 11. Consider Q' € StGCY and Q2 € StGC*® two standard collections with
cancellation. Then for every s,t € (0,1], the composition QLo Q?* has a kernel pointwisely
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bounded by

a2
2

, 5\ % t
KQ%OQ%' (67 e )’ s <E) 15<t + (3)

t 2 .
< <(8—|—8t)2> gt+s(€7€)

1s>t} Gris(e,€)
(A1)

with a := min(a, az).

Estimate ([A.1)) encodes a cancellation property that is in our setting the counterpart of
the property A;A; = 0 for |i —j| > 1. We also need operators that are not in the standard
form but still have a useful cancellation property.

Definition — Let a € [0,2b]. We define the collection GC? of operators with cancellation
of order a as the set of families of Gaussian operators Q such as the following property
holds. For every s,t € (0,1] and every S € StGC¥ witha < a < 2b, the composition Qs0Sy
has a kernel pointwisely bounded by

) *Grrsle ).

ts

arse < (77

Definition — Given any « € (—3,3), we define the parabolic Hélder spaces C*(M) as
the set of distribution f € D'(M) such that

| flce == e f] . + sup sup t72[Quf| L= < o0
QeStGCk te(0,1]

|| <k<2b

A.2  Parabolic paraproducts, correctors and commutators

The Paley-Littlewood decomposition can be used to describe a product as
fg = lim Sn(f)Sn(g)
n—0oo

D AiDA + Y AiNA9+ D) AiN)A(g)

1<j—2 li—jl<1 i>5+1
=Y ALNHA(G + D) AHA(9) + D Ai(f)A(g)
5 li—jl<1 :

= Pg+11°(f,9) + P} f.

The paraproducts P}Jg and PgO f are always well-defined unlike the resonant term I1°(f, g).
We use here a slightly different identity

— | ®) () ¢ p(b)
fg—%g%Pt (Pt f-Py g)
1 dt
_ fo (QV(POs-PPg) + PO (0P 1 PPg) + PP (P f.QEb)g)}T A2)
n be) (P§b)f . P£b)g) ’
which corresponds to writing

Since 73t(b) plays the role of A_; and ng) the role of A; we want to manipulate this
expression to get terms of the following forms

! dt ! dt ! dt
Lﬂ'(@%f-@?g)t, or LQt'(fo-Ptlg)t, and Lgt'(vvgf-gfg)t,
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where @1, Q> € StGC® encode some cancellation, so ¢ > 0, and Py € StGC%4 can encode

no cancellation. This is done using repeatedly the Leibnitz rule V;(fg) = Vi(f)g + fVi(g).
We have for instance

1 _ dt
J p® (b—l(tL)QEb 1)f-7>§")g>

t
0
a _ A _ dt
= ot [ PPy (Q0rP0g) § -0t [P0 (0 P) T
0 0
1 S (b) (b—1) @) \ dt
27t Y | PP (- (vivrg)
=1

where we ‘take’ some cancellation from ng) to the other terms. Starting from identity
(A.2) repeated use of this kind of decompositions allows to rewrite the product fg as

f9="Prg+T1(f,9)+Pyf,
where Pyg is a linear combination of terms of the form

L dt
| ot pir-et) T
and M(f, g) is a linear combination of terms of the form
L dt
| P (air-et) T
©

with Q', Q% € StGC2 and P! e StGCO2%] up to the smooth term P} ) (be)f : P{b)g)

All the details on this construction and the classical estimates on the paraproduct P and
the resonant I operators can be found in Section 4 of [3]. It is useful to introduce the
conjugated paraproduct operator

Prg=2"1(Ps(Zy))

for any functions/distributions f and g. Ome can show that P 7g is given as a linear
combination of operators of the form

L dt
J Qt.(,Ptlf'QtQ)7
0

with él € GC%*2, Q% e StGC% and P! e StGCO2] The only difference is that @1 is not
given by a standard form but still encodes some cancellation. This is however sufficient
for P to enjoy the same continuity properties as P. (See again Section 4 of [4].)

The study of semilinear singular SPDESs using paracontrolled calculus relies on a number
of continuity estimate for different operators. We recall three of them here and refer the
reader to [4] for a thorough account. Define the E-type operator

C(a,b,c) := ﬂ(l?’ab, c) —all (b, c)

and its iterate

C((a, b),c, d) = c(ﬁab, e, d) — aC(b, ¢, d).

Proposition 12. The following two facts hold true.
o Let a€(0,1) and B,y € (—3,3) such that
B+v<0 and O<a+fB+y<1.

Then the corrector C has a unique extension as a continuous operator from C® x
CB x C to COTAH,
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o Let aj,an € (0,1) and B,y € (—3,3) such that
a1 +B8+v<0, a+8+7<0 and O0<a;+as+B8+7y<l1.
Then the iterated corrector C has a unique extension as a continuous operator from
C % CO2 % OB % C7 to Crtaz+fB+y.

Note that the Holder regularity exponent of the first argument in the corrector C has to
be less than 1 in the above statement. In order to gain more information from a regularity
exponent in the interval (1,2) one needs to consider the refined corrector given for any
e € M by

Cwy (a, b, c> (e):=C <a, b, c) (e) — Zgl i (Via) (e) (ﬁgi(&,)b, c) (e)

where the functions 0;(-) are given by

Sile,e’) == x(d(z, ")) Vi(x), Ty )1 M, e=(r,z), ¢ = (7,2,
with x a smooth non-negative function on [0,+) equal to 1 in a neighbourhood of 0
with x(r) = 0 for r > r,,, the injectivity radius of the compact Riemannian manifold M,

and 7, a tangent vector of T, M of length d(z,y) whose associated geodesic reaches y
at time 1. The functions ~; are defined from the identity

l
V=Y %mVif)Vi,
i=1
for all smooth real-valued functions f on M.
Proposition 13. Let a € (1,2) and 8,7y € (—3,3) such that
a+pB+v>0 and B+v<0.
Then the operator C(1y has a unique extension as a continuous operator from C* x Ch x Y

to Coth+Y

Set

Proposition 14. The following two facts hold true.

o Let a, 3,7 € (0,3). Then the commutator D is continuous from C x CB x CY to
CcotB+y,

e Let B€(0,1) and v € (—3,3) such that § + v € (—=3,3). Then the operators R and
R° are continuous from L® x CP x CY to CB*7.

o Let a,f € (0,1/2) and v € (—=3,3). Then the operator R° is continuous from
C* x CP x CY to COTA+7,

We also need continuity estimates on iterates of the operator R°. However in this case
the expansion rule isdifferent depending on which argument we expand.

Proposition 15. The following two facts hold true.
o Let oy, a0 € (0,1) and v € (—3,3). Then the operator
RO(((Il,(Ig),b, c) = Ro(ﬁalag,b, c) — Pa,R%(ag,b,¢)

is continuous from C* x C* x L® x C7 to Co1Ho2+7,
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o Let 51,PB2€(0,1) and v € (=3,3). Then the operator
R°(a, (bi,bg), ¢) := R (a, Pp,ba, ¢) — R°(aby, by, c)

is continuous from L® x CP1 x CP2 x CY to CPr+B2+7,

B - Correctors and commutators

In order to simplify the notation we write here || - |, for | - [|ce. The proofs of the
corrector estimates follow the line of reasoning of similar estimates proved in [4]. Recall
from Section 2.2.1 the definitions of the operators

Cr (a1,02.0) =P b= arPrasb,
Ct (a,b1,61) = Pra(Poiba) — biPrabs,

CL(al,ag,b> = FI(LIsalag,b> - all'I(LaQ,b>.

Proof of Theorem [3] - We give here the details for the continuity estimate on C; and
explain how to adapt the proof for C7, CJLr, Cy,, C‘_/i and C‘J;i.

We want to compute the regularity of Cr(aj,as,b) using a family Q of StGC" with
r > |a;+ag+B—2|. Recall that a term M(La, b) can be written as a linear combination
of terms of the form

! . 1 2 dt
o P (Q¢(tL)a - th)tj,
while I?’ba is a linear combination of terms of the form
1
~Nag dt
f 9} (Qfa- 791319)7
0

with Q1, 02, 0% € StGC2, 0% € GC3 and P!, P? e StGCIO3). For the terms where
P2 e StGCH3, we already have the correct regularity since
ds dt

fol Ll QuPI* (@ (L)@ (Plar - Slan) - Q) T

1,1 z 5
ut 2 ts 2 ajtay pdsdt
<a a b s tr——
faaostoaloaltls [ [ () () =g

a)tag+p—2
S llaallas [azlazllbl g w2

using that o € (0,1). We only consider P? € StGC® for the remainder of the proof.
For all e e M, we have

Cr(ay,az,b)(e) =N (Llsalag,b> (e)—ai(e)-NM(Lag,b)(e) =N (ngalag —ay(e) - Lag,b) (e),

since [T is bilinear and aj(e) is a scalar. This yields that Cp (a1, ag,b)(e) is a linear
combination of terms of the form
" ore o 33e 2 A4 2 ds dt
Pl ( QLG ((Plar —ai(e)) - Otas) - Q7 ) (6) T3
0 Jo
b g xyds
using that J LO** O}~ = L up to smooth terms. This gives (QuCr(a1,az,b))(e) as
s

0
a linear combination of terms of the form
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JKQU(e,e')Pt ¢ (Qtl(tL)@fz' ((Pfal — al(e’)) . ég%) . be) (€)) %@V(de')
= JKQU (e, e’)Kpg.(e’, e”) (Qtl (tL)ég' ((Pzal — al(e”)) . éiag) . fb) (6")?—V(de')y(de”)
+ ffou Ko, (e, e’)Kptl.(e’, e”) (al(e”) — al(e’)> (Q% (tL)as - Q?b) (e”)gu(de’)u(de”)

1
| | Kot Ko (e ) (ar(e”) - ar(e) (QH(eL)aa - 93) (") Gv(dew(de’)
=:A+B+C.

The term A is bounded using cancellations properties. We have

~ ~ dsd
|A| = JKQuPtl.(e, ) (Q%(tL)Q;;' ((7332@1 — al(e’)) . Q§a2> . Q?b) (e/)ft—gu(de’)

a1 ay gdsdl

alnaluamrbm(f [ () o2 oriald
+J1J1 tu 3 st %( +t)71 2.8 sdt
s dt

wdo \(t+u)?) \(s+1)2 s 12

ajtag+B-2
< latfaslazlas [blg w™27,

using that a1 € (0,1),P? € StGC® and (ay + az + 5 —2) > 0.
For the term B, we have

v ao+8 dt
B1 % larloullaalaltls [ | Keu(ene) Kl ehple ") Gtael wlae
6/78//

U oy tagt+p—2 dt
< Jatllas lazlas 815 fo T

ajtag+5—2
< llaallas llazlas l0llg ™27,
using again that o € (0,1) and (a1 + ag + 5 —2) > 0.
Finally for C, we also use cancellations properties to get

1
€1 % ot a2|a2|b|ﬁ{ | ] Keteerkpte o) - ae)
e e Ju

= @V(de')v(de”)

t

1
+ J f Ko, (e, e’)Kptu(e/, e”)‘al(e’) —ay(e")
e e Ju

1757 ?V(de )% (de”)}

1 as+8 dt
sualrmamwra{ f j Koy (e:¢)Kppa(e e ple )15 Lo deyui(de”)

J J Ko, (e e )KP10(6 e"p(e, e”)alt%;ﬂCi;y(de')u(de”)}

oy (Y oagrsezdt (Yt T agrayia-2 df
< Jatla; [az]as bl u;f t2+2+J _tu  \? etogis2dl
u t w \(t+u)? +

ajtag+B-2
< larfarlazlas f0llg u™2,

using that a; € (0,1) and (a2 + 8 — 2) < 0. In the end, we have

+ag+B-2
|QuCulara2,b)| < arlalazlas b5 w5
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uniformly in u € (0, 1], so the proof is complete for C;. The proofs for C; and C7 are
then easy to obtain since Pr4b has the same form as M(La,b). Indeed, Pr,b is a linear

combination of .
dt
1o (1 2
L i (PltL)a- o) 5

where Q', 0% € StGC2, P! € StGCI%¥ and we have (P}(tL)) e StGC.

0<t<1

The proofs for Cy;, C(/i and C‘J;i also follow from the same argument and using the
Leibniz rule as for the corrector Cy used in Section 3.3 of [4] to solve the generalised
(KPZ) equation. >

Proof of Theorem [4] — For the continuity estimate of C L,(1), We also want to compute the
regularity using a family Q of StGC" with r > |ag +ag + 3 —2|. Again a term [1(La, b)
can be written as a linear combination of terms of the form

dt
J‘ Qgt tl; 22%b>z§7
while Isba is a linear combination of terms of the form
1
oy~ dt
f Qt'(Q?a : Pth)7;
0

with Q', 92, @3 é4 € StGC% and P!, P? e StGCI3] For the terms where P? e
StGel2? , we already have the correct regularity since

f J 0.7 QL3 (Prar - Flan) - o) B4

s T P I Pt e g ds
s |a a G2
1o |42 [acg B o Jo (t+u)2 (S+t)2 . t2

aytag+p—2
< [larllas [azlaz bl g w2

using that a; € (1,2) so we only consider P2 e StGCI®!. For P2 e StGC®, we control
it using the term a;M(Lag, b) as in the proof of the continuity estimate of C. We are
left with

4
J 7 (Qtl (t0)Qx ((P (o1 = d(mo(e)) ™ Z(vim)(e)aio,e))) ~ Q> - Q3b> Ok
=1

with P? € StGC'. Then the result follows with the same proof using that P21 = 0
since it encodes some cancellation and the first order Taylor expansion

¢
ai(e’) —ai(e) — d(ug)~ Z (Viar)( e)| < ple,e)e.

We let the reader prove the continuity resuls for C, ) and Cz (1)} they can be proved
by the same argument as above. >

Proof of Theorems / Elements — We give the proof for the continuity estimate on
L and L(;). We let the reader adapt the proof from [4] for the iterated operators of L
since it relies on the same argument. The same holds for V;(a, b) and its first iteration.

We want to compute the regularity of L(a,b) = LP,b—P,Lb using a family Q@ € StGC"
with 7 > |a + 8 — 2|. We write P,b and P,b respectively as linear combination of

1 1
J @g- ('pSQa . égb) ds and f Q;° (Ptla ‘ ng) i
0 S 0 t
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with Q1, 92, O* € StGC3, 0% € GC> and P!, P? € StGCI03l. As done for C, we only
have to consider P!, P? e StGC” since the other terms already have the right regularity
using that a € (0,1). We consider a term

1 ~ ~
f Lo% (Pfa.gi f QL (Pla- QX(tL)b )dt.

dt
We use that f Qt'Q2 f Q3° Q4 = Id, up to smooth term, to get

f j Qt. Q?(tL)ég. ('PSQa . égb) ’Pta Qt (tL)QS.Q4 ) dt dS
0 JO

J f Qt (tL)O?* ((Pfa —Pla(-)) - @;Lb)) :;t cis

where the variable of Pla(-) is frozen as before, in the sense that Q2(tL)Q3* does not
act on it. Since o € (O 1), we can use that for any e, ¢’

’Pga(e Pt |732 a(e/)’ + la(e’) — a(e)| + |a(e) — Ptla(e) ,
to get
dt ds

1 pl ~ ~
|| | euoir (k)& ((P2a—plat) - 018)) 4

1,1 tu 3 st 3 o pdtds
staotels [ [ (i) (o) v o™

a+p
< llallalblp w2

which complete the proof for L(a,b).

We finally prove the estimate for the refined commutator Ly(a,b) that is given for
any e € M by

¢
Liny(a,b)(e) = (LPab)(e) = (PaLb)(e) = 5 (PY v b) (€.
=1
where
(PDb)(e) = o K(e;e,e")a(e) (F’éi(,’e/)b> (" (de")v(de"),

with K the kernel of the bilinear operator (a,b) — P,b. As in the proof of Cy, (), we
are left with

| ate e'>{Q%<tL>@§' (P2a- &)

l
= 33 (P Vi) () - QHODIGE (PR () - Q) ) 5 viad)

l
- fKQ}- (e, ¢!) (@%(tméi' (Pf (0= 2P} (dlmo)a) () 3i(- ) - éﬁb)) () % e
i=1

with P, P2 e StGC'. The result follows with the same proof using that P21 = 0 since
it encodes some cancellation and the first order Taylor expansion for a. >
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C — Paracontrolled expansion

We use in the body of the text the following variation on the high order paracontrolled
expansion formula from [4], Theorem 4 therein.

Theorem 16. Let f : R — R be a C* function and let u and v be respectively C and C*
functions on [0,T] x T3 with a € (0,1). Then

1
f(u)v = Pf/(u)vu + §{Pf(2)(u)vu2 — 2Pf(2)(u)m)u}
1
3!
for some remainder f,(u)f € C*°.

{wa)( 1tt® = 3P @) (uyunt’ + 3Pf(3)(u)u2vu} + fo(u)

Proof — We need to prove that

1 2
= 0/ (W) = Py = 5 {Puserw s’ = 2P

1
- g{Pvfw)(u)U3 — 3P, ;@) (uyutt” + 3Py @ (u)uzu}

is a 3a-Holder function. Using that Pivf(u) = vf(u) up to smooth term and that
P.b is the sum of terms of the form

J‘ o )dt

with Q!, Q% StGC2 and P! e StGCl03] , R is a sum of terms of the form So t)cff
with

o= Q) - GH{or )P~ S0 (o101 + @ )Pl

L or 43 103y L L2 #3) 12y L or @) 2\ pl
+ 297 (0f D w) )P ) + 57 (vf P (wu) P () = 5,07 (0P (w)u? ) P (w).
We need to get a bound on r¢ in L*(M). We have for e e M

ri(e) = | Kgple.e)Kpy (e (vf ) () = (08 () ) (€ule”) = 5 (0P () ) ()u(e")

M2

+ (o7 @ ) (e + ¢ (O ) (@) + 5 (07O ) (¢ (")
_ %(U 7O (wyu?) (e yule") b (de y(de").

Using a Taylor expansion for f, we have

re(e) = f[071]4 7@ (u(e”) + sys35251 (u(e’) — u(e")) )838281 (u(e') —u(e )) dsydssdsadsy

4 o(e) () + ule)f () + 50 (@)D ) + (@) 7O ()
= (1) +(2).
For the first term, we have
(1) < Jull %
and for the second term -
(2) < [ulz=|v]4a t=
which allows us to conclude. >
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