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Abstract. We prove the well-posed character of a regularity structure formulation of the quasi-
linear generalized (KPZ) equation and give an explicit form for a renormalized equation in the
full subcritical regime. Convergence results for the solution of the regularized renormalized
equation are obtained in regimes that cover the spacetime white noise case.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

2.1 Function spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 The regularity structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Models and modelled distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3. Local well-posedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4. Renormalization matters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 Notations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
4.2 Coherence and morphism property for the ⋆ product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Strong preparation maps and their associated models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 Renormalized equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

A. Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
A.1. Gaussian kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
A.2. Existence of the fundamental solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
A.3. Uniqueness of the fundamental solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
A.4. Temporally homogeneous operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
A.5. Anisotropic Taylor formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
A.6. Decomposition of the fundamental solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1 – Introduction

Denote by T the one dimensional torus. We consider the one dimensional space-periodic
quasilinear generalized (KPZ) equation(

∂t − a(u)∂2
x

)
u = f(u)ξ + g(u)(∂xu)

2, (1.1)
for regular enough functions a, f, g, where a takes values in a compact interval of (0,∞) and ξ is a
random spacetime distribution – with main example spacetime white noise. The initial condition
u0 ∈ C0+(T) ··=

⋃
α>0 C

α(T) is given. This equation falls within the class of subcritical singular
stochastic partial differential equations (SPDEs) of parabolic type. All equations of this class
share the same defect: The low regularity of some terms in a singular SPDE prevents the
expected regularizing effect of the dynamics to give sense to a number of products in the
equations. In the case at hand, equation (1.1), one expects a parabolic type dynamics to have a
resolvent that improves regularity by 2. The ‘subcritical’ nature of the dynamics is here encoded
in the fact that the spacetime distribution ξ is (almost surely) assumed to have regularity α0−2,
for 0 < α0 < 2. It is then formally consistent to expect a solution u of equation (1.1) to have
parabolic regularity α0, as (∂xu)

2 will then have regularity 2(α0 − 1), bigger than α0 − 2, the
expected regularity of the term f(u)ξ. With a right hand side of regularity α0 − 2 a Schauder
type continuity estimate satisfied by the resolvent of the evolution gives indeed u a regularity
α0. The problem with that regularity analysis is that for u of regularity α0 none of the products
f(u)ξ and |∂xu|2 make sense, even less g(u)|∂xu|2, when 0 < α0 < 1, the case of interest.

The development of the study of semilinear subcritial singular SPDEs was launched by the
two groundbreaking works [23] of M. Hairer, on regularity structures, and [22] of M. Gubinelli, P.
Imkeller & N. Perkowski, on paracontrolled calculus. Both of them introduced new settings and
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new tools to make sense of such equations and solve them uniquely under some small parameter
condition. Despite the difference of languages and tools used in regularity structures and
paracontrolled calculus both settings provide a similar understanding of a subcritical singular
parabolic SPDE. The mantra of their common approach to the product problem is that if one
can make sense of a number of analytically ill-defined ‘reference products’ that only involve
the noise ξ, not in an ω-wise sense but as random variables, then one can make sense of the
ill-defined products in the equation for all functions u that locally look like linear combinations
of the reference random variables. Regularity structures and paracontrolled calculus differ in
the tools used to make sense of that comparison with reference random variables. In both
settings, working with a random noise turns out to be crucial to construct these reference
random variables by probabilistic means.

We refer the reader to the overviews [13, 14] of Chandra & Weber and Corwin & Shen for
non-technical introductions to the domain of semilinear singular SPDEs, to the books [17, 7]
of Friz & Hairer and Berglund for a mildly technical introduction to regularity structures, and
to Bailleul & Hoshino’s Tourist’s Guide [4] for a thorough tour of the analytic and algebraic
sides of the theory. Readers interested in paracontrolled calculus will find a nice account of the
fundamentals in Gubinelli’s panorama [21].

The first works on quasilinear singular SPDEs by Otto & Weber [30], Furlan & Gubinelli
[18] and Bailleul, Debussche, & Hofmanová [3] all three investigated the generalized (PAM)
equation in the regime where the noise is (α0 − 2) regular and α0 > 2/3. Interestingly each
of these works used a different method: A variant of regularity structures in [30], a variant
of paracontrolled calculus based on the use of the paracomposition operator for [18], and the
initial form of paracontrolled calculus in [3]. On the paracontrolled side Bailleul & Mouzard
[6] extended the high order paracontrolled calculus toolbox to deal with the paracontrolled
equivalent of equation (1.4) in the spacetime white noise regime α0 > 2/5. On the regularity
structures side Otto & Weber deepened their framework in their works [29] with Sauer & Smith,
dedicated to the study of the equation with linear additive forcing

∂tu− a(u)∂2
xu = ξ. (1.2)

They obtained in particular in [29] an explicit form of a renormalized equation for (1.2) backed
up by the general convergence result proved by Linares, Otto, Tempelmayr & Tsatsoulis in [27]
that holds for a large class of random noises in the full subcritical regime. Our general formula
for the counterterm in the renormalized equation generalizes theirs. The algebraic machinery
behind their approach was further analysed by Linares, Otto & Tempelmayr in [26]. Meanwhile
Gerencsér & Hairer provided in [20] an analysis of a regularity structure counterpart of equation
(1.1), in the full subcritical regime. Their method allowed for an analysis of the renormalized
equation only in the regime α0 > 1/2. By implementing some tricky integration by parts-type
formulas Gerencsér was able in [19] to obtain the renormalized equation for the special case
of equation (1.2) from the analysis of [20] in the spacetime white noise regime α0 > 2/5. We
prove in the present work the well-posed character of a regularity structure formulation of the
quasilinear generalized (KPZ) equation and give an explicit form for a renormalized equation in
the full subcritical regime, with a simple expression in a number of cases. Convergence results
for the solution of the regularized renormalized equation are obtained in regimes that cover the
spacetime white noise case.

Following [3, 6] we set
La(v) ··= a(v)∂2

x

for a sufficiently regular function v on [0,∞)× T and rewrite equation (1.1) under the form(
∂t − La(v) + c

)
u = f(u)ξ + g(u)(∂xu)

2 + cu+
(
a(u)− a(v)

)
∂2
xu (1.3)

for a large positive constant c. We consider (1.3) as a ‘perturbation’ of the non-translation
invariant generalized (KPZ) equation(

∂t − La(v) + c
)
u = f(u)ξ + g(u)(∂xu)

2 + cu.
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Below we will set the scene to reformulate equation (1.3) in a regularity structure where it takes
the form 

u = P<2

(
Qa(v)u0

)
+ Ka(v),M

γ (v +w),

v = Q≤0

{
F (u)ζ +

{
G(u)(Du)2 + cu

}}
,

w = Q≤0

{{
A(u)−A(P<2(v))

}(
D2P≤2Q

a(v)u0 +D2K
a(v),M
γ+α0

(v +w)
)} (1.4)

The operator P<2 (resp. P≤2) stands for the canonical lift operator of a spacetime/spatial
function to the part of the polynomial regularity structure spanned by monomials of homo-
geneity less than (resp. less than or equal to) 2, and Qa(v),cu0 is the free propagation of the
initial condition u0 under the non-translation invariant operator (∂t −La(v) + c). The operator
K
a(v),c,M
γ′ is the model dependent integration operator on modelled distributions (up to order

γ′) intertwined to (∂t − La(v) + c) via the reconstruction operator. The operator Q≤0 projects
on elements of nonpositive homogeneity, and the operator D is a natural derivative operator
on a space of modelled functions.

We will see in Theorem 16 that given any admissible model M on our regularity structure,
equation (1.4) has a unique solution over a model-dependent time interval (0, t0(M)), in an
appropriate class of modelled distributions. This analytical statement holds in the full sub-
critical range provided the model is part of the data. Such a statement was already proved
by Gerencsér & Hairer in [20] in a different setting. However their choice of formulation for
(1.1) did not allow them to write down in the full subcritical range the renormalized equation
satisfied by the reconstruction of the model dependent solution u of (1.4) when the noise is
smooth and one uses an appropriate admissible model. The spacetime white noise regime is in
particular out of range of their result. The regularity structure in which we formulate equa-
tion (1.4) is different from the regularity structure used in [20]. Working with an appropriate
choice of model M that is the natural analogue in our setting of the Bruned-Hairer-Zambotti
(BHZ) renormalized model from [10] we are able to give in Theorem 1 below a renormalized
equation in the full subcritical regime. Denote by ε a positive regularization parameter and
by ξε ∈ C∞(R × T) an ε-regularized noise ξ. Denote by Mε the BHZ renormalized model
associated with ξε and the operator (∂t−La(v)+ c), and denote by uε the Mε-reconstruction of
the solution uε of equation (1.4) with Mε in place of M. (The model Mε is described precisely
in Section 4.3.2.) The function uε is defined on a time interval [0, t0(Mε)). Our main results
take a conditional form involving two ‘assumptions’. Assumption 1 is stated in Section 4.3.2
and assumes the convergence of the natural BHZ model associated with the non-translation
invariant operator (∂t − La(v) + c). There is no doubt that it holds true but we refrain from
describing here the modifications of Chandra & Hairer’s work [12], which need to be extended
to our non translation-invariant setting.

1 – Theorem. Choose any function v(t, x) on R+ × T sufficiently close to the initial condition
u0 ∈ C0+(T) – see condition (2.5) for the precise meaning. Under Assumption 1 there exists
some continuous functions Fa((τp)∗) ∈ C(R3) and

ℓεa(v)(·, τ
p) ∈ C(R+ × T)

indexed by an infinite set of symbols
{
τp ∈ B−

◦
}

, such that the solution uε to(
∂t − a(uε)∂2

x

)
uε = f(uε)ξε + g(uε)(∂xu

ε)2 +
∑

τp∈B−
◦

ℓεa(v)(·, τ
p)

S(τp)
Fa
(
(τp)∗

)(
uε, ∂xu

ε, v
)

(1.5)

starting from u0 converges in C
(
[0, t0) × T

)
for a random time t0 > 0 in probability as ε > 0

goes to 0.

Condition (2.5) only involves u0. Let us emphasize that this convergence result holds in the
whole subcritical regime α0 > 0 where α0 − 2 is the regularity of the noise ξ. The sum over τp
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in (1.5) is called the ‘counterterm’. The functions Fa((τp)∗) depend pointwisely on uε, ∂xu
ε, v

in the sense that
Fa
(
(τp)∗

)(
uε, ∂xu

ε, v
)
(z) = Fa

(
(τp)∗

)(
uε(z), ∂xu

ε(z), v(z)
)
.

The functions ℓεa(v)(·, τ
p) are non-local functionals of the function a(v(·)). Theorem 1 extends

the results of [30, 18, 3, 6, 29, 20] and deals with the quasilinear generalized (KPZ) in the full
subcritical regime. The reader familiar with regularity structures will see that our arguments
extend immediately to coupled systems of generalized (KPZ) equations. Such a generalization
is left to the reader and we concentrate here on the renormalized equation for (1.1).

The reader can feel uncomfortable about the fact that the functions
ℓεa(v)(·, τ

p) and Fa
(
(τp)∗

)(
uε, ∂xu

ε, v
)

depend on the somewhat arbitrary choice of function v satisfying condition (2.5). One can give
a simpler representation of the counterterm when the functions ℓεa(v)(·, τ

p) can be traded off
for a local functional of a(v(·)) – meaning that ℓεa(v)(z, τ

p) can be replaced by a function of
a(v(z)). This is the content of Assumption 2 stated in Section 4.4.

2 – Theorem. Under Assumptions 1 and 2 there exist continuous functions χa
τ ∈ C(R), F(τ∗) ∈

C(R2) and lε(·)(τ) ∈ C(R), all three indexed by a finite set of symbols
{
τ ∈ B−0

◦
}

, such that the
third term of the right hand side of (1.5) is of the form∑

τ∈B−0
◦

lεa(uε)(τ)

S(τ)
χa
τ (u

ε)F(τ∗)(uε, ∂xu
ε) +O(1), (1.6)

for a term O(1) uniform in ε.

Above, the functions χa
τ (·) are polynomial functions of a and its derivatives and the coefficient

S(τ) stands for a positive τ -dependent integer. Note that apart from the O(1) term in (1.6),
which we can discard in the renormalized equation, the counterterm is independent of v. We
show in Section 4.5 that Assumption 2 holds in particular for the quasilinear generalized
(KPZ) equation driven by a spacetime white noise.

Dealing with quasilinear singular SPDEs rather than semilinear equations requires a twist
that appears in the form of an infinite dimensional ingredient. It is related in our formulation
(1.4) to the fact that our structure needs to be stable by the operator I(0,2). In the previous
works using regularity structures [30, 20, 29] this infinite dimensional feature appeared under the
form of a one parameter family of heat kernels or abstract integration operators. Our regularity
structure is different from the ones used in these works. Its model space T =

⊕
β∈A Tβ has

infinite dimensional homogeneous spaces Tβ whose basis elements are the usual trees associated
with the generalized (KPZ) equation with an additional integer decoration p on each edge
accounting for how many times the operator I(0,2) is applied to this edge. The same infinite
dimensional ingredient appeared in Bailleul & Mouzard’s work [6] in a paracontrolled setting.

Organization of the work – We set the scene in Section 2, where the function spaces we
work with are introduced together with our regularity structure. We introduced in particular a
non-classical spacetime elliptic operator to define our parabolic spaces. For reader’s convenience
some properties of its heat kernel are proved ni full detail in Appendix A. Section 3 is dedicated
to proving that equation (1.4) is locally well-posed in the full subcritical regime. The analysis of
the renormalized equation problem is done in Section 4, where we give in particular an explicit
description of the functions χa

τ in Section 4.3.

Notations – We denote by R the set of real numbers and by N the set of nonnegative integers.
We represent by z = (t, x) ∈ R2 a generic spacetime variable, for which we set

∥z∥s ··= |t|1/2 + |x|.
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We also set for any multiindex k = (k1, k2) ∈ N2

|k|s ··= 2k1 + k2,

and
∂k
z
··= ∂k1

t ∂k2
x .

For α > 0, we define Cα(T) as the collection of functions f on T which is ⌊α⌋-th differentiable
and such that ∂⌊α⌋

x f is (α− ⌊α⌋)-Hölder continuous. We also define Cα
s as the set of functions

f on R × T such that ∂k
z f exists and is bounded for any k ∈ N2 with |k|s < α, and ∂k

z f with
|k|s = ⌊α⌋ is (α− ⌊α⌋)-Hölder continuous with respect to the parabolic distance ∥ · ∥s.

An identity involving an element of the form ∗(+) or ∗(+), whatever ∗ is, will be a shorthand
notation for two identities: The identity with the element ∗ and the identity with the element
∗+ or ∗+.

2 – The setting

We introduce in this section the functional setting and the regularity structure in which we
set the study of equation (1.4).

2.1 – Function spaces. The following basic facts are proved in Appendix A – see Theorem
34, Theorem 39, and Corollary 43. Pick α ∈ (0, 1] and an arbitrary function v ∈ Cα

s .

3 – Proposition. The fundamental solution Q
a(v),0
t,s (x, y) of the operator ∂t − La(v) satisfies the

estimate ∣∣∂n
t ∂

k
xQ

a(v),0
t,s (x, y)

∣∣ ≤ c0e
c0(t−s)

(t− s)(1+k+2n)/2
exp

(
− c1

|x− y|2

t− s

)
(2.1)

for any k + 2n ≤ 2, for some positive constants c0, c1 depending only on inf a > 0, ∥a∥C1 , and
∥v∥Cα

s
. Moreover one has

∫
R Q

a(v),0
t,s (x, y)dy = 1.

4 – Proposition. We define the spacetime elliptic operator
La(v) ··=

(
∂t − La(v)

)
(∂t + ∂2

x) = ∂2
t − a(v)∂4

x −
(
a(v)− 1

)
∂t∂

2
x (2.2)

and introduce the parabolic operator with the additional variable θ > 0

∂θ − La(v).

The fundamental solution Qa(v),0
θ (·, ·) of ∂θ − La(v) satisfies the estimates∣∣∂k

zQ
a(v),0
θ

(
(t, x), (s, y)

)∣∣ ≤ C0e
C0θ

θ|k|s/4
Gθ(t− s, x− y) (2.3)

and ∣∣∂k
zQ

a(v),0
θ (z′, w)−

∑
|k+l|s≤4

(z′ − z)k+l

l!
∂k+l
z Qa(v),0

θ (z, w)
∣∣

≤ C0e
C0θ∥z′ − z∥4−|k|s+δ

s

θ(4+δ)/4

{
Gθ(z

′ − w) + Gθ(z − w)
}
,

(2.4)

where
Gθ(t, x) ··=

1

θ3/4
exp

{
− C1

(
t2

θ
+

|x|4/3

θ1/3

)}
for any |k|s ≤ 4 and δ ∈ (0, α), for some positive constants C0, C1 depending only on inf a > 0,
∥a∥C1 , and ∥v∥Cα(T). Moreover one has

∫
R2 Qa(v),0

θ (z, w)dw = 1.

Next we describe a class of possible choices for v. Recall that α0 − 2 is the spacetime Hölder
regularity of the noise ξ in equation (1.1). We consider some initial condition u0 ∈ Cα(T) with
α ∈ (0, α0).
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5 – Definition. For any α ∈ (0, 1) and T > 0, define V α(0, T ) as a collection of bounded continuous
functions on (0, T )× T such that the following quantity is finite.

∥f∥V α(0,T ) ··= sup
z,z′∈(0,T )×Rd

|f(z′)− f(z)|
∥z′ − z∥αs

+ sup
t∈(0,T )

t(1−α)/2∥∂xf(t, ·)∥L∞(T)

+ sup
t∈(0,T )

t(2−α)/2
(
∥∂2

xf(t, ·)∥L∞(T) + ∥∂tf(t, ·)∥L∞(T)

)
+ sup

0<t<t′<T
t(2−α)/2 ∥∂xf(t

′, ·)− ∂xf(t, ·)∥L∞(T)

|t′ − t|1/2
.

We will choose later a function v ∈ V α(0, T ) satisfying{
∥v∥V α(0,T ) ≤ C∥u0∥Cα(T),

∥et∂
2
xu0 − v∥L∞((0,T )×T) ≤ δ∥u0∥Cα(T)

(2.5)

for some constant C > 0 such that ∥et∂2
xu0∥V α(0,T ) ≤ C∥u0|Cα(T) holds (see Lemma 41 for the

proof that et∂
2
xu0 ∈ V α(0, T )) and a sufficiently small positive constant δ, which will be chosen

later depending only on ∥u0∥Cα(T). Other than the most natural choice v(t, x) = et∂
2
xu0 we can

also choose a t-independent smooth function v(x) = eδ∂
2
xu0 for a sufficiently small δ > 0. The

latter choice will be used only in Section 4.5.3. We then extend the domain of v to R2 setting

v(t, x) =

{
v(0, x), for (t ≤ 0),

v(T, x), for (t ≥ T ).

and consider the spacetime operator (2.2). Since ∥v∥Cα
s
≲ ∥u0∥Cα(T), the constants c0, c1, C0, C1

above can then be chosen to depend only on inf a > 0, ∥a∥C1 , and ∥u0∥Cα . Therefore, all the
mutliplicative constants appearing sometime implicitly in some inequalities below
are independent of the choice of v.

For any bounded continuous functions f on R2, for k ∈ N2 with |k|s ≤ 4, set(
∂kQa(v),0

θ f
)
(z) ··=

∫
R2

∂k
zQ

a(v),0
θ (z, z′)f(z′)dz′.

We use the operators Qa(v),0
θ to define the full scale of anisotropic parabolic Hölder spaces.

Definition – For β < 0, define Cβ
s (a(v)) as the completion of the set of bounded continuous

functions f on R2 under the norm

∥f∥Cβ
s (a(v))

··= sup
0<θ≤1

θ−β/4
∥∥Qa(v),0

θ f
∥∥
L∞(R2)

.

Next we rewrite the resolvent of the operator ∂t − La(v) in the space Cα
s (a(v)) in terms of

the operators Qa(v),0
θ . With an eye on the heat kernel estimates (2.1) and (2.3) pick a positive

constant c > c0 ∨ C0 and write
Q

a(v),c
t

··= e−ctQ
a(v),0
t

and
Qa(v),c

θ
··= e−cθQa(v),0

θ .

Then the operators c− La(v) and ∂t − La(v) + c have inverses of the form(
c− La(v)

)−1
f =

∫ ∞

0

Qa(v),c
θ f dθ =

∫ 1

0

Qa(v),c
θ f dθ +Qa(v),c

1 ◦ (c− La(v))−1f

and (
(∂t − La(v) + c)−1g

)
(t) =

∫ t

−∞
Q

a(v),c
t,s g(s) ds.



7

For any given bounded continuous function f on R2 one can write the resolvent operator of the
parabolic operator ∂t − La(v) + c in terms of the spacetime elliptic operator c − La(v). Indeed
setting g = (c− La(v))−1f and h = (∂t + ∂2

x)g we have
(∂t − La(v) + c)h = La(v)g + ch = −f + c(g + h),

thus (
∂t − La(v) + c

)−1
f = −h+ c

(
∂t − La(v) + c

)−1
(g + h)

= −(∂t + ∂2
x)(c− La(v))−1f

+ c
(
∂t − La(v) + c

)−1
(1 + ∂t + ∂2

x)(c− La(v))−1f.

Thus setting

Ka(v),cf ··= −
∫ 1

0

(∂t + ∂2
x)Q

a(v),c
θ f dθ =··

∫ 1

0

K
a(v),c
θ f dθ

and
Ra(v),cf ··= K

a(v),c
1 (c− La(v))−1f + c

(
∂t − La(v) + c

)−1
(1 + ∂t + ∂2

x)(c− La(v))−1f,

one has the decomposition(
∂t − La(v) + c

)−1
f = Ka(v),cf +Ra(v),cf. (2.6)

The letter ‘R’ in Ra(v),c is chosen for ‘remainder’. This choise is justified by the regularizing
properties of this operator stated in the next statement.

6 – Theorem. Let β ∈ [α−2, 0)\{−1}. The map Ka(v),c is a continuous operator from Cβ
s (a(v)) into

Cβ+2
s and the map Ra(v),c is a continuous operator from Cβ

s (a(v)) into Cα+2−
s

··=
⋂

ε>0 Cα+2−ε
s .

Proof – The former part is obtained from a similar argument to the proof of Theorem 40.
The latter part is obtained from a combination of Theorem 38 and Theorem 40. Note that
(c − La(v))−1 sends Cβ

s (v) into Cβ+4
s continuously by Theorem 40, and the inverse operator(

∂t − La(v) + c
)−1 sends (1 + ∂t + ∂2

x)
(
c−La(v)

)−1
f ∈ Cβ+2

s ⊂ Cα
s into Cα+2−

s by Theorem 38.
�

We fix from now on a constant c > max(c0, C0) and omit the letter ‘c’ in Qa(v),Qa(v),Ka(v),
Ra(v) unless it needs to be emphasized.

2.2 – The regularity structure. We construct in this section the regularity structure asso-
ciated with equation (1.4). It will be convenient, for notational purposes, to rewrite (1.4) under
the form 

u = P<2

(
Qa(v)u0

)
+ Ka(v),M

γ (v +w),

v = Q≤0

{
F (u)ζ1 +

{
G(u)(Du)2 + cu

}
ζ2

}
,

w = Q≤0

{{
A(u)−A(P<2(v))

}
(D2P≤2Q

a(v)u0 +D2K
a(v),M
γ+α0

(v +w))ζ3

} (2.7)

with three ‘noise’ symbols ζ1, ζ2, ζ3 in the regularity structure. This will help us distinguish
three different types of terms.

We first define a ‘preparatory’ collection of rooted decorated trees
B = B• ∪ B◦

with node decorations {Xk}k∈N2 and {ζl}l∈{1,2,3}, and edge decorations {In}n∈N2 . Write
I ··= I0

for simplicity and define B• and B◦ by the smallest sets satisfying the following relations.

(a) B• = B
1

• ∪ B
2

• ∪ B
3

• with
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B
1

• =
{
Xk

n∏
i=1

I(τi) ; k ∈ N2, n ∈ N, τ1, . . . , τn ∈ B◦ \ {Xkζl}k∈N2, l∈{2,3}

}
,

B
2

• =

{
Xk

n∏
i=1

Ini
(τi) ; k ∈ N2, n ∈ N, τ1, . . . , τn ∈ B◦ \ {Xkζl}k∈N2, l∈{2,3},

ni = 0 except at most two ni = (0, 1)

}
,

B
3

• =

{
Xk

n∏
i=1

Ini
(τi) ; k ∈ N2, n ∈ N, τ1, . . . , τn ∈ B◦ \ {Xkζl}k∈N2, l∈{2,3},

ni = 0 except at most one ni = (0, 2)

}
,

This definition ensures in particular that Xk ∈ B• by the convention that
∏0

i=1 = 1.
We further assume that the product, called tree product, of the Ini

(τi) is commutative.
This means that we consider non-planar trees.

(b) B◦ = B
1

◦ ∪ B
2

◦ ∪ B
3

◦ with

B
l

◦ =
{
ζl σ ; σ ∈ B

l

•
}
, l ∈ {1, 2, 3}.

The set B• contains all trees necessary to describe the right hand sides in (2.7). The set B◦
is a collection of trees in B• multiplied by noise symbols ζl. As usual in a regularity structure
setting we think of basis elements in B as decorated trees. We define the homogeneity map
| · | : B → R setting

|Xk| ··= |k|s, |ζ1| ··= α0 − 2, |ζ2| = |ζ3| ··= 0,

|In(τ)| ··= |τ |+ 2− |n|s, |τ1 · · · τn| ··=
n∑

i=1

|τi|.

Since the operator I(0,2) does not change the homogeneity, an infinite number of trees in B have
the same homogeneity. Modelled distributions which we will treat will then involve infinite
linear combinations of trees. To deal with such infinite sums it will be convenient to introduce
a new set of symbols Ip

n, with p ∈ N and n ∈ N2.
Let B̂ be the collection of rooted decorated trees with node decorations {Xk}k∈N2 and

{ζl}l∈{1,2,3}, and edge decorations {Ip
n}p∈N,n∈N2 . An example of elements of B̂ is

Xk1ζi1

Xk2ζi2Xk3ζi3

Xk4ζi4

(p1,n1)(p2,n2)

(p3,n3)

.
Define inductively the projection map

π : B → B̂

by the identity
π
(
In(ζ3I(0,2))p(τ)

)
= Ip

n

(
π(τ)

)
,

at each branches of the tree τ , for τ ∈ B \ ζ3I(0,2)(B◦). Define

B ··= π(B)
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as the image of π.
The letter B is chosen for ‘basis’. Each element of B is then a rooted decorated tree with a

further edge decoration p : Eτ → N, in addition to usual its two decorations n : Nτ → N2 and
e : Eτ → N2 considered in Bruned, Hairer & Zambotti’s work [10]. The decoration p represents
the number of consecutive operators ζ3I(0,2) in each edge.

Xkζ

ζ3

ζ3

In

I(0,2)

I(0,2)

π−→ Xkζ

(p,n)

We write τp for a generic element of B when we want to emphasize its p decoration. Since
|τp| = |τ0|, an infinite number of trees in B have the same homogeneity. We will use the
quantity

|p| ··=
∑
e∈Eτ

p(e)

to define the topology on the linear space spanned by B. Set
B◦ ··= π(B◦).

The following subfamilies of elements of B will be useful in this and the next section.
B−
◦ ··=

{
τp ∈ B◦ ; |τp| < 0

}
,

B0 ··=
{
τ0 ; τp ∈ B

}
,

B−0
◦ ··= B−

◦ ∩ B0,
U ··= {Xk}k∈N2 ∪ {I(τp)}τp∈B◦ .

The set B−0
◦ , resp. B−0

◦ , is the index set in formula (1.5), resp. (1.6), for the counterterm in
the renormalized equation. We denote by

Bβ ··=
{
τp ∈ B ; |τp| = β

}
the set of elements of B of homogeneity β. It is elementary to see the following properties.

7 – Proposition. The following properties hold for the set B.
- The set A ··=

{
|τp| ; τp ∈ B

}
is locally finite and minA = α0 − 2.

- The set Bβ ∩ B0 is finite for each β ∈ A.
- B0 =

{
X0, X0ζ2, X

0ζ3
}
.

Moreover, we assume that
|B−

◦ | ∩ Z = ∅ (2.8)
through this paper. This assumption will be used in the proof of Theorem 13.

To complete the construction of a regularity structure we consider the collection B+ of all
the elements

Xk
+

n∏
i=1

I+,qi
ni

(τ
pi
i )

with k ∈ N2, n ∈ N, τpi
i ∈ B◦, qi ∈ N, and ni ∈ N2 such that |τi| + 2 − |ni| > 0 for each i.

We use the label ‘+’ to distinguish the elements of B+ from the elements of B•. We define the
homogeneity map | · | : B+ → R+ by setting∣∣∣Xk

+

n∏
i=1

I+,qi
ni

(τ
pi
i )
∣∣∣ ··= |k|s +

n∑
i=1

(
|τi|+ 2− |ni|s

)
.
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We define Banach norms on the linear spaces spanned by B and B+. Picking a positive
parameter m we define T

(m)
β for each β ∈ A as the completion of the linear space spanned by

Bβ under the norm defined by∥∥∥∥∥ ∑
τp∈Bβ

cτpτp

∥∥∥∥∥
2

β,m

··=
∑

τp∈Bβ

|cτp |2 m2|p|.

We also define
T (m) ··=

⊕
β∈A

T
(m)
β

as the algebraic sum. Similarly we define the space

T (m),+ ··=
⊕
β≥0

T
(m),+
β

from the set B+, using the same notation ∥ · ∥β,m for the norms on T (m) and T (m),+. By
definition T (m),+ is an algebra.

We finally complete the construction of the regularity structure. We define the two continuous
linear operators

∆ : T (m) → T (m) ⊗ T (m),+

and
∆+ : T (m),+ → T (m),+ ⊗ T (m),+

by the identities
∆ζl = ζl ⊗X0

+,

∆(+)Xk
(+) =

∑
k′≤k

(
k

k′

)
Xk′

(+) ⊗Xk−k′

+ ,

∆(+)I(+)
n τ =

(
I(+)
n ⊗ Id

)
∆τ +

∑
|k|s<|τ |+2−|n|s

Xk
(+)

k!
⊗ I+

n+kτ

(2.9)

and the multiplicativity ∆(+)(τ1 · · · τn) =
∏n

i=1 ∆
(+)τi. (Recall from the Notation paragraph

at the end of Section 1 our use of the notation ∆(+).)

In the third identity of (2.9), we extend the symbol In as a linear operator by imposing
In(Xkζl) = 0, l ∈ {2, 3}.

For k = 0 this reflects the identity

Ka(v)1 = −
∫ 1

0

(∂t + ∂2
x)Q

a(v)
θ 1dθ = −

∫ 1

0

(∂t + ∂2
x)e

−cθdθ = 0.

We do not assume that Ka(v)xk = 0 for k ̸= 0, but it does not matter because we do not use
the symbols In(Xkζl) with k ̸= 0 and l ∈ {2, 3} to solve the equation (2.7) in the space Dγ,η

m

for γ < 2. See Theorem 16 for the details.

One has similar identities for the operators I(+),p
n

∆(+)I(+),p
n τ =

(
I(+),p
n ⊗ Id

)
∆τ +

∑
k

Xk
(+)

k!
⊗ I+,p

n+kτ,

for τ ∈ B−
◦ , since ∆I(0,2)τ = (I(0,2)⊗ Id)∆τ for τ with negative homogeneity. This definition of

∆(+) turns it into an extension of the BHZ regularity structure for the semilinear generalized
(KPZ) equation. The pair

T (m) ··=
(
(T (m),+,∆+), (T (m),∆)

)
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is a concrete regularity structure in the sense of [4]. Denote by G(m),+ the set of all continuous
algebra maps g : T (m),+ → R, that is, g is multiplicative with respect to the tree product and
with respect to the product with polynomials. Then G(m),+ is a topological group with respect
to the convolution product g ∗ h ··= (g ⊗ h)∆+.

2.3 – Models and modelled distributions. We define in this section the notions of ad-
missible model, modelled distribution, and state or prove two fundamental results about these
objects: the reconstruction theorem and the lift in a space of modelled distributions of the
inverse heat operator. We define Qβ as the canonical projection from T (m) to the subspace
T

(m)
β , and define Q<γ ··=

∑
β∈A, β<γ Qβ .

8 – Definition. Given a positive parameter m, a pair M = (g,Π) made up of a map
g : Rd → G(m),+

and a linear map
Π : T (m) → C−2

s (a(v))

is called a model on T (m) if one has∣∣gz′z(τ
p)
∣∣ ≲ m|p|∥z′ − z∥|τ |s (gz′z ··= gz′ ∗ g−1

z ),

for all τp ∈ B+ and z, z′ ∈ R2, and∣∣Qa(v)
θ

(
Πg

zσ
p
)
(z)
∣∣ ≲ m|p| θ|σ|/4 (Πg

z
··= (Π⊗ g−1

z )∆),

for all σp ∈ B, z ∈ R2 and θ ∈ (0, 1]. The model M is said to be spatially periodic if

g(z′+(0,1)) (z+(0,1)) = gz′z, Qa(v)
θ

(
Πg

z+(0,1)(·)
)
(z + (0, 1)) = Qa(v)

θ

(
Πg

z(·)
)
(z)

for any z, z′ ∈ R2.

These conditions ensure that gz′z and Πg
z are continuous on the metric spaces T

(m)
β and

T
+,(m)
β respectively under the norm ∥ · ∥β,m, so the same analytical arguments as in [4] work to

prove the results stated in this section. We record here for later use a straightforward adaptation
of Proposition 2 and Lemma 12 in [4]. Recall from (2.6) the decomposition(

∂t − La(v) + c
)−1

= Ka(v) +Ra(v).

9 – Lemma. For any σp ∈ B, z ∈ R2, θ ∈ (0, 1], and k ∈ N2 such that |k|s ≤ 4, one has∣∣∣(∂k
zQ

a(v)
θ

)(
Πg

zσ
p
)
(z)
∣∣∣ ≲ m|p| θ(|σ|−|k|s)/4.

Therefore for any σp ∈ B−
◦ and k ∈ N2 such that |k|s < |σ|+ 2 the integral(

∂k
zK

a(v)
)(
Πg

zσ
p
)
(z) =

∫ 1

0

(
∂k
zK

a(v)
θ

)(
Πg

zσ
p
)
(z) dθ

converges for all z ∈ R2 and satisfies∣∣∣(∂k
zK

a(v)
)(
Πg

zσ
p
)
(z)
∣∣∣ ≲ m|p|.

10 – Definition. Pick η ≤ γ. We denote by Dγ,η
m = Dγ,η(T (m); g) the set of functions

u : R2 → T
(m)
<γ ··= Q<γ(T

(m))

such that
Lu MDγ,η

m
··= max

β<γ
sup
s>0

{
(s ∧ 1){(β−η)∨0}/2 sup

|t|≥s

∥u(z)∥β,m
}
< ∞,
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∥u∥Dγ,η
m

··= max
β<γ

sup
s>0

{
(s ∧ 1)(γ−η)/2 sup

|t|,|t′|≥s, tt′>0

∥∥u(z′)− ĝz′zu(z)
∥∥
β,m

∥z′ − z∥γ−β
s

}
< ∞,

where t and t′ represent the time variable part of z and z′ respectively. Equipped with the norm
|||u|||Dγ,η

m
··= Lu MDγ,η

m
+ ∥u∥Dγ,η

m
,

the space Dγ,η
m is a Banach space. Moreover u is said to be spatially periodic if

u(z + (0, 1)) = u(z)

for any z ∈ R2.

Instead of Lu MDγ,η
m

and |||u|||Dγ,η
m

, it will be convenient to consider the seminorms

Lu M′Dγ,η
m

··= max
β<γ

sup
s>0

{
(s ∧ 1)(β−η)/2 sup

|t|≥s

∥u(z)∥β,m
}

and |||u|||′Dγ,η
m

··= Lu M′Dγ,η
m

+ ∥u∥Dγ,η
m

. In general |||u|||Dγ,η
m

≤ |||u|||′Dγ,η
m

but the reverse inequality
fails. However for any u ∈ Dγ,η

m such that
lim
t→0

Qβu(t, x) = 0

for any β < η the following properties hold.
- |||u|||′Dγ,η

m
≲ |||u|||Dγ,η

m
(Lemma 6.5 of [23]).

- |||u|||Dγ′,η
m

≲ |||u|||Dγ,η
m

, for any γ′ ≤ γ (Lemma 6.6 of [23]).

Since g and Π are bounded linear operators on the spaces T
(m)
β and T

(m),+
β respectively we

can prove the reconstruction theorem for Dγ,η
m similarly to [4, Theorem 20] and [25, Theorem

4.1].

11 – Theorem. Let η ≤ γ and γ > 0. Let M be a model on T of growth factor m > 0. There exists
a unique continuous linear operator

RM : Dγ,η(T (m); g) → Cη∧(α0−2)
s (a(v))

such that the bound∣∣∣Qa(v)
θ

(
RMv − Πg

zv(z)
)
(z)
∣∣∣ ≲ (|t|1/2 ∨ θ1/4

)η∧(α0−2)−γ
θγ/4

holds uniformly over for any v ∈ Dγ,η
m with unit norm and z = (t, x) ∈ R2. Moreover if M and

v are spatially periodic then RMv is a spatially periodic distribution.

We say that a vector space S =
⊕

β∈A Sβ is a sector if each vector space Sβ is a closed
subspace of T (m)

β and ∆(S) ⊂ S ⊗ T (m),+. Then

β0 ··= min
{
β ∈ A ; Sβ ̸= {0}

}
is called a regularity of S. Given a sector S we denote by Dγ,η

m (S) the set of the elements
u ∈ Dγ,η

m taking values in S. We will use in particular the sectors
U and T◦

spanned by U and B◦, respectively. Since α = min
{
|τp| ; τp ∈ U \ {Xk

}
k∈N2} > 0, for any

u ∈ Dγ,η
m (U) the reconstruction RMu of u coincides with the X0-component of u and belongs

to Cα
s on any compact subset of (0,∞) × R. (This claim is the content of Proposition 3.28 of

[23].)
The proper notion of admissible model in the present setting is captured by the following

definition.

12 – Definition. An admissible model on T (m) is a model (g,Π) such that
gz(X

k
+) = zk, Π(Xkτ)(z) = zk(Πτ)(z), Πζl = 1 (l ∈ {2, 3})
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and one has for all τp ∈ B−
◦ ,

Π(Iτp) = Ka(v)(Πτp).

An admissible model satisfies the identity

g−1
z

(
I+
n τ
)
= −

∑
|k|s<|τ |+2−|n|s

(−z)k

k!

((
∂n+k
z Ka(v)

)(
Πzτ

))
(z)

for any τ ∈ B−
◦ – see e.g. Proposition 15 of [4]. The proof of the multi-level Schauder estimates

can be done along the same lines as in Hairer’s original statement, Theorem 5.12 of [23], but we
need a slight modification because the kernel Kθ(z, w) is only twice differentiable with respect
to the first variable. See [25, Theorem 5.12] for the proof in more general settings. The fact
that the quantity J a(v)(z)τp below is well-defined is a consequence of Lemma 9. (We stated it
explicitly to make that point clear.)

Recall that α ∈ (0, α0) is the regularity of the initial value u0 – see Section 2.1.

13 – Theorem. Let M stand for an admissible model on T (m). For any τp ∈ B−
◦ ∪ {X0} set

J a(v)(z)τp ··=
∑

|k|s<|τp|+2

Xk

k!
∂k
zK

a(v)(Πg
zτ

p)(z).

For u ∈ Dγ,η
m (T◦, g) with γ > 0, set(

N a(v)u
)
(z) ··=

∑
|k|s<γ+2

Xk

k!
∂k
zK

a(v)
(
RMu− Πg

zu(z)
)
(z).

For u ∈ Dγ,η
m (T◦, g) with γ > 0 set(

Ka(v),Mu
)
(z) ··= Q<γ+2

{(
I + J a(v)(z)

)
u(z) +

(
N a(v)u

)
(z)
}
.

If −2 < η and γ ∈ (0, α), the map Ka(v),M sends continuously Dγ,η
m (T◦) into Dγ+2,(η+2)∧α0

m (U).
Moreover, it holds that RMKa(v),Mu = K(RMu) for any u ∈ Dγ,η

m (T◦).

Define Dγ,η
m (0, T ) as the space of modelled distributions defined on (0, T ) × T; its norm is

defined as in Definition 10 with functions u only defined on (0, T )× T. The set of elements of
Dγ,η

m (0, T ) taking values in a sector S is denoted by Dγ,η
m (0, T ;S).

Recall that we denote by P<γ the operator that lifts a smooth function on (0,∞) × T into
the polynomial part of T of homogeneity strictly smaller than γ, so(

P<γf
)
(z) =

∑
|k|s<γ

(
∂k
z f
)
(z)

Xk

k!
.

Define
Ra(v),M

γ u ··= P<γ

(
Ra(v)(RMu)

)
and

Ka(v),M
γ

··= Q<γKa(v),M +Ra(v),M
γ .

We obtain the following estimates via an extension of u ∈ Dγ,η
m (0, T ) into ũ ∈ Dγ,η

m (R) such
that u(t, ·) = 0 for t < 0. Because of the non-anticipative character of the kernel K the value
of the modelled distribution K

a(v),M
γ′ (ũ) on (0, T ) is uniquely determined independently to the

choice of extension ũ – see Section 4.3 of [4] for details.

14 – Theorem. Pick γ ∈ (0, α) and η ∈ (α− 2, γ]. Then for any κ > 0 and γ′ ≤ γ + 2, we have∣∣∣∣∣∣Ka(v),M
γ′ (u)

∣∣∣∣∣∣
Dγ′,(η+2)∧α0−κ

m (0,T )
≲ Tκ/2 |||u|||Dγ,η

m (0,T ).

Moreover it holds that RMKa(v),Mu = (∂t − La(v) + c)−1(RMu) for any u ∈ Dγ,η
m (T◦).
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Proof – We know that Ka(v),Mu ∈ Dγ+2,(η+2)∧α0
m from Theorem 13. Since Ra(v) sends RMu ∈

Cη∧(α0−2)
s (a(v)) into Cα+2−

s ⊂ Cγ+2
s by Theorem 6, we have Ra(v),M

γ+2 u ∈ Dγ+2,η′

m for any η′ ∈ R.
Hence K

a(v),M
γ+2 u ∈ Dγ+2,(η+2)∧α0

m . Since β ∈ A satisfying β < (η + 2) ∧ α0 is only β = 0 and

lim
t↓0

Q0K
a(v),M
γ+2 u(t, x) = lim

t↓0
(∂t − La(v) + c)−1(RMu)(t, x) = 0,

the norms ||| · ||| and ||| · |||′ are equivalent for K
a(v),M
γ+2 u and we have∣∣∣∣∣∣Ka(v),M

γ′ (u)
∣∣∣∣∣∣
Dγ′,(η+2)∧α0−κ

m (0,T )
≲
∣∣∣∣∣∣Ka(v),M

γ′ (u)
∣∣∣∣∣∣′
Dγ′,(η+2)∧α0−κ

m (0,T )

≲ Tκ/2
∣∣∣∣∣∣Ka(v),M

γ+2 (u)
∣∣∣∣∣∣′
Dγ+2,(η+2)∧α0

m (0,T )
≲ Tκ/2

∣∣∣∣∣∣Ka(v),M
γ+2 (u)

∣∣∣∣∣∣
Dγ+2,(η+2)∧α0

m (0,T )

≲ Tκ/2 |||u|||Dγ,η
m (0,T ).

�

We end this section by mentioning some continuity results for some operations on modelled
distributions. Below the product τσ of elements τ, σ in T is defined by the linear extension of
tree product, as long as it belongs to T . The following results are variants of [23, Propositions
6.12, 6.13, 6.15 and 6.16 ] so we omit the proofs here.

– Let S1 and S2 are sectors of regularities α1 and α2 respectively, and such that the
product S1 × S2 → T (m) is defined. Then for any ui ∈ Dγi,ηi

m (Si) (i = 1, 2), we have
Q<γ(u1 · u2) ∈ Dγ,η

m

with γ = (γ1 + α2)∧ (γ2 + α1) and η = (η1 + α2)∧ (η2 + α1)∧ (η1 + η2). Moreover, the
mapping (u1,u2) 7→ Q<γ(u1 · u2) is locally Lipschitz continuous.

– For any u ∈ Dγ,η
m (U) and a function h ∈ Cκ(R) with κ ≥ max{γ/α, 1}, we define

H(u) ··= Q<γ

( ∞∑
n=0

h(n)(u0)

n!
(u− u0X

0)n

)
,

where u0 denotes the X0-component of u. Then H(u) ∈ Dγ,η
m , and the mapping

u 7→ H(u) is locally Lipschitz continuous.

– Define D as a linear operator on T such that
DX(k1,k2) ··= k2X

(k1,k2−1)1k2>0, D In(τ) ··= In+(0,1)(τ).

Let n ∈ {1, 2}. If γ > n, then the map Dγ,η
m (U) ∋ u 7→ Dnu ∈ Dγ−n,η−n

m is continuous
and satisfies RMDnu = ∂n

xR
Mu for any u ∈ Dγ,η

m (U).

3 – Local well-posedness

We prove in this section that the regularity structure formulation (1.4) of the quasilinear
equation (1.1) is locally well-posed in time. We emphasize some elementary facts before stating
and proving the well-posedness result in Theorem 16. They follow from Definition 5 and Lemma
41.

15 – Lemma. Let α ∈ (0, 1). For any f ∈ V α(0, T ), the function P<2f belongs to Dγ,η
m (0, T ) for

any γ ∈ (1, 2) and η ≤ α and has the estimate
|||P<2f |||Dγ,η

m (0,T ) ≲ ∥f∥L∞((0,T )×T) + T (α−η)/2∥f∥V α(0,T ).

Consequently, the following estimates hold for any u0 ∈ Cα(T).
(i) Denote by Qt either of et∂2

x or Q
a(v),c
t with c > 0. For any γ ∈ (1, 2) and η ≤ α,

|||P<2(Q·u0)|||Dγ,η
m (0,T ) ≲ ∥u0∥Cα(T).
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Moreover, for any γ ∈ (2, 2 + α) and η ≤ α,
|||P≤2(Q·u0)|||Dγ,η

m (0,T ) ≲ ∥u0∥Cα(T).

(ii) For any γ ∈ (1, 2) and η < α,∣∣∣∣∣∣P<2

{
(Q

a(v),c
t − et∂

2
x)u0(x)

}∣∣∣∣∣∣
Dγ,η

m (0,T )
≲ T (α−η)/2 ∥u0∥Cα(T).

16 – Theorem. Let α ∈ (0, α0). For any u0 ∈ Cα(T), we choose v ∈ V α(0, T ) satisfying (2.5) for
sufficiently small δ > 0 (depending only on ∥u0∥Cα(T)). Then for any admissible model M, there
exists sufficiently small t0 ∈ (0, T ] such that equation (2.7) has a unique solution (u,v,w) in
the class

Dγ,α
m (0, t0;U)×Dγ+α0−2,2α−2

m (0, t0;T◦)×Dγ+α0−2,α−2
m (0, t0;T◦) (3.1)

for any γ ∈ (2 − α0, 2 − α0 + α). The time t0 can be chosen to be a lower semicontinuous
function of M and u0.

Proof – We find a solution by the Picard iteration. Let v0 = w0 = 0 and
un = P<2

(
Qa(v)u0

)
+ Ka(v),M

γ (vn +wn),

vn+1 = Q≤0

{
F (un)ζ1 +

{
G(un)(Dun)

2 + cu
}
ζ2

}
,

wn+1 = Q≤0

{{
A(un)−A(P<2(v))

}
(D2P≤2Q

a(v)u0 +D2K
a(v),M
γ+α0

(vn +wn))ζ3

} (3.2)

In what follows C means a constant which is independent to t0, u0 and (un,vn,wn). Similarly
P (x) means a polynomial of a variable x whose coefficients are independent to t0, u0 and
(un,vn,wn). The value of C may change from one occurrence to the others. By the multi-level
Schauder estimate from Theorem 14 we have

|||un+1|||Dγ,α
m (0,t0)

≤
∣∣∣∣∣∣P<2

(
Qa(v)u0

)∣∣∣∣∣∣
Dγ,α

m (0,t0)
+ C

(
t
κ/2
0 |||vn|||Dγ+α0−2,2α−2

m (0,t0)
+ |||wn|||Dγ+α0−2,α−2

m (0,t0)

)
≤ C

(
∥u0∥Cα(T) + t

κ/2
0 |||vn|||Dγ+α0−2,2α−2

m (0,t0)
+ |||wn|||Dγ+α0−2,α−2

m (0,t0)

)
,

(3.3)

where κ = α ∧ (α0 − α) > 0. Next we consider vn+1. Since un takes values in the sector U , all
F (un), G(un), A(un) are well-defined elements of Dγ,α

m . Since ζ has a homogeneity α0 − 2,
F (un)ζ ∈ Dγ+α0−2,α+α0−2

m (T◦).

Since Dun ∈ Dγ−1,α−1
m is in a sector of regularity α0 − 1,

(Dun)
2 ∈ Dγ+α0−2,2α−2

m (T◦),

and thus
G(un)(Dun)

2 ∈ Dγ+α0−2,2α−2
m (T◦).

Therefore,
|||vn+1|||Dγ+α0−2,2α−2

m (0,t0)
≤ P

(
|||un|||Dγ,α

m (0,t0)

)
. (3.4)

Finally we consider wn+1. Since D2K
a(v),M
γ+α0

maps Dγ+α0−2,η−2
m (T◦) into Dγ+α0−2,η∧α0−2

m con-
tinuously, one has
|||wn+1|||Dγ+α0−2,α−2

m (0,t0)

≤ C
∣∣∣∣∣∣A(un)−A(P<2(v))

∣∣∣∣∣∣
Dγ,η

m (0,t0)

∣∣∣∣∣∣D2P≤2Q
a(v)u0 +D2K

a(v),M
γ+α0

(vn +wn))ζ3
∣∣∣∣∣∣
Dγ+α0−2,α−2

m (0,t0)

≤ C
∣∣∣∣∣∣A(un)−A(P<2(v))

∣∣∣∣∣∣
Dγ,η

m (0,t0)

(
∥u0∥Cα(T) + |||vn|||Dγ+α0−2,2α−2

m (0,t0)
+ |||wn|||Dγ+α0−2,α−2

m (0,t0)

)
,

where η is a positive constant such that η < α. To obtain a small factor from the second term
of the right hand side, we decompose

A(un)−A
(
P<2(v)

)
=
{
A(un)−A

(
P<2(Q

a(v)u0)
)}

+
{
A
(
P<2(Q

a(v)u0)
)
−A

(
P<2(e

t∂2
xu0)

)}
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+
{
A
(
P<2(e

t∂2
xu0)

)
−A

(
P<2(v)

)}
.

For the first part, since A is locally Lipschitz as a mapping from Dγ,η
m to itself,∣∣∣∣∣∣A(un)−A

(
P<2(Q

a(v)u0)
)∣∣∣∣∣∣

Dγ,η
m (0,t0)

≤ P
(
|||un|||Dγ,α

m (0,t0), ∥u0∥Cα(T)

)∣∣∣∣∣∣un − P<2(Q
a(v)u0)

∣∣∣∣∣∣
Dγ,η

m (0,t0)

≤ P
(
|||un|||Dγ,α

m (0,t0), ∥u0∥Cα(T)

)
|||Ka(v),M

γ (vn +wn)|||Dγ,η
m (0,t0)

≤ P
(
|||un|||Dγ,α

m (0,t0), ∥u0∥Cα(T)

)
t
(α−η)/2
0

(
|||vn|||Dγ+α0−2,2α−2

m (0,t0)
+ |||wn|||Dγ+α0−2,α−2

m (0,t0)

)
.

For the second and third parts, we use Lemma 15 to have the estimate∣∣∣∣∣∣A(P<2(Q
a(v)u0)

)
−A

(
P<2e

t∂2
xu0)

)∣∣∣∣∣∣
Dγ,η

m (0,t0)
≤ P

(
∥u0∥Cα(T)

)∣∣∣∣∣∣P<2

(
Qa(v)u0 − et∂

2
xu0

)∣∣∣∣∣∣
Dγ,η

m (0,t0)

≤ P
(
∥u0∥Cα(T)

)
t
(α−η)/2
0 ∥u0∥Cα(T)

and from the assumption (2.5),∣∣∣∣∣∣A(P<2(e
t∂2

xu0)
)
−A

(
P<2(v)

)∣∣∣∣∣∣
Dγ,η

m (0,t0)
≤ P

(
∥u0∥Cα(T)

)∣∣∣∣∣∣P<2(e
t∂2

xu0 − v)
∣∣∣∣∣∣
Dγ,η

m (0,t0)

≤ P
(
∥u0∥Cα(T)

)(
δ + t

(α−η)/2
0

)
∥u0∥Cα(T).

As a result,
|||wn+1|||Dγ−2,α−2

m (0,t0)

≤ δP
(
∥u0∥Cα(T)

)(
∥u0∥Cα(T) + |||vn|||Dγ+α0−2,2α−2

m (0,t0)
+ |||wn|||Dγ+α0−2,α−2

m (0,t0)

)
+ t

(α−η)/2
0 P

(
∥u0∥Cα(T), |||un|||Dγ,α

m (0,t0)|||vn|||Dγ+α0−2,2α−2
m (0,t0)

, |||wn|||Dγ+α0−2,α−2
m (0,t0)

)
.

(3.5)

By (3.3), (3.4), and (3.5), by choosing sufficiently small δ, t0 > 0, we can find large constants
M1,M2,M3 > 0 such that

|||un|||Dγ,α
m (0,t0) ≤ M1, |||vn|||Dγ+α0−2,2α−2

m (0,t0)
≤ M2, |||wn|||Dγ+α0−2,α−2

m (0,t0)
≤ M3

for any n ∈ N. Note that δ > 0 is chosen as δP (∥u0∥Cα(T)) ≪ 1, so it is independent of M1,M2

and M3. By the local Lipschitz estimates of the operations in (3.2) (product, composition with
smooth function, differentiation, and integration) we have the similar estimate
|||un+1 − un|||Dγ,α

m (0,t0) + |||vn+1 − vn|||Dγ+α0−2,2α−2
m (0,t0)

+ |||wn+1 −wn|||Dγ+α0−2,α−2
m (0,t0)

≤ P (M1,M2,M3) t
δ
0

(
|||un − un−1|||Dγ,α

m (0,t0) + |||vn − vn−1|||Dγ+α0−2,2α−2
m (0,t0)

+ |||wn −wn−1|||Dγ+α0−2,2α−2
m (0,t0)

)
for a small exponent δ > 0. Hence we can choose t0 smaller such that (un,vn,wn) is a Cauchy
sequence. The limit solves equation (2.7). Uniqueness also holds because of the local Lipschitz
estimates. �

Otto, Sauer, Smith & Weber [29] and Linares, Otto & Tempelmayr [26] set up an analytic
and an algebraic framework to deal with the quasilinear equation (1.2) with additive forcing,
i.e. f = 1 and g = 0. They use in particular a greedy index set for their local expansions and
prove an a priori bound for the solutions to a renormalized form of their equation driven by a
smooth noise. Their result holds in the full sub-critical regime but they do not prove a well-
posedness result for their equation. The a priori result entails a compactness statement that
ensure the existence of some converging subsequence when the regularizing parameter in the
noise is sent to 0. The analysis of the present section shows that one can run the analysis of the
general equation (3.2) within the variant of the usual regularity structure for the generalized
(KPZ) equation described in Section 2. The present section can also be seen as a simple
alternative to the somewhat convoluted approach of Gerencsér & Hairer [20]. The interest of
this reformulation of (1.1) will be clear in the next section. The formulation of [20] does not
lend itself to an easy formulation of a renormalized equation for (1.1). At the level of generality
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of [20] the counterterm in their renormalized equation is a priori a nonlocal functional of the
solution. Our main result, Theorem 1 in Section 1, shows that there is, in the full subcritical
regime, a renormalized equation whose counterterm is a local functional of its solution. (Recall
there is not a unique renormalized equation.)

4 – Renormalization matters

This section is dedicated to the analysis of the equation satisfied by the reconstruction of the
solution u obtained in Theorem 16 – the so called renormalized equation. The first systematic
treatment of this equation in a semilinear setting was done by Bruned, Chandra, Chevyrev &
Hairer in [9]. They relied on a morphism property satisfied by the coefficients uτ of generic
solutions to semilinear singular SPDEs, for some multi-pre-Lie structures. A deeper structure
on the elements of BHZ regularity structures was unveiled by Bruned & Manchon in [11] and
applied by Bailleul & Bruned in [2] to simplify a lot the analysis of the renormalized equation.
This structure is encoded in the ⋆ product introduced in Section 4.2. Its importance in the
analysis of equation (1.4) is emphasized by Proposition 21; it provides a basic morphism prop-
erty – the counterpart here of the multi-pre-Lie morphism property used in [9]. We introduce in
Section 4.3 the class of preparation maps – special linear maps from T (m) into itself, and their
associated admissible models. A preliminary form of Theorem 1 follows from their properties
in Proposition 23. A special class of preparation maps is associated with the set of characters
on B−

◦ . We show in Section 4.4 that working with the preparation map associated with the
analogue in our setting of the BHZ character leads to Theorem 1.

4.1 – Notations. We first fix some notations. In this section, we consider the set of all
decorated trees

T = T• ∪ T◦,

since the operators which we define below may not be closed in the smaller set B. The sets T•
and T◦ are defined by the smallest sets satisfying that

T• =
{
Xk

n∏
i=1

Ini(τi) ; k ∈ N2, n ∈ N, ni ∈ N2, τi ∈ T◦

}
and

T◦ =
{
ζl σ ; l ∈ {1, 2, 3}, σ ∈ T•

}
.

Similarly to Section 2.2 we assume that the tree product is commutative. For convenience we
denote a generic element of T by

Xkζl

n∏
i=1

Ini
(τi)

for l ∈ {1, 2, 3, 4} with the convention
ζ4 ··= X0.

The combinatorial symmetry factor S(τ) of the tree

τ = Xkζl

n∏
i=1

Ini(τi)
βi

with (ni, τi) ̸= (nj , τj) for any i ̸= j is inductively defined by

S(τ) ··= k!

( n∏
i=1

S(τi)
βiβi!

)
.

We also define the map π similarly to what was done in Section 2.2 to introduce a further
edge decoration p and set

T ··= π(T).
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The p decoration is used to deal with infinite sums. However it will also be convenient to use
the set T to deal with some operators defined similarly as in [9, 1]. The following identity will
be useful later.

17 – Lemma. Let S be a finite set of T such that τ0 ∈ S if τp ∈ S and let {cτp}τp∈S be a family
of real numbers. Then one has the identity∑

τp∈S

cτp

S(τp)
τp =

∑
τ0∈S

1

S(τ0)

∑
p∈NEτ

cτpτp.

Note that S(τp) is smaller than or equal to S(τ0) in general. The above identity comes from
the order of the sums for trees and decorations. In the left hand side each τp is considered as
a non-planar tree. In the right hand side however, we fix a tree τ first and put a decoration p
later, so τp is rather considered as a planar tree. For example the tree τp,q ··= Ip(ζ1)Iq(ζ1) is
the same as τ q,p in the set T, and we have∑

τp,q=Ip(ζ1)Iq(ζ1)∈T

cτp,q

S(τp,q)
τp,q =

∑
p∈N

cτp,p

2
τp,p +

∑
p<q∈N

cτp,qτp,q =
1

S(τ0,0)

∑
p,q∈N

cτp,qτp,q.

We denote by T the linear space spanned by T, and by T∗ its algebraic dual. For a fixed
m > 0 and any τ0 ∈ T we define T

(m)
τ as the completion of the linear space spanned by

non-planar trees {τp}p under the norm∥∥∥∥∥∑
p

cpτ
p

∥∥∥∥∥
2

m

··=
∑
p

∣∣cp∣∣2m2|p|.

We define
T(m) =

⊕
τ0∈T

T(m)
τ

as the algebraic sum. Setting 〈
τp, (σq)∗

〉 ··= S(τp)1τp=σq

for τp ∈ T and the dual element (σq)∗ of σq ∈ T we can extend the duality relation between
T(m) and T∗,(1/m) to the completion of T∗ under the norm ∥ · ∥1/m.

4.2 – Coherence and morphism property for the ⋆ product. We write τ to mean a
generic element of T. We denote by T(·) the linear space spanned by T(·) with (·) ∈ {∅, ◦, •},
and by T

∗
(·) its algebraic dual.

4.2.1 – Coherence property. Let c = (ck)k∈N2 and c′ = (c′k)k∈N2 be abstract variables. We
introduce the differential operators D′

n
··= ∂c′n , for n ∈ N2, and set, for k0 ∈

{
(1, 0), (0, 1)

}
in

the canonical basis of N2,

∂k0 ··=
∑
n∈N2

(
cn+k0

Dn + c′n+k0
D′

n

)
.

The vector fields ∂(1,0) and ∂(0,1) commute, so one defines unambiguously for k = (k1, k2) ∈ N2

a |k|-th order differential operator on functions of finitely many components of c and c′ setting
∂k ··= (∂(1,0))k1(∂(0,1))k2 .

The following elementary relation is of crucial use in the proof of Proposition 21 below; its
elementary proof is left to the reader.
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18 – Lemma. For any (k1, . . . ,kn) ∈ (N2)n and m ∈ N2 one has∑
(l1,...,ln)∈(N2)n,
l1+···+ln≤m

(
m

l1, . . . , ln

) n∏
j=1

∂m−ljDkj−lj =
( n∏

j=1

Dkj

)
∂m, (4.1)

where (
m

l1, . . . , ln

)
··=

m!

l1! · · · ln!
.

For any τ ∈ T we define the function Fa(τ∗) of the variables (c, c′) as follows. Set
h(c0, c

′
0) ··= a(c0)− a(c′0)

and
Fa(ζ∗1 )(c, c

′) ··= f(c0),

Fa(ζ∗2 )(c, c
′) ··= g(c0) c

2
(0,1) + c c0,

Fa(ζ∗3 )(c, c
′) ··= h(c0, c

′
0) c(0,2),

(4.2)

and
Fa(ζ∗4 )(c, c

′) ··= 0,

and for τ = Xkζl
∏n

i=1 Ini(τ i) ∈ T set

Fa(τ∗)(c, c′) ··=
({

∂k

( n∏
i=1

Dni

)
Fa(ζ∗l )

} n∏
i=1

Fa(τ∗i )

)
(c, c′). (4.3)

With
τ1 ··= I(ζ1)I(0,1)(ζ1)2ζ2, τ2 ··= I(ζ1)2I(0,2)(ζ1)ζ3

one has for instance
Fa(τ∗1 )(c, c

′) =
{
D0D

2
(0,1)F

a(ζ∗2 )
}
Fa(ζ∗1 )

3(c, c′) = 2g′(c0)f(c0)
3,

Fa(τ∗2 )(c, c
′) =

{
D2

0D(0,2)F
a(ζ∗3 )

}
Fa(ζ∗1 )

3(c, c′) = a(2)(c0)f(c0)
3.

We see on these definitions that c0 and c′0 are placeholders for u and v in equation (1.3). The
function Fa vanishes outside B. Actually if τ ∈ T \ B then it has a node v ∈ Nτ such that a
collection of all edges leaving from v contains either an edge Ik with k ̸= 0, (0, 1), (0, 2), or more
than two edges I(0,1), or more than one edges I(0,2), then Fa(τ∗) vanishes at v. By a similar
argument it is easy to check that Fa

(
(τp)∗

)
(c, c′) with τp ∈ B−

◦ are functions of (c0, c(0,1)) and
(c′0, c

′
(0,1)) only. Furthermore, since the equality

Fa
(
(τp)∗

)
= h|p| Fa

(
(τ0)∗

)
follows from the definition, we have that∥∥∥∥∥Fa

(∑
p

cp(τ
p)∗
)∥∥∥∥∥

L∞(O×R2)

≤
∥∥Fa

(
(τ0)∗

)∥∥
L∞(O×R2)

∑
p

∥h∥|p|L∞(O) |cp|

for any domain O of R2. This means that Fa maps T∗,(m′) into Cb(O × R2) if ∥h∥L∞(O) < m′.

19 – Proposition. The solution (u,v,w) to equation (2.7) in the space (3.1) satisfies

v =
∑

τp∈B−
◦ ∩B2

uτpτp + vζ2ζ2, w =
∑

τp∈B−
◦ ∩B3

uτpτp + wζ2ζ2

u =
∑

τp∈B−
◦

uτpI(τp) + u0X
0 + u(0,1)X

(0,1),

uτp =
1

S(τp)
Fa
(
(τp)∗

)(
u0, u(0,1), v, ∂xv

)
.

(4.4)
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Proof – Given the definitions of the nonlinearities of u and P<2(v) identity (4.4) is a direct
encoding of the fixed point relation

u ∈ Q<2

{
I(v +w) + TX

}
,

v ∈ Q≤0

{
F (u)ζ1 +

{
G(u)(Du)2 + cu

}
ζ2

}
,

w ∈ Q≤0

{{
A(u)−A(P<2(v))

}
(I(0,2)(v +w) + TX)ζ3

}
satisfied by (u,v,w), where TX ··= span{Xk}. �

The analogue of identity (4.4) in the usual regularity structure setting was named ‘coherence’
in [9].

4.2.2 – Star product. Following [1, Section 2] we introduce some bilinear operators on T. Let
↑nv τ be the derivation of τ given by adding to τ the polynomial decoration Xn at the vertex v.
For σ ∈ T◦, τ ∈ T, and n ∈ N2, set

σ ↷n τ ··=
∑
v∈Nτ

∑
m∈N2

(
nv
m

)
σ ↷v

n−m (↑−m
v τ),

where nv is the polynomial decoration at the node v, and ↷v
n−m grafts σ onto τ at the node v

with an edge of type In−m. One has the following analogue of the Chapoton-Livernet univer-
sality result.

20 – Proposition. The space T◦ is freely generated by the symbols
(
Xkζl

)
k∈N2,1≤l≤3

and the family
of operations (↷n)n∈N2 .

We define the ⋆ product by following [1, Section 2]. First define for τ ∈ T and B ⊂ Nτ , the
derivation map ↑kB by

↑kB τ =
∑

∑
v∈B kv=k

∏
v∈B

↑kv
v τ .

Also we define
In(σ) ↷ τ ··= σ ↷n τ ,

and (∏
i

Ini
(σi)

)
↷ τ

by grafting each tree σi on τ along the grafting operator corresponding to ni, independently of
the others. Set finally for all σ = Xk

∏
Ini(σi) ∈ T• and τ ∈ T

σ ⋆ τ ··= ↑kNτ

(∏
i

Ini(σi) ↷ τ

)
.

One has for instance

Xk ζl

n∏
i=1

Ini(σi) =

(
Xk

n∏
i=1

Ini(σi)

)
⋆ ζl. (4.5)

One proves as in Section 3.3 of [11] that the ⋆ product is associative in the sense that
τ ⋆ (σ ⋆ η̄) = (τ ⋆ σ) ⋆ η̄

for any τ , σ ∈ T• and η̄ ∈ T. We also define the ⋆ operation on T
∗
• × T

∗ setting
σ∗ ⋆ τ∗ ··= (σ ⋆ τ)∗.

The following morphism property of Fa with respect to the ⋆ product plays the crucial role
in our argument, instead of pre-Lie morphisms applied in the original approach of Bruned,
Chandra, Chevyrev & Hairer [9]. The morphism property is proved similarly to the proof of
Proposition 2 in [1] based on identity (4.1).
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21 – Proposition. One has

Fa

({
Xk

n∏
i=1

Ini
(σi)

}∗
⋆ τ∗

)
(c, c′) =

({
∂kDn1

...Dnn
Fa(τ∗)

} n∏
i=1

Fa
(
σ∗
i

))
(c, c′). (4.6)

Note that the expansion formula (4.4) in our case only involves the k ∈ {0, (0, 1)} case of the
general formula (4.6). We see on (4.5) that formula (4.6) is a generalization of the defining
identity (4.3). The interest of formula (4.6) will appear below in Proposition 22 when we will
look for a recursive formula for some quantities of the form Fa

(
R(z)∗(τp)∗

)
, for a (spacetime

dependent) linear map R∗ on T
∗.

4.3 – Strong preparation maps and their associated models. The objects introduced
in this section are the building blocks of an inductive construction of a renormalization process.

4.3.1 – Preparation maps. For τp ∈ T denote by |τ |ζ1 the number of noise symbols ζ1 that
appear in τ . Recall from Bruned’s work [8] that a preparation map is a linear map R : T → T
such that for each basis vector τp ∈ T one has

R(ζl) = ζl, R(Xkτp) = XkR(τp) for all k ∈ N2,

R(Iq
n(τ

p)) = Iq
n(τ

p) for all n ∈ N2 and q ∈ N,
(4.7)

and there exist finitely many τ
pi
i ∈ T and constants λi such that

Rτp = τp +
∑
i

λiτ
pi
i , with |τpi

i | ≥ |τp| and |τpi
i |ζ1 < |τp|ζ1 ,

and R is closed in B and satisfies the ‘commutation’ relation
(R⊗ Id)∆ = ∆R. (4.8)

The role of R is to provide a definition of the product of two trees that have already been
renormalized. Its use in Section 4.3.2 in the recursive definition of the actual analytical objects
associated with decorated trees will make that point clear; see in particular (4.13). Accordingly
the second and third identities of (4.7) account for the fact that there is no need, in the
induction process that builds an admissible model, to ‘renormalize’ elements of the form Xkτp

and Iq
n(τ

p) if the element τp has already been renormalized. We can think of a preparation
map as generating a renormalization process in the same way as a vector fields generates a flow.

Denote by R∗ the algebraic dual of the map R; it is defined by the identity〈
Rσq, (τp)∗

〉
=
〈
σq, R∗(τp)∗

〉
.

It is elementary to see that identity (4.8) is equivalent to having the right derivation identity
R∗ ((σq)∗ ⋆ (τp)∗) = (σq)∗ ⋆ (R∗(τp)∗) (4.9)

for all σq ∈ B+ (B+ is regarded as a subset of T•) and τp ∈ B – see e.g. Proposition 3 in [1].
A strong preparation map is defined by a preparation map satisfying identity (4.9) for all
σq ∈ T• and τp ∈ T – and not only for σp ∈ B+ and τp ∈ B.

Definition – (a) A spacetime dependent strong preparation map on T(m) is a continuous
map

R :
(
R+ × T

)
× T(m) → T(m)

satisfying the following properties for any fixed z ∈ R+ × T.
– The map R(z, ·) : T(m) → T(m) is linear, closed in T (m), and satisfies (4.7).
– For any τ0 ∈ T there exist finitely many σ0

1 , . . . , σ
0
n ∈ T such that |σi| > |τ |, |σi|ζ1 <

|τ |ζ1 , and (
R(z, ·)− Id

)
T(m)
τ ⊂

n⊕
i=1

T(m)
σi

.

– The map R(z, ·)∗ satisfies (4.9) for any σq ∈ T• and τp ∈ T.
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(b) A spacetime dependent renormalization character on B−
◦ , of growth factor

m′ > 0, is a map
ℓ :
(
R+ × T

)
× B−

◦ → R

which is continuous in R+ × T and vanishes on the elements of the form
Xkτp (k ̸= 0), Iq

n(τ
p),

and such that for any τ0 ∈ B−0
◦ there exists a constant C(τ) such that∣∣ℓ(z, τp)∣∣ ≤ C(τ)(m′)|p| (4.10)

for any p ∈ NEτ and z ∈ R+ × T.

One associates to a spacetime dependent character ℓ(z, ·) of growth factor m′ the linear map

Rℓ(z)
∗((τp)∗) ··= (τp)∗ +

∑
σq∈B−

◦

ℓ(z, σq)

S(σq)
(τp)∗ ⋆ (σq)∗, (τp ∈ T•) (4.11)

and
Rℓ(z)

∗((τp)∗) = (τp)∗, (τp ∈ T◦).

It can be easily checked that Rℓ is a strong preparation map on T (m) with m > m′. The
definition above corresponds to the usual definition of its dual described by the contraction of
trees as in Corollary 4.5 of [8]. So, Rℓ(z) is closed in B. For the commutation relation (4.9) we
use the associativity of the ⋆ product as in Proposition 4 of [1]. It remains to show that Rℓ is
bounded in T(m). Actually since∥∥∥∥∥(Rℓ(z)

∗ − Id
)(∑

p

cp(τ
p)∗
)∥∥∥∥∥

1/m

≤
∑
p,q,σ

|ℓ(z, σq)|
S(σq)

|cp|
∥∥τp ⋆ σq

∥∥
1/m

≲
∑
p,q,σ

|ℓ(z, σq)|
S(σq)

|cp| |q|m−|p|−|q| ≤
(∑

q,σ

|ℓ(z, σq)|2

S(σq)2
|q|2 m−2|q|

)1/2
∥∥∥∥∥∑

p

cpτ
p

∥∥∥∥∥
1/m

,

the map Rℓ(z)
∗ : T∗,(1/m) → T∗,(1/m) is continuous because of (4.10). So, Rℓ(z) sends contin-

uously T(m) into itself. The next proposition follows from Proposition 21 and identity (4.11).

22 – Proposition. Let O be a domain in R2 and let ∥h∥L∞(O) < 1/m. Let R be a spacetime dependent
strong preparation map on T(m). For every z ∈ R+ × T and (c0, c

′
0, c(0,1), c

′
(0,1)) ∈ O × R2 one

has

Fa

(
R(z)∗

(
Xkζl

n∏
i=1

Ini
(τ

pi
i )
)∗)

(c, c′)

=

({
∂kDn1 ...DnnF

a
(
R(z)∗ζ∗l

)} n∏
i=1

Fa
(
(τ

pi
i )∗

))
(c, c′).

Proof – By writing

Xkζl

n∏
i=1

Ini
(τ

pi
i ) =

(
Xk

n∏
i=1

Ini
(τ

pi
i )
)
⋆ ζl

and using the right derivation property (4.9) – here we use the fact that the preparation map
is ‘strong’ – one gets

R∗(z)

((
Xk

n∏
i=1

Ini
(τ

pi
i )
)
⋆ ζl

)∗

=
(
Xk

n∏
i=1

Ini
(τ

pi
i )
)∗

⋆
(
R(z)∗ζ∗l

)
. (4.12)

Identity (4.6) in Proposition 21 then yields the identity of the statement. �
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4.3.2 – Admissible model associated with a preparation map. Fix a regularization parameter
ε and denote by

ξε =·· ξ1 ∈ C∞(R× T)

a regularized version of the spacetime white noise ξ and set
ξ2 = ξ3 = 1.

For any spacetime dependent strong preparation map R on T(m) we define inductively the maps
ΠR,a(v) and ΠR,a(v),× as follows. For 1 ≤ l ≤ 3, set

ΠR,a(v)ζl = ΠR,a(v),×ζl ··= ξl,

and define
ΠR,a(v) = ΠR,a(v),× ◦R, ΠR,a(v),×(τ1τ2) =

(
ΠR,a(v),×τ1

)(
ΠR,a(v),×τ2

)
,

ΠR,a(v),×(Ip
nτ) = ∂n

z

(
Ka(v) ◦

(
∂2
xK

a(v))◦p
)
(ΠR,a(v)τ

)
,

(4.13)

where the symbol ◦ stands for the composition operator and the notation A◦p stands for the
p-fold iteration of an operator A. The operator ∂2

xK
a(v) makes sense here, because ΠR,a(v)τ

constructed as above belongs to C0+
s (Note that Ka(v) maps C0+

s into C2+
s – see Theorem 6).

As R is spacetime dependent the first identity in (4.13) reads(
ΠR,a(v)τ

)
(z) = ΠR,a(v),×(R(z)τ

)
(z),

for all z and all τ . It follows from this definition and the fact that we work with preparation
maps R leaving fixed the elements of T of the form Ip

n(τ) that the map ΠR,a(v) satisfies the
admissibility condition

ΠR,a(v)(Ip
nτ) = ∂n

z

(
Ka(v) ◦ (∂2

xK
a(v))◦p

)
(ΠR,a(v)τ).

Define as well gR,a(v) inductively from the identity

(gR,a(v)
z )−1

(
I+,p
n τ

)
= −

∑
|k|s<|τ |+2−|n|s

(−z)k

k!

(
∂n+k
z

(
Ka(v) ◦ (∂2

xK
a(v))◦p

)
(ΠR,a(v)

z τ)
)
(z).

One can follow verbatim Section 7.1 of [2] and see that
(
ΠR,a(v), gR,a(v)

)
is a smooth admissible

model on T (m) with a constant m coming from the operator norm of ∂2
xK

a(v).

Among the renormalization characters, we are interested in the one ℓεa(v)(z, τ
p) defined by

the similar way to Section 6.3 of [10]. We denote by Rε
a(v) the strong preparation map defined

by (4.11) with ℓ replaced by ℓεa(v). The associated model Mε
a(v) is called the BPHZ model. Note

that, when ℓεa(v) has a growth factor m′ < m, the BPHZ model Mε
a(v) is a model on T (m).

1 – Assumption. There exists a character ℓεa(v) of growth factor m′ ∈ (0,m) for each ε ∈ (0, 1]

(the constant C(τ) in (4.10) may be ε-dependent) and the BPHZ renormalized model Mε
a(v) is

convergent as ε > 0 goes to 0.

We conjecture that Assumption 1 holds true in the full subcritical regime, but we do not
discuss it in this paper. Such a convergence result was proved in several works (cf. [12, 24, 5])
in semilinear settings, but we need slight modifications. For instance, we cannot directly use
[12] because the kernel ∂2

xK
a(v) is too singular to be integrable around the origin. We would

be able to solve this difficulty by considering Ka(v) ◦ (∂2
xK

a(v))◦p as one integrable kernel –
see Proposition 27 below. The inductive proofs in [24, 5] are also not directly applied because
the integral operator Ka(v) is not homogeneous. However, [5, Lemma 9] implies that the
convergence of the model is reduced to the ε-uniform boundedness of the expectations∣∣E[Qθ((Π

ε)gzτ
p)(z)

]∣∣ ≲ m|p|θ(|τ |−|k|s)/4
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for any τ with |τ | ≤ 0 and their convergences as ε → 0. This fact would reduce the effort for
the proof significantly, because this expectation vanishes for any τ with an odd number of ζ1
symbols by the property of Gaussian noise.

4.4 – Renormalized equation. Denote by Rε
a(v) the reconstruction map associated with

Mε
a(v). The proof of Theorem 10 in [2] works verbatim and gives in our setting the following

result.

23 – Proposition. Let (uε,vε,wε) ∈ Dγ,α
m (0, t0;U) × Dγ+α0−2,2α−2

m (0, t0;T◦) × Dγ+α0−2,α−2
m (0, t0)

stand for the modelled distribution solution of (2.7) with respect to the model Mε
a(v). Then one

can choose t′0 < t0 and ε0 > 0 both small enough for
uε ··= Rε

a(v)(u
ε)

to satisfy the bound
sup

ε∈(0,ε0)

sup
t∈(0,t′0)

∥∥a(uε)− a(v)
∥∥
L∞(T)

<
1

m

and solve the ‘renormalized’ equation(
∂t − a(uε)∂2

x

)
uε = f(uε)ξε + g(uε)(∂xu

ε)2 +
∑

τp∈B−
◦

ℓεa(v)(·, τ
p)

S(τp)
Fa
(
(τp)∗

)(
uε, ∂xu

ε, v
)

(4.14)

on (0, t′0) × T, with initial condition u0. The last term of (4.14) has a growth that is at most
linear with respect to ∂xu

ε.

Proof – Denote by Rε,∗
a(v) the dual of Rε

a(v). Theorem 9 of [1] yields that uε solves the equation(
∂t − La(v)

)
uε = f(u)ξε + g(u)(∂xu

ε)2 +
(
a(uε)− a(v)

)
∂2
xu

ε

+

4∑
l=1

Fa
(
(Rε,∗

a(v) − Id)ζ∗l
)(

uε, ∂xu
ε, v, ∂xv

)
.

Since Rε,∗
a(v)ζ

∗
l ∈ T∗,(1/m) by duality the term Fa

(
(Rε,∗

a(v) − Id)ζ∗l
)

is actually convergent in
Cb((0, t

′
0) × T) by the remark before Proposition 19. We have the right hand side of (4.14)

from the definition of Rε,∗
a(v). To see that this counterterm does not depend on ∂xv note that

any renormalization character satisfies
ℓ
(
X(0,1)σp

)
= 0 (4.15)

by definition. Since the only functions Fa
(
(τp)∗

)
(c, c′) that depend on c′(0,1) correspond to τp

of the form X(0,1)σp, the corresponding counterterms are null.
It remains to check the last statement of the proposition. If some function Fa

(
(τp)∗

)
(c, c′) were

of degree greater than 1 with respect to c(0,1) then τp would have at least two ζ2-type nodes
from where exactly one edge I(0,1) would leave. Since the minimal homogeneity among the
trees

Xkζ2I(0,1)(σ)
n∏

i=1

I(σi)

is
∣∣ζ2I(ζ1)I(0,1)(ζ1)∣∣ = 2α− 1 > −1, such τp cannot have negative homogeneity. �

Next we reduce the v-dependence of the counterterm of (4.14). Define inductively the func-
tion χa(τp)(c0) by the relations

χa
(
ζ3 I(0,2)(τp)

)
= χa(τp),

χa
(
ζ3 I(0,2)(τp)

n∏
i=1

I(τpi
i )
)
(c0) = a(n)(c0)

n∏
i=1

χa
(
τ
pi
i

)
(c0), for n ≥ 1,

(4.16)
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and for l ∈ {1, 2}

χa
(
ζl

n∏
i=1

Ini(τ
pi
i )
)
(c0) =

n∏
i=1

χa
(
τ
pi
i

)
(c0). (4.17)

We see on this definition that χa is a polynomial function of a and its derivatives. It is important
to note that χa(τp) does not depend on the p-decoration of τ – rather it depends on the location
of the ζ3 vertices within τp. We denote by τ the non-p-decorated tree associated with τp, so
the symbols τ and τ0 are used here interchangeably. As a shorthand notation we write

χa
τ
··= χa(τ).

With
τ1 ··= I(ζ1)I(0,1)(ζ1)2ζ2, τ2 ··= I(ζ1)2I(0,2)(ζ1)ζ3

one has for instance
χa(τ1)(c0) = 1, χa(τ2)(c0) = a(2)(c0)χ

a(ζ1)
2(c0) = a(2)(c0)

We also define the functions F(τ∗) for τ ∈ B0 by the same inductive relations as the functions
Fa(τ∗) by replacing c0-derivatives of h(c0, c′0) of any order by the constant function equal to 1.
Then the functions F(τ∗) depend only on c0. It is elementary to obtain the following identity
by induction.

24 – Lemma. One has

Fa
(
(τp)∗

)(
c0, c(0,1), c

′
0

)
= χa

τ (c0)
(
a(c0)− a(c′0)

)|p|
F(τ∗)(c0). (4.18)

For a positive parameter λ we denote by

Zλ
t (x) = Zλ(t, x) = 1t>0

e−ct

√
4πλt

exp

(
− |x|2

4λt

)
the fundamental solution built from the constant coefficient parabolic operator ∂t − λ∂2

x − c.
The naive admissible model on T associated with Zλ and the smooth noise ξε is the unique
multiplicative model such that

Πε
λζ1 = ξε, Πε

λζl = 1 (l ∈ {2, 3}),
(
Πε

λX
k
)
(z) = zk,

and
Πε

λ

(
Ip
n(τ

p)
)
=
(
∂n
z Z

λ ∗ (∂2
xZ

λ)∗p
)
∗ Πε

λτ
p.

The BHZ character lελ(·) on B−
◦ is defined in that setting as

lελ(τ
p) ··= hε

λ(S
′
−τ

p), hε
λ(τ

p) ··= E
[
Πε

λτ
p(0)

]
,

where S′
− : T− → R[T ] is the natural extension to our setting of the negative twisted antipode

– see Proposition 6.6 in [10] or Section 7 of [4] for its definition in the usual BHZ setting.

2 – Assumption. For any τ0 ∈ B−0
◦ there exist a constant m > 0 and an ε-independent constant

C(τ) such that ∣∣ℓεa(v)(z, τp)− lεa(v(z))(τ
p)
∣∣ ≤ C(τ)m|p|

for any p ∈ NEτ and z ∈ R+ × T.

We check that Assumption 2 holds for some examples in the next section. The next
statement is the core fact to get the renormalized equation under the form (1.6) stated in
Theorem 2, though it is elementary.

25 – Lemma. For any τ0 ∈ B−0
◦ the function

λ 7→ lελ(τ
0)
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is analytic in any given bounded interval of R whose closure does not contain the point 0 and
1

n!
∂n
λ l

ε
λ(τ

0) =
∑

p∈NEτ , |p|=n

lελ(τ
p).

Proof – By an elementary computation we have

∂λZ
λ(t, x) = t∂2

xZ
1(λt, x) =

∫ t

0

∫
R

Zλ(t− s, x− y)∂2
xZ

λ(s, y) dy ds. (4.19)

Therefore once ∂λ applies to one edge to which the kernel ∂kZλ is associated then this kernel
turns into a spacetime convolution ∂kZλ ∗ ∂2

xZ
λ. �

Proof of Theorem 2 – It follows from Lemma 17, Lemma 25 and (4.18) that the counterterm
in the renormalized equation (4.14) equals to the following simple form up to an ε-uniform
remainder term:∑

τp∈B−
◦

lεa(v(·))(τ
p)

S(τp)
Fa
(
(τp)∗

)(
uε, ∂xu

ε, v
)

=
∑

τ0∈B−0
◦

1

S(τ0)

∑
p∈NEτ

lεa(v(·))(τ
p)Fa

(
(τp)∗

)(
uε, ∂xu

ε, v
)

=
∑

τ0∈B−0
◦

1

S(τ0)
χa
τ (u

ε)F(τ∗)
(
uε, ∂xu

ε
) ∞∑
n=0

(
a(uε)− a(v)

)n ∑
|p|=n

lεa(v(·))(τ
p)

=
∑

τ0∈B−0
◦

1

S(τ0)
χa
τ (u

ε)F(τ∗)
(
uε, ∂xu

ε
)
lεa(uε(·))(τ

0).

This completes the proof of Theorem 2. �

We finish this section by showing that the a priori diverging term lεa(uε(·)) in the counterterm
takes a particularly nice form under the condition that the noise is Gaussian and regularized
only in the spatial variable by symmetric mollifiers. To avoid the situation where temporally
regularization is necessary, we consider only spatial noise or spacetime noise that is white in
time with f = 1. Recall that |τ |ζ1 denotes the number of ζ1-type nodes that appear in τ .

26 – Proposition. Assume that ξ is a stationary centered Gaussian noise and define
ξε(t, x) =

(
ξ(t, ·) ∗ ρε

)
(x)

with an even mollifier ρε, for the spatial convolution operator ∗. Then hε
λ(τ

0) = 0 if |τ |ζ1 is
odd, otherwise

hε
λ(τ

0) =

{
λ−♯Nτ+1hε

1(τ
0), if ξ(x) depends on only space,

λ|τ |ζ1/2−♯Nτ+1hε
1(τ

0), if ξ(t, x) is white in time.

Proof – The former part holds because ξε is centered Gaussian. Let |τ0|ζ1 = 2a be an even
number and let b be the number of ζ2, ζ3-type nodes. If the root of τ0 is not a ζ1-type node,
then the expectation of

(
Πε

λτ
0
)
(0) is given by an integral of the form∫

Cε(z
1 − z2) · · ·Cε(z

2a−1 − z2a)(z1)n1 · · · (z2a)n2aAλ
(
z1, . . . , z2a

)
dz1 · · · dz2a,

where
Cε(z) ··= E

[
ξε(z)ξε(0)

]
and

Aλ(z1, . . . , z2a) =

∫
Ãλ
(
z1, . . . , z2a, w1, . . . , wb−1

)
dw1 · · · dwb−1
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with a product Ã of polynomials (wi)mi and kernels ∂eijZλ. Because of the form of equation
and the restriction α0 ∈ (0, 1), the n-decorations mi and e-decorations eij are 0 or (0, 1). So,
they are independent of the change of variables z 7→ zλ ··= (λt, x). Hence

Aλ
(
z1, . . . , z2a

)
= λ−b+1A1

(
z1λ, . . . , z

2a
λ

)
by a scaling argument. If ξ(x) is t-independent then we have(

Πε
λτ
)
(0) = λ−2a−b+1

(
Πε

1τ
)
(0),

since Cε(x) does not depend on time. If ξ(t, x) is white in time, since Cε(z) = δ(t)C ′
ε(x) for

some function C ′
ε, which reduces the number of time components t1, . . . , t2a of z1, . . . , z2a by a

half and yields (
Πε

λτ
)
(0) = λ−a−b+1

(
Πε

1τ
)
(0).

We can perform similar computations when N◦ contains the root. �

In the setting of Lemma 26 the counterterm is of the form∑
τ∈B−0

◦

1

S(τ)

(∑
σ

s(τ, σ)
hε
1(σ)

λθ(σ)

)
χa
τ (u

ε)F(τ∗)(uε, ∂xu
ε), (4.20)

where S′
−τ =

∑
σ∈B−0

◦
s(τ, σ)σ and the exponent θ(σ) is given in the statement of Proposition

26. This situation applies in the example of equation (1.2) with a linear additive forcing,
and more generally in situations where f = 1, so that all the terms in the regularized and
renormalized equation(

∂t − a(uε)∂2
x

)
uε = ξε + g(uε)(∂xu

ε)2 +
∑

τ∈B−0
◦

lεa(uε)(τ)

S(τ)
χa
τ (u

ε)F(τ∗)(uε, ∂xu
ε)

make sense.

4.5 – Examples. We consider in this section some examples satisfying Assumption 2. Recall
from [23] that we can associate to each character ℓεa(v)(τ

p) a directed graph called Feynman
diagram whose edges are related with kernels Ka(v) and estimate it by using the singularity of
each kernel around the origin. To estimate the difference between ℓεa(v)(•, τ

p) and lεa(v(•))(τ
p),

we show that the difference between Ka(v) and Za(v(•)) whose coefficient is frozen at the root is
sufficiently regular. First recall from Theorem 6 that the integration operator Ka(v)((t, x), (s, y))
can be replaced with to the operator(

∂t − La(v) + c
)−1

(·) =
∫ t

−∞
Q

a(v)
t,s (·)ds

up to the cost of the good operator R sending C−2+
s (a(v)) into C2+

s . Furthermore by Proposition
27 below we can replace Q

a(v)
t,s (x, y) with Z

a(v(•))
t−s (x− y) up to the cost of a less singular kernel.

The next two propositions play an important role in Section 4.5.1 and Section 4.5.2. We
defer their proof to Appendix A.6. For simplicity we write

b = a(v)

in what follows. We use the notations from Appendix A.1 where we consider some properties
of Gaussian-like kernels. This type of kernels appear in the construction of the fundamental
solution Qb of the operator ∂t − Lb + c or more general operators, as described in Section A.2.
Recall from Appendix A.1 the definition of the class Gβ(x) with d = 1, s = 1 and N = 2. Note
also that Zλ is analytic with respect to λ and

∂n
λ∂

k
xZ

λ
t = tn∂2n+k

x Zλ
t ∈ G−k
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by (4.19). In what follows, an element in Gβ is denoted by the symbol (Gβ)t,s(x, y), if its explicit
form is not important. The functions represented by such symbols can be different from line to
line.

27 – Proposition. If a, hence b, is an element of Cα
s with α ∈ (0, 1] then for any k ∈ {0, 1, 2} and

p ∈ N one has
(∂k

xQ
b) ∗ (∂2

xQ
b)∗pt,s(x, y) = (∂p

λ∂
k
xZ

λ
t−s)|λ=b(t,x)(x− y) + (Gα−k)t,s(x, y). (4.21)

We need a more detailed expansion in Section 4.5.3. By choosing a t-independent function
v ∈ C2(T) – one choice is v(x) = eδ∂

2
x for sufficiently small δ > 0 as given after Definition 5, we

have the following estimate. Note that the fundamental solution Qb
t is t-homogeneous in this

case.

28 – Proposition. Suppose that v ∈ C2(T) is independent to t. Then for any k ∈ {0, 1, 2} and p ∈ N
one has

(∂k
xQ

b
t) ∗ (∂2

xQ
b)∗pt (x, y) = (∂p

λ∂
kZλ

t )(x− y)λ=b(x) + b′(x)Y
k,p,b(x)
t (x− y) + (G2−k)t,0(x, y)

(4.22)

where Y k,p,λ
t (·) is a function indexed by a constant λ > 0 belonging to G1−k locally uniformly

over λ. When k is even, respectively odd, the function Y k,p,λ
t (·) is odd, respectively even.

Equipped with the previous estimates we can now look at three examples where Assumption
2 is satisfied. For simplicity we consider only trees with vanishing p-decoration.

4.5.1 – Two dimensional parabolic Anderson model. In the slightly singular setting of the
quasilinear parabolic Anderson model equation

∂tu− a(u)∆u = f(u)ξ

on a two dimensional torus, with space white noise ξ. In this case one can choose 2/3 < α0 < 1.
The only elements τ ∈ B−0

◦ with an even number of ζ1 noises are the trees

τ1 = ζ1I(ζ1) = , τ2 = ζ3I(ζ1)I(0,2)(ζ1) = .

Here the thick line denotes the operator I and the double line denotes I(0,2). The noise symbol
ζ1 is denoted by a white circle, while ζ3 is denoted by a circled dot. The corresponding characters
are

ℓεa(v)((t, x), τ1) =

∫
(−∞,t)×R

Q
a(v)
t,s (x, y)Cε(x− y) dsdy,

ℓεa(v)((t, x), τ2) =

∫
{(−∞,t)×R}2

Q
a(v)
t,s (x, y) ∂2

xQ
a(v)
t,s′ (x, y

′)Cε(y − y′) dsds′dydy′,

where
Cε(x) ··= E[ξε(x)ξε(0)].

By (4.21) of Proposition 27 we can replace Q
a(v)
t,s (x, y) above by Z

a(v(t,x))
t−s (x−y) up to integrable

kernels. Indeed one has for the difference∫
(−∞,t)×R

(Gα)t,s(x, y)C
ε(x− y) dsdy ∼

∫ t

−∞
(Gα)t,s(x, x) ds ≲

∫ t

−∞

eγ(t−s)

(t− s)α/2
ds < ∞,

where a ∼ b means that a is equal to b up to an ε-uniform remainder term, and we can choose
a negative γ for sufficiently large c > 0. A similar estimate holds for ℓεa(v)((t, x), τ2). One thus
has

lελ(τ1) =

∫
(−∞,t)×R

Zλ
t−s(x− y)Cε(x− y) dsdy,

∼ − 1

2πλ

∫
R

log |y|Cε(y) dy



29

lελ(τ2) =

∫
{(−∞,t)×R}2

Zλ
t−s(x− y) ∂2

xZ
λ
t−s′(x− y′)Cε(y − y′) dsds′dydy′

= − 1

λ

∫
(−∞,t)×R×R

Zλ
t−s(x− y) δ0(x− y′)Cε(y − y′) dsdydy′

∼ 1

2πλ2

∫
R

log |y|Cε(y) dy.

The action of the characters acting on trees with nonzero p-decorations can be estimated
similarly using Proposition 27, showing that Assumption 2 holds in that case. Then formula
(1.6) takes the form(

lεa(·)(τ1)f
′f + lεa(·)(τ2)a

′f2
)
(uε) = cε

(
f ′f

a
− a′f2

a2

)
(uε)

with a constant cε = − 1
2π

∫
R log |y|C

ε(y)dy. This matches the previous works on the subject
by Bailleul, Debussche & Hofmanová [3], Furlan & Gubinelli [18] and Otto & Weber [30].

4.5.2 – Quasilinear generalized (KPZ) equation with regularized noise. We work in this
paragraph in the one dimensional space torus. Let ξ be the mildly singular case of a spacetime
Gaussian noise of parabolic regularity α0 − 2 with 1/2 < α0 < 2/3 and consider the quasilinear
equation

∂tu− a(u)∂2
xu = f(u)ξ + g(u)(∂2

xu).

Then the only elements τ ∈ B−0
◦ with an even number of noise symbols ζ1 are the trees

τ1 = ζ1 I(ζ1) = , τ2 = ζ3 I(ζ1)I(0,2)(ζ1) = , τ3 = ζ2 I(0,1)(ζ1)2 = , (4.23)
where the thin line denotes the operator I(0,1) and the black dot denotes the symbol ζ2. Since
all of them have homogeneity 2α0 − 2 > −1, we can replace the kernel Qa(v) by Za(v) up to
integrable kernel Gα by Proposition 27. Thus they satisfy Assumption 2 and the counterterm
takes the form (

lεa(·)(τ1) f
′f + lεa(·)(τ2) gf

2 + lεa(·)(τ3) a
′f
)
(uε).

As mentioned in Gerencsér & Hairer’s work [20] the renormalization constants are cancelled as
follows. We assume that the function

Cε(z) ··= E
[
ξε(z)ξε(0)

]
is an even function. By explicit calculation,

lελ(τ1) = −
∫
R2

Cε(z)Zλ(z) dz,

lελ(τ2) = −
∫
(R2)2

Cε(z − z′) ∂xZ
λ(z)∂xZ

λ(z′) dzdz′ = −
∫
R2

Cε(z) ∂xZλ ∗ ∂xZλ(z) dz,

lελ(τ3) = −
∫
(R2)2

Cε(z − z′)Zλ(z) ∂2
xZ

λ(z′) dzdz′ = −
∫
R2

Cε(z)Zλ ∗ ∂2
xZ

λ(z) dz,

where f(z) ··= f(−z) for any function f . As we see from the identity

∂xZλ ∗ ∂xZ
λ(z) = −Zλ ∗ ∂2

xZ
λ(z) =

1

2λ
Zλ(|t|, x) +O(1),

that we have
λlελ(τ2) = −λlελ(τ3) = lελ(τ1) +O(1),

our formula matches with Gerencsér & Hairer’s formula [20]

lεa(uε)(τ1)

(
f ′f +

gf2

a
− a′f

a

)
(uε).

4.5.3 – Quasilinear generalized (KPZ) equation with space-time white noise. Let ξ be a
spacetime Gaussian noise of parabolic regularity α0 − 2 with 2/5 < α0 < 1/2 and consider the
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stochastic heat equation
∂tu− a(u)∂2

xu = ξ.

Then the only elements τ ∈ B−0
◦ with an even number of noise symbols ζ1 are the trees τ1, τ2, τ3

from (4.23) together with the trees

, , (4.24)

Since the last two trees have homogeneity (4α0−2), we can replace the kernel Qa(v) by Za(v) in
the same way as before. However, Assumption 2 is not ensured at this stage since on the edge
e whose lower node (associated with the spacetime variable (s, y)) is not the root (associated
with (t, x)), the kernel Q

a(v)
s,· (y, ·) is replaced by Z

a(v(s,y))
s−· (y − ·), not Z

a(v(t,x))
s−· (y − ·). To

show Assumption 2, by using the analyticity of Zλ, we have to replace Z
a(v(s,y))
s−· (y − ·) with

Z
a(v(t,x))
s−· (y − ·). The remainder is of size |t− s|1/2 + |x− y|, which also smears the singularity

of the Feynman diagram by α. Thus Assumption 2 holds for the trees in (4.24).
It turns out that the first tree of (4.24) is not involved in equation (1.6) because ξ is a

centered Gaussian. Indeed, by decomposing

lεa(v)
(
·,

)
= −hε

a(v)

(
·,

)
+ 3hε

a(v)

(
·,

)
hε
a(v)

(
·,

)
,

we see that the right hand side is zero because of Wick theorem for Gaussian random variables.
It remains to consider the tree τ2. Since it has a homogeneity 2α0−2 < −1, it is not sufficient

to replace Qa(v) by Za(v) with the kernel of singularity α ≤ 1. One sees however from (4.22) of
Proposition 28 that if we use a t-independent function v ∈ C2(T) then we have

ℓεa(v)
(
(t, x),

)
=

∫
(R2)2

{
Z

a(v(x))
t−s (x− y)(∂2

xZt−s′)
a(v(x))(x− y′) + (⋆)

+
∑

β1+β2≥0

(G(β1))t,s(x, y)(G
(β2))t,s′(x, y

′)
}
Cε(s− s′, y − y′) dsds′dydy′,

(4.25)
where (⋆) is of the form

a′(v(x))v′(x)
{
Y

0,0,a(v(x))
t−s (x− y)(∂2

xZt−s′)
a(v(x))(x− y′) + Z

a(v(x))
t−s (x− y)Y

2,0,a(v(x))
t−s′ (x− y′)

}
.

The last term in (4.25) does not matter because one has the ε-uniform estimate∫
(R2)2

(G(β1))t,s(x, y)(G
(β2))t,s′(x, y

′)Cε(s− s′, y − y′) dsds′dydy′

≲
∫
R2

(G)
(β1+β2−1)
t−s (x, y) dsdy ≲

∫ t

−∞

eγ(t−s)

(t− s)(1−(β1+β2))/2
ds < ∞.

Although the (⋆) term in (4.25) is not estimated as above, if we assume that the mollifier ρε is
an even function, then Cε is also an even function of its space argument. So, the (y, y′)-integral∫
R2(⋆)Cε(s− s′, y− y′)dydy′ vanishes because of the parity of the functions Y . In the end only

the first term of (4.25) survives and Assumption 2 is satisfied with

lελ
( )

=

∫
(R2)2

Zλ
t−s(x− y) (∂2

xZ
λ
t−s′)(x− y′)Cε(s− s′, y − y′) dsds′dydy′.

Eventually the counterterm takes the form

{
lεa(·)

( )
a′ + lεa(·)

( )
a′a′′ + lεa(·)

( )
(a′)3

}
(uε),

which matches Gerencsér’s formula in Theorem 1.1 of [19]. We see on this formula the rule
(4.16)-(4.17) in action.
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In the case of the quasilinear generalized (KPZ) equation (1.1)
∂tu− a(u)∂2

xu = f(u)ξ + g(u)(∂xu)
2

driven by a one dimensional spacetime white noise ξ on the torus, the list of trees τ ∈ B−0
◦

with an even number of noise symbols ζ1 contains, in addition to the previous trees, the trees
τ1, τ3 from (4.23) and a number of other trees of homogeneity 4α0 − 2. That Assumption 2
holds true for all the trees of homogeneity 4α0 − 2 can be seen as for the trees of (4.24). The
counterterms corresponding to τ1 and τ3 can be seen to satisfy Assumption 2 by a similar
computation as in (4.25).

We note that the present analysis of equation (1.1) holds for a large class of Gaussian
spacetime noises of parabolic regularity α0−2, up to α0 > 1/3, because there are no other trees
of homogeneity strictly smaller than −1 except those considered above.

A – Appendix

In this appendix we prove some technical properties of the fundamental solutions of anisotropic
parabolic operators following the arguments in [16, 15]. We believe that the results given here
are known but we could not find any suitable references. For the sake of generality for them
we work on the space Rd and an anisotropic scaling s = (sj)

d
j=1 ∈ Nd. Set

|s| ··=
∑d

j=1 sj ,
|k|s ··=

∑d
j=1 sjkj , for k = (kj)

d
j=1 ∈ Nd,

∥x∥s ··=
∑d

j=1 |xj |1/sj , for x = (xj)
d
j=1 ∈ Rd,

∂k
x
··=
∏d

j=1 ∂
kj
xj , for k = (kj)

d
j=1 ∈ Nd.

Through this appendix, we consider the anisotropic parabolic operator

∂t − P (t, x, ∂x) ··= ∂t −
∑

|k|s≤N

ak(t, x)∂
k
x (A.1)

with coefficients ak(t, x) defined in a domain D = (a, b) × Rd, where −∞ ≤ a < b ≤ ∞. In
addition, N is an integer satisfying N > maxj sj .

29 – Definition. We call a function Qt,s(x, y) defined on a < s < t < b and x, y ∈ Rd a funda-
mental solution of the operator (A.1) if for any f ∈ Cb(R

d) the function

F (t, x; s) ··=
∫
Rd

Qt,s(x, y)f(y)dy

satisfies the properties(
∂t − P (t, x, ∂x)

)
F (t, x; s) = 0, t > s, x ∈ Rd, (A.2)

lim
t↓s

F (t, x; s) = f(x), x ∈ Rd (A.3)

for any fixed s ∈ (a, b).

We prove the existence of the fundamental solution and Gaussian estimates for it (Theorem
34) in Appendix A.2, and prove uniqueness (Theorem 39) in Appendix A.3. Appendix A.1 is
devoted to giving preliminary results. In Appendix A.4 we consider temporally homogeneous
operators. The estimates of anisotropic Taylor remainders (Corollary 43) given in Appendix
A.5 has an important role in the proof of Theorem 13. In Appendix A.6 we give the proof of
Propositions 27 and 28, which are used in Section 4.5.

A.1 – Gaussian kernels. In this section, we prove some technical properties of exponential
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functions. For c > 0 and β ∈ R, we define the function

G
(c,β)
t (x) ··= t(β−|s|)/N exp

{
− c

d∑
j=1

(
|xj |N/sj

t

)sj/(N−sj)}
t > 0, x ∈ Rd.

30 – Lemma. Let β, β1, β2 ∈ R and c, c1, c2 > 0.

(i) For any α > 0 and c′ ∈ (0, c), one has

(t1/N + ∥x∥s)α G
(c,β)
t (x) ≤ CG

(c′,α+β)
t (x).

(ii) For any ∥h∥s ≤ t1/N and c′ ∈ (0, c), one has

G
(c,β)
t (x+ h) ≤ CG

(c′,β)
t (x).

(iii) If c1 < c2 and 0 < s < t, one has∫
Rd

G
(c2,β1)
t−s (x− y)G(c2,β2)

s (y) dy ≤ C(t− s)β1/Nsβ2/N G
(c1,0)
t (x).

(iv) If c1 < c2 and β1, β2 > −N , one has∫ t

0

∫
Rd

G
(c2,β1)
t−s (x− y)G(c2,β2)

s (y) dyds ≤ C
Γ(β1+N

N )Γ(β2+N
N )

Γ(β1+β2+N
N )

G
(c1,β1+β2+N)
t (x).

(v) If c1 < c2, β1 > −N + |s|, and β2 > −N , one has∫ t

0

∫
Rd

G
(c1,β1)
t−s (x− y)G(c2,β2)

s (y) dyds ≤ C
Γ(β1−|s|+N

N )Γ(β2+N
N )

Γ(β1+β2−|s|+N
N )

G
(c1,β1+β2+N)
t (x).

—The constants C are independent to t, x, β, β1, β2.

Proof – The proofs of the statements (i) and (ii) are elementary and left to the readers. For
(iii) note that the elementary inequality

G
(c,0)
t−s (x− y)G(c,0)

s (y) ≤ t|s|/N (t− s)−|s|/Ns−|s|/NG
(c,0)
t (x) (A.4)

holds. This inequality reduces to

|xj | ≤ tsj/N

{(
|xj − yj |

(t− s)sj/N

)N/(N−sj)

+

(
|yj |
ssj/N

)N/(N−sj)
}(N−sj)/N

,

which follows from the Hölder’s inequality. By integration we have∫
Rd

G
(c2,β1)
t−s (x− y)G(c2,β2)

s (y)dy

= (t− s)(β1+|s|)/Ns(β2+|s|)/N
∫
Rd

G
(c1,0)
t−s (x− y)G

(c2−c1,0)
t−s (x− y)G(c1,0)

s (y)G(c2−c1,0)
s (y)dy

≤ t|s|/N (t− s)β1/Nsβ2/NG
(c1,0)
t (x)

∫
Rd

G
(c2−c1,0)
t−s (x− y)G(c2−c1,0)

s (y)dy.

Since G
(c,0)
t (x) ≤ t−|s|/N and

Cc ··=
∫
Rd

G
(c,0)
t (x)dx =

∫
Rd

G
(c,0)
1 (x)dx

is t-independent we have∫
Rd

G
(c2−c1,0)
t−s (x− y)G(c2−c1,0)

s (y)dy

≤ min{(t− s)−|s|/N , s−|s|/N}
∫
Rd

G
(c2−c1,0)
1 (y)dy ≤ Cc2−c1(t/2)

−|s|/N .
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By integrating (iii), we immediately have (iv). For (v), we use (A.4) again and have∫ t

0

∫
Rd

G
(c1,β1)
t−s (x− y)G(c2,β2)

s (y) dsdy

=

∫ t

0

(t− s)β1/Ns(β2+|s|)/N
∫
Rd

G
(c1,0)
t−s (x− y)G(c1,0)

s (y)G(c2−c1,0)
s (y)dyds

≤ t|s|/N
∫ t

0

(t− s)(β1−|s|)/Nsβ2/NG
(c1,0)
t (x)

∫
Rd

G(c2−c1,0)
s (y)dyds

≤ Cc2−c1t
(β1+β2+N)/N Γ(β1−|s|+N

N )Γ(β2+N
N )

Γ(β1+β2−|s|+N
N )

G
(c1,0)
t (x).

�

31 – Definition. For β ∈ R, denote by Gβ the class of functions A = At,s(x, y) defined on a < s <

t < b and x, y ∈ Rd such that

|At,s(x, y)| ≤ Cec0(t−s) G
(c1,β)
t−s (x− y)

for some positive constants C, c0, c1. Moreover, for any α = (αi)
d
i=1 ∈

∏d
i=1[0, si], denote by

Gβ
α,0 the class of functions A ∈ Gβ satisfying∣∣At,s(x+ hei, y)−At,s(x, y)

∣∣ ≤ Cec0(t−s) |h|αi/si G
(c1,β−αi)
t−s (x− y)

for any i ∈ {1, . . . , d} and |h|1/si ≤ (t− s)1/N (or equivalently,∣∣At,s(x+ hei, y)−At,s(x, y)
∣∣

≤ Cec0(t−s) |h|αi/si
{
G
(c1,β−αi)
t−s (x+ hei − y) + G

(c1,β−αi)
t−s (x− y)

} (A.5)

for any h ∈ R). We also define Gβ
0,α as the set of functions A ∈ Gβ such that Ãt,s(x, y) ··=

At,s(y, x) is in the class Gβ
α,0. Finally, define Gβ

α,α′ ··= Gβ
α,0 ∩ Gβ

0,α′ .

For any functions At,s(x, y) and Bt,s(x, y), we define the spacetime convolution

(A ∗B)t,s(x, y) ··=
∫
(s,t)×Rd

At,u(x, z)Bu,s(z, y) dudz

if it exists.

32 – Lemma. Let β, β′ ∈ R, α,α′ ∈
∏d

i=1[0, si], A ∈ Gβ
α,0, and B ∈ Gβ′

0,α′ .
(i) Suppose that β, β′ > −N , maxi αi < β + N , and maxi α

′
i < β′ + N . Then A ∗ B ∈

Gβ+β′+N
α,α′ .

(ii) Suppose that β ≥ −N , β′ > −N , maxi α
′
i < β′+N , and B ∈ Gβ′

(δ,...,δ),α′ for some δ > 0.
If ∣∣∣∣ ∫

Rd

At,s(x, y)dy

∣∣∣∣ ≲ ec0(t−s)(t− s)(β+δ)/N , (A.6)

then A ∗ B ∈ Gβ+β′+N
0,α′ . If in addition to (A.6), we assume maxi αi < β + N + δ,

∂xi
At,s(x, y) ∈ Gβ−si , and∣∣∣∣ ∫

Rd

∂xi
At,s(x, y)dy

∣∣∣∣ ≲ ec0(t−s)(t− s)(β−si+δ)/N (A.7)

for any i ∈ {1, . . . , d}, then A ∗B ∈ Gβ+β′+N
α,α′ .

(iii) A similar statements to (ii) hold with the roles of first and second variables reversed.
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Proof – Item (i) follows from Lemma 30-(iv). To show item (ii) we decompose

(A ∗B)t,s(x, y) =

∫ t

(t+s)/2

du

∫
Rd

At,u(x, z)Bu,s(z, y) dz

+

∫ (t+s)/2

s

du

∫
Rd

At,u(x, z)Bu,s(z, y) dz =·· It,s(x, y) + Jt,s(x, y).

We can prove that Jt,s(x, y) ∈ Gβ+β′+N
α,α′ in the same way as (i), where we do not need to assume

maxi αi < β +N because (t− u)(β−αi)/N is integrable on u ∈ [s, t+s
2 ] for any αi. For It,s(x, y),

we set

It,s(x, y) =

∫ t

s

Ct,u,s(x, y)du, Ct,u,s(x, y) ··=
∫
Rd

At,u(x, z)Bu,s(z, y)dz.

If (A.6) holds then we can decompose Ct,u,s into
|Ct,u,s(x, y)|

≤
∣∣∣∣ ∫

Rd

At,u(x, z) dz

∣∣∣∣|Bu,s(x, y)|+
∣∣∣∣ ∫

Rd

At,u(x, z)
(
Bu,s(z, y)−Bu,s(x, y)

)
dz

∣∣∣∣
≲ ec0(t−s)

{
(t− u)(β+δ)/NG

(c1,β
′)

u−s (x− y)

+

∫
Rd

G
(c1,β)
t−u (x− z)∥z − x∥δs

(
G
(c1,β

′−δ)
u−s (z − y) + G

(c1,β
′−δ)

u−s (x− y)
)
dz

}
≲ ec

′
0(t−s)

{
(t− u)(β+δ)/NG

(c1,β
′−δ)

t−s (x− y)

+ (t− u)(β+δ)/N (u− s)(β
′−δ)/NG

(c′1,0)
t−s (x− y)

}

(A.8)

for any c′i ∈ (0, ci) for i ∈ {0, 1}, where we use that (A.5) also holds for multidimensional shifts
in the second inequality, and that G

(c,β)
t′ (x) ≲ G

(c,β)
t (x) if t/2 ≤ t′ ≤ t in the third inequality.

Since β + δ > −N , the integral in u is finite and we have

|It,s(x, y)| ≲ ec
′
0(t−s)

{
(t− s)(β+δ+N)/NG

(c1,β
′−δ)

t−s (x− y) + (t− s)(β+β′+N)/NG
(c′1,0)
t−s (x− y)

}
≲ ec

′
0(t−s) G

(c′1,β+β′+N)
t−s (x− y).

For the proof of the Hölder estimate of A ∗ B with respect to the first variable, it is sufficient
to consider the x1-shift by h ∈ R such that |h|1/s1 ≤ (t − s)1/N . We write xh = x + he1 and
decompose

Ct,u,s(xh, y)− Ct,u,s(x, y) = h

∫ 1

0

∫
Rd

∂x1At,u(xθh, z)Bu,s(z, y)dzdθ

and have as above
|Ct,u,s(xh, y)− Ct,u,s(x, y)| ≲ ec

′
0(t−s)|h|

{
(t− u)(β−s1+δ)/NG

(c1,β
′−δ)

t−s (x− y)

+ (t− u)(β−s1+δ)/N (u− s)(β
′−δ)/NG

(c′1,0)
t−s (x− y)

}
by Lemma 30-(ii). By interpolation between it and (A.8), we have

|Ct,u,s(xh, y)− Ct,u,s(x, y)| ≲ ec
′
0(t−s)|h|α1/s1

{
(t− u)(β−α1+δ)/NG

(c1,β
′−δ)

t−s (x− y)

+ (t− u)(β−α1+δ)/N (u− s)(β
′−δ)/NG

(c′1,0)
t−s (x− y)

}
for any α1 ∈ [0, s1]. If β − α1 + δ > −N , the integral in u is finite and we have

|It,s(xh, y)− It,s(x, y)| ≲ ec
′
0(t−s)|h|α1/s1G

(c′′1 ,β1+β2+N−α1)
t−s (x− y),

which completes the proof. �
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A.2 – Existence of the fundamental solution. First we consider the parabolic operator
(A.1) when the coefficients ak are constants. Then we write

∂t − P (∂x) ··= ∂t −
∑

|k|s≤N

ak∂
k
x . (A.9)

33 – Lemma. Assume the existence of a constant δ > 0 such that the inequality

ReP (iξ) = Re
∑

|k|s≤N

ak(iξ)
k ≤ −δ∥ξ∥Ns (A.10)

holds for any ξ ∈ Rd. Then for any ε > 0, k ∈ Nd, and n ∈ N, there exist positive constants
C and c which depend only on s, N,A ··= maxk |ak|, δ, ε, k, n such that the fundamental solution
Zt(x) of the operator (A.9) satisfies∣∣∂n

t ∂
k
xZt(x)

∣∣ ≤ CeεtG
(c,−|k|s−Nn)
t (x) (A.11)

for any t > 0 and x ∈ Rd. When (k, n) = (0, 0), the constant C depends only on δ.

Proof – By definition Zt(x) is obtained as the Fourier inverse transform of the function etP (iξ)

of ξ ∈ Rd. Following the arguments in [16, Chapter 9, Section 2], we consider the bound of
etP (iξ−η) for η, ξ ∈ Rd. By the binomial theorem, we can expand

P (iξ − η) = P (iξ) +R(ξ, η),

where R(ξ, η) is a linear combination of monomials ξkηℓ with |k+ ℓ|s ≤ N and ℓ ̸= 0, and with
coefficients depending only on {ak}. For any ε > 0, by Young’s inequality we have

|R(ξ, η)| ≤ A
∑

m≥0, n>0,m+n≤N

∥ξ∥ms ∥η∥ns

≤ ε+
δ

2
∥ξ∥Ns + c′∥η∥Ns ≤ ε+

δ

2
∥ξ∥Ns + c

d∑
j=1

|ηj |N/sj ,

where c′ and c are positive constants depending only on A, ε, δ. By the condition (A.10), we
have

|etP (iξ−η)| ≤ et Re P (iξ)et|R(ξ,η)| ≤ exp

{
t

(
ε− δ

2
∥ξ∥Ns + c

d∑
j=1

|ηj |N/sj

)}
.

By using the Cauchy’s theorem for each component, we have

|Zt(x)| =
∣∣∣∣ 1

(2π)d

∫
Rd

eix·ξetP (iξ)dξ

∣∣∣∣ = ∣∣∣∣ 1

(2π)d

∫
Rd

eix·(ξ+iη)etP (iξ−η)dξ

∣∣∣∣
≤ eεt

(2π)d
exp

(
− x · η + ct

d∑
j=1

|ηj |N/sj

)∫
Rd

exp

(
− δt

2
∥ξ∥Ns

)
dξ

for any η ∈ Rd. If we choose ηj as

ηj = (sgnxj)

(
|xj |
cpjt

)1/(pj−1)

, (A.12)

where pj = N/sj , then

−xjηj + ct|ηj |pj = −pj − 1

pj

(
|xj |pj

cpjt

)1/(pj−1)

,

which becomes the argument of the exponential function in (A.11). The integral in ξ becomes
Ct−|s|/N with some constant C depending only on δ.
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For the derivatives ∂k
xZt(x) we can derive the required estimate by a similar way from the

identity

∂k
xZt(x) =

1

(2π)d

∫
Rd

eix·ξ(iξ)ketP (iξ)dξ =
1

(2π)d

∫
Rd

eix·(ξ+iη)(iξ − η)ketP (iξ−η)dξ.

We decompose (iξ − η)k into the linear combination of monomials ξℓηm with ℓ+m = k. The
integral of |ξℓ| exp(− δt

2 ∥ξ∥
N
s ) over ξ becomes the factor Ct−(|s|+|ℓ|s)/N . For the choice of η as

in (A.12) we have

|ηm| = t−|m|s/N
d∏

j=1

(
|xj |

cpjt1/pj

)mj/(pj−1)

.

Since any powers of |xj |/t1/pj are absorbed in the exponential part of (A.11) and the factor
t−|m|s/N remains, we have the required estimate for ∂k

xZt(x). We have similar estimates for the
time derivatives because ∂n

t Zt(x) = (P (∂x))
nZt(x). �

Based on the above theorem we consider the operator (A.1) with variable coefficients ak(t, x).

34 – Theorem. Assume the following conditions for ak(t, x).
(a) There exists a constant δ > 0 such that the inequality

ReP (t, x, iξ) = Re
∑

|k|s≤N

ak(t, x)(iξ)
k ≤ −δ∥ξ∥Ns (A.13)

holds for any (t, x) ∈ D and ξ ∈ Rd.
(b) For some α > 0, one has

A ··= max
|k|s≤N

sup
(t,x)∈D

|ak(t, x)| < ∞,

H ··= max
|k|s≤N

sup
(t,x),(s,y)∈D

|ak(t, x)− ak(s, y)|
(|t− s|1/N + ∥x− y∥s)α

< ∞.

Then the fundamental solution Qt(x, y) of the operator (A.1) exists and ∂k
xQt,s(x, y) is in the

class G
−|k|s
α,(α′,...,α′) for any k ∈ Nd with |k|s ≤ N , any α ∈

∏d
i=1[0, si] such that αi < N−|k|s+α,

and any α′ ∈ (0, α), where the positive constants C, c0, c1 used in Definition 31 depends only
on s, N, δ, A,H, k.

We prove this theorem following [16, Chapter 9]. Let
Lt,s(x, y) ··= Zs,y

t−s(x− y),

where Zs,y
t (x) is the fundamental solution of ∂t−P (s, y, ∂x) for fixed (s, y). We aim to construct

the fundamental solution Qt,s(x, y) in the form
Q = L+ L ∗ Φ (A.14)

with some function Φ = Φt,s(x, y). We set
Kt,s(x, y) ··= (P (t, x, ∂x)− ∂t)Lt,s(x, y) =

(
P (t, x, ∂x)− P (s, y, ∂x)

)
Zs,y
t−s(x− y).

Then Qt,s(x, y) satisfies
(
∂t − P (t, x, ∂x)

)
Qt,s(x, y) = 0 if and only if

Φ = K +K ∗ Φ.
This implies that the formal solution Φ is given by the form

Φt,s(x, y) =

∞∑
m=1

K
(m)
t,s (x, y), K(m) ··= K∗m = K(m−1) ∗K. (A.15)

It turns out that the series (A.15) is actually absolutely convergent and we can obtain Qt,s(x, y)
by the formula (A.14).
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35 – Lemma. ∂k
xLt,s(x, y) is in the class G

−|k|s
s,(α,...,α) for any k ∈ Nd.

Proof – The Gaussian estimate and the Hölder estimate for the first variable immediately follow
from Lemma 33. The Hölder estimate for the second variable comes from the same argument
as Lemma 3 of [16, Chapter 9]. �

36 – Lemma. Kt,s(x, y) is in the class Gα−N
(α,...,α),(α,...,α).

Proof – Since Kt,s(x, y) =
(
P (t, x, ∂x)− P (s, y, ∂x)

)
Zs,y
t−s(x− y), we have

|Kt,s(x, y)| ≲ (|t− s|1/N + ∥x− y∥s)αeε(t−s)G
(c,−N)
t−s (x− y)

≲ eε(t−s)G
(c1,α−N)
t−s (x− y)

(A.16)

for some c1 < c by Lemma 30-(i). The Hölder estimate for both variables are obtained by a
similar way. �

37 – Lemma. Φt,s(x, y) is in the class Gα−N
(α′,...,α′),(α′,...,α′) for any α′ < α.

Proof – First we show the estimates∣∣K(m)
t,s (x, y)

∣∣ ≤ Ceε(t−s)B
m(t− s)mα/N−1

Γ(mα−|s|
N )

G
(c′,0)
t−s (x− y) (A.17)

for some constants c′, C,B > 0 which depend only on s, N, δ, A,H, ε. Let m0 be the smallest
integer m0 such that m0α > |s|. Up to m ≤ m0, (A.17) is inductively obtained by Lemma
30-(iv). Indeed, starting from (A.16) we have

|K(m)
t,s (x, y)| ≲ eε(t−s)

(
G(cm−1,(m−1)α−N) ∗ G(c1,α−N)

)
t−s

(x− y)

≲ eε(t−s)G
(cm,mα−N)
t−s (x− y)

for some cm < cm−1. For m > m0, we use Lemma 30-(v) to obtain

|K(m)
t,s (x, y)| ≤ eε(t−s) Bm−1

Γ( (m−1)α−|s|
N )

(
G(c′,(m−1)α−N) ∗ G(c1,α−N)

)
t−s

(x− y)

≤ eε(t−s)B
m−1CΓ( α

N )

Γ(mα−|s|
N )

G
(c′,mα−N)
t−s (x− y).

Hence (A.17) holds with B = CΓ( α
N ). Summing up (A.17) over m ≥ 1, we have

|Φt,s(x, y)| ≲ ec0(t−s)(t− s)α/N−1G
(c′,0)
t−s (x− y) = eγ(t−s)G

(c′,α−N)
t−s (x− y)

for some c0. The Hölder estimates are obtained by applying Lemma 32-(i) to the formula
Φ = K +K ∗ Φ = K +Φ ∗K.

�

Proof of Theorem 34 – We have the Gaussian and Hölder estimates of ∂k
xQ by applying Lemma

32-(ii) to the formula
∂k
xQ = ∂k

xL+ ∂k
xL ∗ Φ.

By Lemma 35 and 37, we have
∂k
xL ∗ Φ ∈ G

α−|k|s
α,(α′,...,α′)

for any |k|s ≤ N and any α ∈
∏d

i=1[0, si] such that maxi αi < N − |k|s + α and α′ < α. Note
that∣∣∣∣ ∫

Rd

∂ℓ
xLt,s(x, y)dy

∣∣∣∣ = ∣∣∣∣ ∫
Rd

(
∂ℓ
xZ

s,y
t,s (x− y)− ∂ℓ

xZ
s,x
t,s (x− y)

)
dy

∣∣∣∣
≲ eε(t−s)

∫
Rd

∥x− y∥αsG
(c,−|ℓ|s)
t−s (x− y) dz ≲ eε(t−s)(t− s)(α−|ℓ|s)/N
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for any ℓ ∈ Nd \ {0}.
We can check that Qt,s(x, y) is indeed a fundamental solution by a similar way to [16]. See [16,
Theorem 11, Section 6, Chapter 1] for the condition (A.2), and see [16, Chapter 9, Section 4]
for the condition (A.3). Only the Gaussian and Hölder estimates of ∂k

xQ are used in the proof
of them. �

Next theorem can be obtained from a similar argument to Theorem 9 of [16, Section 5,
Chapter 1] and Property 10 of [15, Section I.3]. For β > 0, define Cβ

s (D) as the classical
parabolic α-Hölder space on the domain D = (a, b)×Rd, that is, f ∈ Cβ

s if ∂n
t ∂

k
xf exists and is

bounded for any Nn+ |k|s < β, and ∂n
t ∂

k
xf with Nn+ |k|s = ⌊β⌋ is (β−⌊β⌋)-Hölder continuous

with respect to the parabolic norm ∥ · ∥s.

38 – Theorem. Let Qt,s(x, y) be the fundamental solution of the operator (A.1) satisfying the as-
sumptions of Theorem 34. When a > −∞, for any g ∈ Cβ

s (D) define

G(t, x) =

∫ t

a

Qt,s(x, y)g(s, y)dsdy.

Then G belongs to Cβ+N
s (D) for any β ∈ (0, α) and satisfies(

∂t − P (t, x, ∂x)
)
G(t, x) = 0.

Moreover, a = −∞ is allowed if the constant c0 in Definition 31 can be chosen as a strictly
negative number.

A.3 – Uniqueness of the fundamental solution. We prove the uniqueness of the funda-
mental solution Qt(x, y) of the operator (A.1) by the same way as Theorem 4.3 of [15, Section
III.2]. See also Lemma 6.1.2 of [28]. For any time interval I ⊂ (a, b), define C1,N

s (I ×Rd) as the
collection of bounded continuous functions f on I×Rd such that ∂tf and ∂k

xf for any |k|s ≤ N
are bounded and continuous.

39 – Theorem. Suppose that the coefficients ak(t, x) of the operator (A.1) satisfies the assumptions
of Theorem 34. For any fixed s ∈ (a, b) and f ∈ Cb(R

d), the Cauchy problem (A.2)-(A.3) has
a unique solution F ∈ C1,N

s ([s, b) × Rd). Consequently, the fundamental solution Qt,s(x, y) of
the operator (A.1) is unique (up to Lebesgue null sets in y).

Proof – It is sufficient to show that the solution F of (A.2)-(A.3) with f = 0 is equal to zero.
Set

W (t) ··=
∑

|k|s≤N

∫ t

s

∥∂k
xF (r)∥Cb(Rd)dr.

We fix a point y ∈ Rd and write the equation in the form(
∂t − P (t, y, ∂x)

)
F (t, x) =

(
P (t, x, ∂x)− P (t, y, ∂x)

)
F (t, x) =·· fy(t, x).

Note that the fundamental solution of the operator (A.1) is unique if the coefficients ak(t) are
x-independent continuous functions of t. Thus we can write

F (t, x) =

∫ t

s

∫
Rd

Qy
t,r(x− z)fy(r, z)dzdr,

where Qy
t,s is a fundamental solution of ∂t − P (t, y, ∂x). The derivatives of F (t, x) are given by

∂k
xF (t, x) =

∫ t

s

dr

∫
Rd

∂k
xQ

y
t,r(x− z)fy(r, z)dz, |k|s < N,

∂k
xF (t, x) =

∫ t

s

dr

∫
Rd

∂k
xQ

y
t,r(x− z)fy(r, x)dz
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+

∫ t

s

dr

∫
Rd

∂k
xQ

y
t,r(x− z)

{
fy(r, z)− fy(r, x)

}
dz, |k|s = N

for any y ∈ Rd. We estimate the derivatives of F by setting y = x. Since

|fx(r, z)| ≲ ∥z − x∥αs
∑

|k|s≤N

∥∂k
xF (r)∥Cb(Rd),

using the Gaussian estimates of ∂kQ we have

∥∂k
xf(t)∥Cb(Rd) ≲

∫ t

s

(t− r)−(|k|s−α)/N
∑

|ℓ|s≤N

∥∂ℓ
xF (r)∥Cb(Rd)dr.

By integration we can conclude that there exists a constant C > 0 such that
W (t) ≤ C(t− s)α/NW (t).

Hence it follows that W (t) = 0 for any s < t < s + t0, where t0 ··= (1/C)N/α > 0. Since
F (s′) = 0 for some s′ ∈ (t0/2, t0) and the coefficients ak(t, x) are uniformly bounded and
Hölder continuous, we can repeat the same argument as above with s replaced by s′ and obtain
that W (t) = 0 for any s′ < t < s′ + t0. In the end, we can establish that W (t) = 0 for any
t > s. �

A.4 – Temporally homogeneous operator. Next we consider the operator

∂t − P (x, ∂x) = ∂t −
∑

|k|s≤N

ak(x)∂
k
x (A.18)

with t-independent coefficients ak(x). Let P be satisfy the assumptions of Theorem 34, and
denote by Qt(x, y) be its fundamental solution defined on t ∈ (0,∞) and x, y ∈ Rd. For any
f ∈ Cb(R

d), we define the integral operator(
Qtf

)
(x) ··=

∫
Rd

Qt(x, y)f(y)dy.

It should be noted that Qt satisfies the semigroup property QtQsf = Qt+sf .
For any β > 0, denote by Cβ

s the collection of f ∈ Cb(R
d) such that ∂k

xf is bounded and
continuous for any |k|s < β, and ∂k

xf with |k|s = ⌊β⌋ is (β − ⌊β⌋)-Hölder continuous with
respect to ∥ · ∥s. Let then define for β < 0 the space Cβ

s (P ) as the completion of the set of
f ∈ Cb(R

d) under the norm
∥f∥Cβ

s (P )
··= sup

0<t≤1
t−β/N∥Qtf∥L∞(Rd).

40 – Theorem. Let c0 be a positive number given in Definition 31. For any c > c0 and any
f ∈ Cb(R

d), define (
c− P (x, ∂x)

)−1
f(x) ··=

∫ ∞

0

e−ctQtf(x)dt.

Then the map (c−P (x, ∂x))
−1 is continuously extended to the map from Cβ

s (P ) into Cβ+N
s (Rd)

for any β ∈ (−N, 0) such that β +N is not an integer.

Proof – We write P = P (x, ∂x) and Qc
t = e−ctQt for simplicity. By the semigroup property

and the Gaussian estimate of Qt, we have
∥∂k

xQ
c
tf∥L∞ = ∥∂k

xQ
c
t/2Q

c
t/2f∥L∞ ≲ t−|k|s/N∥Qc

t/2f∥L∞ ≲ t(β−|k|s)/N∥f∥Cβ
s (P )

for any t ∈ (0, 2], and
∥∂k

xQ
c
tf∥L∞ = ∥∂k

xQ
c
t−1Q

c
1f∥L∞ ≲ e−(c−c0)(t−1)∥f∥Cβ

s (P )
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for any t ≥ 2. By integration,

∥∂k
x(c− P )−1f∥L∞ ≤

∫ 2

0

∥∂k
xQ

c
tf∥L∞ dt+

∫ ∞

2

∥∂k
xQ

c
tf∥L∞ dt ≲ ∥f∥Cβ

s (P )

for any |k|s < β+N . To show the Hölder estimates of ∂k
x(c−P )−1f with |k|s = ⌊β+N⌋ < N ,

it is sufficient to consider the region ∥x′ − x∥s < 2. We decompose

∂k
x(c− P )−1f(x′)− ∂k

x(c− P )−1f(x) =

∫ ∞

0

∫
Rd

{
∂k
xQ

c
t1(x

′, y)− ∂k
xQ

c
t1(x, y)

}
Qc

t0f(y)dydt

as before, where t = t0 + t1 and t0 ··= min{t/2, 1}. Setting γ = β +N − ⌊β +N⌋ and choosing
sufficiently small ε > 0, we have

|∂k
x(c− P )−1f(x′)− ∂k

x(c− P )−1f(x)|

≤ ∥x′ − x∥γ−ε
s

∫ ∥x′−x∥s

0

t(−|k|s−(γ−ε)+β)/Ndt+ ∥x′ − x∥γ+ε
s

∫ 2

∥x′−x∥s

t(−|k|s−(γ+ε)+β)/Ndt

+ ∥x′ − x∥γs
∫ ∞

2

t(−|k|s−γ)/Ne−(c−c0)(t−1)dt ≲ ∥x′ − x∥γs

by the Hölder estimates of Qt. �

41 – Lemma. Suppose that a0 = 0 (the constant term of P ). For any T > 0, there exists a constant
C > 0 depending only on T and the constants in the Gaussian estimate of Q such that, for any
f ∈ Cβ

s with β ∈ [0, 1], the following estimates hold for any 0 < t ≤ T .

∥∂n
t ∂

k
xQtf∥L∞(Rd) ≤

{
C∥f∥L∞(Rd), ((n, k) = (0, 0))

Ct(β−Nn−|k|s)/N∥f∥Cβ
s
, (1 ≤ Nn+ |k|s ≤ N)

(A.19)∥∥(Qt − Id)f
∥∥
L∞(T)

≤ Ctβ/N∥f∥Cβ
s
, (A.20)∥∥Qtf

∥∥
Cβ

s
≤ C∥f∥Cβ

s
. (A.21)

Proof – These are immediate consequences of the Gaussian estimates of Qt. For the latter part
of (A.19) and (A.20), we decompose

∂n
t ∂

k
xQtf(x) =

∫
Rd

∂n
t ∂

k
xQt(x, y)

(
f(y)− f(x)

)
dy + f(x)

∫
Rd

∂n
t ∂

k
xQt(x, y) dy,

and use the α-Hölder continuity of f and the fact that
∫
Rd Qt(x, y)dy = 1, which follows from

a0 = 0 and the uniqueness of Qt. The estimate (A.21) follows by interpolation between (A.20)
and (A.19), with (n, k) = (0, ei). �

A.5 – Anisotropic Taylor formula. Continuing the previous section, we consider the
time-homogeneous operator (A.18). In what follows, we consider the parabolic scaling s =
(2, 1, 1, . . . , 1). We denote by

x = (x1, x2, . . . , xd) =·· (x1, x̄)

a generic element of Rd. The following anisotropic Taylor formula is an analogue of Proposition
A.1 of [23], but here we restrict the differentiability of the function.

42 – Proposition. For any function f on Rd which is k-th differentiable for any |k|s ≤ n, we have∣∣∣∣f(y)− ∑
|k|s≤n

(y − x)k

k!
∂k
xf(x)

∣∣∣∣ ≲ ∥y − x∥n−1
s sup

|k|s=n−1

sup
(z1,z̄)

∣∣∂kf(z1, z̄)− ∂kf(x1, z̄)
∣∣

+ ∥y − x∥ns sup
|k|s=n

sup
(z1,z̄)

∣∣∂kf(z1, z̄)− ∂kf(x)
∣∣,

where z1 (resp. z̄) runs over the interval (x1, y1) (resp. (x̄, ȳ)).
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Proof. Denote by A = {k ∈ Nd ; |k|s ≤ n} and define
A◦ = {k ∈ A ; k + ei ∈ A for all i ∈ {1, . . . , d}} = {k ∈ Nd ; |k|s ≤ n− 2}.

Setting x(θ) ··= (x1(θ), x
′(θ)) ··= x+ θ(y − x) for θ ∈ [0, 1] and repeating the Taylor expansion

of first order, we have

f(y)− f(x) =
∑

ei∈A◦

(yi − xi)

∫ 1

0

∂if(x(θ))dθ +
∑

ei /∈A◦

(yi − xi)

∫ 1

0

∂if(x(θ))dθ

=
∑

ei∈A◦

(yi − xi)∂if(x) +
∑

ei+ej∈A◦

(y − x)eij
∫ 1

0

(1− θ)∂ijf(x(θ))dθ

+
∑

ei∈A◦

ei+ej /∈A◦

(y − x)eij
∫ 1

0

(1− θ)∂ijf(x(θ))dθ +
∑

ei /∈A◦

(yi − xi)

∫ 1

0

∂if(x(θ))dθ

= · · ·

=
∑

k∈A◦\{0}

(y − x)k

k!
∂kf(x) +

∑
k∈A◦

k+ei /∈A◦

(y − x)k+ei

k!

∫ 1

0

(1− θ)|k|∂k+eif(x(θ))dθ

in the end. In other words,

f(y) =
∑

|k|s≤n−2

(y − x)k

k!
∂kf(x) +

∑
|k|s=n−1

(y − x)k

k!

∫ 1

0

|k|(1− θ)|k|−1∂kf(x(θ))dθ

+
∑

|k|s=n−2

(y − x)k+e1

k!

∫ 1

0

(1− θ)|k|∂k+e1f(x(θ))dθ,

where |k| ··= k1 + · · · + kd. We treat the last two terms by taking care the restriction of the
differentiability. For |k|s = n− 1, we decompose

∂kf(x(θ)) = ∂kf(x) +
(
∂kf(x1(θ), x̄(θ))− ∂kf(x1, x̄(θ))

)
+ θ

d∑
i=2

(xi(θ)− xi)

∫ 1

0

∂k+eif(x1, x̄(θθ
′))dθ′

and have

f(y)−
∑

|k|s≤n

(y − x)k

k!
∂kf(x)

=
∑

|k|s=n−1

(y − x)k

k!

∫ 1

0

|k|(1− θ)|k|−1
{
∂kf(x1(θ), x̄(θ))− ∂kf(x1, x̄(θ))

}
dθ

+
∑

|k|s=n−1

d∑
i=2

(y − x)k+ei

k!

∫ 1

0

(1− θ)|k|
{
∂k+eif(x1, x̄(θ))− ∂k+eif(x)

}
dθ

+
∑

|k|s=n−2

(y − x)k+e1

k!

∫ 1

0

(1− θ)|k|
{
∂k+e1f(x(θ))− ∂k+e1f(x)

}
dθ,

which provides the required estimate. □

43 – Corollary. Let Qt(x, y) be the fundamental solution of the operator (A.18) satisfying the
assumptions of Theorem 34. Then for any δ ∈ (0, α),∣∣∣∣∂k

x′Qt(x
′, y)−

∑
|k+ℓ|s≤N

(x′ − x)ℓ

ℓ!
∂k+ℓ
x Qt(x, y)

∣∣∣∣
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≲ ec0t∥x′ − x∥N+δ−|k|s
s

{
G
(c1,−N−δ)
t (x′ − y) + G

(c1,−N−δ)
t (x− y)

}
.

Proof – We apply Proposition 42 to f = Qt(·, y) and n = N − |k|s. By Theorem 34,∣∣∂m
x Qt((x

′
1, x̄), y)− ∂m

x Qt((x1, x̄), y)
∣∣ ≲ ec0t|x′

1 − x1|(1+δ)/2G
(c1,−N−δ)
t (x− y)

for any |m|s = N − 1 and∣∣∂m
x Qt(x

′, y)− ∂m
x Qt(x, y)

∣∣ ≲ ec0t∥x′ − x∥δsG
(c1,−N−δ)
t (x− y)

for any |m|s = N . �

A.6 – Decomposition of the fundamental solution. In the rest of this appendix we prove
Proposition 27 and Proposition 28.

Proof of Proposition 27 – Recall from the proof of Theorem 34 that we can decompose ∂k
xQ

b
t

in the form
∂k
xQ

b
t,s(x, y) = ∂k

xL+ ∂k
x ∗ Φ = ∂k

xZ
b(s,y)
t−s (x− y) + Gα−k

α,α . (A.22)
By using the analyticity of λ 7→ Zλ, we can replace b(s, y) with b(t, x) and obtain

∂k
xQ

b
t,s(x, y) = ∂k

xZ
b(t,x)
t−s (x− y) + Gα−k

α,α , (A.23)
which implies (4.21) for p = 0.

Next we consider the case p = 1. By two decompositions (A.22) and (A.23) of ∂2
xQ

b and by
Lemma 32, it is sufficient to consider the integral∫

(s,t)×R

(∂k
xZt−u)

b(t,x)(x− z)(∂2
xZu−s)

b(s,y)(z − y)dudz.

By the semigroup property of Zλ
t = e−cteλt∆, the above integral is equal to∫ t

s

(∂k+2
x Z)b(t,x)(t−u)+b(s,y)(u−s)(x− y) du =

∂k
xZ

b(s,y)
t−s − ∂k

xZ
b(t,x)
t−s

b(s, y)− b(t, x)

= ∂λ∂
k
xZ

λ
t−s|λ=b(t,x) + Gα−k

α,α .

The general case p ≥ 2 is an easy extension. �

Proof of Proposition 28 – From (A.22), we have the higher order expansion
∂k
xQ

b = ∂k
xL+ ∂k

xL ∗K + (G2−k
1,1 ).

By definitions of L and K and the analyticity of λ 7→ Zλ, we have

∂k
xLt(x, y) = ∂k

xZ
b(y)
t (x− y)

= ∂k
xZ

b(x)
t (x− y) + b′(x)(y − x)∂λ∂

k
xZ

λ
t (x− y)|λ=b(x) + (G2−k

1,1 )
(A.24)

and
Kt(x, y) = (b(x)− b(y))∂2

xLt(x, y)

=
{
− b′(y)(x− y) +O(|x− y|2)

}{
∂2
xZ

b(y)
t (x− y) + (G−1

1,1)
}

= −b′(y)(x− y)∂2
xZ

b(y)
t (x− y) + (G0

1,1).

By convolution and the analyticity of λ 7→ Zλ again, we have
(∂k

xL ∗K)t(x, y)

= −b′(y)

∫
(0,t)×R

(∂k
xZ

b(x)
t−s )(x− z)(z − y)∂2

xZ
b(y)
s (z − y)dsdz + (G2−k

1,1 )

= −b′(x)

∫
(0,t)×R

(∂k
xZ

b(x)
t−s )(x− z)(z − y)∂2

xZ
b(x)
s (z − y)dsdz + (G2−k

1,1 ).

(A.25)
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By (A.24) and (A.25), we have the decomposition (4.22) with

Y k,λ
t (x) = −x∂λ∂

k
xZ

λ
t (x)−

∫
(0,t)×R

(∂k
xZ

λ
t−s)(x− y)y∂2

xZ
λ
s (y)dsdy.

The general p ≥ 1 case is obtained in a similar way to the proof of Proposition 27. �
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