Regularity structures for quasilinear singular SPDEs

I. BAILLEULT M. HOSHINOPF and S. KUSUOKAP|

Abstract. We prove the well-posed character of a regularity structure formulation of the quasi-
linear generalized (KPZ) equation and give an explicit form for a renormalized equation in the
full subcritical regime. Convergence results for the solution of the regularized renormalized
equation are obtained in regimes that cover the spacetime white noise case.
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1 — Introduction

Denote by T the one dimensional torus. We consider the one dimensional space-periodic
quasilinear generalized (KPZ) equation
(0 — a(w)d7)u = f(u)€ + g(u)(Bzu)?, (1.1)
for regular enough functions a, f, g, where a takes values in a compact interval of (0, c0) and £ is a
random spacetime distribution — with main example spacetime white noise. The initial condition
ug € CO(T) := U, C*(T) is given. This equation falls within the class of subcritical singular
stochastic partial differential equations (SPDEs) of parabolic type. All equations of this class
share the same defect: The low regularity of some terms in a singular SPDE prevents the
expected regularizing effect of the dynamics to give sense to a number of products in the
equations. In the case at hand, equation , one expects a parabolic type dynamics to have a
resolvent that improves regularity by 2. The ‘subcritical’ nature of the dynamics is here encoded
in the fact that the spacetime distribution ¢ is (almost surely) assumed to have regularity ag—2,
for 0 < ap < 2. It is then formally consistent to expect a solution w of equation to have
parabolic regularity ag, as (9,u)? will then have regularity 2(ag — 1), bigger than ag — 2, the
expected regularity of the term f(u)£. With a right hand side of regularity g — 2 a Schauder
type continuity estimate satisfied by the resolvent of the evolution gives indeed u a regularity
ag. The problem with that regularity analysis is that for u of regularity oy none of the products
f(u)¢ and |0,u|? make sense, even less g(u)|0,u|?, when 0 < ag < 1, the case of interest.
The development of the study of semilinear subcritial singular SPDEs was launched by the
two groundbreaking works [23] of M. Hairer, on regularity structures, and [22] of M. Gubinelli, P.
Imkeller & N. Perkowski, on paracontrolled calculus. Both of them introduced new settings and
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new tools to make sense of such equations and solve them uniquely under some small parameter
condition. Despite the difference of languages and tools used in regularity structures and
paracontrolled calculus both settings provide a similar understanding of a subcritical singular
parabolic SPDE. The mantra of their common approach to the product problem is that if one
can make sense of a number of analytically ill-defined ‘reference products’ that only involve
the noise £, not in an w-wise sense but as random variables, then one can make sense of the
ill-defined products in the equation for all functions u that locally look like linear combinations
of the reference random variables. Regularity structures and paracontrolled calculus differ in
the tools used to make sense of that comparison with reference random variables. In both
settings, working with a random noise turns out to be crucial to construct these reference
random variables by probabilistic means.

We refer the reader to the overviews [I3] [14] of Chandra & Weber and Corwin & Shen for
non-technical introductions to the domain of semilinear singular SPDEs, to the books [I7, [7]
of Friz & Hairer and Berglund for a mildly technical introduction to regularity structures, and
to Bailleul & Hoshino’s Tourist’s Guide [4] for a thorough tour of the analytic and algebraic
sides of the theory. Readers interested in paracontrolled calculus will find a nice account of the
fundamentals in Gubinelli’s panorama [21].

The first works on quasilinear singular SPDEs by Otto & Weber [30], Furlan & Gubinelli
[18] and Bailleul, Debussche, & Hofmanové [3] all three investigated the generalized (PAM)
equation in the regime where the noise is (ap — 2) regular and ay > 2/3. Interestingly each
of these works used a different method: A variant of regularity structures in [30], a variant
of paracontrolled calculus based on the use of the paracomposition operator for [I8], and the
initial form of paracontrolled calculus in [3]. On the paracontrolled side Bailleul & Mouzard
[6] extended the high order paracontrolled calculus toolbox to deal with the paracontrolled
equivalent of equation in the spacetime white noise regime ag > 2/5. On the regularity
structures side Otto & Weber deepened their framework in their works [29] with Sauer & Smith,
dedicated to the study of the equation with linear additive forcing

Opu — a(u)0?u = €. (1.2)

They obtained in particular in [29] an explicit form of a renormalized equation for backed
up by the general convergence result proved by Linares, Otto, Tempelmayr & Tsatsoulis in [27]
that holds for a large class of random noises in the full subcritical regime. Our general formula
for the counterterm in the renormalized equation generalizes theirs. The algebraic machinery
behind their approach was further analysed by Linares, Otto & Tempelmayr in [26]. Meanwhile
Gerencsér & Hairer provided in [20] an analysis of a regularity structure counterpart of equation
, in the full subcritical regime. Their method allowed for an analysis of the renormalized
equation only in the regime «g > 1/2. By implementing some tricky integration by parts-type
formulas Gerencsér was able in [19] to obtain the renormalized equation for the special case
of equation from the analysis of [20] in the spacetime white noise regime ag > 2/5. We
prove in the present work the well-posed character of a regularity structure formulation of the
quasilinear generalized (KPZ) equation and give an explicit form for a renormalized equation in
the full subcritical regime, with a simple expression in a number of cases. Convergence results
for the solution of the regularized renormalized equation are obtained in regimes that cover the
spacetime white noise case.

Following [3], [6] we set
L) = q(v)0?
for a sufficiently regular function v on [0,00) x T and rewrite equation under the form
(8 — L™ + c)u = f(u)€ + g(u)(Dpu)? + cu+ (a(u) — a(v))d2u (1.3)

for a large positive constant c¢. We consider (1.3) as a ‘perturbation’ of the non-translation
invariant generalized (KPZ) equation

(0, — LW 4 c)u= f(u)é+ g(u)(0pu)® + cu.



Below we will set the scene to reformulate equation (|1.3) in a regularity structure where it takes
the form

u = P2 (Q"ug) + K;M(v + w),
v= ng{F(u)C + {G(u)(Du)® + cu}}, (1.4)
w = ng{{A(u) — A(P<2(v))} (szggQa(%o + DKM (v 4 w)) }

The operator Py (resp. P<2) stands for the canonical lift operator of a spacetime/spatial
function to the part of the polynomial regularity structure spanned by monomials of homo-
geneity less than (resp. less than or equal to) 2, and Q*(")cyy is the free propagation of the
initial condition uy under the non-translation invariant operator (9; — L*®) + ¢). The operator
Kigv),c,M
') intertwined to (9; — L") + ¢) via the reconstruction operator. The operator Q<o projects

on elements of nonpositive homogeneity, and the operator D is a natural derivative operator
on a space of modelled functions.

We will see in Theorem |16] that given any admissible model M on our regularity structure,
equation has a unique solution over a model-dependent time interval (0,to(M)), in an
appropriate class of modelled distributions. This analytical statement holds in the full sub-
critical range provided the model is part of the data. Such a statement was already proved
by Gerencsér & Hairer in [20] in a different setting. However their choice of formulation for
did not allow them to write down in the full subcritical range the renormalized equation
satisfied by the reconstruction of the model dependent solution u of when the noise is
smooth and one uses an appropriate admissible model. The spacetime white noise regime is in
particular out of range of their result. The regularity structure in which we formulate equa-
tion is different from the regularity structure used in [20]. Working with an appropriate
choice of model M that is the natural analogue in our setting of the Bruned-Hairer-Zambotti
(BHZ) renormalized model from [I0] we are able to give in Theorem [1| below a renormalized
equation in the full subcritical regime. Denote by e a positive regularization parameter and
by & € C*°(R x T) an e-regularized noise £&. Denote by M® the BHZ renormalized model
associated with £° and the operator (9; — L*®) 4 ¢), and denote by uf the M*-reconstruction of
the solution u® of equation with M¢ in place of M. (The model M¢ is described precisely
in Section [£.3.2]) The function u® is defined on a time interval [0, £o(M¢)). Our main results
take a conditional form involving two ‘assumptions’. Assumption 1 is stated in Section
and assumes the convergence of the natural BHZ model associated with the non-translation
invariant operator (8; — L*") 4 ¢). There is no doubt that it holds true but we refrain from
describing here the modifications of Chandra & Hairer’s work [12], which need to be extended
to our non translation-invariant setting.

is the model dependent integration operator on modelled distributions (up to order

1 — Theorem. Choose any function v(t,xz) on Ry x T sufficiently close to the initial condition
ug € COT(T) - see condition (2.5) for the precise meaning. Under Assumption |1| there exists
some continuous functions F((tP)*) € C(R®) and

KZ(U)(.7TP) S C(R+ X T)
indexed by an infinite set of symbols {T” € B;}, such that the solution u® to
eZ(U)('a Tp)

(00— a(w)OR)u* = F)E" + () B2+ 30 G

TPEBS

F((7)7) (v, 0put,v) - (1.5)

starting from ug converges in C([O,to) X T) for a random time ty > 0 in probability as € > 0
goes to 0.

Condition (2.5)) only involves ug. Let us emphasize that this convergence result holds in the
whole subcritical regime ay > 0 where ag — 2 is the regularity of the noise £. The sum over 7P



in (1.5)) is called the ‘counterterm’. The functions §*((7P)*) depend pointwisely on u®, ;u,v
in the sense that

3¢ ((T”)*) (u‘g7 Opu’, v) () =5 ((T”)*) (ua(z), O,u(2), v(z))
The functions £7 (-, 7P) are non-local functionals of the function a(v(-)). Theorem |1} extends
the results of [30] [18] 3], 6, 29, [20] and deals with the quasilinear generalized (KPZ) in the full
subcritical regime. The reader familiar with regularity structures will see that our arguments

extend immediately to coupled systems of generalized (KPZ) equations. Such a generalization
is left to the reader and we concentrate here on the renormalized equation for (1.1).

The reader can feel uncomfortable about the fact that the functions
lowy (5 7P) and §*((7P)") (u, 8pu’, v)

depend on the somewhat arbitrary choice of function v satisfying condition (2.5)). One can give
a simpler representation of the counterterm when the functions éz(v)(~,7p) can be traded off

for a local functional of a(v(-)) — meaning that £, (2, 7P) can be replaced by a function of
a(v(z)). This is the content of Assumption [gstated in Section

Theorem. Under Assumptions [1] and [ there exist continuous functions x* € C(R), §(7*) €
C(R?) and lf_)(T) € C(R), all three indexed by a finite set of symbols {T € B;°}, such that the
third term of the right hand side of (1.5)) is of the form

(7
> a(g()T())x?(uE)S(T*)(us,azuE)+0(1)7 (1.6)

reB;°

for a term O(1) uniform in .

Above, the functions x(-) are polynomial functions of a and its derivatives and the coefficient
S(7) stands for a positive 7-dependent integer. Note that apart from the O(1) term in ,
which we can discard in the renormalized equation, the counterterm is independent of v. We
show in Section [4.5] that Assumption 2 holds in particular for the quasilinear generalized
(KPZ) equation driven by a spacetime white noise.

Dealing with quasilinear singular SPDEs rather than semilinear equations requires a twist
that appears in the form of an infinite dimensional ingredient. It is related in our formulation
to the fact that our structure needs to be stable by the operator Z(g o). In the previous
works using regularity structures [30, 20, 29] this infinite dimensional feature appeared under the
form of a one parameter family of heat kernels or abstract integration operators. Our regularity
structure is different from the ones used in these works. Its model space ' = Py 4 T has
infinite dimensional homogeneous spaces 13 whose basis elements are the usual trees associated
with the generalized (KPZ) equation with an additional integer decoration p on each edge
accounting for how many times the operator Z(g o) is applied to this edge. The same infinite
dimensional ingredient appeared in Bailleul & Mouzard’s work [6] in a paracontrolled setting.

Organization of the work — We set the scene in Section [2] where the function spaces we
work with are introduced together with our regularity structure. We introduced in particular a
non-classical spacetime elliptic operator to define our parabolic spaces. For reader’s convenience
some properties of its heat kernel are proved ni full detail in Appendix [Al Section [3]is dedicated
to proving that equation is locally well-posed in the full subcritical regime. The analysis of
the renormalized equation problem is done in Section [d] where we give in particular an explicit
description of the functions x2 in Section

Notations — We denote by R the set of real numbers and by N the set of nonnegative integers.
We represent by z = (t,x) € R? ¢ generic spacetime variable, for which we set

lzlls := [¢[/2 + [a].



We also set for any multiindex k = (ki1, k) € N?
|k|5 = 2k + ko,
and
Ok = afr k2.

For a > 0, we define C*(T) as the collection of functions f on T which is |«|-th differentiable
and such that 5™ f is (oo — |ee))-Holder continuous. We also define C& as the set of functions
f on R x T such that 0Xf exists and is bounded for any k € N? with k|s < a, and OXf with
|k|s = |« is (o — |«])-Holder continuous with respect to the parabolic distance || - ||s.

An identity involving an element of the form x(f) or *(4), whatever x is, will be a shorthand
notation for two identities: The identity with the element x and the identity with the element
T oorx, .

2 — The setting

We introduce in this section the functional setting and the regularity structure in which we
set the study of equation (|1.4)).

2.1 — Function spaces. The following basic facts are proved in Appendix [A| - see Theorem
Theorem and Corollary Pick e € (0,1] and an arbitrary function v € C2.

8 — Proposition. The fundamental solution Q?’(Sv)’o(x,y) of the operator 9, — L) satisfies the
estimate (t—s) | 2
1 ok ~a(v),0 coet? r—y
‘at a:v t,s (x7y)| S (t_s)(1+k+2n)/2 exp <_ C1 t—s ) (21)
for any k + 2n < 2, for some positive constants cy,c1 depending only on infa > 0, ||al/c:, and
|v]lca. Moreover one has [g ?,(Sv)’o(:c,y)dy =1.
4 — Proposition. We define the spacetime elliptic operator
£ = (9, — L*) (9, + 0%) = 87 — a(v)dt — (a(v) — 1)9,0? (2.2)
and introduce the parabolic operator with the additional variable 6 > 0
8y — L.
The fundamental solution Qg(v)’o(', -) of g — L") satisfies the estimates
a(v C eCOH
|0E Q5™ (1, 2). (s,9)| < G Golt = 5.2~ w) (2.3)
and
a(v),0 (Z/ - z)k+l a(v),0
e D P AR AR G|
[k+1]s <4 (2.4)
Coe 2 — 2fls™ ™™
- 9(4+6)/4ﬁ {Go(2' —w) + Go(z — w)},
where

1 2 |zf43
Go(t,x) := ga/i P {— Cy (0 + Ve
for any |k|s < 4 and § € (0, ), for some positive constants Cy, Cy depending only on inf a > 0,
lallcr, and ||[v| cory. Moreover one has [qe Qg(v)’o(z,w)dw =1.

Next we describe a class of possible choices for v. Recall that ag — 2 is the spacetime Holder
regularity of the noise £ in equation (1.1)). We consider some initial condition uy € C*(T) with
a € (0,ap).



5 — Definition. For any « € (0,1) and T > 0, define V*(0,T) as a collection of bounded continuous
functions on (0,T) x T such that the following quantity is finite.

||f||Va(0,T) = sup M

2,2/€(0,T)xR4 ”ZI_Z”?

+ sup t(l 0{/2”8 f HLO"(T)
te(0,7)

+ sup tET2(02F(t, )| ooy + 10 (£ ) Lo (T)

te(0,T)
R [ D I8 0 Pes
0<t<t'<T |t — t[1/2 .

We will choose later a function v € V*(0,T) satisfying

[ollveo,r) < Clluollca (T,
92 (2.5)
lle"% uo — ]| Lo ((0,7)xT) < O|uollca(T)
for some constant C' > 0 such that ||e!% ug|lve 0,7y < Clluolce(ry holds (see Lemma |4 1] for the
proof that e/%ug € V*(0,T)) and a sufficiently small positive constant 8, which will be chosen
later depending only on [|ug||ce(ty. Other than the most natural choice v(t,2) = e'%2ug we can

also choose a t-independent smooth function v(x) = 992 uq for a sufficiently small § > 0. The
latter choice will be used only in Section We then extend the domain of v to R? setting

0 for (t <0
U(t’ .r) — U( 71‘)7 or ( — )7
o(T,z), for (t>T).
and consider the spacetime operator (2.2). Since |[v||ca < [[uollce(T), the constants g, ¢1, Co, C1
above can then be chosen to depend only on infa > 0, ||a|c1, and ||ug||ca. Therefore, all the

mutliplicative constants appearing sometime implicitly in some inequalities below
are independent of the choice of v.

For any bounded continuous functions f on R?, for k € N? with |k|s < 4, set

(8kQZ(U)’Of) (2) := /R2 8?QZ(U)’O(Z,ZI)f(Z/)dZ/.

a(v),0

We use the operators Q, to define the full scale of anisotropic parabolic Holder spaces.

Definition — For < 0, define Csﬂ(a(v)) as the completion of the set of bounded continuous
functions f on R?* under the norm

— g —B/4)| 9a(»):0
[1f1le? (awy) = 021;210 195 f“Loo(R?)'

Next we rewrite the resolvent of the operator d; — L") in the space C&(a(v)) in terms of

the operators QZ(U)’O. With an eye on the heat kernel estimates (2.1]) and (2.3|) pick a positive
constant ¢ > ¢y V Cy and write

Q?(“)ac = e—ctQ?(U)’O

and .
Q;(v),c — e—cegg(v% ]

Then the operators ¢ — £4*) and 9, — L") + ¢ have inverses of the form
(c—Loe)” / Q" do = / Q" fd + Q" o (c— L) f

and

((815 Lo (v) + C / Qa(v) ,C



For any given bounded continuous function f on R? one can write the resolvent operator of the
parabolic operator 9; — L**) + ¢ in terms of the spacetime elliptic operator ¢ — £9*). Indeed
setting g = (¢ — L)) ~1f and h = (9; + 02)g we have

(0 — L*Y) 4 o)h = L g 4 ch = —f 4 ¢c(g + h),
thus
0 =L +¢) 7 f = —h4¢(0, — L* +¢) (g + h)
= — (0 + ) (c— L) f
+ (0 — L) 4 0) 14 0, 4 02) (e — Lo
Thus setting ) )
KoWhef = —/ (0 +02)Q5  f df ::/ Ky rde
0 0

and
RoW)ef .= Kf(”)’c(c — Ea(”))_lf + c(@t — oW 4 c)_l(l +0r + 02)(c— E“(”))_lﬂ
one has the decomposition
(5} — Lo 4 c)ilf = KoWep 4 palv)ey, (2.6)

The letter ‘R’ in R*"):¢ is chosen for ‘remainder’. This choise is justified by the regularizing
properties of this operator stated in the next statement.

6 — Theorem. Let B € [a—2,0)\{—1}. The map K*®)- is a continuous operator from C2(a(v)) into

CE*? and the map R is a continuous operator from CE(a(v)) into CoT2~ = NesoCot27e.

Proof — The former part is obtained from a similar argument to the proof of Theorem [{0
The latter part is obtained from a combination of Theorem [38 and Theorem Note that
(c — L))~ sends c? (v) into cP*™ continuously by Theorem and the inverse operator
(0, — L*™ + c)_1 sends (1+ 9, + 92)(c— 5“(”))_1f € P2 c co into €22~ by Theorem
>

We fix from now on a constant ¢ > max(co, Cy) and omit the letter ‘¢’ in Q*(), Q2(*) Ka(v),
R*®) unless it needs to be emphasized.

2.2 — The regularity structure. We construct in this section the regularity structure asso-

ciated with equation (|1.4]). It will be convenient, for notational purposes, to rewrite (|1.4]) under
the form

u =P (Q*up) + KM (v + w),
v = Qeo{ F(u)cs + {Gu) (D) +cu}éa ), 27)
w= ng{{A(u) — A(P<2(v)) }(D*P<2Q*ug + DKM (v + w))gg}

with three ‘noise’ symbols (1, (2, (3 in the regularity structure. This will help us distinguish
three different types of terms.
We first define a ‘preparatory’ collection of rooted decorated trees
B =B, UB,
with node decorations {X*}; cn2 and {(}ieq1,2,3}, and edge decorations {Z,},enz. Write
T:=1p

for simplicity and define B, and B, by the smallest sets satisfying the following relations.

(a) B. = B, UB. UB. with



—1 n —
Bl — {XkHI(Ti) ' keN% neN, 7,...,m €80\ {ng}keNz’,e{Q,g}},

=1

i2 n J—

B, = {XkHIm (i) s kEN?, neN, 71,...,7 € Bo \ {X*C renz, 1eq2.3)»
=1

n; = 0 except at most two n; = (0, 1)},

n
—3 —
B, = {XkHIni(Ti) :keN* neN, 7,...,7, € B \ {XkCl}keN27le{2,3}>

i=1
n; = 0 except at most one n; = (0, 2)},

This definition ensures in particular that X¥ € B, by the convention that H?:1 = 1.
We further assume that the product, called tree product, of the Z,,(7;) is commutative.
This means that we consider non-planar trees.

(b) B, = B. UB. UB. with
gi:{@a;aeﬁi}, le{1,2,3}.
The set By contains alLtrees necessary to describe the right hand sides in (2.7]). The set B,
is a collection of trees in B, multiplied by noise symbols (;. As usual in a regularity structure

setting we think of basis elements in B as decorated trees. We define the homogeneity map
|-|:B — R setting

X = [kls, |Gl == a0 =2, IGa] = I¢al =0,
n

|In(T)| = ‘T|+2_|n|57 |Tl"'T7L| :Z‘Tl|
=1

Since the operator Z g o) does not change the homogeneity, an infinite number of trees in B have
the same homogeneity. Modelled distributions which we will treat will then involve infinite
linear combinations of trees. To deal with such infinite sums it will be convenient to introduce
a new set of symbols ZP, with p € N and n € N2,

Let B be the collection of rooted decorated trees with node decorations { X%} enz and
{Ci}ieq1,2,3y, and edge decorations {Z5},en nenz- An example of elements of B is

Define inductively the projection map

7:B—>B

by the identity
7 (Ta(sT02)"(7)) = Th(n()),
(

at each branches of the tree 7, for 7 € B'\ 3Z(0,2 B,). Define



as the image of .

The letter B is chosen for ‘basis’ Each element of B is then a rooted decorated tree with a
further edge decoration p : E. — N, in addition to usual its two decorations n: N, — N? and
¢ : E. — N? considered in Bruned, Hairer & Zambotti’s work [I0]. The decoration p represents
the number of consecutive operators (37, 2) in each edge.

I(o 2)

I(o 2)
ﬁ

We write 7P for a generic element of B when we want to emphasize its p decoration. Since

|7P| = |7°], an infinite number of trees in B have the same homogeneity. We will use the
quantity
pl:= > ple)
ecE,
to define the topology on the linear space spanned by B. Set
B, := 7(Bo).

The following subfamilies of elements of B will be useful in this and the next section.
B := {7 € B.; |7P| < 0},
BO .= {TO; TP ¢ B},
B;Y:=B; NBY,
U= {X*}enz U{Z(7P)} e, -
The set BJ?, resp. BZ?, is the index set in formula (L.5)), resp. (L.6]), for the counterterm in

(o) )

the renormalized equation. We denote by

Bs := {TPEB; |Tp|:5}
the set of elements of B of homogeneity 8. It is elementary to see the following properties.
7 — Proposition. The following properties hold for the set B.

- The set A := {|7’p| ; TP € B} is locally finite and min A = ay — 2.

- The set B3 NBY is finite for each B € A.

- By = {X07X0<2,X0<3}.

Moreover, we assume that
Bo|NZ=10 (2.8)

through this paper. This assumption will be used in the proof of Theorem

To complete the construction of a regularity structure we consider the collection BT of all

the elements .
ol | EARUCAD
i=1

with k € N?, n € N, 7P € Bo, ¢; € N, and n; € N? such that |7i] +2 — |n;| > 0 for each i.
We use the label ‘4’ to distinguish the elements of Bt from the elements of B,. We define the
homogeneity map |- | : BY — R, by setting

’Xk Hz+ as (P =kl + 3 (Il + 2 — gl
=1
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We define Banach norms on the linear spaces spanned by B and B*. Picking a positive
parameter m we define Tﬁ(m) for each B € A as the completion of the linear space spanned by
B under the norm defined by
2

E Crp P

TPEBR

= Z \c.rp|2m2|p|.

B,m TPEBg

(m) ._ (m)
o - @y
BeA

as the algebraic sum. Similarly we define the space

e - @
B=0

We also define

from the set BY, using the same notation || - ||g. for the norms on 7™ and T+, By
definition 7™ is an algebra.

We finally complete the construction of the regularity structure. We define the two continuous
linear operators
A T _y plm) g p(m),+
and
At M)+ plm)+ o plm)+
by the identities

AG = ® XY,
K\ :
() xyk _— k k—k
ADXE = (k,) X ® X57K,
k/<k (2.9)
Xk
ADIHr = (P g ld)ar+ Y b AT

Ik|s <|7|+2—In]s

and the multiplicativity A (1 - 7,) = T, A7, (Recall from the Notation paragraph
at the end of Section [1] our use of the notation A(+).)

In the third identity of (2.9)), we extend the symbol Z,, as a linear operator by imposing
Ta(XkG) =0, 1€{2,3}.
For k = 0 this reflects the identity

1 1
KL=~ [ @+ 9205 1ds = - [ @+ 2)e "do —0.
0 0

We do not assume that K"z = 0 for k # 0, but it does not matter because we do not use
the symbols Z,,(X¥(;) with k # 0 and [ € {2,3} to solve the equation (2.7) in the space D};"
for v < 2. See Theorem [16] for the details.

One has similar identities for the operators Z5™*?

Xk

(+) +,
k! ® In+ka7

ANZLPr = (I{DP @ Id) AT+
k

for 7 € B7, since AZ(g,2)T = (Z(0,2) @ Id)A7 for 7 with negative homogeneity. This definition of
A™) turns it into an extension of the BHZ regularity structure for the semilinear generalized
(KPZ) equation. The pair

g(m) — ((T(nb),—i-’A-‘r)’ (T(m),A))
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is a concrete regularity structure in the sense of [4]. Denote by G(™):+ the set of all continuous
algebra maps g : T(™)+ — R, that is, ¢ is multiplicative with respect to the tree product and
with respect to the product with polynomials. Then G("):% is a topological group with respect
to the convolution product g * h := (g @ h)A™.

2.3 — Models and modelled distributions. We define in this section the notions of ad-

missible model, modelled distribution, and state or prove two fundamental results about these
objects: the reconstruction theorem and the lift in a space of modelled distributions of the
inverse heat operator. We define Qg as the canonical projection from T to the subspace

Tﬂ(m)7 and define Qey =3 5c 4 5, Qs

8 — Definition. Given a positive parameter m, a pair M = (g,) made up of a map
g:RY - gm+
and a linear map
n:7m - c2(a(v))
is called a model on 7™ if one has

|\T|
5

g2 (77)] S mPl||2" - 2] (8= =8 8. ),
for all 7P € Bt and z, 2/ € R%, and
|95 (MeoP) (2)] S miPt eVt (g = (Mg h)A),
forallo? €B, z€ R? and 0 € (0,1]. The model M is said to be spatially periodic if
8o o) =8 9 (M ()= +(0.1) = 5 (ME)) (2)

for any z,72 € R?.

These conditions ensure that g,., and & are continuous on the metric spaces Tém) and

respectively under the norm || - ||g,m, so the same analytical arguments as in [4] work to
prove the results stated in this section. We record here for later use a straightforward adaptation
of Proposition 2 and Lemma 12 in [4]. Recall from (2.6 the decomposition

(at _ La(u) + C)_l — Ka(v) —‘rRa(U).

+,(m)
Ty

9 — Lemma. For any o € B, z € R?, 0 € (0,1], and k € N? such that |k|; < 4, one has
‘@Q;(v)) (Neo) (Z)‘ < mlPl gllol=Tkl)/4,
Therefore for any o® € By and k € N? such that |k|s < |o| + 2 the integral
1
(ORK ) (MEo) (2) = [ (0415 (MEaP) () 9
0

converges for all z € R® and satisfies

|(9K2) (ME0P) (2)] 5 mP.

10 — Definition. Pickn <~. We denote by D" = DV"(T™); g) the set of functions
u:R? = T = Qo (T0)
such that

(w)pyn := maxsup {(s A DIB=mVO0}/2 gy ||u(z)||5m} < 00,
B<y 5>0 [t|>s
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Ju=) —g’ﬁu(zﬂlﬂ,m} .

u||prm 1= maxsu sA1)(—m/2 su
fullor = maoxsp { s 11 b e

[¢],]¢|>s, />0 |1z — z|
where t and t' represent the time variable part of z and 2’ respectively. Equipped with the norm
lwllpy == (w)pym + llwllpy,
the space D" is a Banach space. Moreover u is said to be spatially periodic if

u(z+(0,1)) = u(z)
for any z € R?.

Instead of (u)pyn and [|u|py,», it will be convenient to consider the seminorms

(upyn = macsup { (s A 1)/ sup u(2) | ,m }
B<Y >0 [t]|>s

and [luflpy 0 = (u)pyn + [[ullpy. In general [lul

fails. However for any w € D" such that

pyn < [lullpym but the reverse inequality

m

%g% Qpu(t,z) =0

for any 8 < 7 the following properties hold.
- lullpyn < llullpyn (Lemma 6.5 of [23]).

el n S lullpg, for amy 7 <y (Lemma 6.6 of [23]).

Since g and 1 are bounded linear operators on the spaces T ém) and Té,m)’+ respectively we
can prove the reconstruction theorem for D)7 similarly to [4, Theorem 20] and [25, Theorem
4.1].

11 — Theorem. Letn <~ and vy > 0. Let M be a model on F of growth factor m > 0. There exists
a unique continuous linear operator
RM . D71(T(™) ) — €] (a(v))
such that the bound
‘Qg(v) (RM’U _ ﬂgv(z))(z)‘ 5 (|t‘1/2 V. 01/4)77/\(0‘0—2)—7 97/4
holds uniformly over for any v € D) with unit norm and z = (t,x) € R%. Moreover if M and
v are spatially periodic then RMv is a spatially periodic distribution.
We say that a vector space S = @BGA Sp is a sector if each vector space Ss is a closed
subspace of Tém) and A(S) € S ® T+, Then
Bo = min{ﬂ € A; Sg# {0}}

is called a regularity of S. Given a sector S we denote by D2:"(S) the set of the elements
u € D) taking values in S. We will use in particular the sectors

U and T,

spanned by U and B., respectively. Since o = min {|7P|; 7P € U\ {Xk}keNQ} > 0, for any
u € DY:1(U) the reconstruction RMu of u coincides with the X°-component of u and belongs
to C& on any compact subset of (0,00) x R. (This claim is the content of Proposition 3.28 of
23].)

The proper notion of admissible model in the present setting is captured by the following
definition.

12 — Definition. An admissible model on 7™ is a model (g, M) such that

g.(X%) =25 NX*7)(x) =Mn)(), NGg=1 ({23}
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and one has for all TP € By,
N(ZrP) = K*@(NrP).

An admissible model satisfies the identity

k
g;l(IfoT) = — Z % ((angkKa(v))(nzT))(Z)
[k|s <|7[+2—[n]s
for any 7 € By — see e.g. Proposition 15 of [4]. The proof of the multi-level Schauder estimates
can be done along the same lines as in Hairer’s original statement, Theorem 5.12 of [23], but we
need a slight modification because the kernel Ky(z,w) is only twice differentiable with respect
to the first variable. See [25, Theorem 5.12] for the proof in more general settings. The fact
that the quantity J%*)(2)7P below is well-defined is a consequence of Lemma @ (We stated it
explicitly to make that point clear.)
Recall that a € (0, ag) is the regularity of the initial value ug — see Section

18 — Theorem. Let M stand for an admissible model on Fm) . For any TP € B U {XO} set
Xk
TN P = Yy g OSKUO(NEP)(2).
k|s<|TP|+2
For w € D):"(To, g) with v > 0, set
a(v Xk alv
(W ( )u)(z) = Z F@i‘K ( )<RMu— I'Igu(z))(z)
|k|s<’)’+2
For w € D);"(To,g) with v > 0 set

(€M) ) = Qe (T + 70 ()ute) + (V) 2.

If =2 < n and v € (0,a), the map KM sends continuously DY;"(Ts) into Dy, Pt ().
Moreover, it holds that RMK*)My = K (RMw) for any u € DY;"(T,).

Define D):7(0,T) as the space of modelled distributions defined on (0,7") x T; its norm is
defined as in Definition |1(] with functions w only defined on (0,7") x T. The set of elements of
D:"(0,T) taking values in a sector S is denoted by D):7(0,T; 5).

Recall that we denote by P.., the operator that lifts a smooth function on (0,00) x T into
the polynomial part of T' of homogeneity strictly smaller than -y, so

k Xk
(P<7f) (2) = Z (32 f)(z) EY
k| <y
Define
Rz(v),Mu — P<’Y (Ra(v)(RMu))
and

v),M ,M M

K:(t) = Qo KUWIM Rg(v) )
We obtain the following estimates via an extension of w € DY."(0,T) into u € D}."(R) such
that u(t,-) = 0 for t < 0. Because of the non-anticipative character of the kernel K the value

of the modelled distribution Kifv)’M(ﬁ) on (0,T) is uniquely determined independently to the
choice of extension u — see Section 4.3 of [4] for details.
14 — Theorem. Pick v € (0,«) and n € (a — 2,7]. Then for any k > 0 and v < v+ 2, we have

KM (@) pyrorormmar gy S T/

D" (0,T)"

Moreover it holds that RMK*()My = (9, — L) 4 )= (RMu) for any u € DY;"(T.).



14

Proof — We know that Kca): My, D%H’("H)Aa" from Theorem |1 . Since R*™) sends RMu €
CIM@0=2) (4(p)) into C2+2~ C €12 by Theorem@ we have R (U) Mu € D127 for any 1 € R.

Hence Kv(g My e D220 gince B € A satisfying § < (77 +2) Aag is only =0 and

hm QoK? 'y+2 u(t, x) = ltirg(at — L™ 4 )Y RMu)(t,2) = 0,

the norms | - || and || - | are equivalent for K2 (”) Mu and we have
T E Y T N
S TR @) cvmrnon oy S TS () pgra.cnsanon o 1)
S Tm/?

>

We end this section by mentioning some continuity results for some operations on modelled
distributions. Below the product 7o of elements 7,0 in T is defined by the linear extension of
tree product, as long as it belongs to T. The following results are variants of [23] Propositions
6.12, 6.13, 6.15 and 6.16] so we omit the proofs here.

— Let S and Sy are sectors of regularities a; and agy respectively, and such that the
product Sy x Sy — T(™) is defined. Then for any w; € D)i"(S;) (i = 1,2), we have
Q<v(u1 'u2) € DZ{”
with v = (1 + a2) A (72 + a1) and n = (1 + az) A (n2 + a1) A (1 + n2). Moreover, the
mapping (w1, us) — Q< (u1 - u2) is locally Lipschitz continuous.

— For any u € D);"(U) and a function h € C*(R) with x > max{vy/«, 1}, we define

1) (y
H(u) = Qo ( y M), UOXO)"> 7

n=0
where ug denotes the X°-component of w. Then H(u) € D);", and the mapping
u — H(u) is locally Lipschitz continuous.
— Define D as a linear operator on T such that
DXk ey xR0y o, DIa(7) = Tag(o,1)(7)-

Let n € {1,2}. If v > n, then the map DY;"(U) > u — D"wu € D)~™""™ is continuous
and satisfies RMD"u = 37RMu for any u € D);7(U).

3 — Local well-posedness

We prove in this section that the regularity structure formulation (1.4]) of the quasilinear
equation (L.1)) is locally well-posed in time. We emphasize some elementary facts before stating
and proving the well-posedness result in Theorem They follow from Definition [5and Lemma

g2

15 — Lemma. Let o € (0,1). For any f € V*(0,T), the function P.of belongs to D):"(0,T) for
any v € (1,2) and n < o and has the estimate

IP <2 fllogm0.m) S W fllzeeqo.myxmy + T2 £llveo,1)-
Consequently, the following estimates hold for any ug € C*(T).
i) Denote by Q; cither of et or Qa(v)’c with ¢ > 0. For any v € (1,2) and n < «,
t
IP<2(Q.uo)|

vy S llvollce (-
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Moreover, for any v € (2,2 + «) and n < a,
IP<2(Q-uo)llpz;m 0,7y S llwolloary-
(ii) For any v € (1,2) and n < «,

IPa (@2 — ¢ hunf ST

}‘”D”’ (0,T) ~ uollce )

16 — Theorem. Let o € (0, ). For any ug € C*(T), we choose v € V*(0,T) satisfying (2.5)) for
sufficiently small 6 > 0 (depending only on ||uo||ca(T)). Then for any admissible model M, there
exists sufficiently small to € (0,T] such that equation (2.7) has a unique solution (u,v,w) in
the class

D)0, t0; U) x DYF0=22072(() t0:T,) x DY 0=2972(0 10: Ty,) (3.1)

for any v € (2 — ap,2 — ag + «). The time tg can be chosen to be a lower semicontinuous
function of M and ug.

Proof — We find a solution by the Picard iteration. Let vy = wg = 0 and
Up =P (Qa(v)uo) + Kg(v)7M(vn +w,),

Upt1 = ng{F(un)C1 +{G(un)(Duy,)? + CU}C2}7 (3.2)

Wyp1 = QSO{{A(un) — A(P5(v)) J(D*P<2Q"ug + DKM (v, + wn))C3}

In what follows C' means a constant which is independent to g, ug and (w,, vy, w,). Similarly
P(z) means a polynomial of a variable # whose coefficients are independent to ¢y, ug and
(Up, Un, wy). The value of C' may change from one occurrence to the others. By the multi-level
Schauder estimate from Theorem [1/] we have

lwns1ll o2 0,60)

< |||P<2 (Qa(v)uo) H}D“"“(O,to) + C( 6/ ”|'Un|HD”+“0 2202 4y F |||wn|||D”+“0 =2, to)) (3.3)

K/2

< C<||u0||ca 1)+ 157 onll pyea-220-2g ) + ||\wn||\D%fa0,2,a,2(o,to)),

where k = a A (ag — @) > 0. Next we consider v,,11. Since u,, takes values in the sector U, all
F(uy),G(uy,), A(uy,) are well-defined elements of D):*. Since ¢ has a homogeneity ay — 2,

F(up)¢ € Dyfeom20te0=2(T,).
Since Du,, € D), 1*~! is in a sector of regularity ag — 1,
(Dun)2 c D?n+a072’2a72(To),

and thus
G(uy,)(Duy,)? € D) Feo=220=2( ),

Therefore,
m (O,to))' (34)

Finally we consider w,, 1. Since DQK:Sf(lO maps D)Fe0=21=2(T,) into DFeo=2mA@0=2 con.
tinuously, one has

lonsillpyrao-220-2, < P(

lwnsillpteo-za-2(q ;s

S CH|A(U‘71) - A(P<2 H"DV 7(0,t0) |HD2P<2QG(U ug + DQKVE&Z@M ('Un + wn))c?)’”D:fnerO*zva*Q(Oyto)

< O|| Afan) ~ AP 2(0) g 0.1y (0l (m) + Bollpyoaziza—z ) + lnlpgran-sa-s g )

where 7 is a positive constant such that n < a. To obtain a small factor from the second term
of the right hand side, we decompose

Alun) — A(P<2(v)) = {A(un) — A(P<2(Q"ug)) } + {A(P22(Q*ug)) — A(P<a(e®ug))}
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AP (P ) — APs) ).

For the first part, since A is locally Lipschitz as a mapping from D}." to itself,

llACun) = A(P<2(Q" o)) |
< P(Jun

D" (0,t0)

[[wn — P<2(Qa(v)u0)|||D:’,;"(07to)

DY (0,t0)> HUOHCQ(T))
< P(lunllpre(0.10)» l1uollca ey ) IKEM (@, + wi) o2 0,00)

téa—n)/Q(

< Pl (0.0, lluollcacr) Poullprea-s20-2g 1) + I0nll a2z g 1)-

For the second and third parts, we use Lemma [75 to have the estimate
[l 4(P<2(Q* o)) = A(P<2e'u0)) [l 40y = P (luollc(m) [IP<2(Q" o — ¢!

-n)/2
< P(Jluolloam) 5" fuollcacr

‘3“0) |||D7nf"(o,t0)

and from the assumption (2.5)),
1 4(P<2(e®u0)) = A(P<2(®)) [lp(0) < Plluollcmm) [[P<ale o = )| pyngo ro)
< P(lluollcam) (6 + 6" [uollcm ).
As a result,
lwnsillpy—20-204,)
< 3P (Juollow(m) (luollcnr) + Bonllp oo 22020 1y + [Walpieo 2020) (35)

— 2
16" 2P (Jluollca s Nunllpge 0,60 [0l pyreo—220-2 4o wnlpraa—2ia-2 g ) ).

By (3.3), (3.4), and (3.5)), by choosing sufficiently small d,¢9 > 0, we can find large constants
My, Ms, M3 > 0 such that

Fallpye @) < Mis [oallpyran-220-20,0) < Mo, Wt0nllpysea 22 g ) < Ms

for any n € N. Note that § > 0 is chosen as 0 P(||ug||ce(Ty) < 1, so it is independent of My, M»
and Ms. By the local Lipschitz estimates of the operations in (3.2)) (product, composition with
smooth function, differentiation, and integration) we have the similar estimate

lwns1 = wnlloge(0,t0) + llvns1 — ”n‘||pgf“0*2~2"*2(o,to) + w1 = wnmoxf“o’z’“’z(o,to)

< P(My, My, M) 6] (= 1 lpigm(ot0) + I0n = 01 ll o202 g

—+ ”|wn — ’U)n_lH|D;yn+a0—2,2a72(07t0)>

for a small exponent § > 0. Hence we can choose tg smaller such that (w,,,v,,w,) is a Cauchy
sequence. The limit solves equation (2.7). Uniqueness also holds because of the local Lipschitz
estimates. >

Otto, Sauer, Smith & Weber [29] and Linares, Otto & Tempelmayr [26] set up an analytic
and an algebraic framework to deal with the quasilinear equation with additive forcing,
iie. f=1and g=0. They use in particular a greedy index set for their local expansions and
prove an a priori bound for the solutions to a renormalized form of their equation driven by a
smooth noise. Their result holds in the full sub-critical regime but they do not prove a well-
posedness result for their equation. The a priori result entails a compactness statement that
ensure the existence of some converging subsequence when the regularizing parameter in the
noise is sent to 0. The analysis of the present section shows that one can run the analysis of the
general equation within the variant of the usual regularity structure for the generalized
(KPZ) equation described in Section The present section can also be seen as a simple
alternative to the somewhat convoluted approach of Gerencsér & Hairer [20]. The interest of
this reformulation of will be clear in the next section. The formulation of [20] does not
lend itself to an easy formulation of a renormalized equation for . At the level of generality
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of [20] the counterterm in their renormalized equation is a priori a nonlocal functional of the
solution. Our main result, Theorem [I| in Section |1} shows that there is, in the full subcritical
regime, a renormalized equation whose counterterm is a local functional of its solution. (Recall
there is not a unique renormalized equation.)

4 — Renormalization matters

This section is dedicated to the analysis of the equation satisfied by the reconstruction of the
solution u obtained in Theorem [7¢] - the so called renormalized equation. The first systematic
treatment of this equation in a semilinear setting was done by Bruned, Chandra, Chevyrev &
Hairer in [9]. They relied on a morphism property satisfied by the coefficients w, of generic
solutions to semilinear singular SPDEs, for some multi-pre-Lie structures. A deeper structure
on the elements of BHZ regularity structures was unveiled by Bruned & Manchon in [I1] and
applied by Bailleul & Bruned in [2] to simplify a lot the analysis of the renormalized equation.
This structure is encoded in the x product introduced in Section [£.2] Its importance in the
analysis of equation is emphasized by Proposition it provides a basic morphism prop-
erty — the counterpart here of the multi-pre-Lie morphism property used in [9]. We introduce in
Section the class of preparation maps — special linear maps from 7™ into itself, and their
associated admissible models. A preliminary form of Theorem [1] follows from their properties
in Proposition [23 A special class of preparation maps is associated with the set of characters
on B7. We show in Section that working with the preparation map associated with the
analogue in our setting of the BHZ character leads to Theorem

4.1 — Notations. We first fix some notations. In this section, we consider the set of all
decorated trees -

T=T,UT,,
since the operators which we define below may not be closed in the smaller set B. The sets T,
and T, are defined by the smallest sets satisfying that

.—{XkHIn i) kENz,nEN, niENQ, TieTo}

and

To={Go:1e{1,23} seT.}.
Similarly to Section we assume that the tree product is commutative. For convenience we
denote a generic element of T by

X5 [ Zas(72)
i=1

for I € {1,2,3,4} with the convention
1= X°.
The combinatorial symmetry factor S(7) of the tree

T = XkClHIn Tz

with (n;,7;) # (n;,7;) for any i # j is 1nduct1vely defined by

S(r) :==k! ( ﬁ S(Ti)’giﬁi!) :

i=1

We also define the map 7 similarly to what was done in Section [2.2] to introduce a further
edge decoration p and set
T:==n(T).
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The p decoration is used to deal with infinite sums. However it will also be convenient to use
the set T to deal with some operators defined similarly as in [9, [I]. The following identity will
be useful later.

17 — Lemma. Let S be a finite set of T such that 7° € S if 7P € S and let {c,» }roes be a family
of real numbers. Then one has the identity

P 1
Z SC(TP)TPZ Z m Z crpTP.
TPES T70€S

pENET

Note that S(7P) is smaller than or equal to S(7°) in general. The above identity comes from
the order of the sums for trees and decorations. In the left hand side each 7P is considered as
a non-planar tree. In the right hand side however, we fix a tree 7 first and put a decoration p
later, so TP is rather considered as a planar tree. For example the tree 779 := TP((1)Z%(¢y) is
the same as 79P in the set T, and we have

Crp.q Crp,p 1
P9 — p,p . P9 — . Pp.q
T = T + Crp,aT = Crp,aT .
2 S(rra) 2 2 o S(r00) 2 o

7P a=TP((1)T9(¢1)ET peEN p<geN p,q€N

We denote by T the linear space spanned by T, and by T* its algebraic dual. For a fixed
m > 0 and any 7% € T we define TS-m) as the completion of the linear space spanned by

non-planar trees {7}, under the norm

2
ZCI,TP = Z |cp’2m2|p|.
p P

m

T(m) — @ Tg_m)

70T

We define

as the algebraic sum. Setting

(77, (0)%) i= 5(rP) Lro—ga
for 77 € T and the dual element (69)* of 09 € T we can extend the duality relation between
T and T*(/™) to the completion of T* under the norm || - ll1/m-

4.2 — Coherence and morphism property for the x product. We write 7 to mean a

generic element of T. We denote by T(.) the linear space spanned by Ty with () € {0,0, e},
and by T?’) its algebraic dual.

4.2.1 — Coherence property. Let ¢ = (cik)en2 and ¢’ = (¢} )xen2 be abstract variables. We
introduce the differential operators Dy, := O, for n € N2, and set, for ko € {(1,0),(0,1)} in
the canonical basis of N2,
8k0 = Z (Cn+k0Dn + C;_,'_koD;l) .
neN?

The vector fields 9 and 9 commute, so one defines unambiguously for k = (k1, ko) € N?
a |k|-th order differential operator on functions of finitely many components of ¢ and ¢’ setting

ak — (a(l,O))kl (a(O,l))kz'

The following elementary relation is of crucial use in the proof of Proposition below; its
elementary proof is left to the reader.
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18 — Lemma. For any (ky,...,ky,) € (N*)" and m € N? one has

m n ml. n -
> (11’._.7171) jl;[la YDy, 1, = (jl:[lej)a , (4.1)

(I1,...,1n)E(NH™,
m . m!
Ii,.... 1, o I L,

L1, <m
For any 7 € T we define the function §(7*) of the variables (c,c’) as follows. Set

h(co, o) := a(co) — alco)

where

and
3¢ (e, ') = f(co),
F(G)(e, ) = g(co) (o 1) + c o, (4.2)
§(E) (e, ') = h(co, o) c(0,2),

and

3(C1)(c, ) =0,
and for 7 = X*¢ [\, Zn, (7:) € T set

57 (e, ) = ({ak(ﬂpm)sa @) Hsa ))e.e) (4.3
With
= Z(C1) L1y ()G 2= T(1)*Li0,2) (1) s
one has for instance

§(ri) (e ) = { Do 1F°(6) }§°(1)* (e ) = 29'(co) f (<o),

§(m3)(e. <) = { D3D(0.2)F(G) }5(GH)P (c,¢') = 0 (co) f (<o)

We see on these definitions that co and cj are placeholders for u and v in equation (L.3). The
function § vanishes outside B. Actually if 7 € T\ B then it has a node v € N, such that a
collection of all edges leaving from v contains either an edge Zy with k # 0, (0, 1), (0, 2), or more
than two edges Z(g,1y, or more than one edges Zo ), then §*(7*) vanishes at v. By a similar
argument it is easy to check that *((77)*)(c,c’) Wlth TP € B7 are functions of (co,c(o,1)) and
(co, Cl(o,l)) only. Furthermore, since the equality

Sa(@_p)*) — h\p| Sa((TO)*)

follows from the definition, we have that
< [ ((=°

5 (Lentror) xS ML ol
p Lo (O xR?)

for any domain O of R%. This means that § maps T*(") into Cy(O x R?) if 1] oo 0y < M.

19 - Proposition. The solution (u,v,w) to equation (2.7) in the space (3.1]) satisfies
v = Z Urp TP +v¢, (o, w = Z urp TP 4+ we, G

TPEB, NB2 TPEB; NB3
u = Z UrpZ(TP) + uo X° + U(o,l)X(O’l)a (4.4)
TPEB,

Urp =

| ,
S(Tp) S«a ((Tp) ) (’U,07 U0,1)5 U, 8xv) .
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Proof — Given the definitions of the nonlinearities of w and P.o(v) identity (4.4) is a direct
encoding of the fixed point relation

u € Qe2{Z(v+w)+Tx},
v € Quo{ F(u)Gi + {Glu)(Du)? + cu}:}.
w € Qeof {A(w) — A(P<a(v))} (T (v +w) + Tx)Ga
satisfied by (u, v, w), where Tx := span{X*}. >

The analogue of identity (4.4]) in the usual regularity structure setting was named ‘coherence’
in [9].

4.2.2 — Star product. Following [T, Section 2] we introduce some bilinear operators on T. Let
15 T be the derivation of 7 given by adding to 7 the polynomial decoration X™ at the vertex v.
For € To, 7€ T, and n € N?, set

7rnT= 3 % (Mot ),

vEN; meN?
where n, is the polynomial decoration at the node v, and ~}_,, grafts & onto 7 at the node v
with an edge of type Zn_m. One has the following analogue of the Chapoton-Livernet univer-
sality result.

20 — Proposition. The space T, is freely generated by the symbols (XkQ) and the family

keEN?,1<I<3
of operations (Mvn)pen-

We define the x product by following [I, Section 2]. First define for 7 € T and B C N=, the
derivation map Tlfg by
thr= > Il

> ep kv=k vEB

Also we define
Ia(@) NT: =T "~ T,

<HI‘” (ai)) AT

by grafting each tree o; on T along the grafting operator corresponding to n;, independently of
the others. Set finally for all & = XX [[Z,,(7;) € Teand 7 € T

AT =1 (Hlni(ai) m7‘> .

and

One has for instance

n n
X*¢ [ 2@ = (XkHIm(ai)> * (. (4.5)
One proves as in Section 3.3 of [1111] that the prodluclt is associative in the sense that
Tx(@x7) = (T*x0)*17
for any 7,5 € T, and 7 € T. We also define the % operation on Ti x T setting
T KT = (TxT)".

The following morphism property of §* with respect to the x product plays the crucial role
in our argument, instead of pre-Lie morphisms applied in the original approach of Bruned,

Chandra, Chevyrev & Hairer [9]. The morphism property is proved similarly to the proof of
Proposition 2 in [I] based on identity (4.1).
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21 - Proposition. One has
ga({xkﬁzm(ai)}**T*>(c,c/) - <{8an1...DnnS“(T*)} ﬁsa(a:)>(c,c’). (4.6)

Note that the expansion formula (4.4]) in our case only involves the k € {0, (0,1)} case of the
general formula . We see on (4.5) that formula is a generalization of the defining
identity . The interest of formula will appear below in Proposition |24 when we will
look for a recursive formula for some quantities of the form §*(R(z)*(7P)*), for a (spacetime

dependent) linear map R* on T

4.3 — Strong preparation maps and their associated models. The objects introduced

in this section are the building blocks of an inductive construction of a renormalization process.

4.3.1 - Preparation maps. For 7P € T denote by |7|¢, the number of noise symbols ¢; that
appear in 7. Recall from Bruned’s work [8] that a preparation map is alinearmap R: T — T
such that for each basis vector 7P € T one has

R(G)=¢,  R(X¥rP) = XXR(7P) for all k € N?,

4.7
R(Z4(7P)) = Z2(7P) for all n € N? and ¢ € N, (47)

and there exist finitely many 77 € T and constants \; such that

RrP =1P + 2:)\2-7377"7 with |77/ > |7P| and |77|c, < |7P]c,
i

and R is closed in B and satisfies the ‘commutation’ relation
(R®Id)A =AR. (4.8)

The role of R is to provide a definition of the product of two trees that have already been
renormalized. Its use in Section [£.3.2]in the recursive definition of the actual analytical objects
associated with decorated trees will make that point clear; see in particular . Accordingly
the second and third identities of account for the fact that there is no need, in the
induction process that builds an admissible model, to ‘renormalize’ elements of the form X¥7P
and Z4(7P) if the element 7P has already been renormalized. We can think of a preparation
map as generating a renormalization process in the same way as a vector fields generates a flow.

Denote by R* the algebraic dual of the map R; it is defined by the identity
<Raq, (Tp)*> = <0q, R*(Tp)*>.
It is elementary to see that identity is equivalent to having the right derivation identity
R*((09)" » (77)") = (09)" » (R*(77)") (4.9)
for all 02 € BT (B* is regarded as a subset of T,) and 77 € B — see e.g. Proposition 3 in [I].

A strong preparation map is defined by a preparation map satisfying identity (4.9) for all
09 €T, and 7P € T — and not only for oP € BT and 7P € B.

Definition — (a) A spacetime dependent strong preparation map on T s a continuous
map
R:(Ry xT) x T — 1(m)
satisfying the following properties for any fived z € Ry x T.
— The map R(z,-): T — T s linear, closed in T™ , and satisfies .
— For any 7° € T there exist finitely many 0?,...,02 € T such that |o;| > |7|, |oi|¢c, <
I7|¢,, and

(R(z,-) —1)T{™ c T,
i=1
— The map R(z,-)* satisfies (4.9) for any c% € T, and 7P € T.
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(b) A spacetime dependent renormalization character on B, of growth factor
m’ >0, is a map
(:(Ry xT)xB; =R
which is continuous in Ry X T and vanishes on the elements of the form
XkrP (k#0),  IZi(rP),
and such that for any 7° € BS there exists a constant C(7) such that
|[¢(z,7P)| < C(1)(m/)P! (4.10)

for any p € NZ and z € Ry xT.

One associates to a spacetime dependent character £(z, -) of growth factor m’ the linear map

R (7)) = o+ 3 L2 e oy reTy

c9€B,

and

Ry(2)"((rP)) = (77)", (P € To).
It can be easily checked that R, is a strong preparation map on TU™ with m > m/. The
definition above corresponds to the usual definition of its dual described by the contraction of
trees as in Corollary 4.5 of [8]. So, R¢(z) is closed in B. For the commutation relation we
use the associativity of the x product as in Proposition 4 of [I]. It remains to show that Ry is

bounded in T(™). Actually since
£(z,07)]
= Z S(aq) |CP| HTp*aqu/m

(Re(2)" —1d) (Zcp 7P) )
1/m PO
1/2
Z |£ 2,01 | lcp| |qm~PI=1al < <Z [é(z, 2Iq|>

p.q,0

the map Ry(z)* : T(/m) — T+1/m) i5 continuous because of [E.10). So, Ry(z) sends contin-
uously T(™) into itself. The next proposition follows from Proposition |21 and identity (4.11]).

)

1/m

22 - Proposition. Let O be a domain in R* and let Al o0y < 1/m. Let R be a spacetime dependent
strong preparation map on T(™) . For every z € Ry x T and (co, C67C(071)7CE0 1)) € O x R? one
has

5o (R(z)* (ngl ﬁzni (Ti”i)) *) (c,c)
= ({6“Dn1-..Dnns‘l(R(z)*@*)} ﬁsa«#’i)*))(c,c’).

Proof — By writing

X6 [ Zn (7P) = (X[ T, (7)) + G
i=1 i=1

and using the right derivation property (4.9) — here we use the fact that the preparation map
is ‘strong’ — one gets

((XkHInl )m) (XkHIm Py ) R(2)¢). (4.12)

Identity (4.6]) in Proposition [2]] E then yields the identity of the statement. >
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4.3.2 — Admissible model associated with a preparation map. Fix a regularization parameter
¢ and denote by
E=6€C®RxT)
a regularized version of the spacetime white noise £ and set
=8 =1
For any spacetime dependent strong preparation map R on T("™) we define inductively the maps
Me() and TH-(¥):% a5 follows. For 1 <[ < 3, set
e = al)xg = g,

and define

nR,a(v) — HR,a(v),x ° R, HR,a(v),x (7_17_2) — (HR,a(U),XTl) (HR,a(v),xTz)

HR7“(”)’X(I£T) =on (Ka(v) o (8§K‘1(”))°p)(ﬂR7“(”)7),

where the symbol o stands for the composition operator and the notation A°? stands for the
p-fold iteration of an operator A. The operator 92K (") makes sense here, because M%) 7
constructed as above belongs to C2* (Note that K**) maps Ot into C2* — see Theorem [6).
As R is spacetime dependent the first identity in reads

(M) r) (2) = TR0 (R(2)7) (2),

for all z and all 7. It follows from this definition and the fact that we work with preparation
maps R leaving fixed the elements of T of the form ZZ(7) that the map M%) satisfies the
admissibility condition

Mol (z5r) = on (K00 o (2K ) (M),

)

(4.13)

Define as well g%(*) inductively from the identity

a(v)y— (_Z)k a(v a(v)\o a(v
@)L == D e (M o (2K ) (M) ) (2).
[kls <|T[+2—|n]|s
One can follow verbatim Section 7.1 of [2] and see that (I'IR’“(“), gR’“(”)) is a smooth admissible

model on 7™ with a constant m coming from the operator norm of 92 K a(v),

Among the renormalization characters, we are interested in the one €‘Z(v)(z,7p) defined by
the similar way to Section 6.3 of [I0]. We denote by RZ(U) the strong preparation map defined
by (4.11)) with ¢ replaced by ZZ(U)- The associated model Mj(v) is called the BPHZ model. Note

that, when KZ(U) has a growth factor m’ < m, the BPHZ model MZ(U) is a model on .7 (™),

Assumption. There exists a character Ei(v) of growth factor m’ € (0,m) for each ¢ € (0,1]

(the constant C(7) in (4.10) may be e-dependent) and the BPHZ renormalized model MF ) is
convergent as € > 0 goes to 0.

We conjecture that Assumption [1] holds true in the full subcritical regime, but we do not
discuss it in this paper. Such a convergence result was proved in several works (cf. [12] [24] [5])
in semilinear settings, but we need slight modifications. For instance, we cannot directly use
[12] because the kernel 2 K%(") is too singular to be integrable around the origin. We would
be able to solve this difficulty by considering K*®) o (92K*®))°P as one integrable kernel —
see Proposition below. The inductive proofs in [24] [5] are also not directly applied because
the integral operator K*®) is not homogeneous. However, B, Lemma 9] implies that the
convergence of the model is reduced to the e-uniform boundedness of the expectations

|E[Qu((MF)&7P)(2)]| < mlPlgUI=Iklo)/4
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for any 7 with |7| < 0 and their convergences as € — 0. This fact would reduce the effort for
the proof significantly, because this expectation vanishes for any 7 with an odd number of (3
symbols by the property of Gaussian noise.

4.4 — Renormalized equation. Denote by RS (,) the reconstruction map associated with

Mi(v). The proof of Theorem 10 in [2] works verbatim and gives in our setting the following
result.

238 — Proposition. Let (u®,v®,w®) € D);*(0,tg;U) x D)Feo=22a=2(() ¢o:T,) x DFa0=2272((), ¢5)
stand for the modelled distribution solution of (2.7)) with respect to the model I\/IZ(U). Then one
can choose t, < to and €9 > 0 both small enough for

u” =R, (u)
to satisfy the bound
1
sup  sup |a(u5) - a(U)HLw(T) <

e€(0,e0) t€(0,ty)
and solve the ‘renormalized’ equation
E;(’U) (.7 7—1’)

(00 = aw)R)u = F(u)" +9(u) Do) + 3 g

TPEB,
on (0,ty) x T, with initial condition ug. The last term of (4.14) has a growth that is at most
linear with respect to Ozuc.

3((r2)") (uF, By v) (4.14)

Proof — Denote by RZ’(’;) the dual of RZ(U). Theorem 9 of [I] yields that u® solves the equation
(0 = L*N)u® = f(u)e® + g(u)(9,u°)? + (a(u®) — a(v))Dju®

4
+ Z&“ ((RZ(’:)) — Id)Cl*) (u®, 0pu”,v,0,v).
1=1

Since RZ’(Z)CI* e T+(/m) by duality the term F° (RZ(“;) - Id)(l*) is actually convergent in

Cy((0,t) x T) by the remark before Proposition We have the right hand side of (4.14)
from the definition of RZ’(Z). To see that this counterterm does not depend on &,v note that
any renormalization character satisfies

(X OYeP) =0 (4.15)
by definition. Since the only functions §*((7P)*)(c,c’) that depend on C(o,1) correspond to 7P
of the form X(©VaP | the corresponding counterterms are null.

It remains to check the last statement of the proposition. If some function F*((77)*)(c, c') were
of degree greater than 1 with respect to c(g 1) then 77 would have at least two (»-type nodes
from where exactly one edge Z ) would leave. Since the minimal homogeneity among the
trees

XkC2I(o,1)(U) HI(Ui)
i=1
is |<21.(<1)I(O,1)(<1)| =2a — 1> —1, such 7P cannot have negative homogeneity. >

Next we reduce the v-dependence of the counterterm of (4.14)). Define inductively the func-
tion x*(7P)(co) by the relations

X* (€3 Z0,2)(7P)) = x*(7P),

X (43 T(0,2)(7P) HI(ﬁ’i)) (c0) = a™(co) [ (") (o), forn>1, (4.16)

=1 i=1
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and for | € {1,2}
v (6 T2 7)) (c0) = [Tx" (7 (co). (417)

We see on this definition that x“ is a polynomial function of a and its derivatives. It is important
to note that x®(7P) does not depend on the p-decoration of 7 — rather it depends on the location
of the (3 vertices within 7P. We denote by 7 the non-p-decorated tree associated with 7P, so
the symbols 7 and 7° are used here interchangeably. As a shorthand notation we write

X7 o= x*(7).
With
= T(C) L0 (G)* ¢ 2= T(G1)* Li0,2)(C1) s
one has for instance
X“(11)(co) =1,  Xx*(72)(co) = a®(co)x"(¢1)*(co) = a®® (co)
We also define the functions F(7*) for 7 € B® by the same inductive relations as the functions
F%(7*) by replacing co-derivatives of h(cg, cg) of any order by the constant function equal to 1.

Then the functions F(7*) depend only on cg. It is elementary to obtain the following identity
by induction.

24 — Lemma. One has

F((TP)") (cos €(0,1)> Sh) = X2(co) (alco) — a(ch)) P! F(r*)(co). (4.18)

For a positive parameter A we denote by

—ct 2
ZMz) = ZM(t,2) = Liso— iy
t (‘r) ( 7x) t>0\/m exp ( AN

the fundamental solution built from the constant coefficient parabolic operator 9; — A\9? — c.
The naive admissible model on .7 associated with Z* and the smooth noise £° is the unique
multiplicative model such that

SG =€, 5G=1 (e{23}), (MXN)(2) =2z,

and
MS(Th(r7)) = (922* + (922°)"7) « N3P,
The BHZ character [5(-) on B is defined in that setting as
I5(7P) :== 5 (S_7P), RS (7P) := E[ f\Tp(O)],

where S’ : T~ — R[T] is the natural extension to our setting of the negative twisted antipode
— see Proposition 6.6 in [I0] or Section 7 of [4] for its definition in the usual BHZ setting.

2 — Assumption. For any 7° € B;° there exist a constant m > 0 and an e-independent constant
C(7) such that
ey (2, 7P) = Uy (TP)| < C(7) m!P!

for any p € NP and z € Ry xT.

We check that Assumption 2 holds for some examples in the next section. The next
statement is the core fact to get the renormalized equation under the form (|1.6) stated in
Theorem [4 though it is elementary.

25 — Lemma. For any 70 € BJ° the function
A= 15(79)
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is analytic in any given bounded interval of R whose closure does not contain the point 0 and

1
SR = > B,

peENET, |p|=n

Proof — By an elementary computation we have

t
ONZMt,x) = td2Z (Nt x) = / / ZMt — 5,0 —y)02Z*(s,y) dy ds. (4.19)
o JR
Therefore once 0y applies to one edge to which the kernel 9¥Z* is associated then this kernel
turns into a spacetime convolution 0XZ* x 92Z*. >

Proof of Theorem @ — It follows from Lemma Lemma |25 and (4.18) that the counterterm
in the renormalized equation (4.14) equals to the following simple form up to an e-uniform
remainder term:

e TP
Z a(v(~))( ) Sa((Tp)*) (’LLE, 6$u87 U)

TPEBS S(Tp)
1 € a * € €
= Y gy 2 Lo F () ()
70eB;° peENET
1 * € € - € n €
= Y gy B 00) 3 (alw) — )" 3 i ()
T0eB;° n=0 lp|=n
1 a I * 1> 1> [
- Z WXT(U ) F(7) (uf, Dy )la(us(.))(70)~
70eB; Y
This completes the proof of Theorem [3 >

We finish this section by showing that the a priori diverging term lZ(uE(‘)) in the counterterm
takes a particularly nice form under the condition that the noise is Gaussian and regularized
only in the spatial variable by symmetric mollifiers. To avoid the situation where temporally
regularization is necessary, we consider only spatial noise or spacetime noise that is white in

time with f = 1. Recall that |7|;, denotes the number of (;-type nodes that appear in 7.

26 — Proposition. Assume that £ is a stationary centered Gaussian noise and define

&t x) = (£(8) * pe) ()
with an even mollifier pe, for the spatial convolution operator *. Then h5(7°) = 0 if |7|¢, is
odd, otherwise
B (+9) ATENTHLpg(70)) if £(x) depends on only space,
T =
A ATl /228N 1 pe (£0) - if €(t, x) is white in time.

Proof — The former part holds because £° is centered Gaussian. Let |7°|¢, = 2a be an even
number and let b be the number of (s, (3-type nodes. If the root of 79 is not a (;-type node,
then the expectation of (I'IiTO) (0) is given by an integral of the form

)

/05(2’1 o 22) . --C’E(zQa*I o ZQa)(Zl)nl L. (ZQa)nzaA)\(Zl, » '7Z2a) le . ~d2’2a

where
CE(Z) = E[SE(Z)SE(O)]

and
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with a product A of polynomials (w?)™ and kernels 9¢ Z*. Because of the form of equation
and the restriction oy € (0,1), the n-decorations m; and e-decorations e;; are 0 or (0,1). So,
they are independent of the change of variables z — z) := (At, z). Hence

A (217 . ,22‘1) = \"bHigl (z}\, cee zi“)
by a scaling argument. If £(z) is t-independent then we have
(M5) (0) = A=2-+1 (M57) 0),

since C¢(z) does not depend on time. If £(¢,x) is white in time, since C:(z) = (¢)CL(x) for
some function C’, which reduces the number of time components t!,...,t2* of 2! ... 2%% by a
half and yields

(M57)(0) = ATambtl (M$7)(0).

We can perform similar computations when N, contains the root. >

In the setting of Lemma [26] the counterterm is of the form

> 5(17) ( > _s(r,0) ZEEZ} ) X7 (u)S(77) (u, 0pu), (4.20)

reBg°

where S”.7 = 3" _g-os(7,0)0 and the exponent 6(c) is given in the statement of Proposition
This situation applies in the example of equation (|1.2) with a linear additive forcing,
and more generally in situations where f = 1, so that all the terms in the regularized and
renormalized equation

lous)(7)

(00 = a(u)02)u = & + g(u) (Do) + 3 e

SO X)) 0

TEBJO

make sense.

4.5 — Examples. We consider in this section some examples satisfying Assumption Recall
from [23] that we can associate to each character éz(v)(rp) a directed graph called Feynman

diagram whose edges are related with kernels K*) and estimate it by using the singularity of
each kernel around the origin. To estimate the difference between £5 (e, 77) and lfb(v(.))(ﬂ")7

we show that the difference between K%*) and Z*(*(*)) whose coefficient is frozen at the root is
sufficiently regular. First recall from Theorem@that the integration operator K ) ((t, ), (s,y))
can be replaced with to the operator

t
(@=L te) ()= [ QY ()ds
up to the cost of the good operator R sending C; 2" (a(v)) into C2*. Furthermore by Proposition

a

below we can replace Qtf:) (z,y) with Z°*) (2 — ) up to the cost of a less singular kernel.

The next two propositions play an important role in Section [£.5.1] and Section [£.5.2] We
defer their proof to Appendix [A.6] For simplicity we write

b=a(v)

in what follows. We use the notations from Appendix [A.I] where we consider some properties
of Gaussian-like kernels. This type of kernels appear in the construction of the fundamental
solution @° of the operator d; — L® + ¢ or more general operators, as described in Section
Recall from Appendix the definition of the class G?(z) with d =1, s = 1 and N = 2. Note
also that Z* is analytic with respect to A and

onosz) =trorthz) e GTF
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by ([#19). In what follows, an element in G” is denoted by the symbol (G?), s(,y), if its explicit
form is not important. The functions represented by such symbols can be different from line to
line.

27 — Proposition. If a, hence b, is an element of C& with o € (0,1] then for any k € {0,1,2} and
p € N one has

(05Q") * (R2Q")h (2. y) = (RTZY )amoey (@ = y) + (G )l ). (4.21)

We need a more detailed expansion in Section [£.5.3] By choosing a ¢-independent function
v € C%(T) - one choice is v(z) = €59 for sufficiently small § > 0 as given after Deﬁnition we
have the following estimate. Note that the fundamental solution @Q? is t-homogeneous in this
case.

28 — Proposition. Suppose that v € C%(T) is independent to t. Then for any k € {0,1,2} andp € N
one has

(D5QY) + (82Q%);7 (w,y) = (B0 Z)) (& — y)acey + U/ ()Y P (2 — y) + (Gz_k)t,o(ffa( y) |
4.22

where Ytk’p’k() is a function indeved by a constant A\ > 0 belonging to G'~* locally uniformly
over . When k is even, respectively odd, the function Ytk’p’A(-) is odd, respectively even.

Equipped with the previous estimates we can now look at three examples where Assumption
[4 is satisfied. For simplicity we consider only trees with vanishing p-decoration.

4.5.1 — Two dimensional parabolic Anderson model. In the slightly singular setting of the
quasilinear parabolic Anderson model equation

Ou — a(u)Au = f(u)é

on a two dimensional torus, with space white noise £. In this case one can choose 2/3 < ag < 1.
The only elements 7 € BS? with an even number of (; noises are the trees

T =GZI(¢) = I ; Ty = G3Z(C1)Zi0,2)(C1) = v .
Here the thick line denotes the operator Z and the double line denotes Zg 2y. The noise symbol
(7 is denoted by a white circle, while (3 is denoted by a circled dot. The corresponding characters

are
(), 71) = / 4O (4, 4) Co(x — y) dsdy,
(—o0,t) xR
£y (), 70) = / QY (w,y) 2Q0 (2, ) O (y — o) dsds' dydy!
{(—00,t)xR}?
where

C*(w) := E[§(2)€-(0)].
By (4.21)) of Propositionwe can replace Qi(:)(a:, y) above by Zf_(vs(t’gﬁ)) (x—1) up to integrable
kernels. Indeed one has for the difference

/(—oo,t)xR(Ga)t’S(w’y) C%(z —y) dsdy ~ / (GY)y.s(w,2)ds < /

— 00 — 00

t t e'y(t—s)

(t — s)o/2
where a ~ b means that a is equal to b up to an e-uniform remainder term, and we can choose

a negative v for sufficiently large ¢ > 0. A similar estimate holds for £ (v)((t, x),72). One thus
has

ds < o0,

I5(r) = / 23 (& — ) C*(x — y) dsdy,
(—o0,t)xR

1
~ —— 1 €
27r/\/R og ly| C*(y) dy
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I5(m2) = / Z) (2 —y)02Z) (x —y) C(y — ) dsds'dydy’
{(—o0,t)xR}?2

1 /
-5/ 2 (& — ) dole — o) C(y — o) dsdydy
(—o0,t)XxRXR

1
~ 1 € .
%Ag/R og ly| C*(y) dy

The action of the characters acting on trees with nonzero p-decorations can be estimated
similarly using Proposition [27, showing that Assumption [Zholds in that case. Then formula

(1.6) takes the form
(e (' 4+ (ra)a £2) () = CE(

with a constant ¢¢ = —% Jrlog |y| C¢(y)dy. This matches the previous works on the subject
by Bailleul, Debussche & Hofmanov4 [3], Furlan & Gubinelli [18] and Otto & Weber [30].

a a?

It a/f2>(ug)

4.5.2 — Quasilinear generalized (KPZ) equation with regularized noise. We work in this
paragraph in the one dimensional space torus. Let £ be the mildly singular case of a spacetime
Gaussian noise of parabolic regularity ag — 2 with 1/2 < ap < 2/3 and consider the quasilinear
equation

D — a(w)dPu = f(u)é + g(w)(2u).

Then the only elements 7 € B? with an even number of noise symbols (; are the trees

n=0ZL(G) = i, 7= G Toy() = VY, m=GTon)? ="\, (423

where the thin line denotes the operator Z(¢ 1) and the black dot denotes the symbol (5. Since

all of them have homogeneity 2ag — 2 > —1, we can replace the kernel Q¥") by Z") up to
integrable kernel G* by Proposition Thus they satisfy Assumption[Zand the counterterm
takes the form

(B () SF + 8y () 0 + 15 (7)) (),

As mentioned in Gerencsér & Hairer’s work [20] the renormalization constants are cancelled as
follows. We assume that the function

C%(2) = E[¢°(2)€°(0)]

is an even function. By explicit calculation,
5(n) = 7/ Ce(2)Z*(2) dz,
R2
I5(m2) = — C%(2 — 2')0,ZM2)0, 2 (2) dzd2 = — | C%(2) 0,2* % 0, Z7(2) dz,
(R2)2 R2

I5(m3) = — - C(z — 2")ZM2) 022 (7)) dzd2 = — . C%(2) Z> % 8227 (2) dz,

where f(z) := f(—z) for any function f. As we see from the identity
B2+ 0.7(2) = =7 27 (=2) = g5 7\ ([, ) + O),

that we have
MK (12) = =NI5(73) = IX(1) + O(1),
our formula matches with Gerencsér & Hairer’s formula [20]
g9f* _df

4.5.3 — Quasilinear generalized (KPZ) equation with space-time white noise. Let & be a
spacetime Gaussian noise of parabolic regularity ag — 2 with 2/5 < ag < 1/2 and consider the
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stochastic heat equation

Oru — a(u)0?u = €.
Then the only elements 7 € B;? with an even number of noise symbols ¢; are the trees 7y, 79, T3
from together with the trees

' % %@/ (4.24)

Since the last two trees have homogeneity (4dag — 2), we can replace the kernel Q) by Zo(v) in
the same way as before. However, Assumption [2is not ensured at this stage since on the edge
e whose lower node (associated with the spacetime variable (s,%)) is not the root (associated

with (t,z)), the kernel Q%")(y,-) is replaced by Z*“E¥)(y — ) not z2 w))( ). To
200 ()

. -). The remainder is of size |t — s|'/% + |m — y|, which also smears the singularity
of the Feynman diagram by «. Thus Assumption @ holds for the trees in (4.24).

It turns out that the first tree of (4.24) is not involved in equation (|1.6) because & is a
centered Gaussian. Indeed, by decomposing

L) (5 %) = —hi ) (- %) +3h5 ) () V) Py (- V)a

we see that the right hand side is zero because of Wick theorem for Gaussian random variables.

show Assumption |2, by using the analyticity of Z*, we have to replace Z;.

It remains to consider the tree 75. Since it has a homogeneity 2ap—2 < —1, it is not sufficient
to replace Q") by Z(") with the kernel of singularity o < 1. One sees however from ([4.22) of
Proposition [28 that if we use a t-independent function v € C?(T) then we have

liw((t2). YY) = /< o {2 @ = ) @220 = ) + ()

+ Y (G, (2, ) (G o (z,y )} C(s — ',y —y) dsds'dydy’,
B1+pB2>0
(4.25)
where (*) is of the form
a’(v( {Yto ,0, a(v(z))( )(@%Zt—s’)a(v(w)) ({L‘ . ) + Za(v(z))( y)YtQ (; a(v(z))( y/)}

The last term in does not matter because one has the s-uniform estimate
/ (G(ﬂl))t,s(x7 Y)(GP)), w(a,y') C* (s — s,y — y') dsds' dydy/
(R?)?

t y(t—s)
< (B14+B2—-1) < e
< L@ ey 5 [ i<

Although the (%) term in is not estimated as above, if we assume that the mollifier p. is
an even function, then C¢ is also an even function of its space argument. So, the (y, y’)-integral
fR2 *)C=(s— s y y "Ydydy' vanishes because of the parity of the functions Y. In the end only
the first term of (| survives and Assumption @ is satisfied with

5(Y) = /( o A=) 220w =) (5 = oy = dsd

Eventually the counterterm takes the form

{@(-)(V)a +la(>({\i@o) ' "“E()(%)(a')s}(ush

which matches Gerencsér’s formula in Theorem 1.1 of [I9]. We see on this formula the rule

(4.16)-(4.17) in action.




31

In the case of the quasilinear generalized (KPZ) equation (1.1
Oyu — a(u)dju = f(w)é + g(u)(9yu)®
driven by a one dimensional spacetime white noise & on the torus, the list of trees 7 € BZ°
with an even number of noise symbols (; contains, in addition to the previous trees, the trees
71,73 from (4.23) and a number of other trees of homogeneity 4oy — 2. That Assumption @

holds true for all the trees of homogeneity 4y — 2 can be seen as for the trees of (4.24). The
counterterms corresponding to 73 and 73 can be seen to satisfy Assumption |2 by a similar

computation as in (4.25)).
We note that the present analysis of equation (|1.1) holds for a large class of Gaussian

spacetime noises of parabolic regularity ag— 2, up to ap > 1/3, because there are no other trees
of homogeneity strictly smaller than —1 except those considered above.

A — Appendix

In this appendix we prove some technical properties of the fundamental solutions of anisotropic
parabolic operators following the arguments in [16, [I5]. We believe that the results given here
are known but we could not find any suitable references. For the sake of generality for them
we work on the space R? and an anisotropic scaling s = (5]-)?:1 e N%. Set

d
| == >"5—1 55
|kla == 320 sk, for k= (k;)%; € N%,
lexlls s= 3252 s/, for = () € RY,
ok == TI0_, 0, for k = (k;)?_, € N”.
Through this appendix, we consider the anisotropic parabolic operator
O — P(t,z,0,) =0, — > ax(t,x)0k (A1)

[k|ls <N

with coefficients ag(t,z) defined in a domain D = (a,b) x R?, where —00 < a < b < co. In
addition, N is an integer satisfying N > max; s;.

29 - Definition. We call a function Q¢ s(z,y) defined on a < s <t < b and z,y € R? a funda-
mental solution of the operator (A.1)) if for any f € Cb(Rd) the function

F(t,z;s) := /Rd Qr,s(z,y) f(y)dy

satisfies the properties

(8t - P(t,x,@m))F(t,m; s) =0, t>s, zeRY, (A.2)
ltiinF(t,ac; s) = f(x), z € R (A.3)

for any fized s € (a,b).

We prove the existence of the fundamental solution and Gaussian estimates for it (Theorem
134) in Appendix and prove uniqueness (Theorem in Appendix Appendix is
devoted to giving preliminary results. In Appendix we consider temporally homogeneous
operators. The estimates of anisotropic Taylor remainders (Corollary given in Appendix
has an important role in the proof of Theorem In Appendix [A.6] we give the proof of
Propositions [27 and [28, which are used in Section

A.1 — Gaussian kernels. In this section, we prove some technical properties of exponential
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functions. For ¢ > 0 and 8 € R, we define the function

|z |N/55 s55/(N—s;)
Ggaﬂ)( ) — ¢(B=IsD/N exp{ _ CZ (t) } t>0, x e R

j=1

80 — Lemma. Let 3,81,82 € R and ¢,cq,co > 0.
(i) For any o >0 and ¢’ € (0,¢), one has
(N + ) 617 (@) < G (a),
(ii) For any ||h|ls < t'/N and ¢’ € (0,¢), one has
Gz +h) < CGL" P (x).
(i) If c1 < co and 0 < s < t, one has

/Rd G (@ —y) G (y) dy < Ot — )NV G (a).

(iv) If c1 < co and By, 82 > —N, one has

N
(CLEN ) (L2 Gle BBt ()
(/31+/32+N) :

/ Gl (3 — ) Gle2P2) (y) dyds < C
R4

(v) If ¢1 < co, 1 > —N + |s], and B2 > —N, one has

F(ﬁl*lj@\+N)F(B2]-\&[-N)
P(ﬂ1+32];\5|+N)

chl ,B1+B2+N) ($) )

/ G (2 — ) G292 (y) dyds < C
Rd

—The constants C are independent to t,x, 3, b1, B2.

Proof — The proofs of the statements and are elementary and left to the readers. For
note that the elementary inequality

G (@ = )G (y) < N (1 — ) TN T IIN GO ) (A4)
holds. This inequality reduces to

N/(N=s; N/(N—s;)) N=55)/N
g < e ] (=il a 5)+ ;] \ V)
T (t —s)si/N 553 /N ’

which follows from the Holder’s inequality. By integration we have

/ G2 (@ — )G (y)dy

= (t — ) AN/ Pt/ / {0 (@ — )G (2 — )Gl (y)Gler e 0 () dy

t—s
<IN 1 s YN w) [ 6 @ )G O )y,
Rd S S
Since GEC’O) (z) <t~ 1sI/N and
Coo= | G“Vayde= [ G\“O)dx
Rd R?
is t-independent we have

/ G (@ = y) Gl (y)dy
R

< minf(t — 5)1el/N, 57IeI/N) /R G\ (y)dy < Coye, (8/2) 711V,
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By integrating we immediately have For we use (A.4) again and have

t
[t @ = )6 ) dsdy
0 JR?

t
- / (t — s)/NgPatleD/N / G0 (@ — )Gl ()Gl =10 (y)dyds
0 R4

t
§t|5|/N/ (t_8)<ﬂ1—|s|>/Nsﬁz/NGg%0>(g;)/ Gle2=e1.0) (y)dyds
0 R?

F(Bl*l]ff\JrN)l—x(Bz]-\&[-N)
F(ﬂ1+32];\5|+N)

< 002—01 t(51+ﬁ2+N)/N

GECI’O) (x).
>
31 — Definition. For 3 € R, denote by GP the class of functions A = A, s(x,y) defined on a < s <
t<bandzxvye R? such that
Ars(a,y)] < O 62 (@ —y)

for some positive constants C,cy,c1. Moreover, for any o = ()%, € Hle[o,si], denote by
Gi,o the class of functions A € GP satisfying

| Ao+ hes,y) — A o(@,y)| < Ceol=2) [pfoe/s GI 7 (3 —y)
for any i € {1,...,d} and |h|*5 < (t —s)YN (or equivalently,

‘Aus(ﬂ? + hei,y) — Aps(z, y)’

< Cecolt=s) | p|oi/s: {ch_lf—ai)(z + he; —y) + Gﬁc_lf“’”(x -y}

for any h € R). We also define Gg,a as the set of functions A € GP such that ﬁtﬁs(x,y) =
A s(y, ) is in the class GZ’O. Finally, define Gi’a, = Gi’o N Gg’a,.

(A.5)

For any functions A, s(z,y) and By s(z,y), we define the spacetime convolution

(AxB)s(z,y) = / Az, 2)By s(2,y) dudz
(s,t)xR?

if it exists.

32 — Lemma. Let 3,8 €R, a,a’ € H?Zl[O,si], AeGP , and Be Gg:a,.

a,0’
(i) Suppose that 3,5 > —N, max;a; < B+ N, and max; o < '+ N. Then Ax B €
Gﬂ+ﬁ/+N
o, .

(ii) Suppose that > —N, 8’ > —N, max; o, < '+ N, and B € Gﬁ;“_ 50 for some § > 0.
If

[ Aty | 5 =)o - 2005, (A6)

then Ax B € Gg;’?lﬂv. If in addition to (A.6)), we assume max;o; < 8+ N + 0,
Oz, At s(w,y) € GP=% | and

‘ J ] < eealt=s) (¢ _ g)(Bsitd)/N (A7)
Rd

foranyie{l,...,d}, then Ax B € GO N,

a,o’

(iii) A similar statements to hold with the roles of first and second variables reversed.
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Proof — Ttem [(7)| follows from Lemma |30} To show item we decompose

t

(A B)ys(ay) = / du [ Avu(@, 2)Buns(zy) da
(t+s)/2  JRd

(t+s)/2
+ / du/ At,u(x; Z)Bu7s(za y) dZ =: It,s(xa y) + Jt,s(xa y)
s R4

We can prove that J; (z,y) € Giff,/'s'N in the same way as where we do not need to assume

max; a; < 4+ N because (t —u)#~*)/N is integrable on u € [s, HTS] for any «;. For I s(z,y),
we set

t
It,s(x’y) :/ Ct,u,s(x’y)dua Ct,u,s(xay) = /Rd At,u(xaz)Bu,s(zay)d'z'

If (A.6)) holds then we can decompose C; s into
|Ct,u7s($7 y)‘

< ‘/ Aoz, 2)dz
Rd

< e”(”){@ — ) PING T ()

Bustean)l | [ Ao 2)(Buslen) - Bl

(A.8)
s 6P 2l el (G600 — ) + 62 0 ) ds
S e (1 =) IV G (g )
(1= W) ) FINGED ()}

for any ¢, € (0,¢;) for i € {0,1}, where we use that (A.5] also holds for multidimensional shifts

in the second inequality, and that GE,C’B) (z) < ch’ﬁ) (x) if t/2 < t' <t in the third inequality.

Since 5+ 0 > —N, the integral in w is finite and we have

Lt (w,y)| S e (¢ = ) PHENNGET T (@ —y) 4 (1= ) FHHINGED (g -y}

5 6c(’)(tfs) ch_/l‘;,@‘i‘ﬁ/-i-N) (x _ y)

For the proof of the Holder estimate of A * B with respect to the first variable, it is sufficient

to consider the z1-shift by A € R such that \h|1/51 < (t- s)l/N. We write z;, = x + he; and

decompose

Cru,s(@n,y) — Crous(@,y) = h/ol /Rd Oy At,u(Ton, 2) Bu,s (2, y)dzdb
and have as above
(Ctons (2, 5) = Crans (,9)| S eI l{ (8 = ) O+ G =D (g
(b= ) PN ) NG (0 ) |
by Lemma By interpolation between it and , we have
Ctos (20, 3) = Crans (,9)| S €S0/ { (1 — ) =+ DN GET =D ()
F(t — u) Bt /Ny _ )8 =0)/NG(a0) g y)}
for any ay € [0,81]. If B —ay + 6 > —N, the integral in u is finite and we have

[Les(@nsy) = Trs(a,y)| S 00 pfos/ s G2t A= gy,
which completes the proof. >
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A.2 — Existence of the fundamental solution. First we consider the parabolic operator
(A.1) when the coefficients ay, are constants. Then we write
O —P(0:) =0, — Y a0} (A.9)

k| <N

33 — Lemma. Assume the existence of a constant 6 > 0 such that the inequality
Re P(if) =Re »  ax(i&)* < —o[l¢|1Y (A.10)
|kls <N

holds for any & € R%. Then foranye >0, k € Nd, and n € N, there exist positive constants
C and ¢ which depend only on 5, N, A := maxy, |ag|, 0, €, k,n such that the fundamental solution

Zi(x) of the operator (A.9)) satisfies
0Pk Zy(x)] < Cest Gl MmN (4 (A.11)

for any t >0 and x € RY. When (k,n) = (0,0), the constant C depends only on §.

Proof — By definition Z;(z) is obtained as the Fourier inverse transform of the function e**’(%€)
of £ € R Following the arguments in [I6] Chapter 9, Section 2], we consider the bound of
etPUE=n) for € € R By the binomial theorem, we can expand

P(i€ —n) = P(i€) + R(&,n),
where R(&,7) is a linear combination of monomials £¥7® with |k +¢|; < N and £ # 0, and with
coefficients depending only on {ax}. For any € > 0, by Young’s inequality we have

[R(E,m)| < A > €N Il

m>0,n>0, m+n<N
5 5 ¢
<ot Sl + <l < e+ Sl + e Ingl M,
j=1

where ¢’ and c¢ are positive constants depending only on A,e,4. By the condition (A.10), we
have

d
|etP(i€—77)| < et RePUE) HREM] < oxp {t(g _ g||§||év + CZ |nj|N/ﬁj) }
j=1

By using the Cauchy’s theorem for each component, we have

! iz i 1 iz (E4i e
et : N/ ot N
< _— — . . Sj 7t
_(%)dexp( x n+ctj;|n]| )/Rdexp< 2||§5>d€
for any n € R?. If we choose 7; as
|2, 1/(p;—1)
nj = (sgnx;) <ijt> : (A.12)
j

where p; = N/s;, then

N\ 1/ (pj—1)
_ p; —1(|x;P
—x;m; + ctn;|P = —7]1)' (|c;)|-t > ,
J J

which becomes the argument of the exponential function in (A.11)). The integral in & becomes
Ct~I5I/N with some constant C' depending only on 6.
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For the derivatives 9¥Z;(z) we can derive the required estimate by a similar way from the
identity

1 i€ [ ; i 1 iz (E+in) (; it—
08 Z,(x) = W/R ¢ (i€ )k etP ) g — o /Rde (&) (¢ _ )t PUE=) ge.

We decompose (i€ — n)* into the linear combination of monomials 7™ with £ +m = k. The
integral of |€¢| exp(—2L[|¢||N) over & becomes the factor Ct~(sI+14:)/N For the choice of 7 as

in (A.12)) we have

N ‘m | m;/(p;—1)
m m J
= I ()

Since any powers of |z;|/t'/Pi are absorbed in the exponential part of (A.11]) and the factor
t=Imls/N remains, we have the required estimate for 9*Z; (x). We have similar estimates for the
time derivatives because 0}'Z;(z) = (P(0))" Z(x). >

Based on the above theorem we consider the operator (A.1)) with variable coefficients a (¢, z).

34 — Theorem. Assume the following conditions for ay(t,x).
(a) There exists a constant § > 0 such that the inequality

Re P(t,z,i€) =Re ) ax(t,z)(i&)" < =6)¢|1¥ (A.13)

Ikle<N
holds for any (t,x) € D and ¢ € R%.
(b) For some o > 0, one has

A:= max sup |ap(t,x)| < oo,
|kl <N(ta:)€D| (&)l

H := max sup |k (t, 7) — ax(s, )| < 00.
Ikl <N (t,),(s.pep (8 =[N + II:r —ylls)°
Then the fundamental solution Qi(x,y) of the operator (A1) exists and 0XQy s(x,y) is in the
class G;!?Clj,w’a,) for any k € N% with |k|; < N, any o € Hle[o,si] such that a; < N —|kls +a,
and any o € (0,«), where the positive constants C,co,c1 used in Deﬁnitz’on depends only
ons,N,d,A H, k.

We prove this theorem following [I6, Chapter 9]. Let
Lt,s(xvy) = ZfLys(x - y)v

where Z;Y(z) is the fundamental solution of 8; — P(s, y, 9, for fixed (s, y). We aim to construct
the fundamental solution Q, s(z,y) in the form

Q=L+Lxd (A.14)
with some function ® = ®, (z,y). We set
Kis(z,y) == (P(t,2,05) = 0) Les(z,y) = (P(t,2,0:) — P(s,y,0:)) 2] (x — y).
Then Q¢ s(x,y) satisfies (at — P(t,x, &,;))Q,g,s(z,y) =0 if and only if
=K+ K=x*xo.
This implies that the formal solution ® is given by the form

Oru(ry) =Y KD (xy), K™= K= KM D sk, (A.15)
m=1
It turns out that the series (A.15)) is actually absolutely convergent and we can obtain @y s(z,y)

by the formula (A.14)).
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35 — Lemma. OFLy s(z,y) is in the class G_Ikls o) for any k € N<.

5,(a,...,

Proof — The Gaussian estimate and the Holder estimate for the first variable immediately follow
from Lemma The Holder estimate for the second variable comes from the same argument
as Lemma 3 of [16, Chapter 9]. >

36 — Lemma. Ky s(z,y) is in the class G‘()‘af.]‘\f ) o(@rna)”

Proof - Since Ky s(z,y) = (P(t,z,0,) — P(s,y,0,)) Z;*%,(x — y), we have
Koo (2, 9)] S (1= s]N + [z = ylla)*e 6T (@ — y)
Se6 @ —y)

for some ¢; < ¢ by Lemma [30H{(7} The Holder estimate for both variables are obtained by a
similar way. >

(A.16)

37 — Lemma. @, s(z,y) is in the class G‘(’a_,JY oy Jor any o < a.

sal), (e,

Proof — First we show the estimates
)moz/Nf 1

m _agB™(t—-s o,
K (2, )] < ceste= B 0@ —y) (A.17)

1—\(7rzoz1\7\5|)

for some constants ¢/, C, B > 0 which depend only on s, N, d, A, H,e. Let mg be the smallest
integer mg such that moa > |s|. Up to m < my, (A.17)) is inductively obtained by Lemma

30 Indeed, starting from (A.16)) we have
K (@ y)] S U9 (Glemn tmmhe)y GlevaN)) - (2 —y)
S eIGE @ —y)

for some ¢, < ¢p—1. For m > mg, we use Lemma [30H(v)| to obtain

|Kt(,T) (z,y)] < ea(t_s)ﬁ
P(=e=tl)

Bm—lcr(%) G(c',ma—N)

ma—|s| t—s
I'(~%")

Hence (A.17)) holds with B = CT' (). Summing up (A.17) over m > 1, we have
el y)| S eI (1 =)V G D —y) = OIGE T (@ —y)
for some ¢g. The Holder estimates are obtained by applying Lemma |32(7) to the formula
P=K+K+«P=K+DxK.

(G(C’,(m—l)a—N) % G(cl,a—N)) (a: _ y)
t—s

<) (x —y).

>

Proof of Theorem[3] -~ We have the Gaussian and Holder estimates of 9¥Q by applying Lemma
132 (i) to the formula

By Lemma [35 and [37, we have

OFQ =08L +0FL * ®.

L« ® e G I

a,(a,...,al)

for any |k|s < N and any a € Hle[O,si] such that max; a; < N — |k|s + a and o/ < a.. Note
that

[t =| [ @z - - 0z - n)ay

St / e e e e e
Rd
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for any £ € N%\ {0}.

We can check that Qy s(x,y) is indeed a fundamental solution by a similar way to [16]. See [16]
Theorem 11, Section 6, Chapter 1] for the condition , and see [16, Chapter 9, Section 4]
for the condition . Only the Gaussian and Holder estimates of 9*Q are used in the proof
of them. >

Next theorem can be obtained from a similar argument to Theorem 9 of [I6, Section 5,
Chapter 1] and Property 10 of [I5 Section 1.3]. For § > 0, define Cf(D) as the classical
parabolic a-Hoélder space on the domain D = (a, b) x R?, that is, f € clif 0poF f exists and is
bounded for any Nn+|k|s < 3, and 970F f with Nn+|k|s = | 8] is (3— | 3])-Holder continuous
with respect to the parabolic norm || - ||s.

38 — Theorem. Let Q; s(x,y) be the fundamental solution of the operator (A.l) satisfying the as-
sumptions of Theorem . When a > —oo, for any g € CE(D) define

G(t,z) :/ Qt,s(z,y)9(s,y)dsdy.

Then G belongs to CETN (D) for any 8 € (0,) and satisfies
(0p — P(t,2,0,))G(t,z) = 0.

Moreover, a = —oo is allowed if the constant cy in Definition can be chosen as a strictly
negative number.

A.3 — Uniqueness of the fundamental solution. We prove the uniqueness of the funda-

mental solution Q(z,y) of the operator by the same way as Theorem 4.3 of [I5] Section
I1.2]. See also Lemma 6.1.2 of [28]. For any time interval I C (a,b), define Ca™ (I x R?) as the
collection of bounded continuous functions f on I x R? such that 9, fand 0% f for any |k|s < N
are bounded and continuous.

39 — Theorem. Suppose that the coefficients ay(t,x) of the operator (A.1]) satisfies the assumptions

of Theorem. For any fized s € (a b) and f € Cb(Rd) the Cauchy problem (A.2] - has
a unique solutwn F e Ci™([s,b) x RY). Consequently, the fundamental solutwn Qt7s(x y) of
the operator (A.1)) is unique (up to Lebesgue null sets in y).

Proof — It is sufficient to show that the solution F' of (A.2))-(A.3) with f = 0 is equal to zero.
Set

Z Ha F ||Cb(Rd)dr'

k| <N “°
We fix a point y € R? and write the equation in the form
(0 = P(t,y,0:)) F(t,x) = (P(t,2,0,) — P(t,y,0:)) F(t,z) = fU(t, ).

Note that the fundamental solution of the operator (A.1) is unique if the coefficients a(t) are
z-independent continuous functions of ¢. Thus we can write

Pt z) / / QY (x — 2)f¥(r, 2)dzdr,

where Q7 , is a fundamental solution of d; — P(t,y,d,). The derivatives of F(t,z) are given by
¢
NF(t,x) = / dr/ RQY (v —2)f(r,2)dz,  |kls <N,
s R4

t
Ok F(t,x) z/ dr/ RQY (x—2)fY(r,x)dz
s R4
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t
+/ dr/ 8;“ tyT(x — z){fy(r, z) — fY(r, x)}dz, |kls = N
s R4
for any y € R%. We estimate the derivatives of F by setting y = z. Since
ol S llz=zle D 105F) e, mes
kls <N

using the Gaussian estimates of 9*Q we have

t
102 £(®)ly ey S / (b =)~ =S 0LF (1)l ey

5 [l <N
By integration we can conclude that there exists a constant C' > 0 such that
W(t) < C(t —s)*NW(t).

Hence it follows that W (t) = 0 for any s < t < s + tg, where to := (1/C)N/* > 0. Since
F(s') = 0 for some s’ € (tp/2,t9) and the coefficients a(t,z) are uniformly bounded and
Holder continuous, we can repeat the same argument as above with s replaced by s’ and obtain
that W (t) = 0 for any s’ < t < s’ + tg. In the end, we can establish that W (¢) = 0 for any
t>s. >

A.4 — Temporally homogeneous operator. Next we consider the operator
Or—P(z,0,) =0, — Y ax(x)dh (A.18)
[k|s <N

with ¢-independent coefficients ay(x). Let P be satisfy the assumptions of Theorem [3/] and
denote by Qy(z,y) be its fundamental solution defined on ¢ € (0,00) and x,y € R%. For any
fe C’b(Rd), we define the integral operator

@)@ = [ @enrwi.

It should be noted that @, satisfies the semigroup property Q:Qsf = Qi4sf.

For any 5 > 0, denote by Cﬁﬂ the collection of f € Cb(Rd) such that 0% f is bounded and
continuous for any |kl < B3, and 0Ff with |k|s = |3] is (8 — |3])-Hélder continuous with
respect to || - ||s. Let then define for 8 < 0 the space C2(P) as the completion of the set of
fe C’b(Rd) under the norm

= sup t PN oo .
Hf”cf(p) 0<t21 ”Qtf”L (R%)

40 — Theorem. Let ¢y be a positive number given in Definition [31. For any ¢ > ¢y and any
f € Cy(RY), define

(e~ P.0) " fla) = [ Qi

Then the map (c— P(x,0,)) "' is continuously extended to the map from c? (P) into CEJFN(Rd)
for any B € (—N,0) such that 8+ N is not an integer.

Proof - We write P = P(x,0,) and Qf = e~ “*@Q, for simplicity. By the semigroup property
and the Gaussian estimate of @QQ;, we have

105Q5 f Il = 105Q5 2@ o fllzoe St M/ NNQF o fllLee S tP N f]l sy
for any t € (0,2], and
105 Q5 fll e = 105Q5_1Q5 flln= S e fl ey
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for any ¢ > 2. By integration,

2 0o
[0k (e = P~ fll o < / 105Q5 fl o dt + / 105Q¢ Fll o= dt S 1 Flles )

for any |k|s < 8+ N. To show the Hélder estimates of 9% (c — P)~! f with |k|s = |3+ N| < N,
it is sufficient to consider the region ||z’ — z||s < 2. We decompose

(e~ P f(a) — 0(c — P) L f(z) = / N / [08Q5 (o y) — 08 QS (2,1} Q5, f(y)dydt
0 R4

as before, where t = ¢y + 1 and t( := min{¢/2,1}. Setting v =8+ N — |8+ N| and choosing
sufficiently small € > 0, we have

05 (c = )" f(a) = 05 (c = P)" f(2)]

o el 2
<o/ - x||g*€/ H Bl =BV /N gy 4 1! — x||3+e/ Ik~ () +8)/N gy
0 o —all.

+ ||’ — x”;v/ t(=lkle=N/Ng=(e=co)(t=1) gt < ||z — 2|7
2

by the Holder estimates of Q. >

41 — Lemma. Suppose that ag = 0 (the constant term of P). For any T > 0, there exists a constant
C > 0 depending only on T and the constants in the Gaussian estimate of Q such that, for any
feCl with B e [0,1], the following estimates hold for any 0 <t < T.

Cllf Nl o Ry ((n,k) = (0,0))
n ok o rpdy < L= (R%) Al
1@ef ez < Cllle- (A21)

Proof — These are immediate consequences of the Gaussian estimates of @;. For the latter part
of (A.19) and (A.20)), we decompose

PO Quf () = / Ok Qi) (f(y) — f(2) dy + F(x) / Ok Qu(x,y) dy.
R¢ R

and use the a-Holder continuity of f and the fact that [p. Q¢(z,y)dy = 1, which follows from
ap = 0 and the uniqueness of @;. The estimate (A.21]) follows by interpolation between (A.20)

and (A.19), with (n, k) = (0, ¢;). >

A.5 — Anisotropic Taylor formula. Continuing the previous section, we consider the

time-homogeneous operator (A.18]). In what follows, we consider the parabolic scaling s =
(2,1,1,...,1). We denote by

x=(x1,22,...,24) = (1,T)

a generic element of R%. The following anisotropic Taylor formula is an analogue of Proposition
A.1 of [23], but here we restrict the differentiability of the function.

42 — Proposition. For any function f on RY which is k-th differentiable for any |k|s < n, we have

_ k
s - 2 TGk el s sup [05(1,2) — (e, 2|

|k|s<n |k|s=n—1 (z1,Z)

+lly— x|l sup sup |8"f(z1,2) — 0" f(x)],

k|ls=n (z1,2)

where z1 (resp. Z) runs over the interval (x1,y1) (resp. (Z,7)).
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Proof. Denote by A = {k € N®; |k|; <n} and define
A°={kecA;k+ecAforallic{l,....d}}={ke N |kls <n—2}.

Setting z(0) := (z1(0),2'(9)) := z + 8(y — z) for O € [0, 1] and repeating the Taylor expansion
of first order, we have

) — fla) = ) [ 0f@@)do+ S (i —ai) [ 0.7(x(0))d0
/ e; €A° / eiQZAO g /0
= S w-wd @+ Y () / (1 - )0,/ (2(6))db
e; EA° €7j+€j€A° 0
1 1
4 (- o) [ (1 0)0,f((0))d0 + —2) [ oif((6))ds
.0k o)
e;te; °

— )k — g)kte rl
= 2 @T)akf(xH 2 (ym)/o (1= 0)10™*: f(x(6))do
keAT\{0} kfeeiézo

in the end. In other words,

)k )k
)= Y %akﬂxw > O [ - oo

|kl <n—2 ’ |k|s=n—1
k+€1
> / (1 6) Mo+ £(2(6))db,
|k|s=n—2 0

where |k| := k1 + -+ + kg. We treat the last two terms by taking care the restriction of the
differentiability. For |k|s = n — 1, we decompose

O F(2(0)) = 0* f(x) + (0" (21(6), 5(0)) — 0" F (21, 2(0))
d 1

zi(0) —x; e f(xy, 2(00' '

+03 (@ (0) =) | o st a0

and have
Nk
- Y Yo )
\k|5<n
- el / FI(L— )11 {0 £ (20(6), 7(6)) — 0" F (w1, 7(6)) }do
|k\5—n 1
k+ez
+ Y Z / (1= 0)F{ "< f (a1, 2(9)) — 9 f(x) }db
|kls=n—11=2 0
N Z k+e1/( _0)|k\{ak+e1f(1,(9)) ak+elf }d9
|k|s=n—2 0
which provides the required estimate. (|

48 — Corollary.  Let Qi(z,y) be the fundamental solution of the operator (A.18|) satisfying the
assumptions of Theorem[3]} Then for any § € (0, ),

I 4
ey - Y Ty

lk+e]s <N
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S efla’ —afla G TV @ -y 4 G TN @ -y

Proof — We apply Proposition [42|to f = Q¢(-,y) and n = N — |k|s. By Theorem
|07 Qu((25,2),9) = 07 Qul(w1,2), y)| S €'l — aa| TH2G TN @ —y)
for any |m|s = N — 1 and
m m ¢ c1,—N—§
07 Qula’ ) = O Qula,y)| S e fla’ — 2361 TN (@ — )
for any |ml|s = N. >

A.6 — Decomposition of the fundamental solution. In the rest of this appendix we prove
Proposition [27 and Proposition
Proof of Proposition ~ Recall from the proof of Theorem |3/| that we can decompose 9%Q?

in the form

OEQ (,y) = DL+ 0%« ® = 0820V (w — y) + GILF. (A.22)
By using the analyticity of A\ — Z*, we can replace b(s,y) with b(t,x) and obtain
hQ} (w,y) = 527 ( —y) + G, (A.23)

which implies (4.21) for p = 0.
Next we consider the case p = 1. By two decompositions (A.22)) and (A.23) of 92Q® and by
Lemma [33 it is sufficient to consider the integral

/ (OFZ,_ )P (2 — 2)(02 Zy—s)*Y) (2 — y)dudz.
(s,t)XR

By the semigroup property of Z} = e~“'eMA | the above integral is equal to
k2, — ok z
b(s,y) = b(t, x)
= NNZY Ir=b(t) + Gorer'-
The general case p > 2 is an easy extension. >
Proof of Proposition — From , we have the higher order expansion
QP =0FL+ 5L+ K + (Gi77).
By definitions of L and K and the analyticity of A — Z*, we have
Ok Ly(,y) = 052, (z — y)
= 052{ (@ — y) + ¥/ (2)(y — 2)0205 2} (& = Y)lrcoie) + (G117)

t
/ (al;+2Z)b(t,x)(tfu)er(s,y)(ufs) (QJ o y) du =

(A.24)

and
Ki(z,y) = (b(x) = b(y) 97 Le(x, y)
= { VW@ -y + 0z o) {22 (@ — ) + (G 1)}
= V()@ - 92" (@~ y) +(6F,).

By convolution and the analyticity of A — Z* again, we have

(GI;L * K)e(z,9)

— ) [ OZ - o)z - O (- yhdsds + (6
(0,6)xR (A.25)

— /( e A S Gl
0,t) x
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By (A.24) and (A.25)), we have the decomposition (4.22)) with

YEN ) = 20508 Z)Nx) — / (R 2} ) (@ — )y 2 y)dsdy.

(0,t)xR
The general p > 1 case is obtained in a similar way to the proof of Proposition [27 >
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