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Abstract. Some general Lorentz covariant operators, associated to the so-called Θ (or Ξ)-
relativistic diffusions and making sense in any Lorentzian manifold, have been introduced
by Franchi and Le Jan in [FLJ07], [FLJ10]. Only a few examples have been studied so far.
We provide in this work some non-explosion criteria for these diffusions, which can be used
in generic cases.
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1. Introduction

It is well known that the metric completeness of a Riemannian manifold does not prevent
Brownian motion from exploding within a finite time with positive probability. The situa-
tion is now well-understood, in particular thanks to the works of Yau, [Yau78], Grigor’yan
[Gri86], Takeda [Tak89], [Tak91], and very recently Hsu and Qin [HQ10], to cite but a few
names. Different lines of approach have been used. Yau and Grigor’yan treated the analytic
counterpart of the completeness problem and investigated the well-posedness of the para-
bolic Cauchy problem, the former using local information on the geometry under the form
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of curvature bounds, the latter using a global information under the form of an upper bound
for the volume of large balls. Takeda used a purely probabilistic method due to Lyons and
Zheng in [LZ88], based on reversibility. This approach was recently improved by Hsu and
Qin in [HQ10]. Hsu used stochastic analysis in [Hsu02], Theorem 3.5.1, to control the radial
process, by estimating the Laplacian of the distance function to a fixed point in terms of
curvature bounds. All these results are tied down to the metric framework provided by a
complete Riemannian manifold.

A natural analogue of Brownian motion in a Lorentzian setting was first introduced by
Dudley in [Dud66] in the special relativistic case, and extended to the general relativistic
framework by Franchi and Le Jan in [FLJ07]. It belongs to a larger class of relativistic
processes introduced in [Bai10] and [FLJ10], defined in purely geometric terms, and collec-
tively refered to as relativistic diffusions. Their trajectories represent the random motion in
spacetime of a small massive particle, and make sense only in the unit tangent bundle or
in the orthonormal frame bundle. Only a few examples have been studied in detail up to
now: in Minkowski spacetime (the framework of special relativity) [Dud66], [Bai08], [BR08],
in Robertson-Walker spacetimes (models of universe with a big-bang) [Ang09], Gödel space-
time (a causally paradoxical universe) [Fra09], and Schwarzschild spacetime (a model for an
isolated star or a black hole) [FLJ07].

Apart from the works [Bai10] and [FLJ10], no general study of these intrinsic random
processes was done. As a first step towards a better understanding of these processes and
their interplay with the geometry of the ambient spacetime, we provide in this work some
non-explosion criteria for some generic classes of Lorentz manifolds. In addition to being
a natural question, the completeness issue is strongly related to important questions in
general relativity. Indeed, dating back to Penrose and Hawking’s incompleteness theorems,
the appearance of singularities in Einstein’s theory of gravitation has been recognized as
unavoidable under quite natural assumptions. Although there is no agreement on what
should be called a singularity of a spacetime, the existence of incomplete geodesics has been
widely used as an indicator of such a singular feature. In so far as the random dynamics
considered in this work (§2.2) can be seen as intrinsic perturbations of the geodesic flow,
their completeness/incompleteness is a distinguishing feature of a spacetime. We refer the
reader to [Bai11] for a first approach of stochastic incompleteness.

The paths of the random processes we shall consider are (almost-)all C1 paths parametrized
by their (proper time) arc length. What could possibly make them explode? In a complete
Riemannian manifold, any such path would have to be at time s in a closed ball of radius
s with centre its starting point, so it cannot explode. There are two problems with the
Lorentzian setting: a Lorentzian manifold has no metric or finite distance function associated
with its structure, and the set of unit tangent vectors at any point is non-compact. As a
result, even in Minkowski spacetime, one can construct exploding paths with finite (proper
time) arc length.

To start our investigations, we shall take advantage in Section 3 of the bundle structure
of the state space of the process, to exhibit a one-dimensional sub-process whose control
is possible in the class of globally hyperbolic spacetimes. This structure allows indeed to
define some Lyapounov function and leads to a non-explosion criterion by using a simple
and well-known observation due to Khasminsky.

With a metric missing, the completeness notion used in a crucial way in the Riemannian
setting becomes unavailable. Busemann, Hawking and Ellis, Schmidt, Beem and Ehrlich,
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proposed different notions in replacement. Schmidt’s idea is to give a Riemannian structure
to the orthonormal frame bundle. We consider Schmidt b-completeness notion in Section 4,
showing how it leads to a stochastic completeness result for some of the relativistic diffusions.

This result can be significantly improved by adapting Takeda’ strategy [Tak91], as im-
proved by Hsu and Qin [HQ10], to the Lorentzian setting. This is however far from being
straightforward, since we are working in a non-symmetric, non-elliptic setting, where the
main ingredients of Takeda’s method (use of symmetry and reflected Brownian motion on
the boundary of large Riemannian balls) have no obvious Lorentzian counterpart. To over-
come this difficulty, we use in Section 5 a sub-Riemannian structure well-adapted to our
setting, and which will somehow play for us the role of the non-existing Lorentzian distance.

Aknowledgements. We thank E. Trélat for his guidance in the realm of control theory,
and A. Oancea and P. Pansu for their help in proving Lemma 15.

2. Relativistic diffusions

2.1. Basic geometrical setting. Recall Minkowski space is the product R1,d ≡ R× Rd

equipped with the metric

gM(q, q) := t2 − ∣∣x1∣∣2 − · · · − ∣∣xd∣∣2 , for any q = (t, x) ∈ R1,d,

where (t, x1, . . . , xd) denote the coordinates of q in the canonical basis
{
ε0, ε1, . . . , εd

}
of R1,d.

Let (M, g) be a smooth (1 + d)-dimensional Lorentzian manifold (with d ≥ 2), which we
shall always suppose to be oriented and time-oriented. (We refer the reader to the books of
Hawking-Ellis [HE73] and O’Neill [O’N83] for the basics on Lorentzian geometry.) Given any
point m ∈ M, it is usual to consider an orthonormal basis {e0, ..., ed} of the tangent space
TmM as an isometry e from

(
R1,d, gM

)
to
(
TmM, gm

)
; so, strictly speaking, ei = e(εi). The

orthonormal frame bundle of M is just the collection

OM =
{
Φ = (m, e)

∣∣m ∈ M, e an orthonormal basis of (TmM, gm)
}
.

We shall write OU =
{
Φ = (m, e)

∣∣m ∈ U , e an orthonormal basis of TmM
}

for any subset
U of M. For a small enough U and a chart x : U → R1+d on it, we shall write ej = ekj∂xk for
each vector ej of a frame e ; this decomposition provides local coordinates (xi, ekj ) on OU .

Each fibre OmM is modelled on the non-compact orthogonal group O(1, d), which has
four connected components. We shall be interested in dynamics leaving these components
globally fixed. We choose to consider only one of them, specified by the requirement that e0
should be future-oriented and that the orientation of e should be direct. We shall still denote
the resulting frame bundle by OM, as there will be no risk of confusion. The Lorentz-Möbius
group SO0(1, d), i.e. the connected component of the unit in O(1, d), acts properly on OM.
This natural action induces the canonical vertical vector fields (Vij)0�i<j�d. The subgroup
of elements in SO0(1, d) that fix ε0 can be identified with the rotation group SO(d), and
generates the vector fields (Vij)1�i<j�d. To shorten notations we shall write Vj for V0j ; it
generates boosts, that is hyperbolic rotations in each fibre, and reads in the above local
coordinates:

(2.1) Vj = ekj
∂

∂ek0
+ ek0

∂

∂ekj
.
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Throughout this work, TM and OM will be endowed with the Levi-Civita connection,
inherited from the Lorentzian pseudo-metric g. Last, we denote by H0 the vector field
generating the geodesic flow on OM. Denoting by Γ�

kj the Christoffel coefficients, we have
in the above local chart on OM:

(2.2) H0 = ek0 ∂xk − ek0 e
j
i Γ

�
kj

∂

∂e�i
.

We shall denote by T 1M the future-oriented unit tangent bundle over M, with generic
element (m, ṁ). In Minkowski spacetime R1,d, it is the product of R1,d by the hyperboloid
H =

{
q = (t, x) ∈ R1,d ; g(q, q) = 1, t > 0

}
. The bundle T 1M is locally modelled on that

product. (Consult [HE73] or [O’N83] for some background.) Denote by π1 the projection
(m, e) �→ (m, e0 ≡ ṁ) from OM to T 1M, and by π0 the canonical projection OM → M.

2.2. Relativistic random dynamics. Relativistic diffusions model the random motion
in spacetime of a small massive particle parametrized by its proper time, providing random
timelike paths ; so, properly speaking, their mathematical counterpart are random trajecto-
ries (ms, ṁs) in the future unit bundle T 1M subject to the condition d

ds
ms = ṁs . Yet it

happens to be more convenient to define random dynamics in the orthonormal frame bundle
OM as it bears more structure than T 1M ; these diffusions on OM are constructed so as to
have a projection on T 1M which is itself a diffusion. Such a construction is remniscent of
Malliavin-Eells-Elworthy’s construction of Brownian motion on a Riemannian manifold as
the projection of a diffusion on the orthonormal frame bundle.

2.2.1. Dynamics in OM. Given any smooth non-negative function Θ : T 1M → R+, identified
to a SO(d)-invariant function on OM by setting Θ(Φ) := Θ

(
π1(Φ)

)
, consider the following

Stratonovich differential equation on OM :

(2.3) ◦dΦs = H0(Φs) ds+
1
4

∑
1≤j≤d

VjΘ(Φs) Vj(Φs) ds+
√
Θ(Φs)

∑
1≤j≤d

Vj(Φs) ◦dwj
s ,

where w is a d-dimensional Brownian motion and where we understand a vector field as
a first order differential operator. This equation has a unique maximal strong solution,
defined up to its explosion time ζ .

It is clear on this equation that the (e1, ..., ed)-part of Φs is irrelevant in defining the
dynamics of

(
ms, e0(s)

)
since Θ(Φ) depends only on π1(Φ) ; this is the reason why this

diffusion on OM projects down in T 1M onto a diffusion. Consult [FLJ07], Theorem 1, or
[FLJ10], Theorem 3.2.1, or §3.2 of [Bai10], for the details. The diffusion in OM has generator

(2.4) GΘ = H0 +
1
2

∑
1≤j≤d

Vj
(
Θ Vj

)
.

We shall generically call these relativistic dynamics Θ-diffusions (the Ξ-diffusions of
[FLJ10]). These diffusions are covariant, in the sense that any isometry of (M, g) maps
a Θ-diffusion to a Θ-diffusion (with the same Θ : the law is preserved, up to the starting
point), and admit the Liouville measure as an invariant measure. The π0-projections (on the
base manifold M) of their trajectories are almost-surely C1 paths. A Θ-diffusion (Φs)0≤s<ζ

solving Equation (2.3) is parametrized by proper time s ≥ 0 . The particular case Θ = 0
gives back the deterministic geodesic flow, and the case of a non-null constant Θ gives back
the relativistic diffusion as defined first in [FLJ07], which we shall call the basic relativistic
diffusion . It is described in simple terms in Minkowski spacetime. Although the metric
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gM is non-definite positive, its restriction to any tangent space of the half sphere H of unit
tangent vectors is definite negative; this turns H into a Riemannian manifold with constant
negative curvature. Dudley’s diffusion

(
ms, es

)
=
(
ms, (e0(s), . . . , ed(s))

)
, which is the basic

relativistic diffusion in Minkowski spacetime, corresponds to taking ms = m0 +
∫ s

0
e0(r) dr,

and for the velocity e0(r) a Brownian motion on H. The remainder e1(r), . . . , ed(r) of the ba-
sis is obtained by paralell transport of e1(0), . . . , ed(0) along the Brownian path (e0(u))0�u�r.

The following elementary lemma proved in [Bai11], §2.2, gives an intuitive picture of the
Θ-diffusions, for Θ depending only on m ∈ M.

Lemma 1. Let γ : [0, T ] → M be a C2 timelike path parametrized by its proper time, and
Γ0 ∈ OM such that π1(Γ0) =

(
γ(0), γ̇(0)

) ∈ T 1M. Then there exists a unique C2 path(
Ψs

)
0�s�T

in OM, and some unique C1 real-valued controls h1, . . . , hd defined on [0, T ], such
that Ψ0 = Γ0, π1(Ψs) =

(
γ(s), γ̇(s)

)
and

Ψ̇s = H0(Ψs) +
d∑

j=1

Vj(Ψs) h
j(s).

So the Θ-diffusion is obtained in that case by replacing the deterministic controls of a typical
C2 timelike path by Brownian controls with position dependent variance Θ(ms).

On a manifold with non-positive scalar curvature R , taking Θ(Φ) = −�2R (for a non-
null constant �), one gets a dynamics which can be truly random only in non-empty parts
of spacetime ; it was called R-diffusion in [FLJ10]. Denote by T the energy-momentum
tensor of the spacetime. Taking Θ(Φ) = �2T(e0, e0), we get what was named the energy
diffusion in [FLJ10]. See [Bai10] for more general models of diffusions.

2.2.2. Dynamics in T 1M. Denote by ∇v the gradient on T 1
mM, identified with the hyperbolic

space Hd by means of the metric gm , and by L0 the vector field generating the geodesic flow
on T 1M . Note that Tπ1(H0) = L0 and Tπ1(Vj) =: ∇v

j = ekj ∂ṁk (with Einstein summation
convention). The projection on T 1M of the OM-valued diffusion has the following SO(d)-
invariant generator :

LΘ = L0 +
1
2
∇v
(
Θ∇v

)
.

For a constant Θ the operator LΘ has the following expression in the local coordinates
introduced in §2.1.

L0 +
Θ

2
∆v = ṁk ∂

∂mk
+
(

d
2
Θ ṁk − ṁiṁj Γk

ij(m)
) ∂

∂ṁk
+

Θ

2

(
ṁkṁ� − gk�(m)

) ∂2

∂ṁk ∂ṁ�
,

where ∆v denotes the vertical Laplacian. We have for a generic Θ :

(2.5) LΘ = L0 +
Θ

2
∆v + 1

2

(
ṁkṁ� − gk�(m)

) ∂Θ
∂ṁk

∂

∂ṁ�
.

The purpose of this work is to provide some conditions under which the Θ-diffusions have
almost-surely an infinite lifetime ζ . In so far as we are mainly interested in the T 1M-valued
Θ-diffusions as models of physical phenomena, while we shall mainly be working with OM-
valued diffusions, it is reassuring to have the following fact, which essentially means that the
possible explosion of (Φs)0≤s<ζ is never due to its (e1, ..., ed)-part.

Proposition 2. The Θ-diffusion on OM and its T 1M-projection have the same lifetime.
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Proof – Write Φs =
(
ms ;

(
ṁs, e1(s), . . . , ed(s)

)) ∈ OM and φs := π1(Φs) = (ms, ṁs) ∈
T 1M. Using the local coordinates (xk, e�j)0�k,��d;1�j�d , Equation (2.3) defining the Θ-
diffusion reads:

dṁk
s = dMk

s − Γk
i�(ms) ṁ

i
s ṁ

�
s ds+

d
2
Θ(φs) ṁ

k
s ds+

1
2

(
ṁk

sṁ
�
s − gk�(ms)

) ∂Θ
∂ṁ�

(φs) ds ,

dekj (s) =
√

Θ(φs) ṁ
k
s dw

j
s − Γk

i�(ms) e
�
j(s) ṁ

i
s ds+

1
2
Θ(φs) e

k
j (s) ds+

1
2
VjΘ(φs) ṁ

k
s ds ,

with the martingale term dMk
s :=

√
Θ(φs) e

k
j (s) dw

j
s. (See Section 3.2 of [FLJ10] for the

computation of the Itô correction.) Setting e0 = ṁ and ηin := ηni := 1i=n=0 − 11≤i=n�d ,
and noticing that the matrix

(
ηin ekn gk�

)
0�i,��d

is the inverse of the matrix
(
ei�
)
0�i,��d

, it
follows from the above system that we have for all 0 ≤ k ≤ d , 1 ≤ j ≤ d :

dekj (s) = ṁk
s η

n
j e

q
n(s) gq�(ms)dM

�
s − Γk

i�(ms)e
�
j(s)ṁ

i
s ds+

1
2
Θ(φs)e

k
j (s) ds+

1
2
VjΘ (φs)ṁ

k
s ds

= − e�j(s) Γ
k
i�(ms) ṁ

i
s ds+

1
2
ekj (s) Θ(φs) ds+

1
2
VjΘ(φs) ṁ

k
s ds

− eqj(s)ṁ
k
s gq�(ms)

[
dṁ�

s + Γ�
ip(ms)ṁ

i
sṁ

p
s ds− d

2
Θ(φs)ṁ

�
s ds− 1

2

[
ṁp

sṁ
�
s − gp�(ms)

] ∂Θ
∂ṁp

(φs)ds
]

So the matrix
(
ekj (s)

)
0�s<ζ

and the frame-valued diffusion (Φs)0�s<ζ satisfy a linear sto-
chastic differential equation, conditionally on (φs)0�s<ζ . It is thus well defined up to the
explosion time ζ of the T 1M-valued Θ-diffusion. �

This point being clarified, we shall work freely in the sequel with Θ-diffusions on OM.

3. A first non-explosion criterion

We give in this section a simple non-explosion criterion, well-suited to investigate the
behaviour of the Θ-diffusions in the largely used class of globally hyperbolic spacetimes. A
Lyapounov function is introduced for that purpose, and leads to a non-explosion criterion of
a different nature than the typical Riemannian criteria mentionned in the introduction.

The idea is roughly the following: if we can find a function f = f(Φ) which has compact
level sets {f � λ}, and does not increase along the trajectories, then the dynamics cannot
explode. This was noted first by Khasminsky in a stochastic context; we state his observation
here for the relativistic diffusions.

Lemma 3 (Khasminsky). If there exists a non-negative function f on OM and a positive
constant C such that GΘf � C f , and f goes to infinity along any timelike path leaving any
compact in a finite time, then the Θ-diffusion has almost-surely an infinite lifetime.

Proof – The condition GΘf � Cf implies that the real-valued process
(
e−Csf(Φs)

)
s<ζ

is
a non-negative supermartingale. Denote by τn the (possibly infinite) exit time from the
level set {f � n}. By optional stopping, we have

f(Φ0) � E
[
e−C τnf(Φτn)

]
= nE

[
e−C τn

]
.

This implies that τn goes to infinity as n goes to infinity; as ζ = lim
n→∞

τn , this proves
Khasminsky’s statement. �
As Θ-diffusions have no a priori reason not to explode, such a Lyapounov function will

generally not exist. Yet, it is possible to construct such a function in some classes of space-
times of interest for cosmology and theoretical physics. We give below two such examples.
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The construction of the function f uses the same recipe in both cases : if there exists an
intrinsic distinguished future-directed timelike C1 vector field U ∈ T 1M, we can define

(3.1) f(Φ) := gm(Um, ṁ);

recall that π1(Φ) = (m, ṁ) ∈ T 1M. For this choice of f(Φ), which is the hyperbolic angle
between U and ṁ , we have f � 1, and

(3.2) H0f(Φ) = ∇ṁ

(
g(U, ṁ)

)
= g(∇ṁU, ṁ) .

The following lemma shows why f is a good choice to apply Khasminsky’s criterion.

Lemma 4. We have on OM : 1
2

d∑
j=1

Vj(Θ Vjf) =
d
2
Θ f + 1

2
(f ṁk − Uk) ∂Θ

∂ṁk
.

Proof – Choose local coordinates for which U = ∂x0 , so f(Φ) = ṁ0 = e00 . Using (2.1), we
have thus locally :

Vjf =
(
ekj

∂

∂ek0
+ ek0

∂

∂ekj

)
e00 = e0j , V 2

j f = e00 = f ,

and
d∑

j=1

(VjΘ)(Vjf) =
d∑

j=1

e0j e
k
j

∂Θ

∂ṁk
= (ṁ0 ṁk − g0k)

∂Θ

∂ṁk
= (f ṁk − Uk)

∂Θ

∂ṁk
.

�
It follows from (2.4) and (3.2) that

GΘf = g(∇ṁU, ṁ) +
d

2
Θf + 1

2
(f ṁk − Uk)

∂Θ

∂ṁk
·

Khasminsky’s criterion will thus guarantee the non-explosion of the Θ-diffusion provided f
explodes along exploding trajectories and there exists a positive constant C such that

(3.3) g(∇ṁU, ṁ) + 1
2
(f ṁk − Uk)

∂Θ

∂ṁk
�
(
C − d

2
Θ
)
g(U, ṁ).

In order to turn this criterion into an effective tool, we first restrict ourselves to the following
general class of spacetimes. This inequality become s particularly simple when Θ depends
only on the base point m ∈ M.

3.1. Globally hyperbolic spacetimes. This class of cosmological models is character-
ized by the existence of a global time function (that is a function τ : M → R, with timelike
gradient) such that it has connected spacelike level sets {τ = t} of τ , and each integral curve
of the vector field ∇τ meets each leevl set of τ in exactly one point. Thus M is diffeomor-
phic to the product I × S of an interval I and a d-dimensional manifold S. Without loss
of generality, we can suppose the interval I unbonded from above. With the example of
Minkowski spacetime in mind, we see that a given spacetime may have an infinity of time
functions; they are not intrinsically associated with the geometry.

Yet, we can take for vector field U in this setting the gradient of the time function τ :
m = (t, x) ∈ I × S �→ t, so

f(Φ) = g(U, ṁ) = ∇ṁ τ = ṁ0 = ṫ > 0.

There is no hope, though, to prove Inequality (3.3) without specifying further the model, as
the time function is not intrinsically defined. To proceed further, we shall look at the sub-
class of generalized warped product spacetimes , in which the time function is supplied
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by the model and can be seen as an absolute time. These universes are globally hyperbolic
spacetimes M = I × S whose metric tensor has the form

(3.4) gm(ṁ, ṁ) = a2m
∣∣ṁ0
∣∣2 − hm(ṁ

S , ṁS) ,

where ṁ0 is the image of ṁ ∈ T 1
mM by the differential of the first projection I × S → I

and ṁS the image of ṁ by the differential of the second projection I × S → S. Write
m = (t, x) ∈ I × S. The function a is a positive C1 function on M , assumed to be
bounded on any subset I ′ × S where I ′ is bounded from above, and hm is a positive-
definite scalar product on TxS, depending on m in a C1 way. This class of spacetimes
contains all Robertson-Walker spacetimes (hence in particular de Sitter and Einstein-de
Sitter spacetimes, and the universal covering of the anti-de Sitter spacetime).

Theorem 5. Let (M, g) be a generalized warped product spacetime. If the function

T 1M 	 (m, ṁ) �−→ ∇ṁ log a− d
4
Θ(m, ṁ)− 1

4

(
ṁk ∂Θ

∂ṁk
− 1

a2(m) ṁ0

∂Θ

∂ṁ0

)
is bounded below, then the Θ-diffusion almost-surely does not explode.

Proof – • We first check that if the Θ-diffusion has a finite lifetime ζ then f(Φs) ex-
plodes at time ζ−. To that end, consider a timelike trajectory γ = (ms, ṁs)0≤s<T =(
(ts, xs), ṁs

)
0≤s<T

in T 1M, defined on some semi-open interval [0, T ), and such that
d
ds
ms = ṁs and f(γs) = ṫs is bounded above by some positive constant C. It follows

that t0 ≤ ts ≤ t0 + CT , and hms(ẋs, ẋs) � C2a2ms
is bounded above by a constant since

a is bounded above on (inf I, t0 + CT ] × S. This entails that (xs)0≤s<T cannot exit a
bounded region of S, and so that γ must be trapped in a finite union of sets of the form
J+(m0) ∩ J−(qj) , for some qj ∈ M. A such a union of sets is compact in a hyperbolic
spacetime (see for instance [HE73], Section 6.6), γ is trapped in a compact set. Would
γ explode, it would have a cluster point at which the strong causality would fail, leading
to a contradiction as globally hyperbolic spacetimes are strongly causal ([HE73], Section
6.6).
• The condition of the theorem is a rephrasing of the local condition (3.3). To see that, let
us work in a neighbourhood V = [t1, t2]×V of a given point m0 , and choose coordinates
xj on V ; this provides coordinates (t, xi) on V, which induce coordinates on T 1V : for
m ∈ V and ṁ ∈ T 1

mM, write ṁ = ṁ0∂t +
∑

1≤j≤d
ṁj∂xj .

Note first that since U = a−2∂t , we have

∇ṁU = ∇ṁ(a
−2) ∂t + a−2∇ṁ∂t .

Using Christoffel’ symbols Γi
jk we have(∇ṁ∂t
)α

= ∇ṁ(a
−2) δα0 + a−2ṁc Γα

c 0,

for α ∈ {0, ..., d} and a summation over c in {0, ..., d}; so

H0f = g(∇ṁU, ṁ) = ∇ṁ(log a
−2) ṁ0 + a−2ṁc Γα

c 0 gαβ ṁ
β.

The explicit formulas for the Christoffel symbols, in terms of the metric, are

Γ0
0 0 = ∂t(log a), Γ0

k 0 = ∂xk(log a), Γi
0 0 =

1
2
hi �∂x�(a2), Γi

k 0 =
1
2
hi �∂th� k ,
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for i, k ∈ {1, ..., d} and a sommation over 1 ≤ 
 ≤ d . We thus have, after simplifications,

H0f = −2∇ṁ(log a) ṁ
0 + |ṁ0|2 ∂t(log a)− a−2

2
ṁk ∂t(h� k) ṁ

�

= − |ṁ0|2 ∂t log a− 2 ṁ0 ṁk ∂xk log a− a−2

2
ṁk ∂t(h� k) ṁ

�.

Using the unit pseudo-norm relation a2m |ṁ0|2 − h� k(m) ṁk ṁ� = 1, the above equality
becomes :

H0f = −|ṁ0|2 ∂t log a− 2 ṁ0ṁk ∂xk log a− a−2

2
|ṁ0|2 ∂t(a2) ,

that is, H0f = −2 ṁ0∇ṁ log a . The statement of the theorem follows from (3.3). �
This result takes a particularly simple form in the case where Θ depends only on the base

point m , as is the case of the R-diffusion.

Corollary 6. Let M = I × S denote a generalized warped product spacetime and Θ
be a bounded non-negative function on M. Then the Θ-diffusion does not explode if ∇a is
everywhere non-spacelike and future-directed.

Proof – The condition of Theorem 5 reads in that case: “T 1M 	 (m, ṁ) �→ ∇ṁ log a
is bounded below ”. To rephrase this condition into the more synthetic condition of the
statement, let us work in local coordinates, (t, x) and (ṫ, ẋ) for m and ṁ respectively.
We have ṫ = a−1chr and ẋ = (shr)σ , for some r ∈ R and σ ∈ TxS with |σ|h(m) = 1.
Define u := ∂t log a and v := ∂x log a ∈ TxS ≡ Rd. Then the condition of Theorem 5
reads : u a−1chr − (vi σ

i) shr � C, for any r and σ. Letting r → ±∞, gives a−1u ≥
|vi σi| ≥ 0 . As the constant C can be taken negative without loss of generality, the
reciprocal is clear. Now, since max

|σ|h(m)=1
|vi σi| = |v|h−1(m) , the condition reads :

a−1u ≥ |v|h−1(m) . Finally, as ∇ =
(
a−2∂t ,−hij∂xj

)
, the vector ∇ log a =

(
a−2u ,−hijvj

)
has pseudo-norm g

(∇ log a,∇ log a
)
= a−2u2 − |v|2h−1(m) ≥ 0 . �

This criterion applies in particular to Θ-diffusions in Robertson-Walker spacetimes, recover-
ing the results of Angst, [Ang09], who proceeded by direct analysis of the stochastic differ-
ential equations of the dynamics.

3.2. Perfect fluids. Our second class of examples where to apply Lyapounov’s method
to prove non-explosion will be the set of spacetimes with normal matter whose energy-
momentum tensor T is that of a perfect fluid. They are characterized by the datum of
a timelike vector field U , the four velocity of the fluid, and two functions ρ and p on M,
respectively the energy density and pressure of the fluid. See [HE73], [BEE96]. We have
then T = ρU ⊗ U + p

(
g + U ⊗ U

)
, or in local coordinates,

Tij = (ρ+ p)UiUj + p gij .

Such a spacetime is said to be of perfect fluid type . Notice that contrarily to the globally
hyperbolic spacetimes no topological assumption is made on a perfect fluid type spacetime.

Gödel’s universe is such a spacetime. This is the manifold R4 with the metric ds2 =

dt2 − dx2 + 1
2
e2
√
2ω x dy2 − dz2 − 2e

√
2ω x dt dy, where ω > 0 is a constant. It is a solution

to Einstein’s equation with cosmological constant ω2 and represents a pressure free perfect
fluid. It has energy-momentum tensor T = U ⊗ U , where (Uj) = (

√
2ω, 0,

√
2ωe

√
2ω x, 0)
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represents the four-velocity covector of the matter, and ω is the vorticity of this field. This
spacetime has constant scalar curvature 2ω2. See Section 2.4 in [Fra09]. As above, the
function f is defined by Formula (3.1) and can be used as a Lyapounov function under
some conditions. The computations made in Section 3.1 work equally well in that setting
and lead to the following results.

Proposition 7. Let (M, g) be a Lorentzian manifold of perfect fluid type, and f defined
by Formula (3.1). Suppose f goes almost-surely to infinity along any exploding timelike path.
If there exists a constant C such that

H0f + d
2
Θf + 1

2

(
f ṁk − Uk

) ∂Θ
∂ṁk

� C f ,

then the Θ-diffusion has almost-surely an infinite lifetime.

In the particular case of Gödel universe, the gradient ∇U of the velocity vanishes (since
U i = δi0), so that H0f = 0, by Formula (3.2); and f is the square root of the energy.

Corollary 8. Let us work in Gödel universe and suppose that 3Θ +
(
ṁk ∂Θ

∂ṁk − 1
f

∂Θ
∂ṁ0

)
is

bounded above in T 1M. Then the Θ-diffusion has almost-surely an infinite lifetime.
This condition holds in particular if Θ(Φ) = Θ(m) depends only on the base point and is
bounded, as this is the case for the basic relativistic diffusion and the R-diffusion in Gödel
universe.

Note that this criterion does not apply to the energy diffusion in Gödel’s universe. Indeed
one can see in that case (see Section 2.4 of [Fra09]) that the above quantity is equal to
5Θ−4ω2 and that the energy Θ is unbounded along the trajectories of the energy diffusion.

Remark 9. In Einstein-de Sitter spacetime the energy diffusion explodes with positive
probability, as proved in Proposition 5.4.2 of [FLJ10]. (This Robertson-Walker universe is
both a warped product and a perfect fluid type spacetime.) Consult [Bai11] for a first study
of stochastic incompleteness for relativistic diffusions.

4. b-completeness

The study of dynamics in the orthonormal frame bundle is not new in general relativ-
ity and essentially dates back to Cartan’s moving frame method. However, B.G. Schmidt
[Sch71] was the first to notice that the geometry of OM itself may be used to provide a
conceptual framework in which studying the nature of spacetime singularities. For that
purpose, he introduced on the parallelizable manifold OM a Riemannian metric, turning
{H0, ..., Hd , (Vij)0�i<j�d} into a Riemannian orthonormal basis, and called it the bundle
metric, or b-metric. The completeness of this metric structure on OM can essentially be
phrased in terms of M-valued paths. To state that fact, recall that one can associate to any
M-valued C1 path γ : [0, T [→ M and e ∈ Oγ0M a unique horizontal lift γ↑ : [0, T ) → OM

of γ, starting from (γ0, e), and charactarized by the properties
d

ds
γ↑s ∈ span(H0, ..., Hd), and π0

(
γ↑s
)
= γs, for all s ∈ [0, T ) .

The Se-length of γ is defined as the Riemannian length of its horizontal lift γ↑; it depends
on e ∈ Oγ0M. In other words, given e ∈ Oγ0M, seen as orthonormal in the Euclidean sense,
the Se-length of the M-valued C1 path γ is the Euclidean length of its anti-development in(
Tγ0M, e

)
. Although this length depends on e, its finiteness is independent of it; we can
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thus talk of finite S-length of a C1 path without mentioning the frame e. Note that in a
Riemannian setting the Se-lenth of a C1 path is its usual Riemannian length.

Theorem 10 (Schmidt, [Sch71]). OM is complete for the above b-metric if and only if any
C1 path γ : [0, T ) → M with a bounded S-length converges in M at time T−.

The above completeness hypothesis is usually called b-completeness. The Riemannian
version of this statement is trivial as the orthonormal frame bundle with its b-metric is
complete iff the Riemannian manifold is complete. The Lorentzian situation is more involved
as there exists (timelike, spacelike and lightlike) complete Lorentzian manifolds M which have
an incomplete path of bounded acceleration, so OM is not b-complete, see e.g. [Ger68] and
[Bee76]. The non-compactness of SO0(1, d) lies at the core of this phenomenon.

However, the Riemannian view of a Lorentzian manifold provided by Schmidt’s metric
offers a bridge to investigate some features of the latter using the tools of Riemannian
geometry, as the following proposition shows.

Proposition 11. Let Θ be a bounded function on M. Then the Θ-diffusion does not explode
if OM is b-complete.

One should not be confused about that statement. It does not mean that the Riemannian
completeness of OM implies the completeness of its Brownian trajectories, which is false.
One cannot assign an Se-length to a Brownian path in OM as it is not regular enough.

Proof – • Given a horizontal C1-path (ρs)0�s<T in OM, write γ for its projection π0◦ρ in M,
so ρ = γ↑. For 0 ≤ s < T , denote by τγ0→s the parallel transport operator along the curve
(γr)0�r�s, with inverse τγ0←s . Also, denote by (ps)0�s<T the anti-development of γ : this

Tγ0M-valued C1-path is defined for all s ∈ [0, T [ by the formula : ps =

∫ s

0

τγ0←r γ̇r dr .

Last, we shall denote by ṗjr the coordinates of ṗr in the frame ρ0, and by ‖ . ‖ρs the
Euclidean norm in (TγsM, ρs). We have by construction dρs =

∑
0≤j≤d

Hj(ρs) ṗ
j
s ds and

γ̇s = τγ0→s ṗs , as well as the identity ‖γ̇s‖2ρs = ‖ṗs‖2ρ0 =
∑

0≤j≤d

(
ṗjs
)2. The b-completeness

assumption means that γ has a limit γT in M at time T if

(4.1)
∫ T−

0

‖ṗs‖ρ0 ds <∞.

• The basic relativistic diffusion
(
ms, es

)
0�s<ζ

is by construction the development in M

of the relativistic Dudley diffusion in Minkowski spacetime, identified with Tm0M , see
Theorem 3.2 in [F-LJ-1]. As trajectories of the latter over a time a bounded time interval
have almost-surely a finite length in the Eulidean norm associated with any frame of R1,d,
the b-completeness of OM ensures the non-explosion of the basic relativistic diffusion.
• For a generic Θ-diffusion, Formula (2.5) implies the existence for each s ∈ [0, ζ [ of an
orthonormal basis

(
ϕ1(s), ..., ϕd(s)

)
of ṗ⊥s in R1,d such that one has

dṗks =

d∑
j=1

√
Θ(ms)ϕ

k
j (s) dw

j
s +

d
2
Θ(ms) ṗ

k
s ds

for some d-dimensional Brownian motion w. We have used the fact that Θ depends only
on m to simplify the general expression. The path (ps, ṗs)0�s<ζ appears then as a time
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change of Dudley’s diffusion, by means of the map s �→ inf
{
u
∣∣ ∫ u

0
Θ(mr) dr > s

}
. The

result follows for a bounded function Θ. �
This result can be improved in two ways: by relaxing the boundedness hypothesis on Θ

and by relaxing the geometric completeness assumption. The next section explains how this
can be done in a sub-Riemannian framework by using ideas from the theory of reversible
Markov processes.

5. A volume growth non-explosion criterion

We prove in this section a non-explosion criterion involving only the volume growth of
some sub-Riemannian boxes in OM and the function Θ, as described in theorem 13 below.
This result is proved in Section 5.4 following Takeda’s method, as improved recently by Hsu
and Qin in [HQ10]. Yet, there is a real difficulty in doing this, as we are working with a non-
symmetric, hypoelliptic diffusion, and on a principal bundle with non-compact fibres. To
overcome these difficulties, we introduce a sub-Riemannian structure on OM, well-adapted to
our setting, and which will somehow play for us the role of the missing Lorentzian distance.

5.1. Sub-Riemannian framework and main results.

5.1.1. Sub-Riemannian distance function. We have seen in §4 that the completeness of the
natural Riemannian metric of the parallelizable manifold OM implies the stochastic com-
pleteness of all the Θ-diffusions with a bounded Θ. One can significantly improve that
conclusion by working with the sub-Riemannian structure on OM induced by the field of
(d+1)-planes generated by the vector fields H0, V1, . . . , Vd. In that setting, one can assign a
length only to C1 paths ρ : [0, T ] → OM whose tangent vector belong at any time s to the vec-
tor space spanned by H0, V1, . . . , Vd in TρsOM, say ρ̇s = ρ̇0sH0(ρs)+ ρ̇

1
s V1(ρs)+ · · ·+ ρ̇ds Vd(ρs).

Such a path is said to be admissible; its length is then defined as
∫ T

0

(∑d
i=0

(
ρ̇is
)2) 1

2 ds. The
sub-Riemannian distance between two points of OM is defined as the infimum of the length
of the admissible paths joining these two points, with the convention inf ∅ = +∞. Chow’s
theorem [Cho39] ensures that the sub-Riemannian distance function D(·, ·) is finite and con-
tinuous in its two arguments if (see e.g. [Mon02]) the Lie algebra generated by H0, V1, . . . , Vd
has full dimension , which holds here. Fix a reference point Φref ∈ OM.

(H) Completeness hypothesis. The closed boxes Bλ := {D(Φref, ·) � λ} are compact for
any λ > 0.

This completeness hypothesis rules out the pathological examples of Geroch [Ger68] and
Beem [Bee76]; it does not depend on the arbitrary choice of Φref. Unlike its Riemannian ana-
logue, the sub-Riemannian distance function D(Φref, ·) is not smooth in any neighbourhood
of Φref, [Mon02]; however, it is a viscosity solution of the equation

|H0D|2 + |V1D|2 + · · ·+ |VdD|2 = 1

on OM\{Φref} (see e.g. theorem 2 in [Dra07]; we do not use that fact in the sequel). We
shall use that quantitative information in §5.4 under the classical form given in the following
proposition.

Proposition 12. Fix λ > 0. One can associate to any positive constant η a smooth function
F : OM → R+ such that

max
Φ∈Bλ

∣∣F (Φ)−D(Φref,Φ)
∣∣ � η
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and we have on Bλ

|H0F |2 + |V1F |2 + · · ·+ |VdF |2 � 2.

Proof – Let us introduce the Riemannian metric gε on OM for which H0, H1, . . . , Hd and
the (Vij)0�i<j�d are orthogonal, with H0 and the V0j(= Vj) of norm 1 and the other vectors
of norm ε−1. Denote by Dε(·) = Dε(Φref, ·) the distance function associated with gε. It
is a 1-Lipschitz-continuous function (with respect to the distance function Dε) which is
differentiable almost-everywhere, by Rademacher’s theorem, and has a gradient of norm
1 almost-everywhere:

(5.1) |H0Dε|2 + |V1Dε|2 + · · ·+ |VdDε|2 + ε−2
( d∑

i=1

|HiDε|2 +
∑

1�i<j�d

|VijDε|2
)

= 1.

(Indeed, the set of conjugate points to Φ0 in Bλ is closed and has null measure. In the
complementary, relatively open, set the distance is attained along a unique geodesic whose
unit tangent vector at the final point is the gradient of the distance function to Φ0.) The
function Dε is easily seen to converge uniformly to D(Φref, ·) on the compact box Bλ (this
is where we need these boxes to be compact); see e.g. §§ 0.8.A and 1.4.D of Gromov’s
article [Gro96]. As we have almost-everywhere

|H0Dε|2 + |V1Dε|2 + · · ·+ |VdDε|2 � 1,

by (5.1), a standard regularization procedure yields the conclusion. �
5.1.2. Main results. We use the natural volume measure onOM associated with the Lorentzian
structure. It is defined by the formula

Vol(dΦ) = VolM(dm)⊗ Volm(de), Φ = (m, e),

where VolM(dm) is the Lorentzian volume measure and Volm(de) is the image of a given
Haar measure on SO0(1, d) by the identification of the fibre π−10 (m) with SO0(1, d) (see
e.g. [HE73], Section 2.8, for the Lorentzian volume measure). The volume measure Vol on
OM is uniquely defined up to a multiplicative constant. In order to avoid some unpleasant
pathologies, we shall make the following rather mild assumption on the causal structure of
spacetime.

Hypothesis. (M, g) is strongly causal.

It means that any point of M has arbitrarily small neighbourhoods which no non-spacelike
path intersects more than once; see [HE73], p.192, or [BEE96].

Theorem 13. Let (M, g) be a strongly causal Lorentzian manifold satisfying the complete-
ness hypothesis (H). Set Θr := sup

Φ∈Br

Θ(Φ), for any r > 0, and suppose

(5.2)
∫ ∞ r dr

Θr log
(
Θr Vol(Br)

) = ∞ .

Then the Θ-diffusion has almost-surely an infinite lifetime, from any starting point.

Condition (5.2) has the form of the classical non-explosion condition for Brownian motion:∫ ∞ r dr

logVol(Br)
= ∞, first proved by Grigor’yan in [Gri86] and has precisely that form for

Θ bounded. Note that no topological assumption on M is needed, contrary to the results of
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§3.1. One can give a quantitative version of the above theorem by providing an upper rate
function.

Corollary 14. Let M be a strongly causal Lorentzian manifold satisfying the completeness
hypothesis (H). Set h(ρ) ≡ ρ if Θ ≡ 0; otherwise, pick a constant R0 such that ΘR0 > 0 and
set for ρ > 0

h(ρ) := inf

{
R > R0

∣∣∣ ∫ R

R0

r dr

Θr log
[
Θr Vol(Br)

] > ρ

}
.

Then, given any Φ0 ∈ OM, there exist R0 > 0 and a positive constant C such that we have
PΦ0-almost-surely

D(Φ0,Φs) � C h(Cs).

We prove Theorem 13 following Takeda’s method, explained in the next section. To adapt
it to our setting, we shall introduce in §5.3 a modified Θ-diffusion on some compact space;
it is used crucially in the proof of Theorem 13 given in §5.4.

5.2. Takeda’s method.

5.2.1. The main ingredients. Using an idea of Lyons and Zheng, [LZ88] , Takeda devised in
[Tak89], [Tak91], a remarkably simple and sharp non-explosion criterion for Brownian motion
on a Riemannian manifold V. Loosely speaking, his reasonning works as follows. Suppose
we have a diffusion (xs)s�0 on V which is symmetric (with respect to the Riemannian volume
measure Vol, say) and conservative; denote by L its generator, and let f be a sufficiently
smooth function. Denote by PVol the measure

∫
Px Vol(dx) on the path space, where Px is

the law of the diffusion started from x. Fix a time T > 0. As the reversed process (xT−s)0�s�T

is an L-diffusion under PVol , applying Itô’s formula to both f(xs) and f(xT−s) provides
two martingales M and M̃

(
with respect to the two different filtrations σ(xs ; 0 � s � T )

and σ(xT−s ; 0 � s � T ) respectively
)

such that :

f(xs) = f(x0) +Ms +

∫ s

0

Lf(xr) dr ,

f(xs) = f(xT−(T−s)) = f(xT ) + M̃T−s +
∫ T−s

0

Lf(xT−r) dr.

It follows that f(xs) =
f(x0)+f(xT )

2
+ Ms+M̃T−s

2
+
∫ T

0
Lf(xs) dr, and consequently,

f(xT )− f(x0) =
1
2

(
MT − M̃T

)
.

If d〈M〉s
ds

and d〈M̃ 〉s
ds

are bounded above, by 1 say, the previous identity provides a control of(
f(xT )− f(x0)

)
by the supremum of the absolute value of a Brownian motion over the time

interval [0, T ].
Back to the non-explosion problem for Brownian motion on V, fix a point m ∈ V and a

radius R > 1, and consider the Brownian motion (xs)s�0 reflected on the boundary of the
Riemannian ball B(m;R), started under its invariant measure 1B(m;R)Vol. It is a symmetric
conservative diffusion ; denote by PB(m;R) its law. Using the Dirichlet forms approach to sym-
metric diffusions one can apply the above reasonning to the (non-smooth, but 1-Lipschitz)
Riemannian distance function d(m, .), which gives the estimate

PB(m;R)

(
x0 ∈ B(m; 1), sup

s�T
d(m, xs) = R

)
� Vol

(
B(m;R)

)× 2P
(
sup
s�T

|Bs| > R
)
.
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But as the Brownian motion on V behaves in the ball B(m;R) as the Brownian motion
reflected on the boundary of B(m;R), the above inequality also gives an upper bound for
the probability that the Brownian motion on V, started uniformly from B(m; 1), exits the
ball B(m;R) before time T . Combining this estimate with the Borel-Cantelli lemma, Takeda
proved that the Brownian motion on V is conservative provided

lim inf
R→∞

R−2 logVol
(
B(m;R)

)
<∞ ,

re-proving in a simple way a criterion due to Karp and Li. Takeda’s method has been refined
by several authors, culminating with Hsu and Qin’s recent work [HQ10], who give an elegant
and simple proof of a sharp non-explosion criterion, due to Grigor’yan [Gri86], for Brownian
motion on a Riemannian manifold in terms of volume growth, as well as an escape rate
function. We shall follow their method to deal with relativistic diffusions.

5.2.2. The difficulties. The main difficulty in implementing this approach is in finding what
can play the role of the pair “Riemannian distance function – reflected Brownian motion”
in our Lorentzian, hypoelliptic framework. We describe in the remainder of this section a
non-standard reflection mechanism for a Brownian motion in a Riemannian manifold which
will serve us as a guide in the construction of the Θ-diffusion reflected on the boundary of
the sub-Riemannian boxes, as described in section 5.3.

Brownian motion reflected on the boundary of a ball B(m;R) is the simplest diffusion
process which coincides with Brownian motion on the ball B(m;R) and has a state space
with finite volume. One cannot take a smaller state space if the former property is to be
satisfied. Yet, one can make different choices if one is ready to loose the minimality property.
To explain that fact, let us suppose that (V, g) is a Cartan-Hadamard manifold. Given a
point m ∈ V let us use the exponential map expm at m as a global chart on V; this identifies
the geodesic ball B(m;R) onM to the (Euclidean-shaped) ball B′(0;R) in TmV. Given ε > 0,
let us modify the metric on B′(0;R + ε) \B′(0;R) so as to interpolate smoothly between
exp∗m g on B′(0;R) and the constant metric gm outside B′(0;R + ε) (primed balls refer to
the pull-back metric exp∗m g). Denote by g̃ the restriction to B′(0;R + 2ε) of this modified
metric, and define the compact space K as the quotient of the closed ball B′(0;R+2ε) by the
identification of m′ ∈ ∂B

′
(0;R+2ε) and −m′. Then the g̃-Brownian motion on K coincides

with the exp∗m g-Brownian motion on B′(0;R) and has a state space with finite g̃-volume
Volg̃(K) = (1 + o(ε))Volg

(
B(m;R)

)
. The construction of a modified Θ-diffusion given in

section 5.3 will be reminiscent of the preceding non-standard reflected Brownian motion.

5.3. A modified process. We start our construction of the “reflected” Θ-diffusion by
constructing the compact space on which it is going to live. Fix for that purpose a reference
point Φref ∈ OM, the centre of the boxes Bλ, and set D(Φ) = D(Φref,Φ) for all Φ ∈ OM.
Fix also two positive constants λ and ε and consider the relatively compact open region

U := {λ < D < λ+ ε} = Bλ+ε \Bλ.

Lemma 15. There exists in U a smooth hypersurface V of OM separating ∂Bλ from ∂Bλ+ε

such that the subset V0 := {Φ ∈ V |H0(Φ) ∈ TΦV } is a smooth hypersurface of V .

The separation property means that ∂Bλ ∪ ∂Bλ+ε does not intersect V but any continuous
path from ∂Bλ to ∂Bλ+ε hits V . We thank A. Oancea and P. Pansu for their help in proving
this statement.
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Proof – Let us use the function F of Proposition 12, with η < ε/4 and R > λ + ε , and
fix some constants η < ε1 < ε2 < ε/2− η such that Bλ ⊂ {ε1 ≤ F − λ ≤ ε2} ⊂ Bλ+ε/2 .
The set of regular values of (F − λ) is dense in the interval (ε1, ε2) , by Sard’s theorem.
Fix a regular value c ∈ (ε1, ε2), so the level set S := {F = c} is a smooth hypersurface
separating ∂Bλ from ∂Bλ+ε/2 .
We shall now be working in U ′ ≡ S × [0, ε

2

)
, where we are going to construct the sep-

arating hypersurface V as the graph of some function f : S → [
0, ε

2

)
, resorting to the

transversality lemma. Denote by Gr(TU ′) the Grassmannian bundle over U ′ made up
of all the hyperplanes of TU ′, and associate to any function f : S → (

0, ε
2

)
the func-

tion Gf : S → Gr(TU ′) defined by Gf(m) :=
{(
σ, dfm(σ)

)∣∣ σ ∈ TmS
}
. Let H denote

the smooth hypersurface of Gr(TU ′), made up of all hyperplanes containing H0 . Then
G−1f (H) is a smooth hypersurface of Graph(f) as soon as Gf is transverse to H . Therefore
the statement reduces to finding a function f such that Gf be transverse to H .

Consider for that purpose a smooth partition of unity: 1S =
k∑

j=1

αj , with {αj > 0} =

ψj(Bν) diffeomorphic under ψj to the unit ball Bν ⊂ Rν
(
with ν = dim(OM) − 1 =

(d+3)d/2
)
. Denoting by A the space of (the restictions to Bν of) affine functions on Rν ,

consider the map F : An × S → Gr(TU ′) defined by the formula

G(ϕ1, . . . , ϕk, m) := Gf (m),

where f =
k∑

j=1

αj ϕj ◦ ψ−1j . This is easily seen to be a submersion. It follows from the

transversality lemma that such a Gf is transversal to H for almost-every (ϕ1, . . . , ϕk) ∈
An. The graph of the function f corresponding to a small multiple of such a k-tuple has
the properties of the statement. �
Let O be the set of points of the box Bλ+ε of the form γ(1) for some continuous path

γ : [0, 1] → Bλ+ε starting from a point of Bλ and not hitting V ; this is an open set with
V as a boundary. Denote also by W another smooth hypersurface, separating V from ∂Bλ

and transverse to H0 except on a relative hypersurface. Let now denote by O′M a disjoint
copy of the set of past-directed frames:{

(m, e) ∈ GLM | e = (e0, e1, . . . , ed) such that
(
m, (−e0, e1, . . . , ed)

) ∈ OM
}
,

and let O′, V ′, V ′0 and W ′ be the subsets of O′M corresponding to O, V , V0 and W . The
equivalence relation(

m, (e0, e1, . . . , ed)
) ∈ V ∼ (

m, (−e0, e1, . . . , ed)
) ∈ V ′

defines a manifold structure on the quotient space (O∪ V )� (O′ ∪V ′)/ ∼ , which we denote
by E . Note that E is compact and that its volume is in between 2Vol(Bλ) and 2Vol(Bλ+ε).
Write V for the image in E of V , and V0 for the image in E of V0 ; define the primed sets
V ′ and V ′0 accordingly.

Remark 16. The geodesic flow is naturally well defined on E \V0 , getting instantly from
O to O′ or from O′ to O at its crossings of V \V0 . Indeed by the above definition, for
any Φ ∈ V \V0, either H0(Φ) points outwards seen from O and inwards seen from O′, or
H0(Φ) points inwards seen from O and outwards seen from O′. There is however no a priori
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convenient way to extend the geodesic flow on V0. This is the reason why we need to take
care of this exceptional set.

We define the modified relativistic diffusion on the compact manifold E as follows.
Let a : Bλ+ε → [0, 1] be a smooth function equal to 1 on Bλ , and whose vanishing set
is exactly the closed part C of U in between W and V

(
this means that C is the union

of the trajectories (γs)s∈(0,1) ⊂ U of continuous paths γ such that γ0 ∈ W , γ1 ∈ V ,
and (γs)s∈(0,1) does not intersect the oriented hypersurface W ∪ V

)
. We extend to E the

restiction of a to O ∪ V , by setting a(e′) = a(e) for e′ =
(
m, (−e0, e1, . . . , ed)

) ∈ O′M and
e =

(
m, (e0, e1, . . . , ed)

) ∈ OM. We define the generator of the modified diffusion to be the
following variant of GΘ :

(5.3) G := H0 +
1
2

d∑
j=1

Vj
(
aΘ Vj

)
.

Denote by VolE (resp. VolV , VolW ) the natural volume element on E (resp. V , W ).

Lemma 17. For VolE-almost all starting point Φ0 ∈ E , the modified relativistic diffusion is
a well-defined E-valued process having an almost-surely infinite lifetime.

Proof – This modified diffusion has generator GΘ in Bλ and in its mirror copy B′λ , and
reduces to the geodesic flow in the region {a = 0} in between W and W ′. After remark
16, we need first make sure that the set V0 ∪ V ′0 of bad points is polar.
Let N and N ′ be the orbits in the region {a = 0} of V0 and V ′0 by the geodesic flow. They
have, as a consequence of lemma 15, null VolE -measure. But as the modified diffusion
started from any Φ0 ∈ {a > 0} is hypoelliptic, its hitting distribution of W ∪W ′ has a
density with respect to VolW∪W ′. It follows that the modified diffusion, started from any
point of Φ0\(N ∪ N ′), will almost surely never hit N ∪ N ′, proving that this E-valued
process is well-defined.

It can behave in two ways as it approaches its lifetime: either crossing infinitely many
times V, or remaining eventually in a compact subset of O or O′. In the latter case, its
projection on M is a (future or past-directed) timelike path confined in a compact subset
of O. As such it has a cluster point at which the strong causality condition cannot hold,
preventing M from being strongly causal, a contradiction.
In the former case, either the path eventually remains in the region {a = 0}, or it performs
before some finite proper time an infinite number of crossings from W ∪W ′ to V. Since
the geodesic flow does not explode in {a = 0}, we are left with the latter possibility. It
cannot lead to explosion either, since the geodesic flow needs a traveling time bounded
away from 0 to travel from W ∪W ′ to V. �

Note that the volume measure VolE of the compact manifold E is an invariant finite measure
for the modified diffusion.

5.4. Crossing times and escape rate of Θ-diffusions. Fix a reference point Φref ∈ OM,
and set D(·) = D(Φref , ·). Let us emphasize that D is a two points function, so it is easy to
pass from D(Φref ,Φ) to D(Φ0 ,Φ), or the other way round, using the triangle inequality, for
any Φ0 ∈ OM.



18 I. BAILLEUL AND J. FRANCHI

Given an increasing sequence (Rn)n�1 of positive reals, set τ0 = 0 and associate to each
Rn

the exit time τn from the box B(n) :=
{D � Rn

}
.

It takes the diffusion an amount of proper time (τn − τn−1) to go from the box B(n−1) to the
box B(n). The strategy in [HQ10] is to estimate PΦ(τn − τn−1 � tn) for a suitably chosen
deterministic sequence {tn}n�0 of increments of time. Set for n ≥ 1 :

Tn :=

n∑
k=1

tk , and rn := Rn −Rn−1.

If one can show that

(5.4)
∑
n�1

PΦ(τn − τn−1 � tn) <∞

for a convenient choice of the sequences (Rn)n�1 and (Tn)n�1, then the Borel-Cantelli lemma
tells us that the diffusion does not exit B(n) before time Tn , for n large enough, preventing
explosion. Following [HQ10], we are going to consider the events

En := {τn − τn−1 � tn , τn � Tn},
so as to be able to use our modified process run backwards from the fixed time Tn , when
estimating the probability that the process crosses from B(n−1) to B(n) not too fast. Lemma
2.1 of [HQ10] (an application of the Borel-Cantelli lemma) justifies that considering these
events leads to the same non-explosion conclusion as (5.4). We recall it here for the reader’s
convenience.

Lemma 18 ([HQ10]). Fix Φ ∈ OM . If
∑
n�1

PΦ(En) <∞ , then there exists PΦ-almost-surely

δ such that τn � Tn − δ, for all n � 1.

We shall use the results of Sections 5.1.1 and 5.3 to prove the fundamental estimate of
Proposition 19 below. Given any compact subset B of OM, denote by PB the law of the
relativistic diffusion in OM started under the uniform probability in B:

PB(·) = 1

Vol(B)

∫
B

PΦ(·)Vol(dΦ).

Similarly, and given any compact subset A of E , write QA for the law of the modified
Θ-diffusion in E started under the uniform probability in A.

Proposition 19. There exists a constant C such that we have for any n � 1:

PB(1)

(
τn − τn−1 � tn , τn � Tn

)
� C

Vol(B(n))

Vol(B(1))

Tn

√
Θ̂n/tn

(rn − 1− 4tn)
exp

[
− (rn − 1− 4tn)

2

32 Θ̂n tn

]
,

where Θ̂n denotes the supremum of Θ over the box
{D � Rn + 1

}
.

The proof mimics Takeda’s original proof, as adapted by Hsu and Qin in [HQ10], with the
noticeable difference that we are working with a non-symmetric, non-elliptic diffusion.
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Proof – We start by embedding the box B(n) into the set E (n) constructed in Section 5.3,
with λ = Rn and ε = 1

2
, say. From now on we work on the path space over E (n) and use

the coordinate process X, whose filtration is denoted by (Fs)s�0. We still denote by τn
the exit time from (the image in E (n) of) B(n) ; the event

En := {τn − τn−1 � tn, τn � Tn}
belongs to Fτn . As explained above in Section 5.2, the proof has two main ingredients,
the first of which is Inequality (5.5) below, where QE(n) denotes the distribution of the
modified Θ-diffusion in E (n), with generator G given in (5.3).
As the Θ-diffusion and the modified Θ-diffusion have the same law before the stopping
time τn, we have PB(n)(En) = QB(n)(En) � 2QE(n)(En), and so

(5.5) PB(1)(En) � 2
Vol(B(n))

Vol(B(1))
QE(n)(En) ,

by the obvious inequality PB(1)(En) � Vol(B(n))

Vol(B(1))
PB(n)(En). The second ingredient involves

the Lyons-Zheng decomposition of D(Xs) under QE(n) . As D is not a priori sufficiently
regular to use Itô’s formula, we apply it to its smooth approximation F constructed in
Proposition 12 (with R = Rn and η = 1

2
). As the process (XTn−s)0�s�Tn is under QE(n)

a homogeneous diffusion process with generator G∗ = −H0 +
1
2

d∑
j=1

Vj
(
aΘ Vj

)
, it follows

from Itô’s formula that there exists two martingales (Ms)0�s�Tn and (M̃s)0�s�Tn, with
respect to the forward and backward filtrations of the process respectively, such that

F (Xs) = F (X0) +Ms +

∫ s

0

GF (Xr) dr,

F (Xs) = F (XTn−(Tn−s)) = F (XTn) + M̃Tn−s +
∫ Tn

s

G∗F (Xr) dr,

with

〈M〉s =
d∑

j=1

∫ s

0

a(Xr) Θ(Xr)
∣∣VjF ∣∣2(Xr) dr � 4 Θ̂n s,

〈
M̃
〉
s
=

d∑
j=1

∫ s

0

a(XTn−r) Θ(XTn−r)
∣∣VjF ∣∣2(XTn−r) dr � 4 Θ̂n s.

(5.6)

Setting M ′
s := M̃Tn−s and noting that G − G∗ = 2H0, we thus have

(5.7) d
(
F (Xs)

)
= d
(Ms +M ′s

2

)
+H0F (Xs) ds,

with a controlled drift term |H0F | � 2 , by Proposition 12. By construction, we have

sup
0�s�tn

∣∣F (Xτn−1+s)− F (Xτn−1)
∣∣ � rn − 1

on the event En , where X hits the set {F � Rn − 1
2
} in the time interval [τn−1, τn−1+ tn].

To control the QE(n)-probability of En, we use Hsu and Qin’s trick. Cut the interval

[0, Tn] =
�n⋃
k=1

[
(k − 1)tn, k tn

]
into 
n := Tn/tn sub-intervals of length tn

(
to lighten the
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notations, we shall neglect the fact that 
n may not be an integer ; this fact causes no
trouble but notational

)
, and write on each event

{
(k − 1)tn ≤ τn−1 ≤ k tn

}
F (Xτn−1+s)− F (Xτn−1) = F (Xτn−1+s)− F (Xktn) + F (Xktn)− F (Xτn−1).

This simple remark shows that the event
{

sup
0�s�tn

∣∣F (Xτn−1+s) − F (Xτn−1)
∣∣ � rn − 1

}
is

included in one of the 
n events
{

sup
0�|s|�tn

∣∣F (Xktn+s)− F (Xktn)
∣∣ � rn−1

2

}
, where 1 � k �


n. By (5.7) and the inequality |H0F | � 2, the kth of these events is included in the union
Ak ∪ Ãk , where

Ak :=

{
sup

0�|s|�tn

∣∣Mktn+s −Mktn

∣∣ � rn−1
2

− 2tn

}
and

Ãk :=

{
sup

0�|s|�tn

∣∣M̃ ′ktn+s − M̃ ′ktn
∣∣ � rn−1

2
− 2tn

}
.

Let W be a Brownian motion defined on some probability space (Ω,F ,P). By (5.6) we
have

QE(n)(Ak) � 2P

(
sup

0�s�tn

|Ws| � rn−1−4tn
4
√

Θ̂n

)
�

C

√
Θ̂n/tn

rn − 1− 4tn
exp

(
−(rn − 1− 4tn)

2

32 Θ̂n tn

)
for some positive constant C ; the same identity holds for Ãk, using (5.6). Summing
over k and using Inequality (5.5) yields the statement of the proposition since En ⊂⋃�n

k=1(Ak ∪ Ãk). �
This key proposition being proved, it becomes easy to prove theorem 13.

Proof of Theorem 13 – Taking Rn = 2n+5 and tn � 2n+1 in Proposition 19, so that
Tn � 2n+2, we get for any n � 1 :

(5.8) PB(1)(En) = PB(1)

(
τn − τn−1 � tn, τn � Tn

)
� C

Vol(B(n))

Vol(B(1))

√
Θ̂n

tn
exp

[
− 4n

Θ̂n tn

]
.

Specifying the choice of tn by setting

tn := min

{
2n+1,

4n−1(
1 + log+

[
Θ̂n Vol(B(n))

])
Θ̂n

}
,

the right hand side of (5.8) is seen to be bounded above by a constant multiple of 2−n,
ensuring as a consequence the convergence of the series

∑
n�1

PB(1)(En). Indeed, we get

from (5.8), with the above tn,

PB(1)(En) ≤ C ′ Vol(B(n))

√
Θ̂2

n log
[
Θ̂n Vol(B(n))

]
4n

e− 4 log
[
Θ̂n Vol(B(n))

]
≤ C ′′/2n.

(Ignoring the trivial case Θ ≡ 0, we can suppose without loss of generality that we have
Θ̂n Vol(B(n)) � 3 for n large enough.) Note that the above choice of time increments tn is
simpler than Hsu and Qin’s choice in [HQ10]; there is in particular no need to introduce
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their auxiliary function h(R) ≡ log logR , to get Grigor’yan’s criterion, if the second
upper bound of their section 3 is not used.

To conclude that the Θ-diffusion does not explode we need to check that Tn =
n∑

k=1

tk

increases to infinity. For the above choice of time increments tn, we have PB(1)-almost-
surely, for n larger than some n0, and for a positive universal constant c:

Tn ≥
n∑

k=n0

min

{
2k+1,

4k−1

Θ2k+5+1

(
log+

[
Θ2k+5+1Vol(B2k+5)

]
+ 1
)}

(5.9) ≥ c

∫ 2n

2n0+1

min

{
8 , r

Θr log
[
Θr Vol(Br)

]} dr .

Leaving aside the trivial case Θ ≡ 0 and recalling that the map r �→ Θr = max
Br

Θ is
non-decreasing, we can suppose without loss of generality that Θr � 3. The divergence
of the sequence (Tn) is then granted by the integral criterion∫ ∞

min

{
8 , r

Θr log
[
Θr Vol(Br)

]} dr = ∞.

As Θr increases, this condition is equivalent to∑
n�1

min

{
8 , n

Θn log
[
Θn Vol(Bn)

]} = ∞,

that is to ∑
n�1

n

Θn log
[
Θn Vol(Bn)

] = ∞,

since the former holds obviously if an infinite number of terms were larger than 8. The
previous condition is equivalent to Condition (5.2) of Theorem 13.

Using Borel-Cantelli lemma under the form of Lemma 18, it follows that we have

(5.10) PB(1)

(
sup

0�s�Tn−δ
D(Φs) � 2n+5 for any large enough n

)
= 1 ,

so sup
0�s�t

D(Φs) < ∞, for all t > 0, since Tn increases to ∞. Would a realization of the

path Φs explode by time t, its projection in M would provide a timelike path with an
accumulation point (for it stays in the projection of a compact set by hypothesis (H)),
contradicting the strong causality assumption on M.

To prove that the same happens under any PΦ0 , notice that since the non-explosion event
E belongs to the invariant σ-algebra, the function OM 	 Φ �→ PΦ(E) is GΘ-harmonic,
hence continuous, as GΘ is hypoelliptic. It follows that since

PB(1)(E) =
1

Vol
(
B(1)

) ∫
B(1)

PΦ(E)Vol(dΦ) ,

the probability PΦ(E) must be equal to 1 for all Φ ∈ B(1). But as the ball B(1) was
arbitrarily chosen, PΦ(E) is identically equal to 1 everywhere. �
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5.5. Upper rate function. Using essentially the same reasoning as in Section 4 of [HQ10],
the above proof yields almost for free the upper rate function for the Θ-diffusion given in
corollary 14. See also [Gri99] for related results. We keep the preceding notations.

Proof of Corollary 14 – We follow the argument of [HQ10], Section 4, making sure that
it works here as well with our choice for tn, and without their auxiliary function log log.
Suppose first Θ non-identically null and recall inequality (5.9), in which we can forget to
take the minimum with 8, by Proposition 20 below. By (5.10), this yields the almost-
surely inequality

sup
0�s� c h−1(2n)−δ

D(Φs) � 2n+5,

that is
sup

0�s� c h−1(R)−δ
D(Φs) � 32R,

for large enough R . Letting R = h
(
(t+δ)/c

)
, this entails sup

0�s� t
D(Φs) � 32 h

(
(t+δ)/c

)
,

hence sup
0�s� t

D(Φs) � 32 h(C t), for large enough t . This shows the claim under the

probability PB(1) , and then under PΦ0 as well, by the same argument already used at the
end of the proof of Theorem 13. Finally, in the geodesic case

(
Θ ≡ 0

)
, the same holds

with Tn ≥ c 2n = c h(2n). �
5.6. Estimates of the volume of the sub-Riemannian boxes and application. Let
us begin with a crude lower estimate of the volume of the boxes Br based on the vertical
expansion in the SO0(1, d)-fibre of OM, without taking into account the horizontal expansion
which depends on the curvature of the base Lorentzian manifold M. We used this lower
bound in the proof of Corollary 14.

Proposition 20. We have lim inf
r→∞

logVol(Br)

r
≥ d− 1 .

Proof – Fix a relatively compact neighbourhood U of m0 in M, above which OU is trivi-
alized in U×SO0(1, d). Assume without loss of generality that Φ0 corresponds to (m0, 1).
By the ball-box theorem (see e.g. [Mon02]), the box Br = {D ≤ r} contains a neigh-
bourhood V × B(1, ε) of Φ0 , for some ε > 0 and for r larger than some fixed r1. Using
this argument a finite number of times, together with the triangle inequality for D, we
see that the box {D ≤ r} contains any neighbourhood U × B(1, �) of Φ0, for any � > 0,
provided r is large enough, say no less than r0 = r0(U , �). Take � larger than the diameter
of SO(d).
We easily see that the boxes {D ≤ r} dilate in the vertical directions V1, . . . , Vd with speed
r, as r increases. So {D ≤ r} contains the product of U by the ball of radius (r − r0)
in SO0(1, d) for r large enough. This provides a lower bound on Vol

({D ≤ r}) by some
constant multiple of the volume of the hyperbolic ball of radius (r − r0), from which it
follows that there exists some positive constant c such that logVol(Br) ≥ (d−1) r+log c ,
for r large enough. �
To close this work, we give a non-explosion criterion involving only the geometry of M,

rather than the geometry of OM as it appears in Theorem 13 through the sub-Riemannian
boxes Br.
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Proposition 21. Fix Φ0 = (m0, e0) ∈ OM, and define the SΦ0-radius ρSΦ0
(m) of any

m ∈ M as the infimum of the SΦ0-length of C1 paths joining m0 to m. Define the SΦ0-ball
BS

Φ0
(r) of radius r as the set BS

Φ0
(r) :=

{
m ∈ M

∣∣ ρSΦ0
(m) � r

}
, and set

V S(r) := VolM
(
BS

Φ0
(r)
)
.

Then there exists a constant C such that we have for all r > 0

logVol(Br) ≤ C + (d− 1) r + log V S(Cer).

Note that the SΦ0-balls BS
Φ0
(r) and their volume depend only on the choice of Φ0 =

(m0, e0) ∈ OM and on the geometry of M. We noticed indeed in Section 4 that the Se0-
length of a path in M started from m0 is the Euclidean length of its anti-development in(
Tm0M, e0

)
.

Proof – By the definitions in Sections 4 and 5.1.1, the b-distance of Φ0 to any Φ ∈ OM

is not larger than DΦ0(Φ), so Br ⊂ Bb(Φ0; r), where Bb denotes the ball in OM of the
b-metric. Vertically, that is to say in the frame τγ0→s(Φ0) parallely transported along a
minimizing curve γ, the maximal hyperbolic distance reached by the velocity component
ṁs of γs is s, which is responsible for a maximal vertical volume O(e(d−1)r).
Having accelerated till reaching a maximal velocity O(er), a minimizing curve in Bb(Φ0; r)
can perform a maximal horizontal displacement O(er). Hence we have the inclusions

BS
Φ0
(r) ⊂ π0

(
Bb(Φ0; r)

) ⊂ BS
Φ0

(O(er)
)
,

and so Vol(Br) ≤ C e(d−1)r V S(Cer). �
Applying Proposition 21 to the integral condition of Theorem 13 yields in the case of

a bounded Θ the non-explosion criterion
∫ ∞ r dr

r + log V S(er)
= ∞. Using the increasing

character of the map
(
r �→ V S(er)

)
, discretizing and distinguishing whether or not there are

infinitely many n such that log V S(en) � n, we easily see that this condition is equivalent to
the condition

∫∞ r dr
log V S(er)

= ∞.

Corollary 22. Let (M, g) be a strongly causal Lorentz manifold satisfying the complete-

ness assumption (H) and the volume growth condition:
∫ ∞ r dr

log V S(er)
= ∞. Then all

Θ-diffusions with a bounded Θ are stochastically complete.

It is easy to see that this volume growth integral criterion does not depend on the choice
of Φ0 ∈ OM. Contrary to Proposition 20, it relies on the horizontal expansion and not on
the vertical expansion. This criterion does not apply to Gödel universe, for which log V S(er)
is of order er; the non-explosion criterion of §3.2 covers the case of that spacetime. Corollary
22 applies for example to Lorentz manifolds which are topologically R1+d and have a pseudo-
metric g such that g, g−1, and the first order derivatives of g with respect to the canonical
coordinates are bounded, since then log V S(er) is of order r, as is the case in Minkowski
spacetime.
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