
Mean field singular stochastic PDEs

I. BAILLEUL and N. MOENCH

Abstract. We study some systems of interacting fields whose evolution is given by singular
stochastic partial differential equations of mean field type. We provide a robust setting for
their study leading to a well-posedness result and a propagation of chaos result. The case of
interacting systems with a common noise is also considered.
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1 – Introduction

Let (ξi)i≥1 stand for a sequence of independent, identically distributed, random spacetime
distributions on the 2-dimensional torus T2. We will denote by (Ω,F ,P) the probability space on
which these random variables are defined. We assume that the ξi are almost surely continuous
functions of time with values in the space of (α− 2)-Hölder regular distributions over T2, with
2/3 < α < 1, with null spatial mean. The archetype of such a noise is given by (the time
independent) space white noise. We study a system of interacting fields whose evolution is
given by the following system of ‘singular’ stochastic partial differential equations (SPDEs)

(∂t −∆)ui = f(ui, µn
t ) ξ

i
t + g(ui, µn

t ), (1 ≤ i ≤ n), (1.1)
where

µn
t
··=

1

n

n∑
i=1

δui
t

is the running time empirical measure of the system – a probability measure on a function
space. Some (possibly random) initial conditions in that function space are given.

Recall the rule of thumb: One can make sense of the product of two distributions with given
Hölder regularities if and only if the sum of their regularity exponents is positive. The term
‘singular’ in the expression ‘singular SPDE’ refers to the fact that the regularity of the noise
is too low for the regularizing effect of the heat resolvent to give sufficient regularity to the
ui to make sense of the products f(ui, µn

t ) ξ
i. The diffusivity term f(ui, µn

t ) is expected to
have at best parabolic regularity α, while the product f(ui, µn

t ) ξ
i is well-defined if and only

if α + (α − 2) > 0. This condition does not hold in our case where α < 1. The settings of
regularity structures and paracontrolled calculus have been developed in the last ten years to
deal precisely with this kind of problem and one can indeed use either of them to make sense
of equation (1.1) as an equation of the form

(∂t −∆)u = f(u) ξ[1,n] + g(u), (1.2)
for some n-dimensional unknown u and noise ξ[1,n], and identify conditions on f and g under
which (1.2) has a unique solution over a given time interval. This way of proceding does not
take profit from the specific structure of the mean field type equation (1.1). It is in particular
unclear how to prove a propagation of chaos result for the interacting field system from this
point of view. The necessity of a point of view tailor-made to mean field-type dynamics gets even
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clearer if one looks at what should most naturally be the limit dynamics of a given field of system
(1.1) when n tends to ∞, say the field with label i = 1. Based on symmetry/exchangeability
considerations this field is expected to be a solution of the equation

(∂t −∆)u = f(u,L(ut)) ξt + g(u,L(ut)), (1.3)
where L(ut) stands for the law of the random variable ut and ξ stands for a random distribution
with the same law as the ξi. Our first aim in this work is to develop a setting within which one
can make sense of system (1.1) and equation (1.3) in a unified way, for a large class of spacetime
noises ξ.

Denote by z and z′ generic spacetime points. The choice of functions f and g in equations of
the form (1.1) and (1.3) is guided by the physics of the phenomenon modeled by system (1.1).
To make things concrete we consider in this introduction the case where f(u, µ) and g(u, µ)
depend linearly on their measure argument and are of the form

z 7→
x

F
(
u(z), v(z′)

)
k(z, z′)dz′µ(dv) = E

[ ∫
F
(
u(z), V (z′)

)
k(z, z′)dz′

]
(1.4)

for u a function on T2, for a random function V with law µ and a real-valued function F on
R2. Think of the kernel k as a parameter that captures the range of the interaction between
the different fields in the system, with extreme cases k(z, z′) = 1 and k(z, z′) = δz(z

′), and
intermediate cases represented by C2 kernels for instance. The physics behind the two extreme
cases is very different and we will technically deal with them in a different way. We will be able
to work with functions that depend polynomially on their measure argument. Our main result
reads informally as follows. We fix some initial conditions.

1 – Theorem. One can design a setting where equation (1.3) makes sense.
(a) Under proper regularity and growth assumptions on f and g there exists a positive time

T such that system (1.1) and equation (1.3) have unique solutions on the time interval
[0, T ].

(b) The law of any fixed tuple of fields in the field system (1.1) converges to a tuple of
independent, identically distributed, solutions of (1.3) as n tends to ∞, on the time
interval [0, T ].

So there is propagation of chaos for system (1.1), with mean field dynamics given by the
mean field type equation (1.3).

While equation (1.3) and system (1.1) share the common feature of being singular, in the
sense that they involve some ill-defined products, the mean field interaction in (1.3) causes a
different kind of problem. A close situation was studied by Bailleul, Catellier & Delarue in
their analysis of mean field type random rough differential equations [4]. We design in the
present work an approach similar to [4] for the study of equation (1.3), using the language of
paracontrolled calculus to build our setting. The original form of paracontrolled calculus was
introduced by Gubinelli, Imkeller & Perkowski in [11]; one can find a nice short account of
the basics of paracontrolled calculus in Gubinelli & Perkowski’s lecture notes [12]. Recall that
we work with a noise with null spatial mean. Denote by ω ∈ Ω a generic chance element and
write X(ω) for −(∂t − ∆)−1(ξ(ω)), and X for an independent copy of the random variable
X. As in [4] we use a notion of paracontrolled field that is tailor made to capture not only
the paracontrolled structure of u needed to make sense of its product with ξ but also of the
structure needed to describe the mean field specific spacetime function

(t, x) 7→ f
(
ut,L(ut)

)
(x).

This comes under the form of a definition saying that a random field u(ω) is ω-paracontrolled
by a reference field X(ω) of parabolic Hölder regularity α if one has almost surely

u(ω) ≃ P(δzu)(ω)X(ω) + E
[
P(δµu)(ω,·)X(·)

]
(1.5)
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up to a remainder of parabolic regularity 2α, for some random functions (δzu)(ω) and (δµu)(ω, ·)
that depend on ω and an additional independent chance element that is averaged out in the E
expectation, where X(·) = (∂t −∆)−1(ξ(·)) and ξ has the same law as ξ and is independent of
ξ, and · stands for the chance element argument. A precise definition, conveying in particular
the meaning of the notations δzu, δµu, is given in Section 4.2. This definition will play a key
role in our construction of a robust setting where to make sense of equation (1.3) and prove a
well-posedness result for it.

Setting up a framework for the study of a given singular stochastic PDE driven by a random
noise ξ(ω) usually requires that we enhance the noise with the additional datum of quantities
that do not make sense analytically ω-wise. In the archetypal example of the 2-dimensional
parabolic Anderson model equation

(∂t −∆)v = vξ,

where ξ is a space white noise that is almost surely of space Hölder regularity −1 − η for all
η > 0, enhancing the noise consists in building a random variable that plays the role of the
ω-wise ill-defined product of ξ(ω) and ∆−1(ξ(ω)). This random variable, suggestively denoted
by

(
ξ∆−1(ξ)

)
(ω), is given by the L2(Ω,P) limit of the renormalized regularized quantity

ξε∆−1(ξε)− Cε,

where ξε stands for a smooth regularization of ξ that converges to ξ in the space of distribu-
tions with Hölder regularity −1 − η, and Cε is an explicit constant that diverges to +∞ as a
multiple of |log ε|. The fact that the naive approximation ξε∆−1(ξε) is not converging leads
to the interpretation of the solution v to the parabolic Anderson model equation as a limit in
probability of solutions vε to the renormalized equation

(∂t −∆)vε = vεξε − Cεvε,

rather than as a limit of solutions to the parabolic Anderson model equation driven by the
regularized noise ξε. We talk in this setting of the pair of random variables (ξ, ξ∆−1(ξ)) as an
‘enhanced noise’. A richer enhancement of the noise ξ is needed in the analysis of the mean field
equation (1.3). Not only do we need to add the random variable

(
ξ∆−1(ξ)

)
(ω) to our notion

of enriched noise, but the description (1.5) of an ω-controlled field should make it plain that
we also need to add a doubly random variable that plays the role of the analytically ill-defined
product of ξ(ω) and (∂t − ∆)−1(ξ(ϖ)), where (ω,ϖ) ∈ Ω2 and we work with the product
probability P⊗2 on (Ω2,F⊗2). Luckily, the independence of ξ and ξ allows to define a doubly
random variable

(
ξ(∂t −∆)−1(ξ)

)
(ω,ϖ) as the L2(Ω2,P⊗2) limit of the regularized quantity

ξε(∂t −∆)−1(ξ
ε
)

without the need of any renormalization. This will lead us to the interpretation of a solution to
equation (1.3) as the limit in probability as ε > 0 goes to 0 of the solution uε to the renormalized
equation

(∂t −∆)uε = f(uε,L(uεt )) ξεt − Cε(ff ′)
(
uε,L(uεt )

)
+ g(uε,L(uεt )),

where f ′ stand for the derivative of f with respect to its first argument. Building on the setting
that we use to analyse Equation (1.3) we are also able to deal with systems of interacting fields
and mean field equations subject to a common unaveraged noise λ

(∂t −∆)u = f1
(
u,L(ut)

)
ξt + f2

(
u,L(ut)

)
λt + g

(
u,L(ut)

)
.

See Theorem 31 for a description of what happens in this case.

Organization of this work. We treat the elementary case of systems (1.1) and equation (1.3)
with additive noise (f = 1) in Section 2. Very robust results can be obtained in this simple
setting, leading in particular to a simple proof of propagation of chaos for the corresponding
system of interacting fields for an essentially arbitrary random noise with values in CTC

α−2.
No tools from paracontrolled calculus are needed to deal with this case. We use the language
of paracontrolled calculus to study more general equations or systems. We recall what we need
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from this domain in Section 3.1 and study equation (1.3) in the simple setting of a diffusivity
with form (1.4) and C2 kernel k in Section 3.3. The notion of mean field enhancement of
the noise is introduced in Section 4.1, with an associated notion of paracontrolled structure
described in Section 4.2. The well-posed character of equation (1.3) is the object of Section
4.3. The quantitative regularity result that we obtain for the solution u of equation (1.3) as
a function fo the enhanced noise entails in Section 5 a propagation of chaos result for system
(1.1). Section 6 is dedicated to the study of mean field equations/systems with a common
unaveraged noise.

Notations. We gather here a number of notations that we will use frequently.
– We fix throughout this work some regularity exponents

2

3
< β < α < 1.

– For γ ∈ R, we denote by Cγ = Cγ(T2) the Besov space Bγ
∞∞(T2), with norm ∥ · ∥γ .

For any Banach space E and γ ≥ 0 we set
Cγ

TE ··= Cγ([0, T ], E)

and write L∞
T E for L∞([0, T ];E). We will also need the parabolic Hölder space C α

T

on [0, T ]×T2, which is isometric to Cα/2
T L∞(T2)∩CTC

α(T2) equipped with its natural
norm. We will denote (Pt)t≥0 the semigroup generated by the Laplace-Beltrami operator
∆ on an ad hoc function space. Recall the elementary estimate

∥Ptu∥Cγ+δ ≲T t−δ/2∥u∥Cγ ,

for δ > 0 and 0 < t ≤ T .
– We denote by Lp(Ω, E) the space of E-valued random variables in Lp(Ω,F ,P).
– For an integrability exponent 1 ≤ p < ∞ we denote by Pp(E) the set of probability

measures on E that has a moment of order p and by Wp,E the p−Wasserstein metric
on Pp(E). We define a distance on L∞

T Pp(C
α) setting

dL∞
T Wp,Cα (µ, µ

′) ··= sup
t∈[0,T ]

Wp,Cα(µt, µ
′
t).

– We denote by L(Z) the law of a random variable Z.
– For a measure µ on a metric space E and ϕ ∈ Cb(E) write µ(ϕ) for

∫
ϕdµ.

2 – Additive noise

Fix 0 < T0 < ∞ and 1 ≤ p < ∞. Let ζ ∈ CT0C
α−2 be an arbitrary random element.

Following Coghi, Deuschel, Friz & Maurelli [9] we begin our work by studying the case of a
mean field type equation with additive noise

(∂t −∆)u = ζ + g(u,L(ut)) (2.1)
and random initial condition u0, assuming that the random variable (ζ, u0) is an element of
Lp

(
Ω, CT0C

α−2 × Cα
)
. No singular product is involved in the study of this equation and we

will be able to solve it with classical tools. We prove in Section 2.1 that equation (2.1) is well-
posed under proper Lipschitz assumptions on g and that the law of its solution is a Lipschitz
continuous function of the law of (ζ, u0) in the Wasserstein p-space. This strong result leads in
Section 2.2 to a propagation of chaos result for an associated field system.

2.1 – Additive mean field equation. For µ ∈ Pp(CT0C
α) and t ∈ [0, T0], we write µt for the

image measure of µ in Cα by the t-time coordinate map u ∈ CT0
Cα 7→ ut ∈ Cα.
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Assumption (Hg) – There exists a constant L such that for every v1, v2 ∈ Cα and ν1, ν2 ∈
Pp(C

α) we have∥∥g(v1, ν1)− g(v2, ν2)
∥∥p
Cα−2 ≤ Lp

(
∥v1 − v2∥pCα +Wp,Cα(ν1, ν2)

p
)
.

2 – Proposition. Suppose Assumption (Hg) holds. For any µ ∈ Pp(CT0
Cα), u0 ∈ Cα and ζ ∈

CT0
Cα−2 the equation

(∂t −∆)u = ζ + g(u, µ) (2.2)
with initial condition u0 has a unique solution u ∈ CT0

Cα.
Proof – Set

Zt :=

∫ t

0

Pt−s(ζs) ds

and recall the well-known Schauder type bound
∥Z∥CT0

Cα ≲T0 ∥ζ∥CT0
Cα−2 . (2.3)

One can rewrite equation (2.2) in integral form

ut = Pt(u0) + Zt +

∫ t

0

Pt−sg(us, µs)ds. (2.4)

The estimate (2.3) ensures that the map

Φ : u ∈ CT0
Cα 7→ Pt(u0) + Zt +

∫ t

0

Pt−sg(us, µs)ds ∈ CT0
Cα

is well-defined. For u, u′ ∈ CT0C
α, using Assumption (Hg) and (2.3), we have

∥Φ(u)t − Φ(u′)t∥Cα ≤
∫ t

0

∥∥Pt−sg(us, µs)− Pt−sg(u
′
s, µs)

∥∥
Cαds ≤

∫ t

0

L∥us − u′s∥Cαds.

Denote by ∆k(0, t) the simplex {0 ≤ s1 ≤ · · · ≤ sk ≤ t} and write ds for ds1 . . . dsk. An
iteration of the previous bound gives

∥Φ◦k(u)t − Φ◦k(u′)t∥Cα ≤ Lk

∫
∆k(0,t)

∥usk − u′sk∥Cαds ≤ (LT )k

k!
∥u− u′∥CTCα .

The map Φ◦k is thus contracting for k large enough, so it has a unique fixed point. �

We denote by uµ(ζ, u0) the solution to equation (2.2). We now work with (ζ, u0) random,
an element of Lp

(
Ω, CT0C

α−2 × Cα
)
.

3 – Proposition. For every µ ∈ Pp(CT0C
α) the law of uµ(ζ, u0) belongs to Pp(CT0C

α).
Proof – Write δ0 for Dirac distribution on the null function 0. We have from the integral
formulation (2.4) the estimate

∥uµt ∥Cα ≤ C
(
∥u0∥Cα + ∥Zt∥Cα +

∫ t

0

∥g(uµs , µs)∥Cαds
)

≤ C

(
∥u0∥Cα + ∥Zt∥Cα +

∫ t

0

∥g(0, δ0)∥+ L
(
∥us∥Cα +Wp,Cα(µs, δ0)

)
ds

)
≤ C

(
∥u0∥Cα + ∥Zt∥Cα + T0∥g(0, δ0)∥Cα + T0Wp,CT0

Cα(µ, δ0)
)
+ CL

∫ t

0

∥us∥Cαds,

for some positive constant C. We get the inequality

∥ut∥Cα ≤ C
(
∥u0∥Cα + ∥Zt∥Cα + T0∥g(0, δ0)∥Cα + T0Wp,CTCα(µ, δ0)

)
eCLt

from Gronwall lemma, from which the conclusion follows. �

Set
Ψ :

{
Pp(CT0C

α)× Lp(Ω, CT0C
α−2 × Cα) → Pp(CT0C

α)(
µ, (ζ, u0)

)
7→ L

(
uµ(ζ, u0)

)
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We define a solution to equation (2.1) with initial condition u0 as a fixed point of the
map

Ψ
(
·, (ζ, u0)

)
: Pp(CT0

Cα) → Pp(CT0
Cα).

4 – Theorem. Suppose Assumption (Hg) holds. Then equation (2.1) has a unique solution denoted
by u(ζ, u0). We have the Lipschitz estimate

Wp,CT0
Cα

(
L(u(ζ, u0)),L(u(ζ ′, u′0))

)
≲g,p,T0

Wp,CT0
Cα−2×Cα

(
L(ζ, u0),L(ζ ′, u′0)

)
. (2.5)

Proof – Fix (ζ, u0) and use the shorthand notation Ψζ,u0
(·) for Ψ

(
·, (ζ, u0)

)
. For µ, µ′ ∈

Pp(CTC
α) write uµ and uµ

′ for uµ(ζ, u0) and uµ
′
(ζ, u0), respectively. One has

uµt − uµ
′

t =

∫ t

0

(
Pt−sg(u

µ
s , µs)− Pt−sg(u

µ′

s , µ
′
s)
)
ds,

and ∥∥uµt − uµ
′

t

∥∥p
Cα ≤ C

∫ t

0

(∥∥uµs − uµ
′

s

∥∥p
Cα +Wp

(
µ[0,s], µ

′
[0,s]

)p)
ds,

for some constant C, so we get from Gronwall lemma the estimate

Wp,CtCα

(
L(uµ[0,t]),L(u

µ′

[0,t])
)p

≤ CeCT0

∫ t

0

Wp,CsCα

(
µ[0,s], µ

′
[0,s]

)p
ds.

A direct iteration gives

Wp,CT0
Cα

(
Ψ◦k

ζ,u0
(µ1),Ψ◦k

ζ,u0
(µ2)

)p ≤ (CeCT0)k
∫
∆k

t

Wp,Csk
Cα

(
µ[0,sk], µ

′
[0,sk]

)p
ds

≤ (CeCT0)k
1

k!
Wp,CT0

Cα

(
µ, µ′)p,

so the map Ψ◦k
ζ,u0

is contracting for k sufficiently large and equation (2.1) has a unique solution.

Let now ζ, ζ ′ ∈ CT0
Cα−2 be two noises and u0, u

′
0 ∈ Cα be two initial conditions. Pick

µ ∈ Pp(CT0C
α) and write u and u′ for u(ζ, u0) and u′(ζ, u0), respectively. We can assume

without loss of generality that ζ, ζ ′, u0, u′0 are such that the p-th moment of ∥u − u′∥CT0
Cα is

equal to the p-Wasserstein distance between L(u(ζ, u0)) and L(u(ζ ′, u′0)). Since

us − u′s = Ps(u0 − u′0) + Zs − Z ′
s +

∫ s

0

(
Ps−r(g(ur, µr))− Ps−r(g(u

′
r, µr))

)
dr,

we have

sup
s∈[0,t]

∥us − u′s∥Cα ≤ ∥u0 − u′0∥Cα + ∥Z − Z ′∥CTCα + C

∫ t

0

∥us − u′s∥Cαds

≲ ∥u0 − u′0∥Cα + ∥ζ − ζ ′∥CTCα−2 + C

∫ t

0

∥us − u′s∥Cαds

and

E
[

sup
s∈[0,t]

∥us − u′s∥
p
Cα

]
≲p ∥u0 − u′0∥

p
Cα + E

[
∥ζ − ζ ′∥pCTCα−2

]
+

∫ t

0

E
[

sup
r∈[0,s]

∥ur − u′r∥
p
Cα

]
ds.

We get the Lipschitz estimate (2.5) from Gronwall lemma. �

Note that we do not assume that the noise ζ and the initial condition u0 are independent.

2.2 – Propagation of chaos. Let now (ζi, ui0)i≥1 be a sequence of independent, identically
distributed, random variables with common distribution the law of (ζ, u0). Denote by (Ω,F ,P)
the probability space on which this sequence of random variables is defined, with ω ∈ Ω a
generic element of Ω. Fix ω ∈ Ω. For an integer n ≥ 1 consider the interacting system of fields
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(
u1,n(ω), . . . , un,n(ω)

)
with initial conditions

(
u10(ω), . . . , u

n
0 (ω)

)
and dynamics

(∂t −∆)ui,n(ω) = ζi(ω) + g
(
ui,n(ω), µn

t (ω)
)
,

µn
t (ω) ··=

1

n

n∑
k=1

δuk,n
t (ω),

(2.6)

for 1 ≤ i ≤ n. H. Tanaka [18] was the first to notice that system (2.6) is actually, for each
ω ∈ Ω, an equation of the form (2.1) set on the finite probability space {1, . . . , n} equipped
with the uniform probability measure λn. Following [5], we call this observation ‘Tanaka’s
trick’. Random variables on the space {1, . . . , n} are n-tuples indexed by 1 ≤ i ≤ n. Denote
by Lλn

(X) the law under λn of an arbitrary random variable X defined on {1, . . . , n}. Denote
also by

Un : j 7→ j

the canonical random variable on {1, . . . , n}. Tanaka’s trick says that a solution to the system
(∂t −∆)ui(ω) = ζi(ω) + g

(
ui(ω),Lλn

(uUn(·)(ω))
)
, (1 ≤ i ≤ n)

with parameter ω and chance element i ∈ {1, . . . , n}, is precisely given by the n-tuple(
u1,n(ω), . . . , un,n(ω)

)
of solutions to the field system (2.6).

Recall that a sequence (µn)n≥1 of probability measures on En, invariant by the action on
En of the permutation group of n elements, is said to be µ-chaotic if for every 1 ≤ k ≤ n and
ϕ1, . . . ϕk ∈ Cb(E), we have

µn
(
ϕ1 ⊗ · · · ⊗ ϕk ⊗ 1⊗(n−k)

)
−→
n→∞

k∏
i=1

µ(ϕi).

A well-known criterion of µ-chaoticity is given by the convergence in law of the empirical mean
of an iid n-sample of µn to the measure µ itself – see for instance Proposition 2.2 in Sznitman’s
lecture notes [17]. Now the law of large numbers tells us that the empirical mean

1

n

n∑
i=1

δ(ζi,ui
0)(ω)

converges P-almost surely in Wp,CT0
Cα−2×Cα to L(ζ, u0). The following fact is thus a conse-

quence of the Lipschitz estimate (2.5) and Sznitman’s criterion. In the next statement we write
u ∈ Lp(Ω, CT0C

α) for the solution to equation (2.1).

5 – Corollary. For any integer k ≥ 1, the law of the k-tuple (u1,n, . . . , uk,n) converges weakly to
L(u)⊗k when n tends to ∞.

3 – Basics on paracontrolled calculus and long range mean field equations

The study of equation (1.3) with a non-constant diffusivity f(·) requires that we use one of
the languages that have been developed in the last ten years for the study of a large class of
singular stochastic PDEs. The problem involved in this class of equations is best illustrated on
the toy example of the parabolic Anderson model equation

(∂t −∆)u = uξ

set on T2, with ξ a space white noise. Recall ξ has almost surely Hölder space regularity −1−ε
for all ε > 0. One expects from the Schauder estimates satisfied by the resolvent of the heat
operator that u has parabolic regularity (α − 2) + 2 = α. This regularity is not sufficient for
making sense of the product uξ since α+(α− 2) < 0. There are at least two languages one can
use to circumvent this problem and set a robust solution theory for this equation and a whole
class of equations involving the same pathology. We choose to work here with the language of
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paracontrolled calculus first introduced by Gubinelli, Imkeller & Perkowski in [11]. We recall
in Section 3.1 the notions and results from paracontrolled calculus that we will use; we refer
the reader to [12, 10, 14] for accounts of the basics on the subject. These results are sufficient
to deal with the soft case of a mean field equation (1.3) with diffusivity given by the model
function (1.4) with a C2 kernel k. We deal with that case in Section 3.3 as a warm-up for
Section 4.

3.1 – Basics on paracontrolled calculus. We will use the notations h1 < h2 and h1 ⊙ h2

for the paraproduct and the resonant operators on space distributions h1, h2, defined from the
Littlewood-Paley projectors. From its definition h1 < h2 is well-defined for all distributions
h1, h2 on T2 and has high Fourier modes that are modulations of the high Fourier modes of h2
by low Fourier modes of h1. On that ground, it makes sense to think of h1 < h2 as a distribution
that ‘looks like’ h2. Recall from Lemma 2.4 of [11] that the corrector

C(a, b, c) ··= (a < b)⊙ c− a (b⊙ c)

has a continuous extension from C2×C2×C2 to Cα1 ×Cα2 ×Cα3 with values in Cα1+α2+α3 if
α2 +α3 < 0 and 0 < α1 +α2 +α3 < 1. The following continuity estimate from [2], Proposition
14 therein, will also be useful. One has∥∥a < (b < c)− (ab) < c

∥∥
Cα2+α3

≲ ∥a∥L∞∥b∥Cα2∥c∥Cα3 , (3.1)
for all a ∈ L∞, b ∈ Cα2 with α2 in (0, 1) and c ∈ Cα3 with −3 < α3 < 3. (The regularity
exponent 3 has no particular meaning; it is purely technical.)

Definition – Pick a reference distribution Λ ∈ Cρ, with ρ ∈ R. A distribution v on T2 is
said to be paracontrolled by Λ if there exists a positive regularity exponent γ and functions
v′ ∈ Cγ and v# ∈ Cγ+ρ such that

v = (v′ < Λ) + v#.

We denote by Dγ(Λ) the space of all such couples (v′, v#); it is equipped with the norm
∥(v′, v#)∥Dγ ··=

∥∥v′∥∥
Cγ + ∥v#∥Cγ+ρ . (3.2)

For reference distributions Λ1,Λ2 ∈ Cρ and v1 = (v′1, v
#
1 ) ∈ Dγ(Λ1) and v2 = (v′2, v

#
2 ) ∈

Dγ(Λ2) we set
dDγ (v1,v2) ··=

∥∥v′1 − v′2
∥∥
Cγ +

∥∥v#1 − v#2
∥∥
Cγ+ρ .

The expression ‘Gubinelli derivative of v’ is sometimes used to talk about v′. Note that the
exponent γ in Dγ(Λ) does not refer to the regularity of v but rather to the regularity exponents
of v′ and v♯. Indeed the distribution v is Cρ. Let a and b be two functions on T2 with a ∈ Dβ(b)
for β > 0, with Gubinelli derivative a′. Bony’s paralinearization result implies that if h stands
for a C3

b function from R into itself then h(a) ∈ Dβ(b); we denote by h(a)′ = h′(a)a′ its Gubinelli
derivative and by h(a)♯ its remainder term. (See e.g. Section 2.3 of [11].)

We will denote by k1 ≺ k2 the modified paraproduct on spacetime distributions introduced
in Section 5 of [11]. It is a parabolic version of the paraproduct operator < that has the same
analytic properties in the scale of Besov parabolic function spaces as the operator < in the scale
of spatial Besov function spaces. When applied to parabolic distributions k1 ∈ C

α/2
T L∞, k2 ∈

CTC
β the two paraproducts are related by the continuity relation∥∥k1 < k2 − k1 ≺ k2

∥∥
CTCα+β ≲ ∥k1∥Cα/2

T L∞∥k2∥CTCβ . (3.3)

We further note the useful estimate∥∥(∂t −∆)(k1 ≺ k2)− k1 ≺
(
(∂t −∆)k2

)∥∥
CTCα+β−2 ≲ ∥k1∥Cα

T
∥k2∥CTCβ .

(These two results are the content of Lemma 5.1 of [11].) We use the ≺ paraproduct and a
slightly different notion of size to deal with parabolic functions paracontrolled by a reference
parabolic function Ξ.
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Definition – Pick a reference function Ξ ∈ C ρ
T , with ρ > 0. A parabolic function u on

[0, T ] × T2 is said to be paracontrolled by Ξ if there exists a function u′ ∈ C β
T , with β > 0,

such that
u# ··= u− u′ ≺ Ξ ∈ C ρ

T

and
sup

t∈(0,T ]

tβ/2
∥∥u#t ∥∥Cβ+ρ < +∞.

We denote by Dρ,β
T (Ξ) the space of all such couples (u′, u♯); it is equipped with the norm∥∥(u′, u♯)∥∥Dρ,β

T

··=
∥∥u′∥∥

Cβ
T

+
∥∥u#∥∥

Cρ
T

+ sup
t∈(0,T ]

tβ/2
∥∥u#t ∥∥Cβ+ρ .

For two reference functions Ξ1,Ξ2 ∈ C ρ
T and u1 = (u′1, u

#
1 ) ∈ Dρ,β

T (Ξ1) and u2 = (u′2, u
#
2 ) ∈

Dρ,β
T (Ξ2) we set

dDρ,β
T

(u1,u2) ··=
∥∥u′1 − u′2

∥∥
Cβ

T

+
∥∥u#1 − u#2

∥∥
Cρ

T

+ sup
t∈(0,T ]

tβ/2
∥∥u#1 − u#2

∥∥
β+ρ

.

3.2 – Noise enhancement and product definition. Fix a positive time horizon T0, set

L ··= (∂t −∆)

and write L −1 for the resolvent operator with null initial condition at time 0. Define
L : CT0

C∞ × C([0, T0],R) −→ CT0
C∞ × CT0

C∞

(ℓ, c) −→
(
ℓ,L −1(ℓ)⊙ ℓ− c

)
.

The letter L is chosen for ‘lift’. The space N of enhanced noises is the closure in CT0
Cα−2×

CT0C
2α−2 of the range of L. As a shorthand notation, for c ∈ C([0, T0],R), we set

Lc(·) ··= L(·, c). (3.4)

We denote by
ζ̂ = (ζ, ζ(2))

a generic element of N and set here
Z ··= L −1(ζ) ∈ C α

T0
.

The natural norm of ζ̂ as an element of the product space is denoted by ∥ζ̂ ∥. The following
statement provides a large class of random noises with a natural enhancement as random
element of N. It is proved in Appendix A. We write Pt for et∆.

6 – Theorem. Let (ξt)0≤t≤T0
stand for a time-dependent Gaussian random distribution on T2 with

covariance of the form
E
[
(ξt, ϕ)(ξs, ψ)

]
= c(t, s)⟨ψ ⋆ C, ϕ⟩L2

for some distribution C on T2. We assume that the Fourier transform of C satisfies for some
η < 1− α the condition

|Ĉ(k)| ≲ |k|η,
and that the function c satisfies the inequality

0 ≤ c(t, t) + c(s, s)− 2c(s, t) ≤ |t− s|δ

for some positive exponent δ. Then one defines a random variable X ⊙ ξ ∈ L1(Ω, CTC
2α−2)

setting (
X ⊙ ξ)(t) ··=

∫ t

0

(
Pt−s(ξs)⊙ ξt − E[Pt−s(ξs)⊙ ξt]

)
ds (3.5)

One further has X ⊙ ξ ∈ Lp(Ω, CTC
2α−2) for all 1 ≤ p < ∞ and if ξε stands for a space

regularization of ξ then
L
(
Xε ⊙ ξε,E[Xε ⊙ ξε]

)
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converges in Lp(Ω, CTC
2α−2) to X ⊙ ξ as ε > 0 goes to 0.

The end of this section deals with deterministic enhanced noises. The datum of an element
of N allows to give a definition of some a priori ill-defined product.

7 – Definition. Pick ζ̂ ∈ N and β > 2 − 2α and 0 < t ≤ T0. Let u ∈ C([0, T ] × T2) be such that
for each t ∈ [0, T ] one has ut ∈ Dβ(Zt). We define the product utλt as the element of Dβ(λt)
specified by the decomposition

utλt ··= ut < λt + (utλt)
#,

where
(utλt)

# ··= λt < ut + u#t ⊙ λt + C
(
u′t, Zt, λt

)
+ u′tζ

(2)
t

and
∥(utλt)

#∥Cα+β−2 ≲ ∥u∥Dβ(Zt)

(
∥λt∥Cα−2 + ∥Zt∥Cα∥λt∥Cα−2 +

∥∥ζ(2)t

∥∥
C2α−2

)
. (3.6)

For ζ̂i =
(
ζi, ζi(2)

)
∈ N, Zi = L −1(ζi) and ui

t ∈ Dβ(Zi
t), with i ∈ {1, 2}, set

m ··= max
i∈{2,3}

{∥∥ζi∥∥
Cα−2 ,

∥∥ζi(2)∥∥
C2α−2 , ∥ui

t∥Dβ(Zi
t)

}
.

The proof of the following proposition can be found in [11], Theorem 3.7 therein.

8 – Proposition. We have the local Lipschitz estimate∥∥∥(u1
t ζ

1
t )

# −
(
u2
t ζ

2
t

)#∥∥∥
Cα+β−2

≲m dDβ

(
u1
t ,u

2
t

)
+

∥∥ζ̂ 1 − ζ̂ 2
∥∥
N
,

and the function t 7→ utλt is in CTC
α−2 for u ∈ Dα,β

T (X).

The starting point of the next statement is the description for each time of the right hand
side of a parabolic equation as a < paracontrolled distribution whenever this makes sense.
The statement provides as an outcome a description of the solution of the equation as a ≺
paracontrolled function. This can be read as a kind of Schauder-type estimate in the setting of
paracontrolled calculus. See Section 5 of [11] for a proof.

9 – Proposition. Pick a positive regularity exponent b. For π ∈ CTC
α−2 let Π ∈ C α

T be the solution
of the equation

(∂t −∆)Π = π

with null initial condition at time 0. Then for every w′, w# ∈ C α
T such that

sup
t∈(0,T ]

tβ/2
∥∥w#

t

∥∥
(α−2)+β

<∞ (3.7)

and u0 ∈ Cα, the solution u to the equation
(∂t −∆)u = w′ < π + w#, u(0) = u0, (3.8)

belongs to Dα,β
T (Π) and u′ = w′. We further have the estimate

∥(u′, u♯)∥Dα,β
T (Π) ≲ ∥u0∥Cα + T (α−β)/2

(
∥w′∥Cα

T

(
1 + ∥π∥CTCα−2

)
+ sup

t∈(0,T ]

tβ/2
∥∥w#

t

∥∥
C(α−2)+β

)
.

For different w′
i, w

#
i satisfying condition (3.7), initial conditions ui,0 and noises πi ∈ CTC

α−2,
for i ∈ {1, 2}, setting

m′ ··= max
i∈{1,2}

{
1, ∥w′

i∥Cα
T
, ∥πi∥CTCα−2

}
and denoting by u1, u2 the corresponding solutions to equation (3.8) with corresponding para-
controlled decomposition u1,u2, we have

dDα,β
T

(u1,u2) ≲ ∥u1,0 − u2,0∥Cα + P (m′)T (α−β)/2
(
∥w′

1 − w′
2∥Cα

T
+ ∥π1 − π2∥CTCα−2

+ sup
t∈(0,T ]

tβ/2
∥∥w#

1 (t)− w#
2 (t)

∥∥
C(α−2)+β

)
,



11

for some quadratic polynomial P .

3.3 – Long range mean field equations. As a direct application of the results of Section
3.1 we treat in this section a particular case of mean field singular stochastic PDE where the
function f in (1.3) has a simple structure. Let a function F ∈ C3

b (R
2,R) and a C2

b kernel k(z, z′)
on the torus T2 be given, together with a constant β ∈ (2/3, α). For a ∈ Cα and µ ∈ Pp(C

α)
we set in this section

f(a, µ)(z) =

∫
Cα

∫
T2

F
(
a(z), b(z′)

)
k(z, z′) dz′µ(db). (3.9)

This is a linear function of its measure argument. The setting and results of Section 3.1 are
sufficient to deal with the mean field equation

(∂t −∆)u = f(u,L(ut))ζ + g(u,L(ut)), (3.10)
when f has the form (3.9) and g satisfies the following Lipschitz condition.

Assumption (Ag) – One has ∥g
(
a1, µ1

)
− g

(
a2, µ2

)
∥C(α−2)+β ≲ ∥a1−a2∥Cα +Wp,Cα

(
µ1, µ2

)
.

We first deal with the paracontrolled structure of f(a, µ). Fix t > 0 and some reference
function Xt ∈ Cα.

10 – Proposition. For a ∈ Dβ(Xt) and µ ∈ Pp(C
α) one has

f(a, µ) = f(a, µ)′ < Xt + f(a, µ)#

with
f(a, µ)′(z) =

∫
Cα

∫
T2

∂1F
(
a(z), b(z′)

)
k(z, z′) dz′µ(db),

and
∥f(a, µ)#∥Cα+β ≲

(
1 + ∥Xt∥2Cα

)(
1 + ∥a′∥Cβ + ∥a#∥Cα

)(
1 + ∥a′∥Cβ + ∥a#∥Cα+β

)
.

Furthermore, for Xi
t ∈ Cα and ai ∈ Dβ(Xi

t), µi ∈ Pp(C
α), for 1 ≤ i ≤ 2, one has

∥f(a1, µ1)
# − f(a2, µ2)

#∥Cα+β ≲ dDβ

(
a1, a2

)
+Wp,Cα

(
µ1, µ2

)
+ ∥X1

t −X2
t ∥Cα , (3.11)

for an implicit constant that is a polynomial of degree 3 on

max
i=1,2

{
1, ∥ai∥Dβ(Xi),Wp,Cα(µi, δ0), ∥Xi

t∥Cα

}
.

Proof – We paralinearize with respect to the z variable, with z′ in the role of a parameter in
the paraproducts below. We use the shorthand notations

kz′(z) ··= k(z, z′), Fb(z′)(w) ··= F (w, b(z′)).

With these notations one has
F (a, b(z′)) = ∂1F (a, b(z

′)) < a+ Fb(z′)(a)
♯

=
{
∂1F (a, b(z

′))a′
}
< Xt + ∂1F (a, b(z

′)) < a#

+ ∂1F
(
a, b(z′)) < (a′ < Xt)−

(
∂1F

(
a, b(z′)

)
a′ < Xt

)
+ Fb(z′)(a)

♯

and

f(a, µ) =

{
a′
∫
T2×Cα

∂1F
(
a, b(z′)

)
kz′ dz′µ(db)

}
< Xt

+

∫
T2×Cα

((
∂1F

(
a, b(z′)

)
a′ < Xt

)
kz′ −

{
kz′∂1F

(
a, b(z′)

)
a′
}
< Xt

)
dz′µ(db)
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+

∫
T2×Cα

kz′

{
∂1F (a, b(z

′)) < (a′ < Xt)−
{
∂1F (a, b(z

′))a′
}
< Xt

}
dz′µ(db)

+

∫
T2×Cα

kz′Fb(z′)(a)
♯ dz′µ(db) +

∫
Cα

∫
T2

(
∂1F (a, b) < a#

)
kz′ dz′µ(db)

=··
{
a′
∫
T2×Cα

∂1F
(
a, b(z′)

)
kz′ dz′µ(db)

}
< Xt + f(a, b)#.

We estimate each term separately to show that the remainder is regular, using commutator type
estimates when needed. First, since kz′ is C2

b and α+ β < 2 we have from (3.1) the continuity
estimate ∥∥∥({∂1F (a, b(z′))a′} < Xt

)
kz′ −

{
kz′∂1F

(
a, b(z′)

)
a′
}
< Xt

∥∥∥
Cα+β

≲ ∥kz′∥C2α∥∂1F
(
a, b(z′)

)
a′∥Cβ∥Xt∥Cα

≲ ∥k∥C2
b

(
1 + ∥a∥Cα

)
∥a′∥Cβ∥Xt∥Cα

≲
(
1 + ∥Xt∥2Cα

)(
1 + ∥a′∥2Cβ + ∥a#∥2Cα

)
and ∥∥∥∂1F (a, b(z′)) < (a′ < Xt)−

{
∂1F (a, b(z

′))a′
}
< Xt

∥∥∥
Cα+β

≲ ∥∂1F (a, b(z′))∥Cβ∥a′∥Cβ∥Xt∥Cα

≲
(
1 + ∥a∥Cα

)
∥a′∥Cβ∥Xt∥Cα

≲
(
1 + ∥Xt∥2Cα

)(
1 + ∥a′∥2Cβ + ∥a#∥2Cα

)
and

∥kz′Fb(z′)(a)
♯∥Cα+β ≲ ∥Fb(z′)∥C3

b

(
1 + ∥a∥2Cα

)
≲

(
1 + ∥Xt∥2Cα

)(
1 + ∥a′∥2Cβ + ∥a#∥2Cα

)
and

∥
(
∂1F (a, b(z

′)) < a#
)
kz′∥Cα+β ≲

(
1 + ∥a∥Cα

)
∥a#∥Cα+β

≲
(
1 + ∥Xt∥Cα

)(
1 + ∥a′∥Cβ + ∥a#∥Cα

)
∥a#∥Cα+β .

Integrating over z′ and summing we get

∥f(a, µ)#∥Cα+β ≲
(
1 + ∥Xt∥2Cα

)(
1 + ∥a′∥Cβ + ∥a#∥Cα

)(
1 + ∥a′∥Cβ + ∥a#∥Cα+β

)
.

We leave the proof of the estimate (3.11) to the reader as it is similar to what is above. �

For ζ̂ ∈ N we write Z ··= L −1(ζ), so Z ∈ C α
T . We emphasize below the fact that u is

paracontrolled in the product of f(ut, µt) with λt by writing f(ut, µt)λt.

11 – Proposition. Assume Assumption (Ag) holds and fix 0 < T0 <∞. For every initial condition
u0 ∈ Cα, for every enhanced noise ζ̂ ∈ N and any µ ∈ Pp(C α

T0
) there exists a positive time

horizon T ≤ T0 and a unique solution to the equation
(∂t −∆)u = f(ut, µt)λt + g(ut, µt) (3.12)

in Dα,β
T (Z). This solution is a locally Lipschitz function of u0 ∈ Cα, µ ∈ Pp(C α

T ) and ζ̂ ∈ N.

Proof – Rewrite equation (3.12) as the fixed point equation

ut = Ptu0 +

∫ t

0

Pt−s

(
f(us, µs)ζs + g(us, µs)

)
ds.

We get from Proposition 10 and Proposition 8 that f(us, µs)ζs + g(us, µs) is for each s an
element of Dα(ζs) with Gubinelli derivative f(us, µs) and remainder (f(us, µs)ζs)

#+ g(us, µs).
With Proposition 9 in mind we check that f(u, µ) ∈ C α

T0
and (f(us, µs)ζs)

#+g(us, µs) satisfies
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(3.7). Take u ∈ Dα,β
T (Z). First one has for (s, x), (t, y) ∈ [0, T0]× T2∣∣f(ut, µt)(y)− f(us, µs)(x)

∣∣ = ∣∣∣ ∫
T2×Cα

T

F
(
ut(y), vt(z)

)
k(y, z)− F

(
us(x), vs(z)

)
k(X,L) dzµ(dv)

∣∣∣
≤

∫
T2×Cα

T

(∣∣F (ut(y), vt(z))(k(y, z)− k(X,L)
)∣∣

+
∣∣F (ut(y), vt(y))− F

(
us(x), vs(x)

)∣∣ |k(X,L)|) dzµ(dv)

≲
∫
T2×Cα

T

(
|x− y|+

(
∥u∥Cα

T
+ ∥v∥Cα

T

)(
|x− y|α + |t− s|α/2

))
dzµ(dv)

≲
(
1 + ∥u∥Cα

T
+Wp,Cα

T
(v, δ0)

)(
|x− y|α + |t− s|α/2

)
,

so we have the norm estimate
∥f(u, µ)∥Cα

T0
≲

(
1 + ∥Z∥Cα

T0

)(
1 + ∥u∥Dα,β

T0

+Wp,Cα
T0
(µ, δ0)

)
.

Second, one gets for 0 < T ≤ T0

sup
t∈(0,T ]

tβ/2
∥∥(f(ut, µt)λt

)#
+ g(ut, µt)

∥∥
α+β−2

≲
(
1 + ∥ζ̂ ∥3N

)(
1 + ∥u∥2Dα,β

T

+Wp,Cα
T

(
µ, δ0

))
.

(3.13)
from Proposition 10 and Proposition 8. It follows from Proposition 9 that the map

Φζ̂,u0,µ
: Dα,β

T (Z) → Dα,β
T (Z)

which associates to u ∈ Dα,β
T (Z) the solution w of the equation

Lw = f(u, µ)ζ + g(u, µ),

with initial condition w0 = u0, is well-defined and satisfies the estimate∥∥Φζ̂,u0,µ
(u)

∥∥
Dα,β

T

≲ ∥u0∥Cα + T
α−β

2

(
1 +

∥∥ζ̂ ∥∥3
N

)(
1 + ∥u∥2Dα,β

T (X)
+Wp,Cα

T

(
µ, δ0

))
. (3.14)

One can then find
M =M

(
∥u0∥α ∨ ∥ζ̂ ∥N ∨ Wp,Cα

T

(
µ, δ0

))
and

T = T
(
∥u0∥α ∨ ∥ζ̂ ∥N ∨ Wp,Cα

T

(
µ, δ0

))
such that the map Φζ̂,u0,µ

sends the ball
{
u ∈ Dα,β

T (Z) ; ∥u∥Dα,β
T

≤ M
}

into itself. One can
choose M as an increasing function of its arguments and T as a decreasing function of its
arguments.
Given ζ̂1, ζ̂2 in N, two initial conditions u01, u02 in Cα and µ1, µ2 in Pp(C α

T ), set

M ′ =M
(
max
i=1,2

{
∥u0i∥Cα ∨ ∥ζ̂i∥N ∨Wp,Cα

T

(
µi, δ0

)})
.

For ∥u∥Dα,β
T

≤M ′, Proposition 9 tells us that

dDα,β
T

(
Φζ̂1,u01,µ1

(u1),Φζ̂2,u02,µ2
(u2)

)
≲ ∥u01 − u02∥Cα + T (α−β)/2

{
dDα,β

T

(
u1,u2

)
+ ∥ζ̂1 − ζ̂2∥N +Wp,Cα

T

(
µ1, µ2

)}
.

So choosing T small ensures that the map Φζ̂,u0,µ
has a unique fixed point u = (u′, u♯) which

depends in a locally Lipschitz way on u0 ∈ Cα, µ ∈ Pp(C α
T ) and ζ̂ ∈ N. �

Before we can consider the case where ζ is random and formulate a fixed point equation to
get µt = L(ut) we need a setting where the local solution to equation (3.12) can be turned into
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a fixed horizon solution. The following statement is a first step to do that. It gives an explosion
criterion. It is a small variation on a similar result in Theorem 5.4 of [11].

12 – Lemma. For every R > 0, the solution u to equation (3.12) is defined up to the time
T ∗ = inf

{
t ≥ 0, ∥u(t)∥L∞ ≥ R

}
.

Proof – The existence time T from Proposition 11 is a decreasing function
T = T

(
∥u0∥Cα , ∥ζ̂∥N,Wp,Cα

T
(µ, δ0)

)
of its arguments. One fixes here ζ̂ and µ and consider T as a function of ∥u0∥Cα . We obtain
below a constant bound for ∥u∥Cα that is valid as long as ∥u∥L∞ ≤ R. As ∥u∥CTCα ≲ζ̂ ∥u∥Dα,β

T

we actually prove that
∥u∥Dα,β

T
≲µ,ζ̂ 1 + ∥u∥2CTL∞ .

This is done as follows. Since u′t = f(ut, vt), we have
∥u′∥Cβ

T
≲µ 1 + ∥u∥Cβ

T
.

Yet since u = u′ ≺ X + u# where u′ appears as an L∞ contribution we have
∥u′∥Cβ

T
≲µ,ζ̂,R 1 + ∥u#∥Cβ

T
.

We now use the fact that
(∂t −∆)u# = Φ# (3.15)

where
Φ# =

(
f(u, µ)ζ − f(u, µ) ≺ ζ

)
+ g(u, µ).

The refined paralinearization lemma C.1 from [11] ensures that

∥∥f(u′ ≺ X + u#, µ
)
− f ′

(
u′ ≺ X + u#, µ

)
≺

(
u′ ≺ X + u#

)∥∥
Cα+β

≲µ

(
1 + ∥u′ ≺ X∥2Cα + ∥u#∥2L∞

)(
1 + ∥u#∥Cα+β

)
≲ζ̂,µ

(
1 + ∥u∥2L∞

)(
1 + ∥u#∥Cα+β

)
,

so using the continuity relation (3.3) and the estimate (3.6) from Definition 7 we obtain

∥Φ#∥Cα+β−2 ≲ζ̂,µ

(
1 + ∥u∥2CTL∞

)(
1 + ∥u∥Cα

T
+ ∥u#∥Cα+β

)
≲ζ̂,µ

(
1 + ∥u∥2CTL∞

)(
1 + ∥u#∥Cα

T
+ ∥u#∥Cα+β

)
,

where the constant is a polynomial in ∥ζ̂ ∥N of degree 3. Schauder estimates – Lemma 5.3 of
[11], ensure that

sup
0<t<T

tβ/2∥u#∥Cα+β ≲u0 1 + sup
0<t<T

tβ/2∥Φ#∥Cα+β−2 , (3.16)

and
∥u#∥Cα

T
≲u0

1 + sup
0<t<T

tβ/2∥Φ#∥Cα+β−2 , (3.17)

so we have
sup

0<t≤T
tβ/2∥Φ#∥α+β−2 ≲u0,µ,ζ̂

(
1 + ∥u∥2CTL∞

)(
1 + sup

0<t≤T
tβ/2∥Φ#∥Cα+β−2

)
. (3.18)

The coefficient in front of the sup term in the right hand side does not allow a priori to absorb
that term in the left hand side. We follow [11] and use a scaling argument to isolate the Φ#

terms. Let
(Λλu)(t, x) ··= u(λ2t, λx)

and
T2
λ =

(
R/(2πλ−1Z)

)2
.

We have
(∂t −∆) ◦ Λλ = λ2Λλ ◦ (∂t −∆)
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and
ζλ ··= λ2−αΛλζ, ∥ζλ∥α−2 ≃ ∥ζ∥Cα−2 ,

a deterministic estimate, and
uλ ··= Λλu

is a solution of the equation
(∂t −∆)uλ = λαf(uλ, µλ)ζλ + λ2g(uλ, µλ).

We now rewrite (3.18) for the rescaled equation, that is replacing f with λαf and g with λ2g,
the bound for Φ# becomes for λ ≤ 1

∥Φ#,λ∥Cα+β− ≲ (λα + λ2)
(
1 + ∥uλ∥2CTL∞

)(
1 + ∥u#,λ∥Cα

T
+ ∥u#,λ∥Cα+β

)
≲ λα

(
1 + ∥uλ∥2CTL∞

)(
1 + ∥u#,λ∥Cα

T
+ ∥u#,λ∥Cα+β

)
,

so
sup

0≤t≤T/λ2

tβ/2∥Φ#,λ∥Cα+β−2 ≲ λα
(
1 + ∥u∥2CTL∞

)(
1 + sup

0≤t≤T/λ2

tβ/2∥Φ#,λ∥Cα+β−2

)
,

and choosing λ small enough we finally get after inverse scaling
sup

0≤t≤T
tβ/2∥Φ#∥Cα+β−2 ≲u0,ζ̂,µ

1 + ∥u∥2CTL∞ .

In the end we obtain from the estimates (3.16) and (3.17) the bound
∥u#∥Cα

T
+ sup

0≤t≤T
tβ/2∥u#∥Cα+β ≲u0,ζ̂,µ

1 + ∥u∥2CTL∞ .

�

We are thus looking now for a condition on f that ensures a good control of the L∞ norm
of the solution to equation (3.12). We follow Proposition 3.28 of Cannizzaro, Friz & Gassiat’s
work [7] and introduce the following assumption to control the L∞ norm of the solution u to
(4.5).
Assumption (B) – There exists a positive constant C0 such that

f(±C0, µ) = 0, g(±C0, µ) = 0

for all µ ∈ Pp(C
α).

Examples of such functions can be constructed from functions F such that F (·, µ) is com-
pactly supported with a support independent of µ. Alternatively one can think of functions of
the form F (c, µ) = F1(c)F2(µ) with separate variables, with F1(±C0) = 0. We now specialize
the result of Proposition 11 to the case where ζ̂ is the random enhancement ξ̂ of a random noise
ξ provided by Theorem 6. We emphasize that point by writing uξ̂ for the solution to equation
(3.12) in that case. Given εk > 0 set

ck ··= E[Xεk ⊙ ξεkt ].

13 – Lemma. There is a sequence εk > 0 converging to 0 such that one has
u = lim

n+∞
uεk

where uεk stands for the well-defined solution in
[
0, T (∥u0∥Cα)

]
of the equation

(∂t −∆)uεk = f(uεk(t), µt)ζ
εk
t − ckf(u

εk(t), µt)f(u
εk(t), µt)

′ + g(uεk(t), µt) (3.19)

Proof – The enhanced noise ζ̂ is the limit in N of the sequence of enhanced smooth noises
ζ̂εk ··= (ζεk , (X ⊙ ζ)εk) where

(X ⊙ ζ)εk ··= ζεk ⊙Xεk − ck.

It follows from Proposition 11 that the function u is the limit in Cα of the sequence ũεk where
ũn is the solution to equation (3.12) with noise ζ̂εk . We have
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f(ũn, µ)ζ
εk + g(ũεk , µ) = f(ũεk , µ) < ζεk + ζεk < f(ũεk , µ) + f(ũεk , µ)# ⊙ ζεk

+ C
(
f(ũεk , µ)′, Xn, ζ

εk) + f(ũεk , µ)
(
X ⊙ ζ

)εk + g(ũεk , µ)

= f(ũεk , µ)ζεk − ck(ff
′)(ũεk , µ) + g(ũεk , µ),

so ũεk is a solution of the equation
(∂t −∆)ũεk = f(ũn(t), µt)ζ

εk
t − ck(ff

′)(ũεk(t), µt) + g(ũεk(t), µt),

and one has indeed uεk = ũεk . �

14 – Proposition. Under the assumptions (Ag-B), if ∥u0∥L∞ ≤ C0 then uξ̂ is defined globally in
time.

Proof – For every n ∈ N the constant function C0 is a sub-solution and −C0 is a super-solution
of renormalized regularized equation (3.19). It follows from the classical comparison principle
that one has

|uεk(t, x)| ≤ C0

for all t ≤ T and x ∈ T2. The local Lipschitz continuity of uξ̂ as a function of ξ̂ and the
convergence in N of ξ̂εkt ensure that uεk is converging to u in CTL

∞. It follows that we have
∥u(t)∥L∞ ≤ C0 for all 0 ≤ t ≤ T . The result of the statement follows from the explosion
criterion of Lemma 12. �

15 – Proposition. If ∥u0∥L∞ ≤ C0 the random variable ∥u∥Dα,β
T

(ω) has moments of any order.
Proof – Following what was done in the proof of the Proposition 22 we have an estimate

∥u∥Dα,β
T

≲ζ̂,u0,µ
1 + ∥u∥2CTL∞ ≲ξ̂,u0,µ

1 + C0

with an implicit multiplicative constant that is polynomial function in ∥ξ̂∥N of degree 3. �

16 – Theorem. Fix T0 > 0. Suppose that f and g satisfy assumptions (Ag-B) and pick 1 ≤ p <
∞. There exists a positive time T ≤ T0 with the following property. For every u0 ∈ Cα

there exists a unique solution to the mean field equation (3.10) in Lp(Ω,C α
T0

)
. It is a locally

Lipschitz continuous function of the initial condition u0 and the enhanced noise ξ̂ ∈ L12p(Ω,N).
Furthermore u is the limit in Lp

(
Ω,C α

T0

)
of the solutions uε of the renormalized equations

(∂t −∆)uε = f
(
uε,L(uε(t))

)
ζε − cε(t)(∂1ff)

(
uε,L(uε(t))

)
+ g

(
uε,L(uε(t))

)
.

Proof – Pick 0 < T ≤ T0. Write uµ

ξ̂,u0
for the solution to equation (3.12). We define from

Proposition 11 a map Ψξ̂,u0
from Lp(Ω,C α

T ) into itself setting

Ψξ̂,u0
(µ) = uµ

ξ̂,u0
.

One has from the estimate (3.14)∥∥uµ

ξ̂,u0

∥∥
Dα,β

T

≲ ∥u0∥Cα + T (α−β)/2
(
1 +

∥∥ξ̂ ∥∥3
N

)(
1 + ∥uµ

ξ̂,u0
∥2Dα,β

T (X)
+Wp,Cα

T

(
µ, δ0

))
≲ ∥u0∥Cα + T (α−β)/2

(
1 +

∥∥ξ̂ ∥∥3
N

){
1 + ∥uµ

ξ̂,u0
∥1/2
Dα,β

T (X)

(
1 + ∥u0∥Cα +Wp,Cα

T

(
µ, δ0

))3/2

+Wp,Cα
T

(
µ, δ0

)}
.
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Integrating and using Cauchy-Schwarz inequality we get for E
[
∥uµ

ξ̂,u0
∥2p
Dα,β

T

]2 the upper bound

∥u0∥4pCα + T 4pδ
(
1 + E

[∥∥ξ̂ ∥∥12p
N

]){
E
[
∥uµ

ξ̂,u0
∥2p
Dα,β

T

](
1 + ∥u0∥Cα +Wp,Cα

T

(
µ, δ0

))6p

+Wp,Cα
T

(
µ, δ0

)4p}
.

So for T = T
(
Wp,Cα

T

(
µ, δ0

))
sufficiently small we have

E
[
∥uµ

ξ̂,u0
∥2p
Dα,β

T

] 1
2p ≲ ∥u0∥Cα + T δ

(
1 + E

[∥∥ξ̂∥∥12p
N

] 1
4p

)
Wp,Cα

T

(
µ, δ0

)
.

We have
∥u∥Cα

T
≲ (1 + ∥X∥Cα

T
)∥uµ

ξ̂,u0
∥Dα,β

T (X),

so we have from Cauchy-Schwarz inequality

E
[
∥uµ

ξ̂,u0
∥pCα

T

] 1
p ≲ E

[
∥uµ

ξ̂,u0
∥2p
Dα,β

T

] 1
2p

(
1 + E

[∥∥ξ̂∥∥2p
N

] 1
2p

)
(3.20)

≲
(
1 + ∥u0∥Cα

)(
1 + E

[∥∥ξ̂∥∥12p
N

] 1
3p

)(
1 + T δWp,Cα

T

(
µ, δ0

))
. (3.21)

Pick A > 0. For M sufficiently big and T = T (M,A) even smaller, for every u0 ∈ Cα with
∥u0∥Cα ≤ A, the map Ψξ̂,u0

sends the ball{
µ ∈ Lp(Ω,C α

T ) ; Wp,Cα
T
(µ, δ0) ≤M

}
into itself. Now pick µ1, µ2 in Lp(Ω,C α

T ), two initial conditions u01, u02 in Cα and ξ̂1, ξ̂2 in
L12p(Ω,N) such that one has

E
[∥∥ξ̂i∥∥8pN ]

∨ ∥u0i∥Cα ≤ A, Wp,Cα
T

(
µi, δ0

)
≤M,

for 1 ≤ i ≤ 2. Write ui for Φξ̂i,u0i
(µi) and define the random variable

R ··=
∥∥ξ̂1∥∥N +

∥∥ξ̂2∥∥N.
We have from the Schauder estimates of Proposition 9

dDα,β
T

(
u1,u2

)
≲R ∥u01 − u02∥Cα+ T δ

{∥∥ξ̂1 − ξ̂2
∥∥
N
+ dDα,β

T
(u1,u2) +Wp,Cα

T

(
µ1, µ2

)}
≲R ∥u01 − u02∥Cα+ T δ

{∥∥ξ̂1 − ξ̂2
∥∥
N
+ dDα,β

T
(u1,u2)

1
2 +Wp,Cα

T

(
µ1, µ2

)}
,

for some implicit positive multiplicative constant that is a polynomial of R, which is of degree
5, combining Proposition 9, Proposition 10 and Proposition 8. Integrating and using Cauchy-
Schwarz inequality we obtain the estimate

E
[
dDα,β

T

(
u1,u2

)2p]2
≲∥u01 − u02∥4pCα + E

[∥∥ξ̂1 − ξ̂2
∥∥4p
N

]
+ T 4pδ

{
E
[
dDα,β

T

(
u1,u2

)2p]
+Wp,Cα

T
(µ1, µ2)

4p
}
,

so taking T > 0 deterministic, small enough, independently of u0i and ξ̂i, ensures that we have

E
[
dDα,β

T

(
u1,u2

)2p]2
≲ ∥u01 − u02∥4pCα + E

[
∥ξ̂1 − ξ̂2∥4p

]
+ T 4pδWp,Cα

T
(µ1, µ2)

4p.

We have moreover
∥u1 − u2∥Cα

T
≲

(
1 + ∥X1∥Cα

T

)
dDα,β

T
(u1,u2) + ∥X1 −X2∥Cα

T
∥u2∥Dα,β

T (X2)
,

so we obtain from Cauchy-Schwarz inequality that

E
[
∥u1 − u2∥pCα

T

]2
≲

(
1 + E[∥X1∥2pCα

T
]
)

E
[
dDα,β

T
(u1,u2)

2p
]
+ E

[
∥X1 −X2∥2pCα

T

]
E
[
∥u2∥2pDα,β

T (X2)

]
,
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hence
Wp,Cα

T
(Ψ(µ1),Ψ(µ2)) ≲ ∥u01 − u02∥4pCα + E

[
∥ξ̂1 − ξ̂2∥4pN

]
+ T δWp,Cα

T
(µ1, µ2).

We conclude that equation (1.3) has a unique local solution u in Pp(C α
T ), and that the law

L(u) ∈ Pp(Dα,β
T (X)) of u depends continuously on ξ̂ ∈ L12p(Ω,N) and on u0 ∈ Cα. �

We remark that the integrability exponent 12p in the condition ξ̂ ∈ L12p(Ω,N) in Proposition
15 comes from both the nonlinearity and the use of the Cauchy-Schwarz inequality when passing
from Dα,β

T to C α
T . In the next section we obtain a better exponent 8p as the last step is skipped,

working directly in Dα,β
T . For the class of Gaussian noises of Theorem 6 we have ξ̂ ∈ Lq(Ω,N)

for all 1 ≤ q <∞.

4 – Mean field type singular SPDEs

We deal in this section with a large family of mean field type singular SPDEs (1.3). The
enhancement of the noise needed to make sense of (1.3) is specific to the mean field setting
and described in Section 4.1. The paracontrolled structure needed to make sense of (1.3) is
described in Section 4.2. This structure is proved to be stable by a certain solution map to
a fixed point equation (4.5) similar to (1.3) where the measure argument is frozen and has
a particular structure. The proper statement and proof of item (a) of Theorem 1 is done in
Section 4.3.

4.1 – Mean field enhancement of the noise. We work here as above with the class of random
Gaussian noises specified in Theorem 6. The random field ξ is initially defined on a probability
space (Ω,F ,P). We extend it canonically as a random variable defined on the probability space(
Ω2,F⊗2,P⊗2

)
setting

ξ(ω,ϖ) = ξ(ω).

We also define
ξ(ω,ϖ) ··= ξ(ϖ);

this is under P⊗2 an independent copy of ξ. For a distribution Λ on T2 and a positive regular-
ization parameter ε set

Λε ··= Λ ◦ eε∆ ∈ C∞.

Recall T0 stands for the time horizon that we use in our definition of the space of enhanced
noises N – the interval [0, T0] is our maximal interval of time. Pick 1 ≤ p < ∞. We define on(
Ω2,F⊗2,P⊗2

)
the random variable

X ··= L −1(ξ).

and denote by
ξ ⊙X ∈ L8p(P⊗2),

the limit of the ξε(ω)⊙ L −1(ξ ε(ϖ)) as ε > 0 goes to 0. We have∥∥(ξ ⊙X
)
(ω, ·)

∥∥
L8p(Ω,CT0

C2α−2)
<∞

and ∥∥(ξ ⊙X
)
(·, ϖ)

∥∥
L8p(Ω,CT0

C2α−2)
<∞

for P-almost every ω ∈ Ω and ϖ ∈ Ω. We will use the notation E to denote the expectation
operator with respect to ϖ on the product probability space.

17 – Definition. The mean field enhancement of the random noise ξ is the random variable

ξ̂+(ω,ϖ) ··=
(
ξ(ω), (ξ ⊙X)(ω), ξ(ϖ),

(
ξ ⊙X

)
(ω,ϖ)

)
∈ N2,
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defined on
(
Ω2,F2,P⊗2

)
. We define on (Ω,F ,P) the random variable

Lξ̂+Mω ··= ∥ξ(ω)∥CT0
Cα−2 +

∥∥ξ(2)(ω)∥∥
CT0

C2α−2

+ E
[
∥ξ(ω, ·)∥4CT0

Cα−2

] 1
4 + E

[
∥(ξ ⊙X)(ω, ·)∥4CT0

C2α−2

] 1
4 .

(4.1)

This is an element of L8p(Ω,R) – it actually has moments of any finite order.

4.2 – Paracontrolled structure for mean field singular SPDEs. The appropriate notion of
paracontrolled structure for the study of a large class of mean field singular SPDEs is captured
by the following definition.

18 – Definition. Pick an L2 random variable Λ : Ω → Cα. A Cα-valued random variable v on
Ω is said to be ω-paracontrolled by Λ if there are some random variables

δzv : Ω → Cβ

and
δµv : Ω → L

4
3

(
Ω, Cβ

)
and

v♯ : Ω → Cα+β

such that one has
v(ω) = (δzv)(ω) < Λ(ω) + E

[
(δµv)(ω, ·) < Λ(·)

]
+ v♯(ω) (4.2)

for P-almost all ω ∈ Ω, and
∥δzv∥L2(Ω) + ∥δµv∥L2(Ω) + ∥v♯∥L2(Ω) <∞.

We simply say that v is paracontrolled by Λ. We first check that the datum of a mean field
enhancement ξ̂+ of the random noise ξ comes with a natural definition of the product of ξ
by a random function v ∈ CTC

α with the property that vt is paracontrolled by Xt for each
0 < t ≤ T . To emphasize the fact that we use the paracontrolled structure of v to make sense
of that product we write

vtξt,

using a bold letter v. Set then
(vtξt)(ω) ··= vt(ω) < ξt(ω) + (vtξt)

♯(ω)

where
(vtξt)

♯(ω) ··= ξt(ω) < vt(ω) + v#t (ω)⊙ ξt(ω)

+ C
(
(δzv)(ω), X(ω), ξt(ω)

)
+ E

[
C
(
(δµv)(ω, ·), X(·), ξt(ω)

)]
+ (δzv)(ω)ξ

(2)
t (ω) + E

[
(δµv)(ω, ·)

(
ξ ⊙X

)
(ω, ·)

]
.

The proof of the next statement comes from standard continuity estimates on paraproducts
and correctors and from Hölder inequality in the expectation E; it is left to the reader.

19 – Proposition. One has P-almost surely vξ ∈ CTC
α−2 and

∥(vtξt)
#(ω)∥Cα+β−2 ≲

(
1 + Lξ̂+M2ω

)(
∥(δzv)(ω)∥Cβ + E

[
∥δµv∥

4
3

Cβ

] 3
4 + ∥v#(ω)∥Cα+β

)
.

Furthermore, for two enhanced noises ξ̂1+, ξ̂2+ in our class, and with vi ∈ CTC
α with vit

paracontrolled by Xi
t , for integers 1 ≤ i ≤ 2, for each 0 < t ≤ T , one has

∥(v1
t ξ

1
t )

#(ω)− (v2
t ξ

2
t )

#(ω)∥Cα+β−2

≲ (⋆)12(ω)

(
∥δzv1 − δzv

2∥Cβ + E
[
∥δµv1 − δµv

2∥
4
3

Cβ

] 3
4 + ∥v1# − v2#∥Cα+β + Lξ̂+1 − ξ̂+2Mω

)
,
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where
(⋆)12(ω) = P

(
max

i∈{1,2}

{
Lξ̂+iMω, ∥δzvi∥Cα ,E

[
∥δµvi∥

4
3

Cα

] 3
4 , ∥v#i∥Cα+β

})
,

for some quadratic polynomial P .

For a noise ξ ∈ CTC
α−2 in our class of noises we set

X ··= L −1(ξ) ∈ C α
T .

Fix t > 0. We prove now that the class of random functions on T2 paracontrolled by Xt is
stable by a certain family of nonlinear functions f : Cα × Wp(C

α) → Cα. This comes under
the form of a paralinearization formula. Our primary goal is to give a useful description of the
random variable f(vt,L(vt)) when vt is paracontrolled by Xt. For that purpose it will be useful
to lift any function f : Cα ×Wp(C

α) → Cα into a real valued function on Cα × Lp(Ω,P;Cα)
setting, with a slight abuse of notation,

f(v,A) ··= f
(
v,L(A)

)
,

for A ∈ Lp(Ω,P;Cα
T ). We assume in this work that f depends polynomially on its measure

argument
f(u, µ)(z) =

∫
F
(
u(z), v1(z), . . . , vm(z)

)
µ⊗m(dv1 . . . dvm) (4.3)

for some integer m ≥ 1, for a function F : Rm+1 → R of class C3
b – or is a linear combination

of such monomials. With m = 1, and compared to the long range interaction (3.9) studied in
Section 3.3, this function corresponds to a pointwise singular Dirac kernel

k(z, z′) = δz(z
′).

It will be useful to work on the probability space (Ωm+1,F⊗(m+1),P⊗(m+1)) and write
(ω, ω1, . . . , ωm)

for an element of Ωm+1. We set E
i for the expectation operator with respect to the variable ωi

and for I = (i1, . . . , ik) a subset of the integer interval [[1,m]] we write E
I for the expectation

operator with respect to the variables (ωi1 , . . . , ωik). In those terms, and for A ∈ Lp(Ω,P;Cα
T )

and µ = L(A), one has

f(v, µ)(z) = f(v,A)(z) = E
[[1,m]]

[
F
(
v(z), A(ω1)(z), . . . , A(ωm)(z)

)]
.

As F ∈ C3
b ⊂ C1

b one has

∥F (v,A(ω1), . . . , A(ωm)∥Cα ≲ 1 + ∥v∥Cα +

m∑
j=1

∥A(ωj)∥Cα ,

and as A ∈ Cα is integrable the function f(v,A) on T2 is indeed an element of Cα. For
i ∈ [[1,m]] we set

∂if(v,A)(z) ··= E
[[1,m]]

[
(∂iF )

(
v(z), A(ω1)(z), · · · , A(ωm)(z)

)]
.

20 – Proposition. Fix t > 0 and assume we are given two L8p(Ω,Dα(Xt)) random variables (h′, h♯)
and (k′, k♯) with corresponding Cα functions h, k on T2. Then f(h, k) is paracontrolled by Xt

in the sense of Definition 18, with
(δzf)(h, k)(ω) = (∂1f)

(
h(ω), k

)
h′(ω)

and
(δµf)(h, k)(ω,ϖ)

=

m∑
j=1

E
[[1,m]]\{j}

[(
∂j+1F

)(
h(ω), k(ω1), · · · , k(ωj−1), k(ϖ), k(ωj+1), · · · , k(ωm)

)]
k′(ϖ),



21

and

∥f(h(ω), k)#∥Cα+β ≲

(
1 + ∥Xt(ω)∥2Cα + E

[
∥Xt∥4Cα

] 1
2

)
×
(
1 + ∥h′(ω)∥Cβ + ∥h#(ω)∥Cα + E

[
∥k′∥4Cβ

] 1
4 + E

[
∥k#∥4Cα

] 1
4

)
×
(
1 + ∥h′(ω)∥Cβ + ∥h#(ω)∥Cα+β + E

[
∥k′∥4Cβ

] 1
4 + E

[
∥k#∥4Cα+β

] 1
4

)
.

Moreover for ξ̂+i ∈ L8p(Ω2,N2) and h and k in L8p(Ω,Dα(Xt)), for 1 ≤ i ≤ 2, we have

∥f
(
h1(ω), k1

)# − f
(
h2(ω), k2

)#∥Cα+β ≲ (⋆)12(ω)×{
∥X1

t (ω)−X2
t (ω)∥Cα + E

[∥∥X1

t −X
2

t

∥∥4
Cα

] 1
4 + dDβ

(
h1(ω), h2(ω)

)
+ E

[
dDβ

(
k1, k2

)4] 1
4

}
,

(4.4)
where

(⋆)12(ω) = P
(

max
i∈{1,2}

{
∥Xi

t(ω)∥Cα , E
[
∥Xi

t∥4Cα

] 1
4 , ∥hi(ω)∥Dα , E

[
∥ki∥4Dα

] 1
4

})
,

for some polynomial P .

Proof – One has from paralinearisation
F
(
h(ω), k(ω1), . . . , k(ωm)

)
= ∂1F

(
h(ω), k(ω1), . . . , k(ωm)

)
< h(ω) +

m∑
j=1

∂j+1F
(
h(ω), k(ω1), . . . , k(ωm)

)
< k(ωj)

+RF

(
h(ω), k(ω1), . . . , k(ωm)

)
=

(
∂1F

(
h(ω), k(ω1), . . . , k(ωm)

)
h′(ω)

)
< Xt(ω)

+

m∑
j=1

(
∂j+1F

(
h(ω), k(ω1), . . . , k(ωm)

)
k′(ωj)

)
< Xt(ωj) +RF +R0 +

m∑
j=1

Rj

where RF = RF

(
h(ω), k(ω1), · · · , k(ωm)

)
∈ Cα+β and

R0 =
{
∂1F

(
h(ω), k(ω1), . . . , k(ωm)

)
<

(
h′(ω) < Xt(ω)

)
−

(
∂1F

(
h(ω), k(ω1), . . . , k(ωm)

)
h′
)
< Xt(ω)

}
+ ∂1F

(
h(ω), k(ω1), · · · , k(ωm)

)
< h#(ω),

Rj =
{
∂j+1F

(
h(ω), k(ω1), · · · , k(ωm)

)
<

(
k′(ωj) < Xt(ωj)

)
−

(
∂j+1F

(
h(ω), k(ω1), · · · , k(ωm)

)
k′(ωj)

)
< Xt(ωj)

}
+ ∂j+1F

(
h(ω), k(ω1), · · · , k(ωm)

)
< k#(ωj).

From classical results in paradifferential calculus we have

∥RF ∥Cα+β ≲ ∥F∥C2

(
1 + ∥h(ω)∥2Cα +

m∑
j=1

∥k(ωj)∥2Cα

)

≲
(
1 + ∥Xt(ω)∥2Cα +

m∑
j=1

∥X(ωj)∥2Cα

)
×
(
1 + ∥h′(ω)∥2Cβ + ∥h#(ω)∥2Cα +

m∑
j=1

∥k′(ωj)∥2Cβ + ∥k#(ωj)∥2Cα

)
,
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and

∥R0∥Cα+β ≲ ∥∂1F
(
h(ω), k(ω1), · · · , k(ωm)

)
∥Cα

(
∥h′(ω)∥Cβ∥Xt(ω)∥Cα + ∥h#(ω)∥Cα+β

)

≲
(
1 + ∥h(ω)∥Cα +

m∑
j=1

∥k(ωj)∥Cα

)(
∥h′∥Cβ∥Xt(ω)∥Cα + ∥h#(ω)∥Cα+β

)
≲

(
1 + ∥Xt(ω)∥2Cα +

m∑
j=1

∥X(ωj)∥2Cα

)
×
(
1 + ∥h′(ω)∥Cβ + ∥h#(ω)∥Cα +

m∑
j=1

∥k′(ωj)∥Cβ + ∥k#(ωj)∥Cα

)
×
(
1 + ∥h′(ω)∥Cβ + ∥h#(ω)∥Cα+β +

m∑
j=1

∥k′(ωj)∥Cβ + ∥k#(ωj)∥Cα

)
,

and, for 1 ≤ i ≤ m, we have for ∥Ri∥Cα+β the upper bound(
1 + ∥Xt(ω)∥2Cα +

m∑
j=1

∥X(ωj)∥2Cα

)
×
{
1 + ∥h′(ω)∥Cβ + ∥h#(ω)∥Cα +

m∑
j=1

∥k′(ωj)∥Cβ + ∥k#(ωj)∥Cα

}

×
{
1 + ∥h′(ω)∥Cβ + ∥h#(ω)∥Cα + ∥k#(ωi)∥Cα+β +

m∑
j=1

∥k′(ωj)∥Cβ + ∥k#(ωj)∥Cα

}
.

So we have for
∥∥RF +

∑m
j=0Rj

∥∥
Cα+β the bound(

1 + ∥Xt(ω)∥2Cα +

m∑
j=1

∥Xt(ωj)∥2Cα

)(
1 + ∥h′∥Cβ + ∥h#∥Cα +

m∑
j=1

∥k′(ωj)∥Cβ + ∥k#(ωj)∥Cα

)
×
(
1 + ∥h′∥Cβ + ∥h#∥Cα+β +

m∑
j=1

∥k′(ωj)∥Cβ + ∥k#(ωj)∥Cα+β

)
.

Taking the E
[[1,m]] expectation one gets

f(h(ω), k) =
(
∂1f(h(ω), k)h

′(ω)
)
< Xt(ω)

+ E
[[1,m]]

[ m∑
j=1

((
∂j+1F

)
(h(ω), k(ω1), . . . , k(ωm))k′(ωj)

)
< Xt(ωj)

]
+ f(h(ω), k)#

=
(
∂1f(h(ω), k)h(ω)

′) < Xt(ω) +

m∑
j=1

E

[
E
[[1,m]]\{j}

[(
∂j+1F

)(
h(ω), k(ω1), · · · , k(ωj−1), k(ϖ), k(ωj+1), . . . , k(ωm)

)
k′(ϖ)

]
< Xt(ϖ)

]
+ f(h(ω), k)#,
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with
∥f(h(ω), k)#∥Cα+β

≲
(
1 + ∥Xt(ω)∥2Cα + E

[
∥Xt∥4Cα

] 1
2

)
×
(
1 + ∥h′(ω)∥Cβ + ∥h#(ω)∥Cα + E

[
∥k′∥4Cβ

] 1
4 + E

[
∥k#∥4Cα

] 1
4

)
×
(
1 + ∥h′(ω)∥Cβ + ∥h#(ω)∥Cα+β + E

[
∥k′∥4Cβ

] 1
4 + E

[
∥k#∥4Cα+β

] 1
4

)
.

One proves (4.4) in a similar way. �

We fix 4 ≤ p <∞ and assume from now on that the following Lipschitz condition holds true.
Assumption (Af) – There exists a constant L such that for every a1, a2 in Cα and b1, b2 in
Lp(Ω;Cα) we have

∥f(a1, b1)− f(a2, b2)∥Cα ≤ L
(
∥a1 − a2∥Cα + E

[
∥b1 − b2∥pCα

] 1
p

)
.

We proceed as usual in two steps to prove the well-posed character of equation (1.3). We
freeze the measure argument in a first step and show that the corresponding equation is well-
posed. This is what Proposition 21 below is about. This gives a solution uµ that depends on the
measure argument µ. Another fixed point argument is done in a second step to find a measure
such that the law of uµ coincides with µ. In order to proceed in this way we need to make sure
that the fixed measure dynamics is defined on a fixed interval, not on a small interval, as is
typically given by fixed point arguments. Assumption (B) guarantees the long time existence.

Recall from (3.4) the definition of the maps Lc, for c ∈ C([0, T0],R), and the existence of
functions ck ∈ C([0, T0],R) such that the random variables Lck(ξ

εk
t ) are converging in L8p(Ω,R)

to the random variable ξ ⊙ L −1(ξ). We emphasize below in the product (4.5) of f(u, v) by ξ
the fact that u is seen therein as a paracontrolled function by using the bold notation u.

21 – Proposition. Fix 0 < T0 < ∞. Assume the assumptions (Af -Ag-B) hold true. For every
v ∈ Lp

(
Ω,Dα,β

T0
(X)

)
and u0 ∈ Cα there exists a positive random time

T = T
(
Lξ̂+Mω,v, u0

)
≤ T0

and a unique solution in uξ̂+,u0,v
∈ Dα,β

T (X) to the equation

(∂t −∆)u = f(u,v) ξ + g(u, v), (4.5)
where u is ω−paracontrolled by X with null δµ derivative. This random solution uξ̂+,u0,v

(ω)

satisfies the local Lipschitz continuity property
dDα,β

T

(
uξ̂+1 ,u0,v1

(ω),uξ̂+2 ,u0,v2
(ω)

)
≲ω ∥u01−u02∥Cα+E

[
∥v1−v2∥Lp(Ω,Dα,β

T )

]
+Lξ̂+1 −ξ̂+2 Mω. (4.6)

The random function u(ω) ∈ C α
T associated with uξ̂+,u0,v

is the limit in probability of the
solutions uεk of the equations

(∂t −∆)uεk = f(uεk , v) ξεkt + g(uεk , v)− ck(t)(f∂1f)(u
εk , v), (4.7)

with initial condition u0.

We should more properly write u(ω), u′(ω), u♯(ω) rather than just u, u′, u♯. Also the ran-
domness in uξ̂+,u0,v

(ω) only occurs via ξ̂+(ω).
Proof – Rewrite equation (4.5) as the fixed point equation

ut = Ptu0 +

∫ t

0

Pt−s

(
f(us,vs)ξt + g(us, vs)

)
ds.

We get from Lemma 19 and Lemma 20 that f(us,vs)ξt + g(us, vs) is for each s an element
of Dα(ξs) with Gubinelli derivative f(us,vs) and remainder

(
f(us,vs)ξ

)#
+ g(us, vs). With
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Proposition 9 in mind we check that f(u, v) ∈ C α
T and

(
f(us,vs)ξ

)#
+ g(us, vs) satisfies (3.7).

Recall from (4.1) the definition of the mixed pathwise/averaged random variable Lξ̂+Mω. Take
u ∈ Dα,β

T (X). First one has
∥f(u, v)∥Cα

T
≲ 1 + ∥u∥Cα

T
+ E

[
∥v∥Cα

T

]
≲

(
1 + ∥X∥Cα

T
+ E

[
∥X(ω)∥2Cα

T

] 1
2

)(
1 + ∥u∥Dα,β

T
+ E

[
∥v∥2Dα,β

T

] 1
2

)
≲

(
1 + Lξ̂+Mω

)(
1 + ∥u∥2Dα,β

T

+ E
[
∥v∥4Dα,β

T

] 1
4

)
Second, combining the estimates from Lemmas 19 and 20 one gets at some fixed time t the
estimates

∥(f(u,v)ξ)#∥Cα+β−2 ≲
(
1 + Lξ̂+M2ω

)(
∥δzf(u, v)∥Cβ + E

[
∥δµf(u, v)∥

4
3

Cβ

] 3
4 + ∥f(u,v)#∥Cα+β

)

≲
(
1 + Lξ̂+M2ω

){(
1 + ∥u∥Cα + E

[
∥v∥Cα

])
∥u′∥Cβ

+
(
1 + ∥u∥Cα + E

[
∥v∥2Cα

] 1
2

)
E
[
∥v′∥4Cβ

] 1
4 + ∥f(u,v)#∥Cα+β

}
≲

(
1 + Lξ̂+M4ω

)(
1 + ∥u′∥Cβ + ∥u#∥Cα+ E

[
∥v′∥4Cβ

] 1
4 + E

[
∥v#∥4Cα

] 1
4

)
×
(
1 + ∥u′∥Cβ + ∥u#∥Cα+β + E

[
∥v′∥4Cβ

] 1
4 + E

[
∥v#∥4Cα+β

] 1
4

)
,

so
sup

t∈(0,T ]

tβ/2∥(f(ut,vt)ξt)
#∥Cα+β−2 ≲

(
1 + Lξ̂+M4ω

)(
1 + ∥u∥2Dα,β

T

+ E
[
∥v∥4Dα,β

T

] 1
2

)
.

We have also
sup

t∈(0,T ]

tβ/2∥g(ut, vt)∥Cα+β−2 ≲ sup
t∈(0,T ]

tβ/2
(
1 + ∥ut∥Cα + E

[
∥vt∥2Cα

] 1
2

)
≲

(
1 + Lξ̂+Mω

)(
1 + ∥u∥2Dα,β

T

+ E
[
∥v∥4Dα,β

T

] 1
2

)
,

so we have in the end the pathwise estimate

sup
t∈(0,T ]

tβ/2∥(f(ut,vt)ξt)
# + g(ut, vt)∥Cα+β−2 ≲

(
1 + Lξ̂+M4ω

)(
1 + ∥u∥2Dα,β

T

+ E
[
∥v∥4Dα,β

T

]1/2)
.

It follows from Proposition 9 that the map
Φξ̂+,u0,v

: Dα,β
T (X(ω)) → Dα,β

T (X(ω))

which associates to u ∈ Dα,β
T (X(ω)) the solution w of the equation

(∂t −∆)w = f(u,v)ξ + g(u, v)

with initial condition w0 = u0, is well-defined and satisfies the bound∥∥Φξ̂+,u0,v
(u)

∥∥
Dα,β

T

≲ ∥u0∥Cα + T (α−β)/2
(
1 + Lξ̂+M4ω

)(
1 + ∥u∥2Dα,β

T

+ E
[
∥v∥4Dα,β

T

]1/2)
.

Recall 4 ≤ p <∞. One can then find some random positive constants

M =M
(
∥u0∥α ∨ E

[
∥v∥p

Dα,β
T

]
∨ Lξ̂+Mω

)
and

T = T
(
∥u0∥α ∨ E

[
∥v∥p

Dα,β
T

]
∨ Lξ̂+Mω

)
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so that the map Φξ̂+,u0,v
sends the ball{

u ∈ Dα,β
T (X(ω)) ; ∥u∥Dα,β

T
≤M

}
into itself. Now, given ξ̂+1 , ξ̂

+
2 in L8p(Ω2,N2), two initial conditions u01, u02 in Cα and v1,v2

in Lp
(
Ω,Dα,β

T0
(X(ω))

)
, we define a random constant

M ′
ω =M

(
max
i=1,2

{
∥u0i∥Cα ∨ E

[
∥vi∥pDα,β

T0

]
∨ Lξ̂+i Mω

})
.

For ∥u∥Dα,β
T

≤M ′
ω, Proposition 9 tells us that

dDα,β
T

(
Φξ̂+1 ,u01,v1

(u1),Φξ̂+2 ,u02,v2
(u2)

)
≲M ′

ω
∥u01 − u02∥Cα + T (α−β)/2

{
dDα,β

T

(
u1,u2

)
+ E

[
∥v1 − v2∥Lp(Ω,Dα,β

T )

]
+ Lξ̂+1 − ξ̂+2 Mω

}
.

So choosing
T
(
max
i=1,2

{
∥u0i∥Cα ∨ E

[
∥vi∥Lp(Ω,Dα,β

T )

]
∨ Lξ̂+i Mω

})
small enough ensures that the map Φξ̂+,u0,µ

has a unique fixed point uξ̂+,u0,µ
(ω) which satisfies

the local Lipschitz property
dDα,β

T

(
uξ̂+1 ,u0,v1

(ω),uξ̂+2 ,u0,v2
(ω)

)
≲M ′

ω
∥u01 − u02∥Cα + E

[
∥v1 − v2∥Lp(Ω,Dα,β

T )

]
+ Lξ̂+1 − ξ̂+2 Mω.

Recall that (ξ,X ⊙ ξ) ∈ N is the limit in any Lq(Ω,P) space, 1 ≤ q < ∞, of the sequence of
enhanced noises (

ξεkt , ξεkt ⊙Xn − ck
)
=·· (ξεkt , (ξ ⊙X)n)

for some diverging function ck, and that ξ ⊙ X is the limit in Lq(Ω2,P⊗2) of ξεk ⊙ X
εk . We

then have
f(un,v)ξ

εk
t + g(uεk , v) = f(uεk , v) < ξεkt + ξεkt < f(uεk , v) + f(uεk , v)# ⊙ ξεkt

+ C
(
δzf(u

εk , v), Xn, ξ
εk
t ) + E

[
C
(
δµf(u

εk , v), ξtX
εk
, ξεkt

)]
+ δzf(u

εk , v)
(
X ⊙ ξ

)εk + E
[
δµf(u

εk , v)
(
ξεkt ⊙ ξtX

εk)]
+ g(uεk , v)

= f(uεk , v)ξεkt − ck(f∂1f)(u
εk) + g(uεk , v),

so the function uεk is a solution of the renormalized equation

(∂t −∆)uεk = f(uεk , v)ξεkt − ck(f∂1f)(u
εk) + g(uεk , v).

As we know that the solution uξ̂+,u0,v
∈ Dα,β

T (X) is a continuous function of ξ̂+ ∈ N2, and
since ξ̂+n converges to ξ̂+ in probability, we see that uξ̂+,u0,v

is the limit in probability in Dα,β
T

of the sequence (uεk , f(uεk , v)) ∈ Dα,β
T (Xn). �

The following statement is the analogue of Lemma 12 in the present setting.

22 – Lemma. For every R > 0, the solution uξ̂+,u0,v
(ω) to equation (4.5) is defined up to the time

T ∗ = inf
{
t ≥ 0, ∥u(t)∥L∞ ≥ R

}
.

Proof – The proof is a direct adaptation of the proof of Lemma 12. We give the details for the
interested reader. To lighten the notations we write u for uξ̂+,u0,v

(ω). Recall that the local
well-posedness time from the Picard iteration argument for u reads as a decreasing function

T = T
(
u0, ξ̂

+,E[∥v∥p
Dα,β

T

]
)
.

If we fix ξ̂+ and v, one ends up with a function T = T
(
∥u0∥Cα

)
, so that it is sufficient to

obtain a bound for ∥u∥CTCα that depends only on the constant R. As ∥u∥CTCα ≲ξ̂+ ∥u∥Dα,β
T
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we actually show that

∥u∥Dα,β
T

≲,ξ̂+ 1 + ∥u∥2CTL∞ + E
[
∥v∥4CTL∞

]1/2
.

We proceed as follows. Since u′t = f(ut, vt), we have
∥u′∥Cβ

T
≲ 1 + ∥u∥Cβ

T
+ ∥v∥Cβ

T
.

Yet since u = u′ ≺ X + u# where u′ appears as an L∞ contribution we have
∥u′∥Cβ

T
≲,ξ̂+,R 1 + ∥u#∥Cβ

T
+ ∥v#∥Cβ

T
.

We now use the fact that
(∂t −∆)u# = Φ# (4.8)

where
Φ# =

(
f(u,v)ξ − f(u, v) ≺ ξ

)
+ g(u, v).

The refined paralinearization lemma C.1 from [11] ensures here that∥∥F (u′ ≺ X + u#,v′ ≺ X + v#
)
−

∇f
(
u′ ≺ X + u#, v ≺ X + v#

)
≺

(
u′ ≺ X + u#, v′ ≺ X + v#)

∥∥
α+β

≲
(
1 + ∥u′ ≺ X∥2Cα + ∥v′ ≺ X∥2Cα + ∥u#∥2L∞ + ∥v#∥2L∞

)(
1 + ∥u#∥Cα+β + ∥v#∥Cα+β

)
≲

(
1 + ∥X∥2Cβ + ∥X∥2Cα

)(
1 + ∥u∥2L∞ + ∥v∥2L∞

)(
1 + ∥u#∥Cα+β + ∥v#∥Cα+β

)
,

so that using continuity relation 3.3 and estimate from Definition 7

∥Φ#∥Cα+β−2 ≲ E
[(
1 + ∥ξ̂+∥3

)(
1 + ∥u∥2CTL∞ + ∥v∥2CTL∞

)
×
(
1 + ∥u∥Cα

T
+ ∥v∥Cα

T
+ ∥u#∥Cα+β + ∥v#∥Cα+β

)]
≲

(
1 + Lξ̂+M3ω

)(
1 + ∥u∥2CTL∞ + E

[
∥v∥4CTL∞

]1/2)
×
(
∥u#∥Cα

T
+ ∥u#∥Cα+β + E

[
∥v#∥4Cα

T

]1/4
+ E

[
∥v#∥4Cα+β

]1/4)
The Schauder estimates from Lemma 5.3 of [11] ensure that

sup
0<t<T

tβ/2∥u#∥Cα+β ≲u0
1 + sup

0<t<T
tβ/2∥Φ#∥Cα+β−2 , (4.9)

and
∥u#∥Cα

T
≲u0

1 + sup
0<t<T

tβ/2∥Φ#∥Cα+β−2 , (4.10)

so we have
sup

0<t≤T
tβ/2∥Φ#∥α+β−2 ≲

(
1 + ∥u∥2CTL∞ + E

[
∥v∥4CTL∞

]1/2) (4.11)

×
(
1 + sup

0<t≤T
tβ/2∥Φ#∥Cα+β−2 + E

[
∥v#∥4Cα

T

]1/4
+ E

[
∥v#∥4Cα+β

]1/4)
.

(4.12)

We use again a scaling argument to isolate the Φ# terms. Let
(Λλu)(t, x) ··= u(λ2t, λx)

and
T2
λ =

(
R/(2πλ−1Z)

)2
.

We have
(∂t −∆) ◦ Λλ = λ2Λλ ◦ (∂t −∆)

and
ξλ ··= λ2−αΛλξ, ∥ξλ∥α−2 ≃ ∥ξ∥Cα−2 ,
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a deterministic estimate, and
uλ ··= Λλu

is a solution of the equation
(∂t −∆)uλ = λαf(uλ,vλ)ξλ + g(uλ, vλ).

It follows from the estimate (4.11) that we have

sup
0≤t≤T/λ2

tβ/2∥Φ#,λ∥Cα+β−2 ≲ξ̂+ λα
(
1 + ∥u∥2CTL∞ + E

[
∥v∥2CTL∞

]1/2)
×
(
1 + sup

0≤t≤T/λ2

tβ/2∥Φ#,λ∥Cα+β−2 + E
[
∥v#∥4Cα

T

]1/4
+ E

[
∥v#∥4Cα+β

]1/4)
,

so choosing λ small enough we finally get

sup
0≤t≤T

tβ/2∥Φ#∥Cα+β−2 ≲ξ̂+

(
1 + ∥u∥2CTL∞ + E

[
∥v∥2CTL∞

]1/2)
×

(
1 + E

[
∥v#∥4Cα

T

]1/4
+ E

[
∥v#∥4Cα+β

]1/4)
.

In the end we obtain from Proposition 4.9 and Proposition 4.10 the estimate

∥u#∥Cα
T
+ sup

0≤t≤T
tβ/2∥u#∥Cα+β ≲ξ̂+

(
1 + ∥u∥2CTL∞ + E

[
∥v∥2CTL∞

]1/2)
×

(
1 + E

[
∥v#∥4Cα

T

]1/4
+ E

[
∥v#∥4Cα+β

]1/4)
,

�

23 – Proposition. Under assumptions (Af -Ag-B), if ∥u0∥L∞ ≤ C0 then uξ̂+,u0,v
is defined globally

in time and ∥u∥Dα,β
T

(ω) has moments of order p.

Proof – The global in time existence is a direct consequence of the explosion criterion of Lemma
14 and the maximum principle applied to the solution uεk of the renormalized equation (4.7).
Following what is done in the proof of the Proposition 22 we have an estimate of the form

∥u∥Dα,β
T

≲ξ̂+,u0
1 + ∥u∥2CTL∞ ≲ξ̂+,u0

1 + C0

with an implicit multiplicative constant that is polynomial function in Lξ̂+Mω of degree 3. �

4.3 – Solving equation (1.3). The proof of well-posedness of equation (1.3) requires a second
fixed point which is the object of the next statement. We fix as above 4 ≤ p <∞.

24 – Theorem. We assume that the assumptions (Af -Ag-B) hold true. There exists a positive
deterministic positive time T ≤ T0 with the following property.

– For every u0 ∈ Cα such that ∥u0∥L∞ ≤ C0 there exists a unique solution u = (u′, u♯)

to the mean field equation (1.3) in Lp(Ω,Dα,β
T (X)). The law L(u) ∈ Pp(Dα,β

T (X)) of u
depends continuously on ξ̂+ ∈ L8p(Ω2,N2) and u0 ∈ Cα.

– Write u = u′ < X + u♯. The function u ∈ C α
T is the limit in probability of the family of

solutions of the renormalized equations
(∂t −∆)uεk = f

(
uεk ,L(uεk(t))

)
ξεkt − ck(t)(f∂1f)

(
uεk ,L(uεk(t))

)
+ g

(
uεk ,L(uεk(t))

)
.

Proof – Write here uv
ξ̂+,u0

for uξ̂+,u0,v
. We define from Proposition 21 a map Ψξ̂+,u0

from
Lp(Ω,Dα,β

T (X)) into itself setting
Ψξ̂+,u0

(v) = uv
ξ̂+,u0

.

One has from Proposition 9
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∥uv
ξ̂+,u0

∥Dα,β
T

≲ ∥u0∥Cα + T δ
(
1 + Lξ̂+M4ω

)(
1 + ∥u∥2Dα,β

T

+ E
[
∥v∥4Dα,β

T

]1/2)
≲ ∥u0∥Cα + T δ

(
1 + Lξ̂+M4ω

)(
∥u∥

1
2

Dα,β
T

{
1 + ∥u0∥Cα + E

[
∥v∥4Dα,β

T

] 1
2

} 3
2

+ E
[
∥v∥4Dα,β

T

] 1
2

)
.

Integrating and using Cauchy-Schwarz inequality we get

E
[
∥uv

ξ̂+,u0
∥p
Dα,β

T

]2
≲ ∥u0∥2pCα + T 2pδ

(
1 + E

[
Lξ̂+M8p

]){
E
[
∥u∥p

Dα,β
T

](
1 + ∥u0∥Cα + E

[
∥v∥4Dα,β

T

] 1
2

)3p

+ E
[
∥v∥p

Dα,β
T

]2}
.

So for T = T
(
E
[
∥v∥p

Dα,β
T

])
sufficiently small we have

E
[
∥u∥p

Dα,β
T

] 1
p ≲ ∥u0∥Cα + T δ

(
1 + E

[
Lξ̂+M8p

] 1
2p

)
E
[
∥v∥p

Dα,β
T

] 1
p .

Pick
A > C2

0 ∨ 2E
[
Lξ̂+M8p

]
.

For M sufficiently big and T = T (M,A) even smaller, for every u0 ∈ Cα with ∥u0∥Cα ≤ A the
map Ψξ̂+,u0

sends the ball{
v ∈ Lp(Ω,Dα,β

T (X)) ; ∥v∥Lp(Ω,Dα,β
T ) ≤M

}
into itself. Now pick v1,v2 in Lp(Ω,Dα,β

T (X)), two initial conditions u01, u02 in Cα and ξ̂+1 , ξ̂
+
2

in L8p(Ω2,N2) such that one has

E
[
Lξ̂+i M8p

]
∨ ∥u0i∥Cα ≤ A, E

[
∥vi∥pDα,β

T

]
≤M,

for 1 ≤ i ≤ 2. Write ui for Φξ̂+i ,u0i
(vi) and define the random variable

Rω ··= Lξ̂+1 Mω + Lξ̂+2 Mω.

We have
dDα,β

T

(
u1,u2

)
≲Rω

∥u01 − u02∥Cα+ T δ

{
Lξ̂+1 − ξ̂+2 Mω + dDα,β

T
(u1,u2) + E

[
dDα,β

T

(
v1,v2

)4] 1
4

}
≲Rω

∥u01 − u02∥Cα+ T δ

{
Lξ̂+1 − ξ̂+2 Mω + dDα,β

T
(u1,u2)

1
2 + E

[
dDα,β

T

(
v1,v2

)4] 1
4

}
,

for some implicit positive multiplicative constant that is a polynomial of Rω, which is of degree
5 combining Propositions 9 20 and 19. Integrating and using Cauchy-Schwarz inequality we
obtain the estimate

E
[
dDα,β

T

(
u1,u2

)p]2
≲∥u01 − u02∥2pCα + E

[
Lξ̂+1 − ξ̂+2 M2p

]
+ T 2pδ

{
E
[
dDα,β

T

(
u1,u2

)p]
+ E

[
dDα,β

T

(
v1,v2

)4] p
2

}
,

so taking T > 0 deterministic, small enough, independently of u0i and ξ̂+i , ensures that we have

E
[
dDα,β

T

(
u1,u2

)p]2
≲ ∥u01 − u02∥2pCα + E

[
Lξ̂+1 − ξ̂+2 M2p

]
+ T 2pδ E

[
dDα,β

T

(
v1,v2

)4] p
2 .
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As 4 ≤ p <∞, we conclude that equation (1.3) has a unique local solution u in Pp(Dα,β
T (X)),

and that the law L(u) ∈ Pp(Dα,β
T (X)) of u depends continuously on ξ̂+ ∈ L2p(Ω2,N2) and on

u0 ∈ Cα. �

5 – Propagation of chaos

Let now (ξi, ui0) be a sequence of independent and identically distributed random variables
with common law L(ξ, u0), defined on the probability space (Ω,F ,P). We fix ω ∈ Ω and an
integer n ≥ 1 and study the dynamics

(∂t −∆)ui,n(ω) = f
(
ui,n(ω), µn

t

)
ξi(ω) + g

(
ui,n(ω), µn

t (ω)
)
, (1 ≤ i ≤ n)

µn
t (ω) ··=

1

n

n∑
i=1

δui,n
t (ω),

(5.1)

with initial conditions
(
u10(ω), . . . , u

n
0 (ω)

)
. We suppose that f and g satisfy the assumptions

(Af -Ag-B). System (5.1) can either be understood as a multidimensional singular stochastic
PDE driven by a multidimensional (enhanced) noise or as a mean field singular stochastic PDE.
We prove in paragraph (a) that these two interpretations coincide and prove in paragraph (b)
that we have a propagation of chaos result for (5.1). We write [[1, n]] for the set of integers
between 1 and n.
(a) Singular systems of interacting fields – To lighten the notations we consider here the case
that the diffusivity f is linear in the measure argument – see (5.2) below. The polynomial case
is treated similarly. One can see equation (5.1) as a single multidimensional singular stochastic
equation

(∂t −∆)u = f(u)ξ[1,n] + g(u)

with unknown u =
(
u1,n, . . . , un,n

)
and noise ξ[1,n] =

(
ξ1, . . . , ξn

)
, and where f is (f1, . . . , fn)

with

f i :
(
u1,n, . . . , un,n

)
7→ f

(
ui,n,

1

n

n∑
j=1

δuj,n

)
=·· f(ui,n, µn),

with a similar definition of g. The noise ξ[1,n] needs to be enhanced to make sense of the
equation. The solution will be a tuple of paracontrolled functions

ui,n = (ui,n)′ < Xi + (ui,n)# = f i(u1,n, . . . , un,n) < Xi + (ui,n)#

so we will have from paralinearisation

f i
(
u1,n, · · · , un,n

)
=

n∑
j=1

(
∂jf

i
(
u1,n, . . . , un,n

)
(uj,n)′

)
< Xj + f i

(
u1,n, . . . , un,n

)#
,

with
∂jf

i
(
u1,n, . . . , un,n

)
= δi,j∂1f

(
ui,n, µn

)
+

1

n
∂2F

(
ui,n, µn

)
,

since

f(ui,n, µn) =
1

n

n∑
j=1

F
(
ui,n, uj,n

)
. (5.2)

The singular product in (5.1) then reads

f
(
ui,n, µn

)
ξi = f

(
ui,n, µn

)
< ξi + ξi < f

(
ui,n, µn

)
+ f

(
ui,n, µn

)# ⊙ ξi

+ C
(
∂1f

(
ui,n, µn

)
(ui,n)′, Xi, ξi

)
+

1

n

n∑
j=1

C
(
∂2F (u

i, µn)(uj,n)′, Xj , ξi
)

+ ∂1f
(
ui,n, µ

)
(ui,n)′

(
ξi ⊙Xj

)
+

1

n

n∑
j=1

∂2F (u
i, µ)(uj,n)′

(
ξi ⊙Xj

)
.

(5.3)
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Our task is now to prove that (5.1) may also be understood as a mean field singular stochastic
PDE with a suitable enhancement of the noise and that the two interpretations coincide. With
the notations of Section 2.2, Tanaka’s trick gives an interpretation of (5.1) as the mean field
type equation

(∂t −∆)ui,n(ω) = f
(
ui,n(ω), uUn(·),n(ω)

)
ξi(ω) + g

(
ui,n(ω), uUn(·),n(ω)

)
(5.4)

studied in Section 4, but now set on the finite probability space ([[1, n]], 2[[1,n]], λn), with generic
chance element i. The enhanced noise from Definition 17 is then{

ξi, ξi ⊙Xi, ξj , ξj ⊙Xi
}
1≤i,j≤n

,

where the index i plays the role of ω and j the role of ϖ. Let us now clarify the meaning of the
singular product. We have

δzf
(
ui,n, uu

εk (·)) = ∂1f
(
ui,n, uUn(·),n

)(
ui,n

)′
,

and
δµf

(
ui,n, uUn(·),n

)
= ∂2F

(
ui,n, vUn(·),n

)(
uUn(·),n

)′
.

In the sense of Section 4.2 the singular product in Equation (5.4) is defined as

f
(
ui,n, uUn(·),n

)
ξi = f

(
ui,n, uUn(·),n

)
< ξi + ξi < f

(
ui,n, uUn(·),n

)
+ f

(
ui,n, uUn(·),n

)# ⊙ ξi

+ C
(
∂1f

(
ui,n, uUn(·),n

)(
ui,n

)′
, Xi, ξi

)
+ ∂1f

(
ui,n, uUn(·),n

)(
ui,n

)′(
ξ ⊙X

)i
+

1

n

n∑
j=1

C
(
∂2F

(
ui,n, uj,n

)(
uj,n

)′
, Xj , ξi

)
+

1

n

n∑
j=1

∂2F
(
ui,n, uUn(·),n

)(
uUn(·),n

)′(
ξi ⊙Xj

)
.

(5.5)
We conclude from (5.3) and (5.5) that the two formulations coincide as they amount to solving
the same classical PDE for the remainders (ui,n)#.
(b) Mean field limit – We know from the continuity result of Theorem 24 that the almost sure
convergence of

Wp

(
1

n

n∑
i=1

δ(ξ̂i,+,ui
0)(ω),L(ξ̂

+, u0)

)
to 0 granted by the law of large numbers entails the convergence of Wp,CTCα

(
1
n

∑n
i=1 δui,n ,L(u)

)
to 0, where u is the function associated with the solution u of the mean field dynamics (1.3).
It follows then from Sznitman’s Proposition 2.2 in [17] that there is propagation of chaos for
the system (5.1) of interacting fields to the mean field limit dynamics (1.3).

25 – Corollary. For any fixed integer k, the law of
(
u1,n, . . . , uk,n

)
converges to L (u)⊗k when n

tends to ∞.

Note that Shen, Smith, Zhu & Zhu have also looked at some systems of mean field type
singular SPDEs in their works [15, 16] on the linear sigma model. The precise structure of the
equations they consider allows them to bypass the use of the sophisticated setting presented in
the present work.

6 – Systems with a common noise

We study in this section some systems of interacting fields of the form
(∂t −∆)ui,n = f1

(
ut, µ

n
t

)
ξi + f2

(
ut, µ

n
t

)
λ+ g

(
ut, µ

n
t

)
, (1 ≤ i ≤ n) (6.1)



31

where the ξi are independent random noises with values in CTC
α−2 and λ is another noise

with values in CTC
α−2, independent of the ξi. To lighten the notations, we we work with

a probability space (Ω,F ,P) of the form (Ω1 × Ω2,F1 ⊗ F2,P1 ⊗ P2), with generic element
ω = (ω1, ω2). We assume that the random variables ξi(ω) = ξi(ω1) are measurable with respect
to (Ω1,F1) and λ(ω) = λ(ω2) is measurable with respect to (Ω2,F2). For any random variable
Y on Ω, the conditional expectation

E1
[
Y
]
(ω2) ··=

∫
Ω1

Y (ω1, ω2)P1(dω1)

The mean field type equation corresponding to Equation (6.1) reads
(∂t −∆t)u = f1

(
ut,L(ut|λ)

)
ξt + f2

(
ut,L(ut|λ)

)
λt + g

(
ut,L(ut|λ)

)
. (6.2)

As in the previous sections it will turn out to be convenient to view the random variable L(U |λ)
as an ω2-dependent element v(ω2) ∈ Lp(Ω1). We work in this section with functions f1 and f2
that are linear with respect to their measure argument

fj
(
u, v

)
(z)(ω1, ω2) =

∫
Ω1

Fj

(
u(ω1, ω2)(z), v(ϖ1, ω2)(z)

)
P(dϖ1),

with Fj of class Cb
3. There is no difficulty in adapting what follows to the case where the

functions depend polynomially on their measure argument. We suppose that the function g
satisfies the assumptions (Ag) and (B) and that both f1 and f2 satisfies assumptions (Af)
and (B). The analysis of Equation (6.2) is very similar to what was done in Section 4. We
only describe below the main changes that need to be done and leave some of the details to the
interested reader.

6.1 – Paracontrolled structure for mean field singular SPDEs with common noise.We now
adapt the definitions of enhanced data and controlled distributions from Section 4 for the
purpose of this section. We still let X = (∂t −∆)−1ξ and set L = (∂t −∆)−1λ.

Definition – The mean field enhancement of the random noise (ξ, λ) is the random
variable

(̂ξ, λ)
+
(ω,ϖ) ··=

(
ξ(ω), ξ(ϖ), λ(ω), (ξ ⊙X)(ω),

(
ξ ⊙X

)
(ω,ϖ),(

ξ ⊙ L
)
(ω),

(
λ⊙X

)
(ω),

(
λ⊙X

)
(ω,ϖ),

(
λ⊙ L

)
(ω)

)
defined on

(
Ω2,F2,P⊗2

)
. We define on (Ω,F ,P) the random variable

L(̂ξ, λ)
+
Mω ··= ∥ξ(ω)∥CT0

Cα−2 +
∥∥(ξ ⊙X)(ω)

∥∥
CT0

C2α−2 + ∥λ(ω)∥CTCα−2

+ E
[
∥ξ(ω, ·)∥4CT0

Cα−2

] 1
4 + E

[
∥(ξ ⊙X)(ω, ·)∥4CT0

C2α−2

] 1
4

+ ∥(ξ ⊙ L)(ω)∥CTC2α−2 + ∥(λ⊙ L)(ω)∥CTC2α−2 + ∥(λ⊙X)(ω)∥CT0
C2α−2

+ E
[
∥(λ⊙X)(ω, ·)∥4CT0

C2α−2

] 1
4

Definition – A parabolic function u on [0, T ]× T2 is said to be paracontrolled by (X,L)

if there exists functions u′X , u′L ∈ C β
T , such that

u# ··= u− u′X ≺ X − u′L ≺ L ∈ C α
T

and
sup

t∈(0,T ]

tβ/2
∥∥u#t ∥∥Cβ+ρ < +∞.
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We denote by Dα,β
T (X,L) the space of all such tuples u = (u′X , u

′
L, u

♯); it is equipped with the
norm

∥u∥Dα,β
T

=
∥∥(u′X , u′L, u♯)∥∥Dα,β

T

··=
∥∥u′X∥∥

Cβ
T

+
∥∥u′L∥∥Cβ

T

+
∥∥u#∥∥

Cα
T

+ sup
t∈(0,T ]

tβ/2
∥∥u#t ∥∥Cβ+α .

We will often write u′ for the pair (u′X , u
′
L). For two pairs of reference functions (X1, L1),

(X2, L2) in C α
T and u1 = (u′1, u1#) ∈ Dα,β

T (X1, L1) and u2 = (u′2, u2#) ∈ Dα,β
T (X2, L2) we set

dDα,β
T

(u1,u2) ··=
∥∥u′1 − u′2

∥∥
Cβ

T

+
∥∥u1# − u2#

∥∥
Cα

T

+ sup
t∈(0,T ]

tβ/2
∥∥u1# − u2#

∥∥
β+α

.

26 – Definition. Fix t ≥ 0. A Cα-valued random variable w on Ω is said to be ω-paracontrolled
by (Xt, Lt) if there are some random variables

δXz w, δ
L
z w : Ω → Cβ

and
δµw : Ω → L

4
3

(
Ω1, C

β
)

and
w♯ : Ω → Cα+β

such that one has
w(ω) = (δXz w)(ω) < X(ω) + (δLz w)(ω) < L(ω) + E

1[
(δµw)(ω, ·) < X(·)

]
+ w♯(ω). (6.3)

We will often write δzw for the pair (δXz w, δ
L
z w).

The datum of a mean field enhancement (̂ξ, λ)
+

of the random noises ξ, λ comes with a
natural definition of the product of ξt and λt by a random function v ∈ CTC

α with the
property that vt is ω-paracontrolled by (Xt, Lt) for each 0 < t ≤ T . We set

(vtξt)(ω) ··= vt(ω) < ξt(ω) + (vtξt)
♯(ω)

where
(vtξt)

♯(ω) ··= ξt(ω) < vt(ω) + v#t (ω)⊙ ξt(ω)

+ C
(
(δXz v)(ω), X(ω), ξt(ω)

)
+ E

1
[
C
(
(δµv)(ω, ·), X(·), ξt(ω)

)]
+ (δLz v)(ω)(ξ ⊙X)t(ω) + E

1
[
(δµv)(ω, ·)

(
ξ ⊙X

)
(ω, ·)

]
+ C

(
(δLz v)(ω), L(ω), ξt(ω)

)
+ (δLz v)(ω)

(
L⊙ ξt

)
(ω).

Likewise we set
(vtλt)(ω) ··= vt(ω) < λt(ω) + (vtλt)

♯(ω)

where
(vtλt)

♯(ω) ··= λt(ω) < vt(ω) + v#t (ω)⊙ λt(ω)

+ C
(
(δXz v)(ω), X(ω), λt(ω)

)
+ E

1
[
C
(
(δµv)(ω, ·), X(·), λt(ω)

)]
+ (δXz v)(ω)(λ⊙ L)t(ω) + E

1
[
(δµv)(ω, ·)

(
λ⊙X

)
(ω, ·)

]
+ C

(
(δLz v)(ω), L(ω), λt(ω)

)
+ (δLz v)(ω)

(
L⊙ λt

)
(ω)

The proofs of the following two propositions are identical to the proofs of Proposition 19Â and
Proposition 20 modulo the obvious changes to be made. We first have a continuity statement
for the product map.

27 – Proposition. One has P-almost surely vξ ∈ CTC
α−2 and

∥(vtξt)
#(ω)∥Cα+β−2 ≲

(
1 + L(̂ξ, λ)

+
M2ω
)(

∥(δzv)(ω)∥Cβ + E
[
∥δµv∥

4
3

Cβ

] 3
4

+ ∥v#(ω)∥Cα+β

)
.
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Furthermore, for two enhanced noises (̂ξ, λ)
1+
, (̂ξ, λ)

2+
in our class, and with vi ∈ CTC

α with
vit paracontrolled by (Xi

t , L
i
t), for 1 ≤ i ≤ 2, for each 0 < t ≤ T , one has
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∥(v1
t ξ

1
t )

#(ω)− (v2
t ξ

2
t )

#(ω)∥Cα+β−2 ≲ (⋆)12(ω)

(
∥δXz v1 − δXz v

2∥Cβ + ∥δLz v1 − δLz v
2∥Cβ

+ E
1[∥δµv1 − δµv

2∥
4
3

Cβ

] 3
4 + ∥v1# − v2#∥Cα+β + L(̂ξ, λ)

+1
− (̂ξ, λ)

+2
Mω
)
,

where
(⋆)12(ω) = P

(
max

i∈{1,2}

{
L(̂ξ, λ)

+i
Mω, ∥δzvi∥Cα ,E

1[∥δµvi∥ 4
3

Cα

] 3
4 , ∥v#i∥Cα+β

})
,

for some quadratic polynomial P .

Second we have a stability result for the paracontrolled structure with respect to nonlinear-
ities.

28 – Proposition. Fix t > 0 and assume we are given two L8p(Ω,Dα(Xt, Lt)) random variables
(h′X , h

′
L, h

♯) and (k′X , k
′
L, k

♯) with corresponding Cα functions h, k on T2. Then for f ∈ {f1, f2},
the function f

(
h(ω), k(ϖ)

)
(ω) with ω = (ω1, ω2) and ϖ = (ϖ1, ω2) is paracontrolled by Xt, Lt

in the sense of Definition 26, with
(δXz f)(h, k)(ω) = (∂1f)

(
h(ω), k

)
h′X(ω)

(δLz f)(h, k)(ω) = (∂1f)
(
h(ω), k

)
h′L(ω) + E

1
[((

∂2F
)
(h(ω), k(ϖ))k′L(ϖ)

)]
and

(δµf)(h, k)(ω,ϖ) = E
1
[(
∂2F

)(
h(ω), k(ϖ)

)]
k′X(ϖ),

and

∥f(h(ω), k)#∥Cα+β ≲

(
1 + ∥Xt(ω)∥2Cα + E

[
∥Xt∥4Cα

] 1
2 + ∥Lt(ω2)∥2Cα

)
×
(
1 + ∥h′(ω)∥Cβ + ∥h#(ω)∥Cα + E

1[∥k′∥4Cβ

] 1
4 + E

1[∥k#∥4Cα

] 1
4

)
×
(
1 + ∥h′(ω)∥Cβ + ∥h#(ω)∥Cα+β + E

1[∥k′∥4Cβ

] 1
4 + E

1[∥k#∥4Cα+β

] 1
4

)
.

Moreover for (̂ξ, λ)
+i

∈ L8p(Ω2,N2) and h and k in L8p(Ω,Dα(Xt)), for 1 ≤ i ≤ 2, we have

∥f
(
h1(ω), k1

)# − f
(
h2(ω), k2

)#∥Cα+β ≲ (⋆)12(ω)

{
∥X1

t (ω)−X2
t (ω)∥Cα

+ ∥L1
t (ω)− L2

t (ω)∥Cα + E
[∥∥X1

t −X
2

t

∥∥4
Cα

] 1
4 + dDβ

(
h1(ω), h2(ω)

)
+ E

1[dDβ

(
k1, k2

)4] 1
4

}
,

(6.4)
where

(⋆)12(ω) = P
(

max
i∈{1,2}

{
∥Xi

t(ω)∥Cα , ∥Li
t(ω)∥Cβ , E

[
∥Xi

t∥4Cα

] 1
4 , ∥hi(ω)∥Dα , E

1[∥ki∥4Dα

] 1
4

})
,

for some polynomial P .

6.2 – Fixed point arguments. The local well-posedness of Equation (6.2) follows from the
same two fixed point arguments as in Section 4. We only give the details of the first statement
to convince the reader that our machinery goes through.

29 – Proposition. Fix 0 < T0 < ∞. Assume the assumptions (Af -Ag-B) hold true. For every
v ∈ Lp

(
Ω,Dα,β

T0
(X,L)

)
and u0 ∈ Cα there exists a positive random time

T = T
(
L(̂ξ, λ)

+
Mω,v, u0

)
≤ T0
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and a unique solution in u
(̂ξ,λ)

+
,u0,v

∈ Dα,β
T (X,L) to the equation

(∂t −∆)u = f1(u,v) ξ + f2(u,v)λ+ g(u, v), (6.5)
where u is ω−paracontrolled by (X,L) with null δµ derivative. This random solution
u
(̂ξ,λ)

+
,u0,v

(ω) satisfies the local Lipschitz continuity property

dDα,β
T

(
u
(̂ξ,λ)

+

1 ,u0,v1
(ω),u

(̂ξ,λ)
+

2 ,u0,v2
(ω)

)
≲ω ∥u0,1 − u0,2∥Cα

+ E
1[∥v1 − v2∥Lp(Ω,Dα,β

T )

]
+ L(̂ξ, λ)

+

1 − (̂ξ, λ)
+

2 Mω.

The random function u(ω) ∈ C α
T associated with u

(̂ξ,λ)
+
,u0,v

is the limit in probability of the
solutions uεk of the equations
(∂t −∆)uεk = f(uεk , v) ξεkt + g(uεk , v)− cXk (t)(f1∂1f1)(u

εk , v)− cLk (t)(f2∂1f2)(u
εk , v), (6.6)

with initial condition u0.
Proof – We rewrite again equation (6.5) as the fixed point equation

ut = Ptu0 +

∫ t

0

Pt−s

(
f(us,vs)ξt + f2(us,vs)λx + g(us, vs)

)
ds.

We get from Lemma 27 and Lemma 28 that f1(us,vs)ξt + f2(us,vs)λx + g(us, vs) is for each
s an element of Dα(Xs, Ls) with Gubinelli derivative

(
f1(us,vs), f2(us,vs)

)
and remainder(

f1(us,vs)ξ
)#

+
(
f2(us,vs)λ

)#
+ g(us, vs). We check that f(u, v) ∈ C α

T and
(
f1(us,vs)ξ

)#
+(

f2(us,vs)λ
)#

+ g(us, vs) have the regularity required. Take u ∈ Dα,β
T (X). First one has

∥f1(u, v)∥Cα
T
≲ 1 + ∥u∥Cα

T
+ E

1[∥v∥Cα
T

]
≲

(
1 + ∥X∥Cα

T
+ E

1[∥X(ω)∥2Cα
T

] 1
2 + ∥L∥Cα

T

)(
1 + ∥u∥Dα,β

T
+ E

1[∥v∥2Dα,β
T

] 1
2

)
≲

(
1 + L(̂ξ, λ)

+
Mω
)(

1 + ∥u∥2Dα,β
T

+ E
1[∥v∥4Dα,β

T

] 1
4

)
Second, combining the estimates from Lemmas 27 and 28 one gets at some fixed time t the
estimates

∥(f1(u,v)ξ)#∥Cα+β−2 ≲
(
1 + L(̂ξ, λ)

+
M2ω
)(
∥δzf(u, v)∥Cβ + E

1[∥δµf(u, v)∥ 4
3

Cβ

] 3
4 + ∥f(u,v)#∥Cα+β

)
≲

(
1 + L(̂ξ, λ)

+
M2ω
){(

1 + ∥u∥Cα + E
1[∥v∥Cα

])
∥u′∥Cβ

+
(
1 + ∥u∥Cα + E

1[∥v∥2Cα

] 1
2

)
E
1[∥v′∥4Cβ

] 1
4 + ∥f(u,v)#∥Cα+β

}
≲

(
1 + L(̂ξ, λ)

+
M4ω
)(

1 + ∥u′∥Cβ + ∥u#∥Cα+ E
1[∥v′∥4Cβ

] 1
4 + E

1[∥v#∥4Cα

] 1
4

)
×
(
1 + ∥u′∥Cβ + ∥u#∥Cα+β + E

1[∥v′∥4Cβ

] 1
4 + E

1[∥v#∥4Cα+β

] 1
4

)
,

so

sup
t∈(0,T ]

tβ/2∥(f1(ut,vt)ξt)
#∥Cα+β−2 ≲

(
1 + L(̂ξ, λ)

+
M4ω
)(

1 + ∥u∥2Dα,β
T

+ E
1[∥v∥4Dα,β

T

] 1
2

)
,

idem for (f2(ut,vt)λt)
#. We have also

sup
t∈(0,T ]

tβ/2∥g(ut, vt)∥Cα+β−2 ≲ sup
t∈(0,T ]

tβ/2
(
1 + ∥ut∥Cα + E

1[∥vt∥2Cα

] 1
2

)
≲

(
1 + L(̂ξ, λ)

+
Mω
)(

1 + ∥u∥2Dα,β
T

+ E
1[∥v∥4Dα,β

T

] 1
2

)
,

so we end up with the pathwise estimate
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sup
t∈(0,T ]

tβ/2∥(f1(ut,vt)ξt)
# + (f2(ut,vt)λt)

# + g(ut, vt)∥Cα+β−2

≲
(
1 + L(̂ξ, λ)

+
M4ω
)(

1 + ∥u∥2Dα,β
T

+ E
1[∥v∥4Dα,β

T

]1/2)
.

It follows from Schauder estimates that the map
Φ

(̂ξ,λ)
+
,u0,v

: Dα,β
T (X(ω), L(ω)) → Dα,β

T (X(ω), L(ω))

which associates to u ∈ Dα,β
T (X(ω), L(ω)) the solution w of the equation
(∂t −∆)w = f1(u,v)ξ + f2(u,v)λ+ g(u, v)

with initial condition w0 = u0, is well-defined and satisfies the bound∥∥Φ
(̂ξ,λ)

+
,u0,v

(u)
∥∥
Dα,β

T

≲ ∥u0∥Cα + T (α−β)/2
(
1 + L(̂ξ, λ)

+
M4ω
)(

1 + ∥u∥2Dα,β
T

+ E
1[∥v∥4Dα,β

T

]1/2)
.

Recall 4 ≤ p <∞. One can then find some random positive constants

M =M
(
∥u0∥α ∨ E

1[∥v∥p
Dα,β

T

]
∨ L(̂ξ, λ)

+
Mω
)

and
T = T

(
∥u0∥α ∨ E

1[∥v∥p
Dα,β

T

]
∨ L(̂ξ, λ)

+
Mω
)

so that the map Φ
(̂ξ,λ)

+
,u0,v

sends the ball{
u ∈ Dα,β

T (X(ω), L(ω)) ; ∥u∥Dα,β
T

≤M
}

into itself. Now, given (̂ξ, λ)
+

1 , (̂ξ, λ)
+

2 in L8p(Ω2,N2), two initial conditions u0,1, u0,2 in Cα and
v1,v2 in Lp

(
Ω,Dα,β

T0
(X(ω), L(ω))

)
, we define a random constant

M ′
ω =M

(
max
i=1,2

{
∥u0,i∥Cα ∨ E

1[∥vi∥pDα,β
T0

]
∨ L(̂ξ, λ)

+

i Mω
})
.

For ∥u∥Dα,β
T

≤M ′
ω, Schauder estimates tell us that

dDα,β
T

(
Φ

(̂ξ,λ)
+

1 ,u0,1,v1
(u1),Φ

(̂ξ,λ)
+

2 ,u0,2,v2
(u2)

)
≲M ′

ω
∥u0,1 − u0,2∥Cα + T (α−β)/2

{
dDα,β

T

(
u1,u2

)
+ E

1[∥v1 − v2∥Lp(Ω,Dα,β
T )

]
+ L(̂ξ, λ)

+

1 − (̂ξ, λ)
+

2 Mω
}
.

So choosing
T
(
max
i=1,2

{
∥u0,i∥Cα ∨ E

1[∥vi∥Lp(Ω,Dα,β
T )

]
∨ L(̂ξ, λ)

+

i Mω
})

small enough ensures that the map Φ
(̂ξ,λ)

+
,u0,µ

has a unique fixed point u
(̂ξ,λ)

+
,u0,µ

(ω) which
satisfies the local Lipschitz property
dDα,β

T

(
u
(̂ξ,λ)

+

1 ,u0,v1
(ω),u

(̂ξ,λ)
+

2 ,u0,v2
(ω)

)
≲M ′

ω
∥u0,1 − u0,2∥Cα

+ E
1[∥v1 − v2∥Lp(Ω,Dα,β

T )

]
+ L(̂ξ, λ)

+

1 − (̂ξ, λ)
+

2 Mω.

The enhanced noise (̂ξ, λ) ∈ N is the limit in any Lq(Ω,P) space, 1 ≤ q < ∞, of the sequence
of enhanced noises(

ξεkt , (ξ ⊙X)n, (ξ ⊙ L)εk , λεk , (λ⊙X)εk , (λ⊙ L)εk
)
··=(

ξεkt , ξεk ⊙Xεk − cXk , ξ
εk ⊙ Lεk , λεk , λεk ⊙Xεk , λεk ⊙ Lεk − cLk

)
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for some diverging functions cXk , cLk , and that ξ ⊙ X, λ ⊙ X is the limit in Lq(Ω2,P⊗2) of
ξεk ⊙X

εk
, λεk ⊙X

εk . We then have
f1(u

εk ,v)ξεkt = f1(u
εk , v) < ξεkt + ξεkt < f1(u

εk , v) + f1(u
εk , v)# ⊙ ξεkt

+ C
(
δXz f1(u

εk , v), Xn, ξ
εk
t ) + E

1
[
C
(
δµf1(u

εk , v), X
εk
, ξεkt

)]
+ δXz f1(u

εk , v)
(
X ⊙ ξ

)εk + E
1
[
δµf1(u

εk , v)
(
ξεkt ⊙X

εk)]
+ C

(
δLz f1(u

εk , v), Lεk , ξεkt
)
+ δLz f1(u

εk , v)
(
L⊙ ξ

)
n

= f1(u
εk , v)ξεkt − cXk (f1∂1f1)(u

εk , v)

and
f2(u

εk ,v)λn = f2(u
εk , v) < λn + λn < f2(u

εk , v) + f2(u
εk , v)# ⊙ λn

+ C
(
δXz f2(u

εk , v), Xn, λn) + E
1
[
C
(
δµf2(u

εk , v), X
εk
, λn

)]
+ δXz f2(u

εk , v)
(
X ⊙ λ

)
n
+ E

1
[
δµf2(u

εk , v)
(
λn ⊙X

εk)]
+ C

(
δLz f2(u

εk , v), Lεk , λn
)
+ δLz f2(u

εk , v)
(
L⊙ λ

)
n

= f2(u
εk , v)λεk − cLk (f2∂1f2)(u

εk , v)

so that
f1(u

εk ,v)ξεkt + f2(u
εk ,v)λεk + g(uεk , v)

= f1(u
εk , v)ξεkt + f2(u

εk , v)λn − cXk (f1∂1f1)(u
εk , v)− cLk (f2∂1f2)(u

εk , v) + g(uεk , v),

and function uεk is a solution of the renormalized equation
(∂t −∆)uεk = f(uεk , v)ξεkt − cXk (f1∂1f1)(u

εk , v)− cLk (f2∂1f2)(u
εk , v) + g(uεk , v).

As we know that the solution u
(̂ξ,λ)

+
,u0,v

∈ Dα,β
T (X,L) is a continuous function of (̂ξ, λ)

+
∈ N2,

and since (̂ξ, λ)
+

n converges to (̂ξ, λ)
+

in probability, we see that u
(̂ξ,λ)

+
,u0,v

is the limit in

probability in Dα,β
T of the sequence (uεk , f1(u

εk , v), f2(u
εk , v)) ∈ Dα,β

T (Xεk , Lεk). �

The scaling argument used in the proof of Lemma 22 works verbatim here with the obvious
changes.

30 – Lemma. For every R > 0, the solution u to equation (6.5) is defined up to the time
T ∗ = inf

{
t ≥ 0, ∥u(t)∥L∞ ≥ R

}
.

The proof of the second fixed point works exactly as in the proof of Theorem 24. Details are
left to the reader.

31 – Theorem. We assume that the assumptions (Af -Ag-B) hold true. There exists a positive
Ω2-random time T ≤ T0 with the following property.

– For every u0 ∈ Cα such that ∥u0∥L∞ ≤ C0 there exists a unique local solution u =

(u′, u♯) to the mean field equation (6.2) in Lp(Ω,Dα,β
T (X,L)) and it depends continuously

on (̂ξ, λ)
+
∈ L8p(Ω2,N2) and u0 ∈ Cα.

– Write u = u′X < X + u′L < L + u♯. The function u ∈ C α
T is the limit in probability of

the family of solutions of the renormalized equations
(∂t −∆)uεk = f1

(
uεk ,L(uεk(t)|λ)

)
ξεkt − cXk (t)(f1∂1f1)

(
uεk ,L(uεk(t)|λ)

)
+ f2

(
uεk ,L(uεk(t)|λ)

)
λεk − cLk (t)(f2∂1f2)

(
uεk ,L(uεk(t)|λ)

)
+ g

(
uεk ,L(uεk(t)|λ)

)
.
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6.3 – Tanaka’s trick and conditional propagation of chaos. Let now (ξi, ui0) be a sequence
of independent and identically distributed random variables with common law L(ξ, u0) and
some independent noise λ, defined on the probability space (Ω,F ,P) as in the beginning of this
section. We fix ω ∈ Ω and an integer n ≥ 1 and study the mean field dynamics

(∂t −∆)ui,n(ω) = f1
(
ui,n(ω), µn

t

)
ξi(ω) + f2

(
ui,n(ω), µn

t

)
λ(ω) + g

(
ui,n(ω), µn

t (ω)
)
, (6.7)

with initial conditions
(
u10(ω), . . . , u

n
0 (ω)

)
, where 1 ≤ i ≤ n. We suppose that f1, f2 and g

satisfy the assumptions (Af -Ag-B). As in Section 5, the system (6.7) can either be understood
as a multidimensional singular stochastic PDE driven by a multidimensional (enhanced) noise
or as a mean field singular stochastic PDE. We prove again in paragraph (a) that these two
interpretations coincide and prove in paragraph (b) that we have a propagation of chaos result
for (6.7).

(a) Singular systems of interacting fields – One can see equation (6.7) as a single multidimen-
sional singular stochastic equation

(∂t −∆)u = f1(u)ξ
[1,n] + f2(u)λ+ g(u)

with unknown u =
(
u1,n, . . . , un,n

)
and noise ξ[1,n] =

(
ξ1, . . . , ξn

)
, and where f1 is (f11 , . . . , f

n
1 )

and f2 is (f12 , . . . , f
n
2 ) with

f ij :
(
u1,n, . . . , un,n

)
7→ fj

(
ui,n,

1

n

n∑
j=1

δuj,n

)
=·· fj(ui,n, µn),

with a similar definition of g. The noise (ξ[1,n], λ) needs to be enhanced to make sense of the
equation. The solution will be a tuple of paracontrolled functions

ui,n = (ui,n)′X < Xi + (ui,n)′L < L+ (ui,n)#

= f i1(u
1,n, . . . , un,n) < Xi + f i2(u

1,n, . . . , un,n) < L+ (ui,n)#

so we will have from paralinearisation

f ik
(
u1,n, · · · , un,n

)
=

n∑
j=1

(
∂jf

i
k

(
u1,n, . . . , un,n

)
(uj,n)′X

)
< Xj + f ik

(
u1,n, . . . , un,n

)#
+

n∑
j=1

(
∂jf

i
k

(
u1,n, . . . , un,n

)
(uj,n)′L

)
< L

with

∂jf
i
k

(
u1,n, . . . , un,n

)
= δi,j∂1fk

(
ui,n, µn

)
+

1

n

n∑
j=1

∂2Fk

(
ui,n, uj,n

)
,

since

fk(u
i,n, µn) =

1

n

n∑
j=1

Fk

(
ui,n, uj,n

)
.

The singular products in (6.7) then reads

f1
(
ui,n, µn

)
ξi = f1

(
ui,n, µn

)
< ξi + ξi < f1

(
ui,n, µn

)
+ f1

(
ui,n, uj,n

)# ⊙ ξi

+ C
(
∂1f1

(
ui,n, µn

)
(ui,n)′X , X

i, ξi
)
+

1

n

n∑
j=1

C
(
∂2F1(u

i, µn)(uj,n)′X , X
j , ξi

)
+ ∂1f1

(
ui,n, µ

)
(ui,n)′X

(
ξi ⊙Xi

)
+

1

n

n∑
j=1

∂2F1(u
i, µ)(uj,n)′X

(
ξi ⊙Xj

)
+ C

(
∂1f1

(
ui,n, µn

)
(ui,n)′L, L, ξ

i
)
+

1

n

n∑
j=1

C
(
∂2F1(u

i, µn)(uj,n)′L, L, ξ
i
)
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+ ∂1f1
(
ui,n, µ

)
(ui,n)′L

(
ξi ⊙ L

)
+

1

n

n∑
j=1

∂2F1(u
i, µ)(uj,n)′L

(
ξi ⊙ L

)
, (6.8)

and
f2
(
ui,n, µn

)
λ = f2

(
ui,n, µn

)
< λ+ λ < f2

(
ui,n, µn

)
+ f2

(
ui,n, µn

)# ⊙ λ

+ C
(
∂1f2

(
ui,n, µn

)
(ui,n)′X , X

i, λ
)
+

1

n

n∑
j=1

C
(
∂2F2(u

i, µn)(uj,n)′X , X
j , λ

)
+ ∂1f2

(
ui,n, µ

)
(ui,n)′X

(
λ⊙Xi

)
+

1

n

n∑
j=1

∂2F2(u
i, µ)(uj,n)′X

(
λ⊙Xj

)
+ C

(
∂1f1

(
ui,n, µn

)
(ui,n)′L, L, λ

)
+

1

n

n∑
j=1

C
(
∂2F1(u

i, µn)(uj,n)′L, L, λ
)

+ ∂1f1
(
ui,n, µn

)
(ui,n)′L

(
λ⊙ L

)
+

1

n

n∑
j=1

∂2F1(u
i, µn)(uj,n)′L

(
λ⊙ L

)
,

Our task is now to prove that (6.7) may also be understood as a mean field singular stochastic
PDE of the type (6.2) with a suitable enhancement of the noise and that the two interpretations
coincide. Tanaka’s trick gives an interpretation of (6.7) as the mean field equation

(∂t −∆)ui,n(ω) =f1

(
ui,n(ω), uUn(·),n(ω)

)
ξi(ω) + f2

(
ui,n(ω), uUn(·),n(ω)

)
λ(ω)

+ g
(
ui,n(ω), uUn(·),n(ω)

) (6.9)

now set on the finite probability space ([[1, n]], 2[[1,n]], λn), with generic chance element i. The
enhanced noise from Definition 17 is then{

ξi, ξi ⊙Xi, ξj , ξj ⊙Xi, λ, ξj ⊙ L, ξj ⊙Xi, λ⊙Xi, λ⊙ L
}
1≤i,j≤n

,

where the index i plays the role of ω and j the role of ϖ. Let us now clarify the meaning of the
singular product. We have

δXz fk
(
ui,n, uUn(·),n

)
= ∂1fk

(
ui,n, uUn(·),n

)(
ui,n

)′
X
,

δLz fk
(
ui,n, uUn(·),n

)
= ∂1fk

(
ui,n, uUn(·),n

)(
ui,n

)′
L
,

and
δµfk

(
ui,n, uUn(·),n

)
= ∂2Fk

(
ui,n, uUn(·),n

)(
uUn(·),n

)′
X
.

The singular products in Equation (6.9) are defined as

f1
(
ui,n, uUn(·),n

)
ξi = f1

(
ui,n, uUn(·),n

)
< ξi + ξi < f1

(
ui,n, uUn(·),n

)
+ f1

(
ui,n, uUn(·),n

)# ⊙ ξi

+ C
(
∂1f1

(
ui,n, uUn(·),n

)(
ui,n

)′
X
, Xi, ξi

)
+ ∂1f1

(
ui,n, uUn(·),n

)(
ui,n

)′
X

(
ξ ⊙X

)i
+ C

(
∂1f1

(
ui,n, uUn(·),n

)(
ui,n

)′
L
, L, ξi

)
+ ∂1f1

(
ui,n, uUn(·),n

)(
ui,n

)′
L

(
ξi ⊙ L

)
+

1

n

n∑
j=1

C
(
∂2F1

(
ui,n, uj,n

)(
uj,n

)′
X
, Xj , ξi

)
+

1

n

n∑
j=1

∂2F1

(
ui,n, uj,n

)(
uj,n

)′
X

(
ξi ⊙Xj

)
.

(6.10)
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and
f2
(
ui,n, uUn(·),n

)
λ = f2

(
ui,n, uUn(·),n

)
< λ+ λ < f2

(
ui,n, uUn(·),n

)
+ f2

(
ui,n, uUn(·),n

)# ⊙ λ

+ C
(
∂1f2

(
ui,n, uUn(·),n

)(
ui,n

)′
X
, Xi, λ

)
+ ∂1f2

(
ui,n, uUn(·),n

)(
ui,n

)′
X

(
λ⊙Xi

)
+ C

(
∂1f2

(
ui,n, uUn(·),n

)(
ui,n

)′
L
, L, λ

)
+ ∂1f2

(
ui,n, uUn(·),n

)(
ui,n

)′
L

(
λ⊙ L

)
+

1

n

n∑
j=1

C
(
∂2F2

(
ui,n, uj,n

)(
uj,n

)′
X
, Xj , λ

)
+

1

n

n∑
j=1

∂2F2

(
ui,n, uUn(·),n

)(
uj,n

)′
X

(
λ⊙Xj

)
.

We conclude from (6.8) and (6.10) that the two formulations coincide as they amount to solving
the same classical PDE for the remainders (ui,n)#.
(b) Mean field limit – We know from the continuity result of Theorem 31 that the P-almost
sure convergence of

Wp

(
1

n

n∑
i=1

δ
((̂ξ,λ)

i,+
,ui

0)(ω)
,L

(
(̂ξ, λ)

+
, u0

))
to 0 granted by the law of large numbers entails the convergence of Wp,CTCα

(
1
n

∑n
i=1 δui,n ,L(u)

)
to 0, where u is the function associated with the solution u of the mean field dynamics (6.2).

32 – Corollary. For any fixed integer k, the law L
(
u1,n, . . . , uk,n

)
converges P2(dω2)-almost surely

to L (u|λ)(ω2)
⊗k when n tends to ∞

A – Enhancing random noises

We prove Theorem 6 in this section. Recall from (3.5) the definition of the random variable
X ⊙ ξ. Write ek for the function x 7→ exp(i(k, x)) and ξ̂(k) for (ξ, ek). Our noises satisfy the
identity

E
[
ξ̂t(k)ξ̂s(−k′)

]
= 1k=k′ c(t, s) η̂(k). (A.1)

We denote below by Var(A) the variance of a random variable A.

33 – Lemma. There exists a positive constant κ such that on has for all ℓ ∈ N, s, t, a, b ∈ R+ and
x ∈ T2, the estimate

Var
(
∆ℓ

(
Ptξs ⊙ ξa

)
(x)

)
≲

22ℓ22ℓη

t
e−κt22ℓ

(
c(s, s) c(a, a) + c(s, a)2

)
and

Var
(
∆ℓ

((
(Id − Pb)Ptξs

)
⊙ ξa

)
(x)

)
≲ b

22ℓ22ℓη

t
e−κt22ℓ−1(

c(s, s) c(a, a) + c(s, a)2
)
.

Proof – The proof follows closely the proof of Lemma 5.2 in [11]. We have

∆ℓ

(
Ptξs ⊙ ξa

)
(x) = (2π)−2

∑
k∈Z2

ei(k,x)ρℓ(k)F
(
Ptξs ⊙ ξa

)
(k)

= (2π)−4
∑

k1,k2∈Z2

∑
|i−j|≤1

ρℓ(k1 + k2)ρi(k1) e
−t|k1|2 ξ̂s(k1) ρj(k2) ξ̂a(k2) ek1+k2(x),

then Var
(
∆ℓ(Ptξs ⊙ ξa)(x)

)
is equal to

(2π)−8
∑

k1,k2,k′
1,k

′
2

∑
|i−j|≤1

∑
|i′−j′|≤1

ρℓ(k1 + k2) ρi(k1) e
−t|k1|2ρj(k2)

× ρℓ(k
′
1 + k′2) ρi′(k

′
1) e

−t|k′
1|

2

ρj′(k
′
2)Cov

(
ξ̂s(k1)ξ̂a(k2), ξ̂s(k

′
1)ξ̂a(k

′
2)
)
ek1+k2+k′

1+k′
2
(x).
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Using Wick theorem and the identity A.1 one gets

Cov
(
ξ̂s(k1)ξ̂a(k2), ξ̂s(k

′
1)ξ̂a(k

′
2)
)

= E
[
ξ̂s(k1)ξ̂a(k2)ξ̂s(k

′
1)ξ̂a(k

′
2)
]
− E

[
ξ̂s(k1)ξ̂a(k2)

]
E
[
ξ̂s(k

′
1)ξ̂a(k

′
2)
]

= E
[
ξ̂s(k1)ξ̂s(k

′
1)
]
E
[
ξ̂a(k2)ξ̂a(k

′
2)
]
+ E

[
ξ̂s(k1)ξ̂a(k

′
2)
]
E
[
ξ̂s(k

′
1)ξ̂a(k2)

]
= (2π)4 η̂(k1) η̂(k2)

(
1k1=−k′

1,k2=−k′
2
c(s, s) c(a, a) + 1k1=−k′

2,k2=−k′
1
c(s, a)2

)
,

consequently

Var
(
∆ℓ(Ptξs ◦ ξa)(x)

)
=

∑
k1,k2

∑
|i−j|≤1

∑
|i′−j′|≤1

(2π)4 η̂(k1) η̂(k2) ρℓ(k1 + k2)
2 ρi(k1) ρj(k2)

×
(
c(s, s) c(a, a) ρi′(k1) ρj′(k2)e

−2t|k1|2 + c(s, a)2ρi′(k2)ρj′(k1) e
−t|k1|2−t|k2|2

)
.

The factors ρi(k1) ρi′(k1) and ρi(k1) ρj′(k1) ensure that one can restrict the sum on i and i′ to
couples (i, i′) such that 1

µ |i| ≤ |i′| ≤ µ|i| for some constant µ, which will be denoted by i ∼ i′.
Likewise the factor ρℓ(k1 + k2) enables us to restrict the sum to |i| ≥ 1

µ′ l for some µ′. There
exists some κ0 > 0 such that e−2t|k|2 ≲ e−tκ02

2i for k ∈ supp(ρi), so that for some κ > 0

Var
(
∆ℓ(Ptξs ◦ ξa)(x)

)
≲

(
c(s, s) c(a, a) + c(s, a)2

) ∑
i,i′,j,j′

1ℓ≲i1i∼i′∼j∼j′

∑
k1,k2

1supp(ρℓ)(k1 + k2)

× 1supp(ρi)(k1)1supp(ρj)(k2)2
2iηe−2tκ22i

≲
(
c(s, s) c(a, a) + c(s, a)2

) ∑
i,l≲i

22i22ℓ22iηe−2tκ22i

≲
(
c(s, s) c(a, a) + c(s, a)2

)22ℓ22ℓη
t

e−2tκ22ℓ ,

hence the first estimate. For the second estimate we notice that the e−t|k1|2 is replaced by
(1− e−b|k1|2) e−t|k2

1| and that

(1− e−b|k1|2) e−t|k2
1| ≤ b|k1|2e−t|k1|2 ≲ ve−t|k1|2/2

The remainder of the proof is the same as for the first estimate. �

We can now prove Theorem 6. We will estimate E
[∥∥(X⊙ ξ

)
(t)−

(
X⊙ ξ

)
(s)

∥∥2p
B2α−2

2p,2p

]
in order

to use Kolmogorov continuity criterion and Besov embedding. For 0 < s ≤ t, write∫ t

0

Pt−a(ξa)⊙ ξt da−
∫ s

0

Ps−a(ξa)⊙ ξs da

=

∫ s

0

(
(Pt−s − Id)Ps−a(ξa)

)
⊙ ξt da+

∫ s

0

Ps−a(ξa)⊙ (ξt − ξs) da+

∫ t

s

Pt−a(ξa)⊙ ξt da

=:

∫ s

0

Ã1(a) da+

∫ s

0

Ã2(a) da+

∫ t

s

Ã3(a) da,

and set
Ai ··= Ãi − E

[
Ãi

]
(i ∈ [[1, 3]]).

The quantity E
[
∥
(
X ⊙ ξ

)
(t)−

(
X ⊙ ξ

)
(s)∥2p

B2α−2
2p,2p

]
is equal to
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∑
ℓ≥−1

22pℓ(2α−2)

∫
T2

E
[∣∣∣∆ℓ

((
X ⊙ ξ

)
(t)−

(
X ⊙ ξ

)
(s)

)∣∣∣2p]
=

∑
ℓ≥−1

22pℓ(2α−2)

∫
T2

E

[∣∣∣∣ ∫ s

0

∆ℓA1(a) da+

∫ s

0

∆ℓA2(a) da+

∫ t

s

∆ℓA3(a) da

∣∣∣∣2p].
From gaussian hypercontractivity we have

E

[∣∣∣∣ ∫ s

0

∆ℓA1(a) da+

∫ s

0

∆ℓA2(a) da+

∫ t

s

∆ℓA3(a) da

∣∣∣∣2p]
≤ E

[ ∫ s

0

∣∣∆ℓA1(a)
∣∣ da+ ∫ s

0

∣∣∆ℓA2(a)
∣∣ da+ ∫ t

s

∣∣∆ℓA3(a)
∣∣ da]2p

≲

(∫ s

0

E
[∣∣∆ℓA1(a)

∣∣2]1/2 da)2p

+

(∫ s

0

E
[∣∣∆ℓA2(a)

∣∣2]1/2 da)2p

+

(∫ t

s

E
[∣∣∆ℓA3(a)

∣∣2]1/2 da)2p

So that the bounds for E
[
∥
(
X ⊙ ξ

)
(t)−

(
X ⊙ ξ

)
(s)∥2p

B2α−2
2p,2p

]1/(2p) becomes( ∑
ℓ≥−1

22pℓ(2α−2)

∫
T2

E

[∣∣∣∣ ∫ s

0

∆ℓA1(a) da+

∫ s

0

∆ℓA2(a) da+

∫ t

s

∆ℓA3(a) da

∣∣∣∣2p]) 1
2p

≲
∑
ℓ≥−1

2ℓ(2α−2)
(∫ s

0

E
[∣∣∆ℓA1(a)

∣∣2] 1
2 da+

∫ s

0

E
[∣∣∆ℓA2(a)

∣∣2] 1
2 da+

∫ t

s

E
[∣∣∆ℓA3(a)

∣∣2] 1
2

da
)

=·· S1 + S2 + S3

We now use Lemma 33 to estimate the E
[∣∣∆ℓAi(a)

∣∣2]. First we have

E
[∣∣∆ℓA1(a)

∣∣2] = Var
(
∆ℓ

((
(Pt−s − Id)Ps−aξa

)
⊙ ξt

))
≲ (t− s)

22ℓ22ℓη

s− a
e−κ(s−a)22ℓ

(
c(s, s) c(a, a) + c(s, a)2

)
and

E
[∣∣∆ℓA2(a)

∣∣2] = Var
(
∆ℓ

((
Ps−aξa

)
⊙
(
ξt − ξs)

))
≲

22ℓ22ℓη

s− a
e−κ(s−a)22ℓ

(
c(a, a)

(
c(t, t) + c(s, s)− 2c(s, t)

))
and

E
[∣∣∆ℓA3(a)

∣∣2] = Var
(
∆ℓ

((
Pt−aξa

)
⊙ ξt

))
≲

22ℓ22ℓη

t− a
e−κ(t−a)22ℓ

(
c(t, t)c(a, a) + c(t, a)2

)
.

So, writing cst for c(t, t) + c(s, s)− 2c(s, t), we get∫ s

0

E
[∣∣∆ℓA1(a)

∣∣2]1/2 da ≲ (t− s)
1
2 2ℓ22ℓη

∫ s

0

e−κ(s−a)22ℓ−1 da

(s− a)1/2∫ s

0

E
[∣∣∆ℓA2(a)

∣∣2]1/2 da ≲ c
1
2
st 2

ℓ22ℓη
∫ s

0

e−κ(s−a)22ℓ−1 da

(s− a)1/2∫ t

s

E
[∣∣∆ℓA3(a)

∣∣2]1/2 da ≲ 2ℓ22ℓη
∫ t

s

e−κ(t−a)22ℓ−1 da

(t− a)1/2
.
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We have

S1 ≲ (t− s)
1
2

∑
ℓ≥−1

2ℓ(2α+2η−1)

∫ s

0

e−κ(s−a)22ℓ−1 da

(s− a)1/2

≲ (t− s)
1
2

∫ s

0

∫ +∞

−1

2x(2α+2η−1)e−κ(s−a)22x−1 dx da

(s− a)1/2

≲ (t− s)
1
2

∫ s

0

∫ +∞

0

(s− a)−α−ηy2α+2η−2e−κy2/2 dy da

and similarly

S2 ≲ c
1
2
st

∑
ℓ≥−1

2ℓ(2α−1)

∫ s

0

e−κ(s−a)22ℓ−1 da

(s− a)1/2

≲ c
1
2
st

∫ s

0

∫ +∞

0

(s− a)−α−ηy2α+2η−2e−κy2/2 dy da

and

S3 ≲
∑
ℓ≥−1

2ℓ(2α−1)

∫ t

s

e−κ(t−a)22ℓ−1 da

(t− a)1/2

≲
∫ t

s

∫ +∞

0

(t− a)−α−ηy2α+2η−2e−κy2/2dy da.

Finally we see that

E
[
∥
(
X ⊙ ξ

)
(t)−

(
X ⊙ ξ

)
(s)∥2p

B2α−2
2p,2p

]
≲

(
(t− s)1/2 + c

1/2
st + (t− s)1−α−η

)2p

≲ |t− s|2pm,
with

m ··= min
{
1/2, δ/2, 1− α− η

}
.

From Kolmogorov continuity criterion and Besov embedding, for every α < 1 and 1 ≤ p < ∞
the process X ⊙ ξ is almost surely an element of Cm−1/p

T C2α−2−1/p(T2).
The mollifier approximation result in the statement of Theorem 6 comes from the same

arguments and calculations writing

(X ⊙ ξ)(t)−
(
(Xε ⊙ ξε)(t)− E

[
(Xε ⊙ ξε)(t)

])
=

∫ t

0

(
Pt−a(ξa − ξεa)⊙ ξt − E

[
Pt−a(ξa − ξεa)⊙ ξt

])
da

+

∫ t

0

(
Pt−aξ

ε
a ⊙ (ξt − ξεt )− E

[
Pt−aξ

ε
a ⊙ (ξt − ξεt )

])
da.

If φ is the fourier transform of the mollifier, we have
ξ̂ε(k) = φ(kε) ξ̂(k),

and the same calculations as in the proof of Lemma 33 give

Var
(
∆ℓ(Pt−a(ξa − ξεa)⊙ ξt)(x)

)
≲

∑
i,i′,j,j′

1l≲i1i∼i′∼j∼j′

∑
k1,k2

(1− φ(k1ε))1supp(ρℓ)(k1 + k2)1supp(ρi)(k1)1supp(ρj)(k2)2
2iηe−2tκ22i

≲
∑
i

1ℓ≲i

∑
k1,k2

(1− φ(k1ε))1supp(ρℓ)(k1 + k2)1supp(ρi)(k1)1supp(ρj)(k2)2
2iηe−2tκ22i .
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For some integer N = N(ε), one can decompose the last sum as∑
i≤N

1ℓ≲i

∑
k1,k2

(1− φ(k1ε))1supp(ρℓ)(k1 + k2)1supp(ρi)(k1)1supp(ρj)(k2)2
2iηe−2tκ22i

+
∑
i>N

1ℓ≲i

∑
k1,k2

(1− φ(k1ε))1supp(ρℓ)(k1 + k2)1supp(ρi)(k1)1supp(ρj)(k2)2
2iηe−2tκ22i

≲ sup
|x|≤N

(
1− φ(xε)

)22ℓ22ℓη
t− a

e−κ(t−a)22ℓ +
22N22Nη

t− a
e−κ(t−a)22N

So that choosing N(ε) such that N(ε) → ∞ and εN(ε) → 0 as ε goes to zero, one gets

Var
(
∆ℓ

(
Pt−a(ξa − ξεa)⊙ ξt(x)

))
≲ ψℓ(ε)

22ℓ(1+η)

t− a
e−κ(t−a)22ℓ ,

where 0 ≤ ψℓ(ε) ≤ 1 tends to 0 as ε > 0 goes to 0. Likewise one has

Var
(
∆ℓ

(
Pt−aξ

ε
a ⊙ (ξt − ξεt )(x)

))
≲ ψℓ(ε)

22ℓ(1+η)

t− a
e−κ(t−a)22ℓ .

The same calculations as above give for

E
[∥∥(X ⊙ ξ)(t)−

(
(Xε ⊙ ξε)(t)− E

[
(Xε ⊙ ξε)(t)

])∥∥2p
B2α−2

2p,2p

]
the bound ∑

ℓ≥0

ψℓ(ε) 2
ℓ(2α+2η−2)

∫ t

0

E
[∣∣∆ℓA3(a)

∣∣2] 1
2 da

The result follows from dominated convergence argument as the series∑
ℓ≥0

2ℓ(2α+2η−2)

∫ t

0

E
[∣∣∆ℓA3(a)

∣∣2] 1
2 da

is seen to be convergent.
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