4. FLOWS DRIVEN BY ROUGH PATHS

(Guide for this section )

We have seen in part I of the course that a C'-approximate flow on a Banach
space E defines a unique flow ¢ = (gots) on E such that the inequality

0<s<t<1
(41) H‘Pts_,utsHoo < C‘t_s‘a

holds for some positive constants ¢ and a > 1, for all 0 < s < t < T sufficiently
close. The construction of ¢ is actually quite explicit, for if we denote by pi,. the
composition of the maps i, ¢, along the times ¢; of a partition 7, of an interval
[s,t], the map py, satisfies the estimate

2 — c% T }7?,55

N < ﬁ ’a—l

(42) H(pts = M

)

where ¢; is the constant that appears in the definition of a C'-approximate flow

(43) H,utuoluus_,utsHCl < Cl|t_3‘a-

It follows in particular from equation (4.1) that if u depends continuously on some
metric space-valued parameter \, with respect to the C°-topology, and if identity
(4.3) holds uniformly for A moving in a bounded set say, then ¢ depends continuously
on A, as a uniform limit of continuous functions.

The point about the machinery of C'-approximate flows is that they actually pop
up naturally in a number of situations, under the form of a local in time description
of the dynamics under study; nothing else than a kind of Taylor expansion. This
was quite clear in exercice 1 on the ordinary controlled differential equation

with C! real-valued controls hl, ..., h and C? vector fields V;,...,V, in R% The
1-step Euler scheme

pus(z) =z + (hy — ) Vi(z)
defines in that case a C'-approximate flow which has the awaited Taylor-type ex-
pansion, in the sense that one has

(4.5) f(us(2)) = f(x) + (b = hg) (Vif ) (@) + O (|t — s77)

for any function f of class CZ; but p fails to be a flow. Its associated flow is not only
a flow, it also satisfies equation (4.5) as a consequence of identity (4.1).

We shall proceed in a very similar way to give some meaning and solve the rough
differential equation on flows

(4.6) dp = Vdt + F®X(dt),

where V' is a Lipschitz continuous vector field on E and F = (Vl, ey Vg) is a collec-

tion of sufficiently regular vector fields on E; and X is a Holder p-rough path over
1
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R’. A solution flow to equation (4.6) will be defined as a flow on E with a uniform
Taylor-Euler expansion of the form

(4.7) Flow(@) = fl@)+ > XL(Vif) (@) +O(It — s|7),
[7I<[p]

where I = (i1,...,i;) € [1,(]" is a multi-index with size k < [p], and X/, stands for
the coordinates of X,, in the canonical basis of Tg[p M The vector field V; is seen here

as a 1%-order differential operator, and V; = Vj, ---V;  as the Et-order differential
operator obtained by applying successively the operators V; .

For V =0 and X the (weak geometric) p-rough path canonically associated with
an Rfvalued C! control h, with 2 < p < 3, equation (4.7) becomes
(4.8)

Houla)) = 1)+ (=) (in) @+ ([ [ anant ) (530 +0(e=1).

which is nothing else than Taylor formula at order 2 for the solution to the ordi-
nary differential equation (4.4) started at x at time s. Condition (4.7) is a natural
analogue of (4.8) and its higher order analogues.

There is actually a simple way of constructing a map pu;s which satisfies the Fuler
expansion (4.7). It can be defined as the time 1 map associated with an ordinary
differential equation constructed form the V; and their brackets, and where X
appears as a parameter under the form of its logarithm. That these maps p;s form
a C'-approximate flow will eventually appear as a consequence of the fact that the
time 1 map of a differential equation formally behaves as an exponential map, in
some algebraic sense.

The notationally simpler case of flows driven by weak geometric Holder p-rough
paths, with 2 < p < 3, is first studied in section 4.1 before studying the general case
in section 4.2. The latter case does not present any additional conceptual difficulty,
so a reader which who would like to get the core ideas can read section 4.1 only.
The two sections have been written with almost similar words on purpose.

4.1. A warm up: working with weak geometric Hoélder p-rough paths,
with 2 < p < 3. Let V be a C? vector field on E and V4,...,V, be C? vector fields
on E. Let X = (X,X) be a Holder weak geometric p-rough path over R, with
2 < p < 3. Let us be the well-defined time 1 map associated with the ordinary
differential equation

. 1 )
(4.9) Yu = (t = 5)V(yu) + (XZSVZ- + §Xi§ \2 Vk]> (Yu), 0<u<;

it associates to any x € E the value at time 1 of the solution of the above equation
started from z; it is well-defined since V' and the V; are in particular globally Lips-
chitz. It is a direct consequence of classical results on ordinary differential equations,
and of the definition of the topology on the space of Holder weak geometric p-rough
paths, that the maps ;s depend continuously on ( (s,1), X) in the uniform topology,



and that
(4.10) || pes = 1d|| o = 01—5(1).

Also, considering y, as a function of z, it is elementary to see that one has the
estimate

(4.11) |y = 1d|| 0 < c(T+IXP) [t = sV, 0<u<T,

for some constant depending only on V' and the V.

4.1.1. From Taylor expansions to flows driven by rough paths. The next proposition
shows that ;s has precisely the kind of Taylor-Euler expansion property that we ex-
pect from a solution to a rough differential equation, as described in the introduction
to that part of the course.

PROPOSITION 1. There exists a positive constant c, depending only on V' and the
Vi, such that the inequality
(4.12)

|Fome—{£+E=oWvr+xi i) + XA | <e(1IXIF) 17 s =l
holds for any f € C3.

The proof of this proposition and the following one are based on the following
elementary identity, obtained by applying twice the identity

F) = £ t=3) [ VN due X, [ (i durg 3 [ (15.1) ) du

first to f, then to V f, V;f and [V], Vk}f inside the integrals. One has

1

Fate) = £+ =) [ V) ()du+ X5, [0 s+ 33 [ (.47 )

— F@) 4 (=) (V) (@) + (¢t —s) / (V) () — (V) (@) }du

. . 1 51
+ X, (Vif) (x) + (t — 5) X}, /0 /o (VVZ-f) (ySQ) dsadsy
1 S1
3 XL @)+ XX [ [ {0 ) - (Vi) @)} dsadsy
1 i ik 1 s1
gt [ [ (15 AIVEE) ) dsads

53 ([l £) @) + %x/ {(1i Vil ) () = ([V3 Vil ) (@)}

Note that since the Holder p-rough path X is assumed to be weak geometric, the
symmetric part of Xy, is equal to %th ® Xis, so one has

(4.13) f(ps(2)) = f(2) + (t = 5)(V ) (@) + X5 (Vif ) (2) + X0 (Vi Vi) (@) + el (),
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where the remainder e,{; is defined by the formula

e (2) = (t — 5) / VA () — (V@) du+ (1 — )X / 1 / (Vi) () dsadsy
+ XL /0 1 /0 ’ {(VaVid) (gs) = (ViVid ) () } dsads
+ 5 Xixi! /0 1 /0 " (15 VAJViS ) () s,

ot [ (vl )~ (1%.17) @) o

0

PROOF OF PROPOSITION 1 — It is elementary to use estimate (4.11) and the reg-
ularity assumptions on the vector fields V,V; to see that the remainder e{s is

bounded above by a quantity of the form c(1 + || X||?) || f|les [t — s|%, for some
constant depending only on V' and the V. >

A further look at formula (4.29) and estimate (4.11) also make it clear that

3
(4.14) e, oS c(1+ |X)|t — 5|7,

for a constant ¢ depending only on V' and the V;. This is the key remark for proving
the next proposition.

PROPOSITION 2. The family (uts) forms a Ct-approzimate flow.

0<s<t<T
It will be convenient in the following proof to slightly abuse notations and write

Vi(z) for (V;1d)(x), for any multi-index I and point z.

PROOF — We first use formula (4.13) to write

it (Hus(@)) = prus(2)+H(E=0)V (s (2)) +-X0, Vi (s () X85 (Vi Vi) (s (2)) et ™ (s (@)

We deal with the term (¢t —u)V (p1us()) using estimate (4.11) and the Lipschitz
character of V:

[(t = )V (us(@)) = (¢ = )V ()] < (14 [X]P) [u = sl

The remainder € (1u5(2)) has a C*-norm bounded above by ¢(1+ HXH?’)Q\t—u\ ,
by the remark preceeding proposition 2 and the C'-estimate (4.11) on p,s. We
develop Vi (r,s(x)) to deal with the term X7, V;(pys(2)). As

Vilaal®)) = Vi) + (u — ) (VV) (@) + Xi (Ve Vi) (@) + X35 (V; ViVi) () + el ()
we have
(4.15)  XpVi(ras(@)) = XL Vi) + X0XL (VVi) (@) + 24 (@),
where the remainder 6227% has C'-norm bounded above by

Vi
gtu,us

(4.16)

3 3
L e+ IXIP) a7,



for a constant ¢ depending only on V' and the V,,. Set

4
Etu,us (l’) = Z EXi,us (l‘)
=1

The term XJ" (V;Vi) (ftus()) is simply dealt with writing

(4.17) X2 (ViVA) (ptus () = X0 (V3 V) () + X0 (Vi VA) (pus () = 05 (VY ()},

and using estimate (4.11) and the C} character of V;V}, to see that the last term

on the right hand side has a C'-norm bounded above by ¢(1 + [|X||?) |u — s|%
All together, this gives

(s (2)) = prus(@) + (8 = w)V (2) + X3, Vi) + XX, (Ve Vi) () + Xg (ViVe) (@) + eruus()
=2+ (u—s8)V(x)+ X, Vi(z) + Xjk(VVk)( )+ (@) + ()
=z + (t = $)V (2) + X[ Vi(w) + XL (Vi Vi) (2) + e (%) + g (@)
= p1s(2) + €5 () + Epuus (),

so it follows from estimates (4.14) and (4.16) that p is indeed a C'-approximate
flow. >

The above proof makes it clear that one can take for constant c; in the C!-
approximate flow property (??) for u the constant ¢(1 + ||X|*), for a constant ¢
depending only on V' and the V.

Recalling proposition 1 describing the maps j;s in terms of Euler expansion, the
following definition of a solution flow to a rough differential equation is to be thought
of as defining a notion of solution in terms of uniform Euler expansion

|£ 00w —{f+xivis +xitvivir}| <ele =

DEFINITION 3. A flow (i)
equation

(4.18) dp = Vdt + F® X(dt)

0<s<t<T 1s said to solve the rough differential

iof there exists a constant a > 1 independent of X and two possibly X-dependent
positive constants & and c such that

(4.19) [ors — pus|| o, < elt —s|®
holds for all 0 < s <t < T witht — s < 0.

If for instance X is the weak geometric Hélder p-rough path canonically associated
with an Rf-valued piecewise smooth path h, it follows from exercice 1, and the fact

that the iterated integral f: f; dh, ® dh, has size |t — s|?, that the solution flow to
the rough differential equation

dp = Vdt + FEX(dt)
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is the flow associated with the ordinary differential equation
g =V (ys)dt + Vi(y;) dhi.

The following well-posedness result follows directly from theorem ?? on C!-approximate
flows and proposition 2.

THEOREM 4. The rough differential equation on flows
dp = Vdt + F® X(dt)

has a unique solution flow; it takes values in the space of uniformly Lipschitz con-
tinuous homeomorphisms of E with uniformly Lipschitz continuous inverses, and
depends continuously on X.

PROOF — Applying theorem ?? on C'-approximate flows to ;1 we obtain the existence
of a unique flow ¢ satisfying condition (4.34), for ¢ small enough; it further
satisfies the inequality

(4'2()) HSOts — My

for any partition 7 of [s,¢] C [0,T] of mesh || < &, as a consequence of
inequality (?7). As this bound is uniform in (s,¢), and for X in a bounded
set of the space of weak geometric Holder p-rough paths, and since each map
lr,. 18 a continuous function of ((s, t), X), the flow ¢ depends continuously on
((s,t),X).

To prove that ¢ is a homeomorphism, note that, with the notations of section
79

o < (14 |XIP)°T |mes|

Y

-1
(62) =iy o o tih s s s 27— 5),

can actually be written (,ugg))_l = Hgynson_, © " O flg, s, for the time 1 map 7z

associated with the rough path X;_,. As [z enjoys the same properties as u, the
maps (ugg))fl converge uniformly to some continuous map ¢;," which satisfies
by construction ¢y, o ¢t = Id.

Recall that proposition 7?7 provides a uniform control of the Lipschitz norm of the
maps ys; the same holds for their inverses in view of the preceeding paragraph.
We propagate this property from the set {(s,t) € [0,T]%; s <t, t —s < 6} to
the whole of the {(s,t) € [0,T]?; s <t} using the flow property of ¢. >

REMARKS 5. (1) Friz-Victoir approach to rough differential equations.
The continuity of the solution flow with respect to the driving rough path X
has the following consequence, which justifies the point of view adopted by
Friz and Victoir in their works. Suppose the Hélder weak geometric p-rough
path X 1s the limit in the rough path metric of the canonical Hélder weak
geometric p-rough paths X" associated with some piecwise smooth Rf-valued
paths (x})o<i<r. We have noticed that the solution flow ¢™ to the rough
differential equation

dg™ = Vdt + FEX"(dt)



15 the flow associated with the ordinary differential equation

As ||e™ = ¢l = 0n(1), from the continuity of the solution flow with respect
to the driving rough path, the flow ¢ appears in that case as a uniform limait
of the elementary flows ¢". A Holder weak geometric p-rough path with the
above property is called a Hélder geometric p-rough path; not all Holder weak
geometric p-rough path are Hélder geometric p-rough path [14], although there
is little difference.

(2) Time-inhomogeneous dynamics. The above results have a straightfor-
ward generalization to dynamics driven by a time-dependent bounded drift
V(s;+) which is Lipschitz continuous with respect to the time variable and C}
with respect to the space variable, uniformly with respect to time, and time-
dependent vector fields Vi(s;-) which are Lipschitz continuous with respect
to time, and C} with respect to the space variable, uniformly with respect to
time. We define in that case a C'-approzimate flow by defining p as the
time 1 map associated with the ordinary differential equation

Ju = (t— )V (s;9a) + XpVilsiva) + X[V, Vi (ha), 0<u< 1.

4.1.2. Classical rough differential equations. In the classical setting of rough differ-
ential equations, one is primarily interested in a notion of solution path, defined in
terms of local Taylor-Euler expansion.

DEFINITION 6. A path (zs) is said to solve the rough differential equation

0<s<T

(4.21) dz = Vdt + F X(dt)

with initial condition x, if zo = x and there exists a constant a > 1 independent of
X, and two possibly X-dependent positive constants 6 and c, such that
(4.22)

[£G0) = { £z + (L= )V 1) (2) 4 XE (Vi) () 4 XE (ViVi ) (20) | < el =]

holds for all0 < s <t < T, witht — s < 8, for all f €C}.

THEOREM 7 (Lyons’ universal limit theorem). The rough differential equation
(4.21) has a unique solution path; it is a continuous function of X in the uniform
norm topology.

PROOF — a) Existence. It is clear that if (cpts)0<s<
to the equation

1 stands for the solution flow

do = Vdt + FEX(dt),

then the path z; := ¢y(x) is a solution path to the rough differential equation
(4.21) with initial condition x.

b) Uniqueness. Let agree to denote by O.(m) a quantity whose norm is
bounded above by ¢m. Let « stand for the minimum of % and the constant a



in definition 6, and let y, be any other solution path. It satisfies by proposition
1 the estimate

’yt - @ts(ys)} < cft —s|”.
Using the fact that the maps ¢, are uniformly Lipschitz continuous, with a
Lipschitz constant bounded above by L say, one can write for any € > 0 and any
integer k < %

Yke = Pke,(k—1)e (y(kfl)e) + Oc (ea)
= Pke,(k—1)e <()0(k—1)5,(k—2)5 (y(k—2)5) + Oc (ea)) + Oc (ea)

= Oke,(h-2)e (Yh—2)e) + Ocr(€*) 4+ Oc(€%),
and see by induction that
Yke = Phe,(k-n)e (Yh—n)e) + Ocr((n — 1)e*) + O ()
= Yreo(7) + Oer, (k‘eo‘) + 0.(1)
= Zpe + O, (keo‘) + 0.(1).

Taking € and k so that ke converges to some t € [0, 7T, we see that y, = z;, since
a> 1.

The continuous dependence of the solution path z, with respect to X is trans-
fered from ¢ to z,. >

4.2. The general case. We have defined in the previous section a solution to the
rough differential equation

do = Vdt + FEX(dt),

driven by a weak geometric Holder p-rough path, for 2 < p < 3, as a flow with
(s,t; 2)—uniform Taylor-Euler expansion of the form

F(pes(@)) = flz) + (t = ) (V) (@) + X, (Vif ) (2) + XL (V;ViS ) (@) + O (It — s/ 7).
The definition of a solution flow in the general case will require from ¢ that it
satisfies a similar expansion, of the form

(4.23) (o) = fla) + (¢ =)V )(@) + Y X§(Vif)(x) +O(|t = ")
11]<[p]

As in the previous section, we shall obtain ¢ as the unique flow associated with
some C'-approximate flow (Mts)o coctel? where ;5 is the time 1 map associated with
an ordinary differential equation\co\n\structed from the V; and their brackets, and V'
and Xy,. In order to avoid writing expressions with loads of indices (the XZ), T will
first introduce in subsection 4.2.1 a coordinate-free way of working with rough paths
and vector fields. A C'-approximate flow with the awaited Euler expansion will be
constructed in subsection 4.2.2, leading to a general well-posedness result for rough
differential equations on flows.

To make the crucial formula (4.29) somewhat shorter we assume in this section
that V' = 0. The reader is urged to workout by herself/himself the infinitesimal
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changes that have to be done in what follows in order to work with a non-null drift
V. From hereon, the vector fields V; are assumed to be of class C,Ep 1 We denote by

CP (B, E) the set of CP vector fields on E. We denote for by m, : Tp° — (RY)
the natural projection operator and set m<; = > i<k Tj-

4.2.1. Differential operators. Let F be a continuous linear map from R to CZEP}H(E, E)
— one usually calls such a map a vector field valued 1-form on R¢. For any v € RY,
we identify the CIPI*! vector field F(v) on E with the first order differential operator

FE(v) : g € C(E) = (D.g)(F(v)(") € C°(E);

in those terms, we recover the vector field F(v) as F¥(v)Id. The map F® is extended

pl+1 -
N by setting

F€(1) :=1d : C°(E) — C°(E),
and defining F®(v; ® --- @), forall 1 <k < [p] +1 and v; ® - - - @ v, € (RY)®F, as
the k*™-order dlfferentlal operator from Ck(E) to CY(E), defined by the formula
F®(’Ul I ®’Uk) = F®(’Ul) s 'F®(’Uk),

and by requiring linearity. So, we have the morphism property
(4.24) F®(e) F¥(e') = F¥(ee)
for any e, e’ € TL,[p]Jrl with ee’ € Tg[p]ﬂ. This condition on e, e’ is required for if
e = v ® - ®u, with v; € R, the map F?(e/)Id from E to itself is C Pl+1- k SO
F®(e) F®(e’) only makes sense if ee’ € Tz[p}ﬂ. We also have

P2 (e), F¥(e)| = F¥([e.¢])

for any e, e’ € Te[p}Jrl with ee’ and €’e in Tg[p]ﬂ. This implies in particular that F®(A)

is actually a first order differential operator for any A € ggp Hl, that is a vector field.

Note that for any A € g%’}ﬂ and 1 < k < [p] + 1, then AF — (M) is an element of
gﬂ;”], and the vector field F®(A*)Id is CZEP}H_’“,

We extend F® to the unrestricted tensor space T7° setting
(4.25) F®(e) = F®(mepp11€)
for any e € T;°.

Consider as a particular case the map F defined for u € R? by the formula

F(u) = u' Vi(-).
Using the formalism of this paragraph, an Euler expansion of the form
flea(@) = fx) + D XL(Vif) (@) +O(lt = s7).
[1I<[p]

as in equation (4.23), becomes

f(#es(x)) = (F®(Xes) f) (@) + O (It — s7).
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4.2.2. From Taylor expansions to flows driven by rough paths: bis. Let 2 < p be
given, together with a QﬁLp | valued weak-geometric Holder p-rough path X, defined

on some time interval [0,7], and some continuous linear map F from R’ to the
set C,Ele(E, E) of vector fields on E. For any 0 < s < t < T, denote by Ay the
logarithm of X;,, and let p;, stand for the well-defined time 1 map associated with
the ordinary differential equation

This equation is indeed an ordinary differential equation since Ay, is an element of

gﬂf”]- For 2 < p < 3, it reads

Yu = Xy Vi(yu) + ) (ng + ) ngtIZ) [Vja Vk} (yu);, 0<u<l
As the tensor X, ® X;, is symmetric and the map (j, k) — [V], Vk] is antisymmetric,
this equation actually reads

R 1,

which is nothing else than equation (4.9), whose time 1 map defined the C!-approximate
flow we studied in section 4.1.1.

It is a consequence of classical results from ordinary differential equations, and
the definition of the norm on the space of weak-geometric Holder p-rough paths,
that the solution map (r,z) — y,, with yo = x, depends continuously on ((s, t), X)
in C%-norm, and satisfies the following basic estimate. The next proposition shows
that ps has precisely the kind of Taylor-Euler expansion property that we expect
from a solution to a rough differential equation.

(4.27) yr —1d|| <c(1+||x||@1)|t—s|%, 0<r<1

PROPOSITION 8. There exists a positive constant c, depending only on the V;, such
that the inequality

[p]+1

(428) | fomm —FO(Xu) | < (1 IXIM) |l ft = 5|5

holds for any f € Clgp]H(E).

Recall F®(0) is the null map from C°(E) to itself and moA = 0 for any A € ggp}.
The proof of this proposition and the following one are based on the elementary
identity (4.29) below, obtained by applying repeatedly the identity

Fn) = )+ [ (P2 (0)7) )

pl+1 .,
_ ® k1

k1=0
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together with the morphism property (4.24). The above sum over k; is needed to
take care of the different regularity properties of the maps F® (Af;) f.

f(uts@:))=f<x>+(F®<Ats>f)<x>+ S [ (s E ) ) dsa

k1+ko<[p]+1

=f(x)+< (Aso)f / / F® (A2)f (y”) ds, ds,

We use here the notation 2 to denote the multiplication A$? = A, Ay, not to be
confused with the second level A2 of Ay; the product is done here in T;°, and
definition (4.25) used to make sense of F®(A$2) f. Set

—{81,..., [OT] ;S \"'gsn}a

for 2 < n < [p|, and write ds for ds,, ...ds;. Repeating (n — 1) times the above
procedure in an iterative way, we see that

(o)) = f(x) + Z% (P2 (M) ) (@) + /A (AR () ds
0+ 5 (P )+ [

N {<F® (A" )f) (Ys,) — <F® (A7) f) (x)} s,

Note that m; A =0, for all j <n —1, and

(7]

Z k,A;f = Xy

also m<pp (A [p]> = (ths)@)[p] is of size |t — s|% We separate the different terms

in the above identity according to their size in |t — s|; this leads to the following
expression for f(us(z)).

(4.29)

flx) + <F®<W<[p}{ki %Mf})f) (z) +/An {(F®(W<@}A25)f) (Ysn) — (F®(7T<[p}AZ§‘)f) (w)} ds

(P S ath)r) = (E omn) o) - (6 ) e}

We denote by €/;™(2) the sum of the two terms involving Tp)4+1 in the above line,
_ o1 .

made up of terms of size at least |t —s| » . Note that for n = [p], the integral

term in the first line involves 7, <A£S]> (X1) ®Pl and the increment Ys, — &, of

(2]
size |t — s|%, by estimate (4.27), so this term is of size |t — s p:l; we include it in
f5[p)
6ts ( )
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PROOF OF PROPOSITION 8 — Applying the above formula with n = [p], we get the
identity
F(pusl)) = (F*(X0) £ ) (@) + el ).

It is clear on the formula for e{;'[ }( ) that its absolute value is bounded above

by a constant multiple of (1 + HXH[p]> |t — s| 5 , for a constant depending only
on the data of the problem and f as in (4.28). >

A further look at formula (4.29) makes it clear that if 2 < n < [p], and f is CJ,
the estimate

(4.30) i

6ts

[p]+1
e(1+ X7 [ fllenrlt = 5| "5
holds as a consequence of formula (4.27), for a constant ¢ depending only on the V.

PROPOSITION 9. The family of maps (uts) is a Ct-approzimate flow.

0<s<t<T

PROOF — As the vector fields V; are of class CIEP ]H, with [p] + 1 > 3, the identity

H:uts - IdHCQ = Otfs(l)
holds as a consequence of classical results on ordinary differential equations; we

turn to proving the C!-approximate flow property (??). Recall X" stans for
TmXys. We first use for that purpose formula (4.29) to write

i (1)) = (F® (Xw)ld) (ras(@)) + €t (s ()
(4.31) 7

We splitted the function F® (Xm)Id into a sum of functions F® (ng)ld with
different regularity properties, so one needs to use different Taylor expansions for
each of them. One uses (4.30) and inequality (4.27) to deal with the remainder
M s ||, < (14 1) o — w5

[p] +1

To deal with the term <F® (X Id) (1tus()), we use formula (4.29) with n =

[p] —m and f =F®(X[2)Id. Writing ds for dsjy_, . ..ds1, we have
(4.32)

[p]—m
(P& (X72)10) (prus(@) = (F® (X72)1a) (2)+ (F@({w k LA m) Id) (2) e (@),

The notation * in the above identity stands for the Céplﬁ_m function F® (ng)ld;

it has C'-norm controlled by (4.30). The result follows directly from (4.31) and
(4.32) writing

pus () = (F® (Xo) 1) (2) + €21 2),
and using the identities exp (Ay;s) = Xy and Xy = X, Xy, in iy >
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DEFINITION 10. A flow (p4;0 < s < t < T) is said to solve the rough
differential equation

(4.33) dp = F® X (dt)

if there exists a constant a > 1 independent of X and two possibly X-dependent
positive constants § and c such that

(4.34) lrs = thaslloo < ]t — 5]
holds for all 0 < s <t < T witht —s < 6.

This definition can be equivalently reformulated in terms of uniform Taylor-Fuler
expansion of the form

flen(@) = F@)+ Y XL(Vif) (@) +O(t = 7).
[1I<[p]
The following well-posedness result follows directly from theorem ?? and proposition
9; its proof is identical to the proof of theorem 7, without a single word to be changed,
except for the power of || X]|| in estimate (4.20), which needs to be taken as [p] + 1
instead of 3.

THEOREM 11. The rough differential equation
dp = F® X (dt)

has a unique solution flow; it takes values in the space of uniformly Lipschitz con-
tinuous homeomorphisms of E with uniformly Lipschitz continuous inverses, and
depends continuously on X.

Remarks 5 on Friz-Victoir’s approach to rough differential equations and time-
inhomogeneous dynamics also hold in the general setting of this section.

4.3. Exercice on flows driven by rough paths. 12. Local Lipschitz continuiuty
of ¢ with respect to X. Use the result proved in exercice 5 to prove that the solution
flow to a rough differential equation driven by X is a locally Lipschitz continuous function
of X, in the uniform norm topology.

13. Taylor expansion of solution flows. Let Vi,... V; be Cl[)p I+ Sector fields on a
Banach space E, and X be a weak geometric Holder p-rough path over RY, with 2 < p. Set
F = (Vl, R ‘/g). The solution flow to the rough differential equation

do = FOX(dt)
enjoys, by definition, a uniform Taylor-Euler expansion property, expressed either by writ-
ing
H‘Pts - ,U'tsHOO < C’t - S‘G

for the C!-approximate flow (,uts) contructed in section 4.2.2, or by writing

0<s<t<1

fopis — Z XtISV[f < cft — 5|

[7]<[p] 00
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What can we say if the vector fields V; are actually more reqular than Cl[,p]Jrl ¢

Assume N > [p] + 2 is given and the V; are C}¥. Let Y be the canonical lift of X to
a (’.’)év -valued weak geometric Holder N-rough path, given by Lyons’ extension theorem
proved in exercice 7. Let O € gév stand for log Y¢s. For any 0 < s <t < 1, let vy be the
time 1 map associated with the ordinary differential equation

Zu = F®(@ts)(zu), 0<u<l.
a) Prove that 145 enjoys the following Euler expansion property. For any f € Cév 1 owe
have
® Nt
(4.35) | fove —F2(Yus) ||, <clt—s| 7,
where the contant ¢ depends only on the V; and X.
b) Prove that (Vt5)0<s<t<1

c) Prove that ¢y, satisfies the high order Euler expansion formula (4.35).

is a Cl-approximate flow.

14. Perturbing the signal or the dynamics? Let 2 < p be given and Vi,..., V)
be C,[)p 1 Vector fields on E. Let X be a weak geometric Holder p-rough path over Rf, and

ae ggpl be such that mja = 0 for all j < [p] — 1. Write it
as 3 dlen,
1TI=[p]

where (el, e ,eg) stand for the canonical basis of RY, and for I = (il, e ,ik),

e = [eins [+ [enven - |
in Tz[p]. The e(;’s form a basis of ggpl with m,e() = 0 if n # |I|. Recall the definition of
exp : Tg[p]’0 — Te[p]’1 and its reciprocal log.
a) Show that one defines a weak geometric Holder p-rough path X over R setting
X5 = exp (log Xis + (t — 3)a>.
b) Show that the solution flow to the rough differential equation
dip = FOX(dt)
coincides with the solution flow to the rough differential equation
dp = Vdt + FOX(dt),
where the vector field V is defined by the formula
V =adl Vi
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