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1. Introduction

This course is dedicated to the study of some class of dynamics in a Banach space,
index by time R+. Although there exists many recipes to cook up such dynamics,
those generated by differential equations or vector fields on some configuration space
are the most important from a historical point of view. Classical mechanics reached
for example its top with the description by Hamilton of the evolution of any classical
system as the solution of a first order differential equation with a universal form.
The outcome, in the second half of the twentieth centary, of the study of random
phenomena did not really change that state of affair, with the introduction by Itô
of stochastic integration and stochastic differential equations.

Classically, one understands a differential equation as the description of a point
motion, the set of all these motions being gathered into a single object called a flow.
It is a familly ϕ =

(
ϕts

)
0�s�t�T

of maps from the state space to itself, such that
ϕtt = Id, for all 0 � t � T , and ϕts = ϕtu ◦ ϕus, for all 0 � s � u � t � T . The
first aim of the approach to some class of dynamics that is proposed is this course
is the construction of flows, as opposed to the construction of trajectories started
from some given point.

I will explain in the first par of the course a simple method for constructing a
flow ϕ from a family µ =

(
µts

)
0�s�t�T

of maps that almost forms a flow. The two
essential points of this construction are that

i) ϕts is loosely speaking the composition of infinitely many µti+1ti along an
infinite partition s < t1 < · · · < t of the interval [s, t], with infinitesimal
mesh,

ii) ϕ depends continuously on µ in some sense.
We will find back along the way the classical Cauchy-Lipschitz theory. It will ap-
pear that a good way of understanding what a solution to the ordinary differential
equation on R

n

ẋt =

�∑
i=1

Vi(xt)ḣ
i
t =: Vi(xt)ḣ

i
t

is, for some Lipschitz continuous vector fields Vi and some real-valued controls hi of
class C1, is to say that the path x satisfies at any time s the Taylor-type expansion
formula

xt = xs +
(
hit − his

)
Vi(xs) + o(t− s),
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and even
f
(
xt
)
= f

(
xs
)
+
(
hit − his

)(
Vif

)
(xs) + o(t− s),

for any function f of class C2
b , with Vif standing for the derivative of f in the

direction of Vi.
What insight does it provide to understand what a solution to the Stratonovich

stochastic differential equation

(1.1) ◦dxt = Vi(xt)◦dwt

driven by the Brownian motion w is? The use of this notion of differential enables
to write the following kind of Taylor-type expansion of order 2 for any function f of
class C3.

f
(
xt
)
= f

(
xs
)
+

∫ t

s

(
Vif

)
(xr) ◦dwr

= f
(
xs
)
+
(
wi

t − wi
s

)(
Vif

)
(xs) +

∫ t

s

∫ r

s

(
Vj(Vif)

)
(xu) ◦dwu ◦dwr

= f
(
xs
)
+
(
wi

t − wi
s

)(
Vif

)
(xs) +

(∫ t

s

∫ r

s

◦dwu ◦dwr

)(
Vj(Vif)

)
(xs) +

∫ t

s

∫ r

s

∫ u

s

(· · · )

(1.2)

For any choice of 2 < p < 3, the Brownian increments wi
ts := wi

t − wi
s have almost-

surely a size of order (t−s) 1
p , the iterated integrals

∫ t

s

∫ r

s
◦dwu ◦dwr have size (t−s) 2

p ,
and the triple integral size (t − s)

3
p = o(t − s). What will come later out of this

formula is that a solution to equation (1.1) is precisely a path x for which one can
write for any function f of class C3 a Taylor-type expansion of order 2 of the form

f
(
xt
)
= f

(
xs
)
+
(
wi

t −wi
s

)(
Vif

)
(xs) +

(∫ t

s

∫ r

s

◦dwu ◦dwr

)(
Vj(Vif)

)
(xs) + o(t− s)

at any time s. This conclusion puts forward the fact that what the dynamics really
see of the Brownian control w is not only its increments wts but also its iterated
integrals

∫ t

s

∫ r

s
◦dwu ◦dwr. The notion of a p-rough path X =

(
Xts,Xts

)
0�s�t�T

is
an abstraction of this family of pairs of quantities, for 2 < p < 3 here. This multi-
level object satisfies some constraints of analytic type (size of its increments) and
algebraic type, coming from the higher level parts of the object. As they play the
role of some iterated integrals, they need to satisfy some identities consequences of
the Chasles relation for elementary integrals:

∫ t

s
=

∫ u

s
+
∫ t

u
. These constraints are

all what these rough paths X = (X,X) need to satisfy to give a sense to the equation

(1.3) dxt = F⊗(xt)X(dt)

for a collection F =
(
V1, . . . , V�

)
of vector fields on R

n, by defining a solution as a
path x for which on can write the Taylor-type expansion of order 2

(1.4) f
(
xt
)
= f

(
xs
)
+X i

ts

(
Vif

)
(xs) + X

jk
ts

(
Vj(Vkf)

)
(xs) + o(t− s),

for any function f of class C3
b . The notation F⊗ is used here to insist on the fact

that it is not only the collection F of vector fields that is used in this definition, but
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also the differential operators VjVk constructed from F. The introduction and the
study of p-rough paths and their collection is done in the second part of the course.

Guided by the results on flows of the first part, we shall reinterpret equation (1.3)
to construct directly a flow ϕ solution to the equation

dϕ = F⊗X(dt),

in a sense to be made precise in the third part of the course. The recipe of
construction of ϕ will consist in associating to F and X a C1-approximate flow
µ =

(
µts

)
0�s�t�T

having everywhere a behaviour similar to that described by equa-
tion (1.4), and then to apply the theory described in the first part of the course.
The maps µts will be constructed as the time 1 maps associated with some ordi-
nary differential equation constructed from F and Xts in a simple way. As they will
depend continuously on X, the continuous dependence of ϕ on X will come as a
consequence of point ii) above.

All that will be done in a deterministic setting. We shall see in the fourth part of
the course how this approach to dynamics is useful in giving a fresh viewpoint on
stochastic differential equations and their associated dynamics. The key point will be
the fundamental fact that Brownian motion has a natural lift to a Brownian p-rough
path, for any 2 < p < 3. Once this object will be constructed by probabilistic means,
the deterministic machinery for solving rough differential equations, described in the
third part of the course, will enable us to associate to any realization of the Brownian
rough path a solution to the rough differential equation (1.3). This solution coincides
almost-surely with the solution to the Stratonovich differential equation (1.1)! One
shows in that way that this solution is a continuous function of the Brownian rough
path, in striking contrast with the fact that it is only a measurable function of
the Brownian path itself, with no hope for a more regular dependence in a generic
setting. This fact will provide a natural and easy road to the deep results of Wong-
Zakai, Stroock & Varadhan or Freidlin & Wentzell.

Several other approaches to rough differential equations are available, each with
its own pros and cons. We refer the reader to the books [1] and [2] for an account of
Lyons’ original approach; she/he is refered to the book [3] for a thourough account
of the Friz-Victoir approach, and to the lecture note [4] by Baudoin for an easier
account of their main ideas and results, and to the forthcoming excellent lecture
notes [5] by Friz and Hairer on Gubinelli’s point of view. The present approach does
not overlap with the above ones.1

1Comments on these lecture notes are welcome. Please send them to the email address
ismael.bailleul@univ-rennes1.fr
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2. Flows and approximate flows

Guide for this section

This first part of the course will present the backbone of our approach to rough
dynamics under the form of a simple recipe for constructing flows of maps on some
Banach space. Although naive, it happens to be robust enough to provide a unified
treatment of ordinary, rough and stochastic differential equations. We fix throughout
a Banach space V.

The main technical difficulty is to deal with the non-commutative character of
the space of maps from V to itself, endowed with the composition operation. To
understand the part of the problem that does not come from non-commutativity,
let us consider the following model problem. Suppose we are given a family µ =(
µts

)
0�s�t�1

of elements of some Banach space depending continuously on s and
t, and such that

∣∣µts

∣∣ = ot−s(1). Is it possible to construct from µ a family ϕ =(
ϕts

)
0�s�t�1

of elements of that Banach space, depending continuously on s and t,
and such that we have

(2.1) ϕtu + ϕus = ϕts

for all 0 � s � u � t � 1? This additivity property plays the role of the flow
property. Would the time interval [0, 1] be a finite discrete set t1 < · · · < tn, the ad-
ditivity property (2.1) would mean that ϕts is the sum of the ϕti+1ti , whose definition
should be µti+1ti , as these are the only quantities we are given if no arbitrary choice
is to be done. Of course, this will not turn ϕ into an additive map, in the sense
that property (2.1) holds true, in this discrete setting, but it suggest the following
attempt in the continuous setting of the time interval [0, 1].

Given a partition π =
{
0 < t1 < · · · < 1

}
of [0, 1] and 0 � s � t � 1, set

ϕπ
ts =

∑
s�ti<ti+1�t

µti+1ti .

This map almost satisfies relation (2.1) as we have

ϕπ
tu + ϕπ

us = ϕπ
ts − µu+u− = ϕπ

ts + o|π|(1),

for all 0 � s � u � t � 1, where u−, u+ are the elements of π such that u− � u < u+,
and |π| = max {ti+1−ti} stands for the mesh of the partition. So we expect to find a
solution ϕ to our problem under the form ϕπ, for a partition of [0, 1] of infinitesimal
mesh, that is as a limit of ϕπ’s, say along a sequence of refined partitions πn where
πn+1 has only one more point than πn, say un. However, the sequence ϕπn has no
reason to converge without assuming further conditions on µ. To fix further the
setting, let us consider partitions πn of [0, 1] by dyadic times, where we exhaust first
all the dyadic times multiples of 2−k, in any order, before taking in the partition
points multiples of 2−(k+1). Two dyadic times s and t being given, both multiples of
2−k0, take n big enough for them to be points of πn. Then, denoting by u−n , u+n the
two points of πn such that u−n < un < u+n , the quantity ϕ

πn+1

ts − ϕπn
ts will either be
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null if un /∈ [s, t], or

(2.2) ϕ
πn+1

ts − ϕπn
ts =

(
µu+

n un
+ µunu

−
n

)− µu+
nu−

n
,

otherwise. A way to control this quantity is to assume that the map µ is approxi-
mately additive, in the sense that we have some positive constants c0 and a > 1 such
that the inequality

(2.3)
∣∣(µtu + µus

)− µts

∣∣ � c0 |t− s|a

holds for all 0 � s � u � t � 1. Under this condition, we have∣∣∣ϕπn+1

ts − ϕπn
ts

∣∣∣ � c02
−am,

where
∣∣πn+1

∣∣ = 2−m. There will be 2m such terms in the formal series
∑

n�0

(
ϕ
πn+1

ts −
ϕπn
ts

)
, giving a total contribution for these terms of size 2−(a−1)m, summable in m.

So this sum converges to some quantity ϕts which satisfies (2.1) by construction (on
dyadic times only, as defined as above). Note that commutativity of the addition
operation was used implicitly to write down equation (2.2).

Somewhat surprisingly, the above approach also works in the non-commutative
setting of maps from V to itself under a condition which essentially amounts to
replace the addition operation and the norm |·| in condition (2.3) by the composition
operation and the C1 norm. This will be the essential content of theorem 2 below,
taken from the work [6].

2.1. C1-approximate flows and their associated flows. We start by defining
what will play the role of an approximate flow, in the same way as µ above was
understood as an approximately additive map under condition (2.3).

Definition 1. A C1-approximate flow on V is a family µ =
(
µts

)
0�s�t�T

of
C2 maps from V to itself, depending continuously on s, t in the topology of uniform
convergence, such that

(2.4)
∥∥µts − Id

∥∥
C2 = ot−s(1)

and there exists some positive constants c1 and a > 1, such that the inequality

(2.5)
∥∥µtu ◦ µus − µts

∥∥
C1 � c1|t− s|a

holds for all 0 � s � u � t � T .

Note that µts is required to be C2 close to the identity while we ask it to be an
approximate flow in a C1 sense. Given a partition πts = {s = s0 < s1 < · · · < sn−1 <
sn = t} of an interval [s, t] ⊂ [0, T ], set

µπts = µtntn−1 ◦ · · · ◦ µt1t0 .

Theorem 2 (Constructing flows on a Banach space). A C1-approximate flow defines
a unique flow ϕ =

(
ϕts

)
0�s�t�T

on V such that the inequality

(2.6)
∥∥ϕts − µts

∥∥
∞ � c|t− s|a
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holds for some positive constant c, for all 0 � s � t � T sufficiently close, say
t− s � δ. This flow satisfies the inequality

(2.7)
∥∥ϕts − µπts

∥∥
∞ � 2

1− 21−a
c21T

∣∣πts∣∣a−1

for any partition πts of any interval (s, t) of mesh
∣∣πts∣∣ � δ.

Note that the conclusion of theorem 2 holds in C0-norm. This loss of regularity
with respect to the controls on µ given by equations (2.4) and (2.5) roughly comes
from the use of uniform C1-estimates on some functions fts to control some incre-
ments of the form fts ◦ gts − fts ◦ g′ts, for some C0-close maps gts, g′ts. Note that if µ
depends continuously on some parameter, then ϕ also depends continuously on that
parameter, as a uniform limit of continuous functions, equation (2.11). One proves
in exercice 5 that ϕ is actually locally Lipschitz as a function of µ, in the sense that
if ∥∥∥(µtu ◦ µus − µts

)− (
µ′
tu ◦ µ′

us − µ′
ts

)∥∥∥
C1

� ε |t− s|a

for all 0 � s � u � t � T , then∥∥∥(ϕts − µts

)− (
ϕ′
ts − µ′

ts

)∥∥∥
∞

� c ε |t− s|a

for some explicit constant c. The remainder of this section will be dedicated to the
proof of theorem 2. We shall proceed in two steps, by proving first that one can
construct ϕ as the uniform limit of the µπ’s provided one can control uniformly their
Lipschitz norm. This controll will be proved in a second step.

2.1.1. First step. Let us introduce the following definition to prepare the first step.

Definition 3. Let ε ∈ (0, 1) be given. A partition π = {s = s0 < s1 < · · · < sn−1 <
sn = t} of (s, t) is said to be of special type ε if we have ε � si−si−1

si+1−si−1
� 1− ε, for

all i = 1 . . . n− 1. The trivial partition of any interval into the interval itself is also
said to be of special type ε.

A partition of any interval into sub-intervals of equal length has special type 1
2
.

Given a partition π = {s = s0 < s1 < · · · < sn−1 < sn = t} of (s, t) of special type
ε and u ∈ {s1, . . . , sn−1}, the induced partitions of the intervals (s, u) and (u, t) are
also of special type ε. Set mε = sup

ε�β�1−ε
βa + (1− β)a < 1, and a constant

L >
2c1

1−mε
,

where c1 is the constant in equation (2.5).

Lemma 4. Let µ =
(
µts

)
0�s�t�T

be a C1-approximate flow on V. Given ε > 0, there
exists a positive constant δ such that for any 0 � s � t � T with t− s � δ, and any
special partition of type ε of an interval (s, t) ⊂ [0, T ], we have

(2.8)
∥∥µπts − µts

∥∥
∞ � L|t− s|a.
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Proof – We proceed by induction on the number n of sub-intervals of the partition.
The case n = 2 is the C0 version of identity (2.5). Suppose the statement
has been proved for n � 2. Fix 0 � s < t � T with t − s � δ, and let
πts = {s0 = s < s1 < · · · < sn < sn+1 = t} be a partition of (s, t) of special type
ε, splitting the interval (s, t) into (n + 1) sub-intervals. Set u = s[n/2], so the
two partitions πtu and πus are both of special type ε, with respective cardinals
no greater than n, and ε � t−u

t−s
� 1− ε. Then

∥∥µπts − µts

∥∥
∞ �

∥∥µπtu ◦ µπus − µtu ◦ µπus

∥∥
∞ +

∥∥µtu ◦ µπus − µts

∥∥
∞

�
∥∥µπtu − µtu

∥∥
∞ +

∥∥µtu ◦ µπus − µtu ◦ µus

∥∥
∞ +

∥∥µtu ◦ µus − µts

∥∥
∞

� L|t− u|a + (
1 + oδ(1)

)
L |u− s|a + c1|t− s|a,

by the induction hypothesis and (2.4) and (2.5). Set u − s = β(t − s), with
ε � β � 1− ε. The above inequality rewrites

∥∥µπts − µts

∥∥
∞ �

{(
1 + oδ(1)

)(
(1− β)a + βa

)
L+ c1

}
|t− s|a.

In order to close the induction, we need to choose δ small enough for the condi-
tion

(2.9) c1 +
(
1 + oδ(1)

)
mεL � L

to hold; this can be done since mε < 1. �
As a shorthand, we shall write µn

ts for ©n−1
i=0 µti+1ti , where si = s+ i

n
(t− s).

Proposition 5 (Step 1). Let µ =
(
µts

)
0�s�t�T

be a C1-approximate flow on V.
Assume the existence of a positive constant δ such that the maps µn

ts, for n � 2 and
t− s � δ, are all Lipschitz continuous, with a Lipschitz constant uniformly bounded
above by some constant c2, then there exists a unique flow ϕ =

(
ϕts

)
0�s�t�T

on V
such that the inequality

(2.10)
∥∥ϕts − µts

∥∥
∞ � c|t− s|a

holds for some positive constant c, for all 0 � s � t � T with t − s � δ. This flow
satisfies the inequality

(2.11)
∥∥ϕts − µπts

∥∥
∞ � c1c2T

∣∣πts∣∣a−1

for any partition πts of (s, t), of mesh
∣∣πts∣∣ � δ.

Proof – The existence and uniqueness proofs both rely on the elementary identity
(2.12)

fN◦· · ·◦f1− gN◦· · ·◦g1 =
N∑
i=1

(
gN◦· · ·◦gN−i+1◦fN−i− gN◦· · ·◦ gN−i+1◦ gN−i

)
◦fN−i−1◦· · ·◦f1,

where the gi and fi are maps from V to itself, and where we use the obvious
convention concerning the summand for the first and last term of the sum. In
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particular, if all the maps gN ◦ · · · ◦ gk are Lipschitz continuous, with a common
upper bound c′ for their Lipschitz constants, then

(2.13)
∥∥fN ◦ · · · ◦ f1 − gN ◦ · · · ◦ g1

∥∥
∞ � c′

N∑
i=1

‖fi − gi‖∞.

a) Existence. Set Dδ :=
{
0 � s � t � T ; t − s � δ

}
and write Dδ for the

intersection of Dδ with the set of dyadic real numbers. Given s = a2−k0 and
t = b2−k0 in Dδ, define for n � k0

µ
(n)
ts := µ2n

ts = µsN(n)sN(n)−1
◦ · · · ◦ µs1s0 ,

where si = s + i2−n and sN(n) = t. Given n � k0, write

µ
(n+1)
ts =

N(n)−1

©
i=0

(
µsi+1si+2−n−1 ◦ µsi+2−n−1si

)

and use (2.12) with fi = µsi+1si+2−n−1 ◦ µsi+2−n−1si and gi = µsi+1si and the fact
that all the maps µsN(n)sN(n)−1

◦ · · · ◦ µsN(n)−i+1sN(n)−i
= µi

sN(n)sN(n)−i
are Lipschitz

continuous with a common Lipschitz constant c2, by assumption, to get by (2.13)
and (2.5)

∥∥∥µ(n+1)
ts −µ

(n)
ts

∥∥∥
∞

� c2

N(n)−1∑
i=0

∥∥µsi+1si+2−n−1 ◦µsi+2−n−1si −µsi+1si

∥∥
∞ � c1c2T 2−(a−1)n;

so µ(n) converges uniformly on Dδ to some continuous function ϕ. We see that
ϕ satisfies inequality (2.6) on Dδ as a consequence of (2.8). As ϕ is a uniformly
continuous function of (s, t) ∈ Dδ, by (2.6), it has a unique continuous extension
to Dδ, still denoted by ϕ. To see that it defines a flow on Dδ, notice that for
dyadic times s � u � t, we have ϕ(n)

ts = ϕ
(n)
tu ◦ ϕ(n)

us , for n big enough; so ϕts =
ϕtu ◦ϕus for such triples of times in Dδ, hence for all times since ϕ is continuous.
The map ϕ is easily extended as a flow to the whole of {0 � s � t � T}. Note
that ϕ inherits from the µn’s their Lipschitz character, for a Lipschitz constant
bounded above by c2.

b) Uniqueness. Let ψ be any flow satisfying condition (2.6). With formulas
(2.12) and (2.13) in mind, rewrite (2.6) under the form ψts = µts +Oc

(|t− s|1),
with obvious notations. Then

ψts = ψs2ns2n−1
◦ · · · ◦ ψs1s0 =

(
µs2ns2n−1

+Oc

(
2−an

)) ◦ · · · ◦
(
µs1s0 +Oc

(
2−an

))

= µs2ns2n−1
◦ · · · ◦ µs1s0 +∆n = µ

(n)
ts +∆n,

where ∆n is of the form of the right hand side of (2.12), so is bounded above by
a constant multiple of 2−(a−1)n, since all the maps µs2ns2n−1

◦· · ·◦µs2n−�+1s2n−�
are

Lipschitz continuous with a common upper bound for their Lipschitz constants,
by assumption. Sending n to infinity shows that ψts = ϕts.

c) Speed of convergence. Given any partition π = {s0 = s < · · · < sn = t} of
(s, t), writing ϕts = ©n−1

i=0 ϕsi+1si , and using their uniformly Lipschitz character,
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we see as a consequence of (2.13) that we have for
∣∣πts∣∣ � δ

∥∥ϕts − µπts

∥∥
∞ � c2

n−1∑
i=0

∥∥ϕsi+1si − µsi+1si

∥∥
∞ � c1c2

n−1∑
i=0

|si+1 − si|a � c1c2T
∣∣πts∣∣a−1

.

�
Compare what is done in the above proof with what was done in the introduction

to this part of the course in a commutative setting.

2.1.2. Second step. The uniform Lipschitz control assumed in proposition 5 actually
holds under the assumption that µ is a C1-approximate flow. Recall L stands for a
constant strictly greater than 2c1

1−mε
.

Proposition 6 (Uniform Lipschitz controls). Let µ =
(
µts

)
0�s�t�T

be a C1-approximate
flow on V. Then, given ε > 0, there exists a positive constant δ such that the in-
equality ∥∥µπts − µts

∥∥
C1 � L|t− s|a

holds for any partition πts of [s, t] of special type ε, whenever t− s � δ.

Proof – We proceed by induction on the number n of sub-intervals of the partition
as in the proof of lemma 4. The case n = 2 is identity (2.5). Suppose the
statement has been proved for n � 2. Fix 0 � s < t � T with t − s � δ, and
let πts = {s0 = s < s1 < · · · < sn < sn+1 = t} be a partition of (s, t) of special
type ε, splitting the interval (s, t) into (n + 1) sub-intervals. Set m =

[
n+1
2

]
and u := sm, so the two partitions πtu and πus are both of special type ε, with
respective cardinals no greater than n. Then we have for any x ∈ V

Dxµπts −Dxµts = Dx

(
µπtu ◦ µπus

)−Dxµts

=
(
Dµπus (x)µπtu −Dµπus (x)µtu

)(
Dxµπus

)
+
((
Dµπus (x)µtu −Dµus(x)µtu

)(
Dxµπus

))

+
(
Dµus(x)µtu

)(
Dxµπus −Dxµus

)
+
((
Dµus(x)µtu

)(
Dxµus

)−Dxµts

)
=: (1) + (2) + (3) + (4).

We treat each term separately using repeatedly the induction hypothesis, con-
tinuity assumption (2.4) for µts in C2 topology, and lemma 4 when needed. We
first have ∣∣(1)∣∣ � L|t− u|a (1 + oδ(1)

)
.

Also,∣∣∣Dµπus (x)µtu −Dµus(x)µtu

∣∣∣ � ot−u(1)
∣∣µπus(x)− µus(x)

∣∣ � ot−u(1)L|u− s|a,
As the term Dxµπus has size no greater than

(
1 + oδ(1)

)
+ L|u− s|a, we have∣∣(2)∣∣ � oδ(1) |u− s|a.

Last, we have the upper bound∣∣(3)∣∣ � (
1 + oδ(1)

)
L|u− s|a,
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while
∣∣(4)∣∣ � ∥∥µtu ◦ µus − µts

∥∥
C1 � c1|t− s|a by (2.5). All together, and writing

t− u = β(t− s), for some β ∈ [ε, 1− ε], this gives∣∣Dxµπts −Dxµts

∣∣ � ((
1 + oδ(1)

)(
βa + (1− β)a

)
L+ c1 + oδ(1)

)
|t− s|a

� L |t− s|a
for δ small enough, as mε < 1. �

Propositions 5 and 6 together prove theorem 2. Note that an explicit choice of δ
is possible as soon as one has a quantitative version of the estimate

∥∥µts − Id
∥∥
C2 =

ot−s(1).

2.2. Exercices on flows. To get a hand on the machinery of C1-approximate flows, we
shall first see how theorem 2 gives back the classical Cauchy-Lipschitz theory of ordinary
differential equations for bounded Lipschitz vector fields on R

d. Working with unbounded
Lipschitz vector fields requires a slightly different notion of local C1-approximate flow to
be described in appendix.

Theorem 2 can be understood as a non-commutative analogue of Feyel-de la Pradelle’s
sewing lemma [7], first introduced by Gubinelli [9] as an abstraction of a fundamental
mechanism invented by Lyons [10]. Exercices 2-4 are variations on this commutative version
of theorem 2, as already sketched in the introduction to this part.

• Ordinary differential equations. Let V1, . . . , V� be vector fields on R
d (or a Banach

space), and h1, . . . , h� be real-valued C1 controls. Let ϕ stand for the flow associated with
the ordinary differential equation

dxt = Vi(xt)dh
i
t.

1. a) Show that one defines a C1-approximate flow setting for all x ∈ R
d

µts(x) = x+
(
ht − hs

)i
Vi(x).

b) Prove that ϕ is equal to the flow associated to µ by theorem (2). In that sense,
a path x is a solution to the above ordinary differential equation if and only if it satisfies
at any time s the Taylor-type expansion formula

f
(
xt
)
= f

(
xs
)
+

(
hit − his

)(
Vif

)
(xs) + o(t− s),

for any function f of class C2
b . Show that the above reasoning holds true if we only assume

that the R
�-valued control h is globally Lipschitz continuous. (It is actually sufficient to

suppose h is α-Hölder, for some α > 1
2 .)

c) What goes wrong with the above reasoning if the Lipschitz continuous vector
fields Vi qre not bounded?

d) Show that ϕ depends continuously on h in the uniform topology for ϕ and the
Lipschitz topology for h, defined by the distance

d(h, h′) =
∣∣h0 − h′0

∣∣+ Lip(h− h′),

where Lip(h − h′) stands for the Lipschitz norm of h − h′. (A similar result holds if h is
α-Hölder, for some α > 1

2 , with the Lipschitz norm replaced by the Hölder norm.)

• Commutative sewing lemma. Let V be a Banach space and µ =
(
µts

)
0�s�t�1

be a
V-valued continuous function.
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2. Feyel-de la Pradelle’ sewing lemma. The following commutative version of
theorem 2 was first proved under this form by Feyel and de la Pradelle in [7]; see also [8].
Suppose there exists some positive constants c0 and a > 1 such that we have

(2.14)
∣∣(µtu + µus)− µts

∣∣ � c0|t− s|a
for all 0 � s � u � t � 1. Simplify the proof of theorem 2 to show that there exists a
unique map ϕ =

(
ϕt

)
0�t�1

, whose increments ϕts := ϕt − ϕs, satisfy∣∣ϕts − µts

∣∣ � c|t− s|a
for some positive constant c and all 0 � s � t � 1.

3. Controls and finite-variation paths. A control is a non-negative map ω =(
ωts

)
0�s�t�1

, null on the diagonal, and such that we have

ωtu + ωus � ωts

for all 0 � s � u � t � 1.
a) Show that Feyel and de la Pradelle’ sewing lemma holds true if we replace t− s

by ωts, if we suppose that ωa is a control.
b) Recall that a V-valued path x =

(
xt
)
0�t�1

is said to have finite p-variation, for
some p � 1, if the following quantity is finite for all 0 � s � t � 1:

|x|pp−var;[s,t] := sup
∑∣∣∣xti+1 − xti

∣∣∣p,
with a sum over the partition points ti of a given partition of the interval [s, t], and a
supremum over the set of all partitions of [s, t]. Such a definition is invariant by any
reparametrization of the time interval [s, t]. Given such a path, show that setting ωts =
|x|pp−var;[s,t], defines a control ω.

c) Show that a path with finite p-variation can be reparametrized into a 1
p -Hölder

path, with 1-Hölder paths being understood as Lipschitz continuous paths. Given an
R
�-valued path h with finite 1-variation, set

ζs = inf{t � 0 ; |h|1−var;[0,t] � s}.
We define a solution x• to the ordinary differential equation

dxt = Vi(xt)dh
i
t

driven by h as a path x• such that the reparametrized path y := x ◦ ζ is a solution to the
ordinary differential equation

dys = Vi(ys)d(h ◦ ζ)it,
driven by the globally Lipschitz path h ◦ ζ.

d) Prove that the flow ϕ constructed in this case from theorem 2 depends contin-
uously on h in the uniform norm for ϕ and the 1-variation topology associated with the
norm | · |1−var for h. (Following the remarks of exercice 1, one can actually prove the results
of questions c) and d) for paths with finite p-variation, for 1 � p < 2.)

4. Young integral. Given another Banach space E, denote by Lc(V,E) the space of
continuous linear maps from V to E equipped with the operator norm. Let α and β be
positive real numbers such that α + β > 1. Given any 0 < α < 1, we denote by Lipα(E)
the set of α-Hölder maps. This unusual notation will be justified in the third path of the
course.
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a) Given an Lc(V,E)-valued α-Lipschitz map x =
(
xs
)
0�s�1

and a V-valued β-
Lipschitz map y =

(
ys
)
0�s�1

, show that setting

µts = xs
(
yt − ys

)
for all 0 � s � t � 1, defines an E-valued function µ that satisfies equation (2.14), with a
constant c0 to be made explicit.

b) The associated function ϕ is denoted by ϕt =
∫ t
0 xsdys, for all 0 � t � 1. Show

that it is a continuous function of x ∈ Lipα

(
Lc(V,E)

)
and y ∈ Lipβ(V).

• Lipschitz dependence of ϕ on µ. As emphasized in the remark following theorem 2,
inequality (2.11) implies that ϕ, understood as a function of µ, is continuous in the C0-norm
on the sets of µ’s of the form

{
µ ; (2.5) holds uniformly

}
, equipped with the C0-norm. One

can actually prove that it depends Lipschitz continuously on µ in the following sense.
5. Let µ =

(
µts

)
0�s�t�1

and µ′ =
(
µ′
ts

)
0�s�t�1

be C1-approximate flows on V, with
associated flows ϕ and ϕ′. Suppose that we have∥∥(µtu ◦ µus − µts

)− (
µ′
tu ◦ µ′

us − µ′
ts

)∥∥
C1 � ε |t− s|a

for a positive constant ε, with a > 1 as in the definition of the C1-approximate flows µ, µ′,
for all 0 � s � u � t � 1. Prove that one has∥∥(ϕts − µts

)− (
ϕ′
ts − µ′

ts

)∥∥
∞ � c ε |t− s|a,

for all for 0 � s � t � 1, some explicit positive constant c.
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