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CHAPTER 1

Introduction

This course is dedicated to the study of some class of dynamics in a Banach space,
index by time R,. Although there exists many recipes to cook up such dynamics,
those generated by differential equations or vector fields on some configuration space
are the most important from a historical point of view. Classical mechanics reached
for example its top with the description by Hamilton of the evolution of any classical
system as the solution of a first order differential equation with a universal form.
The outcome, in the second half of the twentieth centary, of the study of random
phenomena did not really change that state of affair, with the introduction by It6
of stochastic integration and stochastic differential equations.

Classically, one understands a differential equation as the description of a point
motion, the set of all these motions being gathered into a single object called a flow.
It is a familly ¢ = (¢us) g oy Of maps from the state space to itself, such that
g =1d, for all 0 <t < T, and @ = Py 0 Pus, for all 0 < s < u <t <T. The
first aim of the approach to some class of dynamics that is proposed is this course
is the construction of flows, as opposed to the construction of trajectories started
from some given point.

I will explain in the first part of the course a simple method for constructing a
flow ¢ from a family u = (Mts)o cocier Of maps that almost forms a flow. The two
essential points of this construction are that

i) s is loosely speaking the composition of infinitely many s, along an
infinite partition s < t; < --- < t of the interval [s,t], with infinitesimal
mesh,

ii) ¢ depends continuously on y in some sense.

Our main application of this general machinery will be to study some general class
of controlled ordinary differential equations, that is differential equations of the form

l
dr, =Y Vi(a)dh;,
=1

where the V; are vector fields on R?, say, and the controls A’ are real-valued. Giving
some meaning and solving such an equation in some general framework is highly
non-trivial outside the framework of absolutely continuous controls, without any
extra input like probability, under the form of stochastic calculus for instance. It
requires Young integration theory for controls with finite p-variation, for 1 < p < 2,
and Terry Lyons’ theory of rough paths for "rougher" controls! Probabilists are
well-acquainted with this kind of situation as stochastic differential equations driven
by some Brownian motion are nothing but an example of the kind of problem we
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6 1. INTRODUCTION

intend to tackle. (With no probability!) It is the aim of this course to give you all
the necessary tools to understand what is going on here, in the most elementary
way as possible, while aiming at some generality.

The general machinery of approximate flows is best illustrated by looking at the
classical Cauchy-Lipschitz theory.Fix some Lipschitz continuous vector fields V; and
some real-valued controls h' of class C'. It will appear in our setting that a good
way of understanding what it means to be a solution to the ordinary differential
equation on R"

(0.1) =Y Vilw)hi = V()b

i=1

is to say that the path z, satisfies at any time s the Taylor-type expansion formula
Ty =T+ (h; - hi)Vi(xS) +o(t — s),
and even
f(ze) = f(ws) + () — hY) (Vif) (zs) + O(Jt — s]?),
for any function f of class C?, with V;f standing for the derivative of f in the
direction of V;. Setting pi5(x) := z+ (hj — h%)V;(x), the preceeding identity rewrites
fze) = fpes(as)) +O(|t = sf?),

so the elementary map p;s provides a very accurate description of the dynamics. It
almost forms a flow under mild regularity assumptions on the driving vector fields
V;, and its flow associated by the above "almost-flow to flow" machinery happens
to be flow classically generated by equation (0.1).

Going back to a probabilistic setting, what insight does this machinery provide
on Stratonovich stochastic differential equations

(02) Od[L‘t = ‘/;‘(l’t)Odwt

driven by some Brownian motion w? The use of this notion of differential enables
to write the following kind of Taylor-type expansion of order 2 for any function f of
class C3.

(0.3)
P = £(o) + [ () ) o,

= )+ (o~ ) (i) ) + [ t | (G0 @) odw, cd
= 1) + (i =) i) o)+ ([ [ oo, ) (i) @+ [ [

For any choice of 2 < p < 3, the Brownian increments w}, := w{ — w’ have almost-
1 2
surely a size of order (t—s)», the iterated integrals f; [7 odw, odw, have size (t—s)»,

and the triple integral size (t — 5)%, with % > 1. What will come later out of this

/su(...)



1. INTRODUCTION 7

formula is that a solution to equation (0.2) is precisely a path z, for which one can
write for any function f of class C3 a Taylor-type expansion of order 2 of the form

F () = £ () + (=) (Vi) () + ( / t [ e odwr) (V;(Vif)) () + Ot —s])

at any time s, for some exponent a > 1 independent of s. This conclusion puts
forward the fact that what the dynamics really see of the Brownian control w is not
only its increments w;, but also its iterated integrals fst f; odw,, odw,. The notion
of p-rough path X = (th,th) 0<s<t<T is an abstraction of this family of pairs of
quantities, for 2 < p < 3 here. This multi-level object satisfies some constraints of
analytic type (size of its increments) and algebraic type, coming from the higher level
parts of the object. As they play the role of some iterated integrals, they need to
satisfy some identities consequences of the Chasles relation for elementary integrals:
[f'= "+ [!. These constraints are all what these rough paths X = (X, X) need to
satisfy to give a sense to the equation

(0.4) dz, = F®(z,)X(dt)

for a collection F = (Vl, ce Vg) of vector fields on R"™, by defining a solution as a
path x, for which one can write some uniform Taylor-type expansion of order 2
(0.5) f () = f ) + X5 (Vif) (o) + X35 (Vi(Vaf)) () + O (|t = s1),

for any function f of class C3. The notation F¥ is used here to insist on the fact
that it is not only the collection F of vector fields that is used in this definition, but
also the differential operators V;V;, constructed from F. The introduction and the
study of p-rough paths and their collection is done in the second part of the course.

Guided by the results on flows of the first part, we shall reinterpret equation
(0.4) to construct directly a flow ¢ solution to the equation

(0.6) dp = FOX(dt),

in a sense to be made precise in the third part of the course. The recipe of
construction of ¢ will consist in associating to F and X a Cl!-approximate flow
= (Mts)o csct<T having everywhere a behaviour similar to that described by equa-
tion (0.5), and then to apply the theory described in the first part of the course.
The maps ;s will be constructed as the time 1 maps associated with some ordi-
nary differential equation constructed from F and Xy in a simple way. As they will
depend continuously on X, the continuous dependence of ¢ on X will come as a
consequence of point ii) above.

All that will be done in a deterministic setting. We shall see in the fourth part
of the course how this approach to dynamics is useful in giving a fresh viewpoint on
stochastic differential equations and their associated dynamics. The key point will be
the fundamental fact that Brownian motion has a natural lift to a Brownian p-rough
path, for any 2 < p < 3. Once this object will be constructed by probabilistic means,
the deterministic machinery for solving rough differential equations, described in the
third part of the course, will enable us to associate to any realization of the Brownian
rough path a solution to the rough differential equation (0.4). This solution coincides
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almost-surely with the solution to the Stratonovich differential equation (0.2)! One
shows in that way that this solution is a continuous function of the Brownian rough
path, in striking contrast with the fact that it is only a measurable function of
the Brownian path itself, with no hope for a more regular dependence in a generic
setting. This fact will provide a natural and easy road to the deep results of Wong-
Zakai, Stroock & Varadhan or Freidlin & Wentzell.

Several other approaches to rough differential equations are available, each with
their own pros and cons. We refer the reader to the books [1] and [2] for an account
of Lyons’ original approach; she/he is refered to the book [3] for a thourough account
of the Friz-Victoir approach, and to the lecture note [4] by Baudoin for an easier
account of their main ideas and results, and to the forthcoming excellent lecture
notes [5] by Friz and Hairer on Gubinelli’s point of view. The present approach
building on [6] does not overlap with the above ones.!

lComments on these lecture notes are most welcome. Please email them at the address
ismael.bailleul@univ-rennesl.fr



CHAPTER 2

Flows and approximate flows

[Guide for this chapter J

This first part of the course will present the backbone of our approach to rough
dynamics under the form of a simple recipe for constructing flows of maps on some
Banach space. Although naive, it happens to be robust enough to provide a unified
treatment of ordinary, rough and stochastic differential equations. We fix throughout
a Banach space V.

The main technical difficulty is to deal with the non-commutative character of
the space of maps from V to itself, endowed with the composition operation. To
understand the part of the problem that does not come from non-commutativity,
let us consider the following model problem. Suppose we are given a family p =

(,uts) ocscic; Of elements of some Banach space depending continuously on s and

t, and such that ’ ,uts’ = 0;_5(1). Is it possible to construct from p a family ¢ =
(gots)o cociey OF elements of that Banach space, depending continuously on s and ¢,
and such that we have

(07) Ptu + Pus = Pts

for all 0 < s < u <t < 1?7 This additivity property plays the role of the flow
property. Would the time interval [0, 1] be a finite discrete set t; < - - < t,, the ad-
ditivity property (0.7) would mean that ¢y, is the sum of the ¢, +,, whose definition
should be fi;,, 4, as these are the only quantities we are given if no arbitrary choice
is to be done. Of course, this will not turn ¢ into an additive map, in the sense
that property (0.7) holds true, in this discrete setting, but it suggest the following
attempt in the continuous setting of the time interval [0, 1].

Given a partition m = {0<t1 << 1} of [0,1] and 0 < s <t < 1, set
(p;rs = Z :uti-uti'
s<t<tjp1<t

This map almost satisfies relation (0.7) as we have

Pru + Pus = Pls — Hatu- = Pis + 0pmi(1),
forall 0 < s < u <t <1, where u™,u" are the elements of 7 such that v~ < u < u™,
and |7| = max {t;;1 —t;} stands for the mesh of the partition. So we expect to find a
solution ¢ to our problem under the form ¢™, for a partition of [0, 1] of infinitesimal
mesh, that is as a limit of ¢™’s, say along a sequence of refined partitions 7, where
Tpe1 has only one more point than m,, say u,. However, the sequence ¢™ has no
reason to converge without assuming further conditions on p. To fix further the

9



10 2. FLOWS AND APPROXIMATE FLOWS

setting, let us consider partitions 7, of [0, 1] by dyadic times, where we exhaust first
all the dyadic times multiples of 27, in any order, before taking in the partition
points multiples of 2-**+1_ Two dyadic times s and ¢ being given, both multiples of
27%0 take n big enough for them to be points of m,. Then, denoting by u,,u;} the

two points of 7, such that u, < u, < u', the quantity p;r™" — ¢p* will either be
null if u,, & [s,t], or
(08) w;nJrl - cp?sn = (Mu;tun + Munu;) - luuzur_ﬂ

otherwise. A way to control this quantity is to assume that the map pu is approxi-
mately additive, in the sense that we have some positive constants ¢y and a > 1 such
that the inequality

(09) ‘(,utu + ,uus) - Mts} < Co |t - 3|a
holds for all 0 < s < u <t < 1. Under this condition, we have

Tn+1

™ —am
Pts - cptsn < 002 )

Tn+1

where }ﬂnﬂ‘ = 27™. There will be 2™ such terms in the formal series -, ((pts
gofsn), giving a total contribution for these terms of size 27(~Y™ summable in m.
So this sum converges to some quantity ;s which satisfies (0.7) by construction (on
dyadic times only, as defined as above). Note that commutativity of the addition

operation was used implicitly to write down equation (0.8).

Somewhat surprisingly, the above approach also works in the non-commutative
setting of maps from V to itself under a condition which essentially amounts to
replacing the addition operation and the norm |- | in condition (0.9) by the compo-
sition operation and the C! norm. This will be the essential content of theorem 2
below, taken from the work [6].

1. C'-approximate flows and their associated flows

We start by defining what will play the role of an approximate flow, in the same
way as pu above was understood as an approximately additive map under condition
(0.9).

DEFINITION 1. A Ct-approximate flow on V is a family p = (Mt3)0<s<t<T of

C? maps from V to itself, depending continuously on s,t in the topology of uniform
convergence, such that

(1.1) | es — 1| o = 01—s(1)
and there exists some positive constants c; and a > 1, such that the inequality
(12) H,utuo,uus_,utchl < Cl‘t_5|a
holds for all0 < s <u<t<T.

Note that p, is required to be C? close to the identity while we ask it to be an
approximate flow in a C! sense. Given a partition m, = {s =59 < 81 < -+ < 8,1 <
s, =t} of an interval [s,t] C [0,T], set

Hmps = Mtptn_q © O Miytg-
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THEOREM 2 (Constructing flows on a Banach space). A Cl-approzimate flow
defines a unique flow ¢ = (90'55)0<s<t<T on V such that the inequality

(1.3) H%s—,utsHoo <clt—s]”

holds for some positive constant c, for all 0 < s < t < T sufficiently close, say
t —s < 0. This flow satisfies the inequality

}afl

2
— ClT‘ﬂ'ts

(1.4) lws = el < T2

for any partition w5 of any interval (s,t) of mesh ’ﬂ'tS’ <.

Note that the conclusion of theorem 2 holds in C%-norm. This loss of regularity
with respect to the controls on p given by equations (1.1) and (1.2) roughly comes
from the use of uniform C!-estimates on some functions f;s to control some incre-
ments of the form fi, o gis — fis © g, for some C%-close maps gys, g;,- Note that if p
depends continuously on some parameter, then ¢ also depends continuously on that
parameter, as a uniform limit of continuous functions, equation (1.8).

The remainder of this section will be dedicated to the proof of theorem 2. We
shall proceed in two steps, by proving first that one can construct ¢ as the uniform
limit of the u,’s provided one can control uniformly their Lipschitz norm. This
control will be proved in a second step.

1.1. First step. Let us introduce the following inductive definition to prepare
the first step.

DEFINITION 3. Let € € (0,1) be given. A partition m = {s = s9 < s1 < -+ <
Sp1 < Sp =t} of (s,t) is said to be e-special if it is either trivial or

e one can find an s; € w sucht that € < 2=> <1 — ¢,
e and for any choice u of such an s;, the partitions of [s,u] and [u, t] induced

by 7 are both e-special.

A partition of any interval into sub-intervals of equal length has special type %
Given a partition 7 = {s =59 < $1 < -+ < $,_1 < 5, =t} of (s,1) of special type €

and u € {s1,...,5,-1} with € < =2 <1 — ¢, the induced partitions of the intervals
[s,u] and [u,t] are also e-special. Set m = sup S*+ (1 — 5)* < 1, and pick a
e<PB<l—e
constant )
c
L > ! )
1—m,

where c; is the constant that appears in the dfinition of a Cl-approximate flow, in
equation (1.2).

LEMMA 4. Let p = (,uts)0<8<t<T be a Ct-approximate flow on V. Given € > 0,
there exists a positive constant & such that for any 0 < s <t < T witht — s < 9,
and any special partition of type € of an interval (s,t) C [0,T], we have

(1'5) H/’Lﬂ'ts - /~LtSHOO < L|t - S‘G'
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PROOF — We proceed by induction on the number n of sub-intervals of the partition.
The case n = 2 is the C° version of identity (1.2). Suppose the statement
has been proved for n > 2. Fix 0 < s <t < T with t — s < 0, and let
s = {So =8 < 81 < -+ < 8, < Sp11 = t} be an e-special partition of [s, ],
splitting the interval [s,¢] into (n + 1) sub-intervals. Let u be one of the points
of the partition sucht that e < i:—g < 1 —¢, so the two partitions m, and m,, are
both —e-special, with respective cardinals no greater than n. Then

Hﬂms - M“’Hoo < H:uﬂtu O Hmys — Htu © Horrys || o0 + Hﬂtu O Hmys — :utSHOO

g H,umu - ’ut“Hoo _'_ H,Utu O,uﬂus - ,Utu O,uus‘ 0o _'_ H,utu O,uus - ’utsHoo
<Lt —ul*+ (14 0s(1))L|u—s|*+ et — s]%

by the induction hypothesis and (1.1) and (1.2). Set v — s = f(t — s), with
€ < 0 < 1— e The above inequality rewrites

it = psll . < { (U 05(0) (L= B)" + 5Lt e f It = s

In order to close the induction, we need to choose ¢ small enough for the condi-

tion
(1.6) ¢+ (14 05(1)) meL < L
to hold; this can be done since m, < 1. >

As a shorthand, we shall write . for O i, ,¢,, where s; = s + £(t — s). The
next proposition is to be understood as the core of our approach.

PROPOSITION 5 (Step 1). Let p = (”ts)ogsgth be a Ct-approzimate flow on V.
Assume the existence of a positive constant & such that the maps py., forn > 2 and
t —s <0, are all Lipschitz continuous, with a Lipschitz constant uniformly bounded
above by some constant cy, then there exists a unique flow ¢ = (wt5)0<s<t<T on V
such that the inequality

(1.7) H(pts—utsHoo < cft —s]*

holds for some positive constant c, for all0 < s <t < T witht — s < 0. This flow
satisfies the inequality

‘a—l

(1.8) [ts = timis|| o, < 16T |

for any partition ms of (s,t), of mesh ’Wts} <.

PROOF — The existence and uniqueness proofs both rely on the elementary identity

(1.9)

N
fno---ofi —gno---0g; = Z (QNO' OGN —i4+19fN—i — gNO* * ‘O gN_i41° gN—z‘> ofN—i-10
i=1

where the g; and f; are maps from V to itself, and where we use the obvious
convention concerning the summand for the first and last term of the sum. In

cof,
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particular, if all the maps gy o - - - o g are Lipschitz continuous, with a common
upper bound ¢ for their Lipschitz constants, then

N
(1.10) [fxo-ofi—gyvo--og| <Y IIfi— gillo
=1

a) Existence. Set Ds := {0 <s<t<T;t—s< 5} and write Dy for the
intersection of Ds with the set of dyadic real numbers. Given s = a27% and
t = b27%0 in Dy, define for n > ky

() ._ o 0.0
Bis™ = s = :uSN(n)SN(n)_l Hsis05

where s; = s +1427" and sy(,) = t. Given n > ko, write

(ne1y N1
s = g)o (:usi+1s7;+2_”_l o ,usi+2_"_1si)
and use (1.9) with f; = fis,, s,42-n—1 © flg,40-n-15, and g; = js,, s, and the fact

Y . .
that all the maps Hs iy snim—1 © " O Hsnny—is1snimy—i = Moy sniny_s € Lipschitz

continuous with a common Lipschitz constant ¢, by assumption, to get by (1.10)
and (1.2)

N(n)—-1
) #ggﬂ) — uﬁ;‘) < G Z | _<ael 9-(a=Dn.
> i=0

so u™ converges uniformly on Ds to some continuous function ¢. We see that
 satisfies inequality (1.3) on Dy as a consequence of (1.5). As ¢ is a uniformly
continuous function of (s,t) € Dy, by (1.3), it has a unique continuous extension
to Dg, still denoted by (. To see that it defines a flow on Dy, notice that for

dyadic times s < u < t, we have 1\ = 1\ o {7, for n big enough; so, since the

maps <p§;’) are uniformly Lipschitz continuous, we have ¢;s = ¢y, © s for such
triples of times in Ds, hence for all times since ¢ is continuous. The map ¢ is
easily extended as a flow to the whole of {0 < s <t < T'}. Note that ¢ inherits
from the p™’s their Lipschitz character, for a Lipschitz constant bounded above

by Co.

b) Uniqueness. Let ¢ be any flow satisfying condition (1.3). With formulas
(1.9) and (1.10) in mind, rewrite (1.3) under the form vy, = s + Oc (|t — s|*),
with obvious notations. Then

77th = wSQnSQn,I ©---0 wslso = (M82n52n71 + Oc (2—Gn)) -0 </JL3150 + OC (2_an)>
= Msgnsgn_y © * O Hsysg + An = Mz(tg) + Ana

where A, is of the form of the right hand side of (1.9), so is bounded above by a
constant multiple of 271" since all the maps Hsgnson_1 OO flsgn o\ son_, AT€
Lipschitz continuous with a common upper bound for their Lipschitz constants,
by assumption. Sending n to infinity shows that ¥, = ¢ys.
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c) Speed of convergence. Given any partition 7 = {sg = s < --- < s, =t} of
(s,t), writing ¢ = O @s;415:, and using their uniformly Lipschitz character,
we see as a consequence of (1.10) that we have for }7?,55} <6

}a—l

o) |Pais = Hes |, < a2 5 |sie1 — 83| * < c1eoT |
=0

>

Compare what is done in the above proof with what was done in the introduction
to this part of the course in a commutative setting.

1.2. Second step. The uniform Lipschitz control assumed in proposition 5
actually holds under the assumption that y is a C'-approximate flow. The results of
this paragraph could have been proved just after lemma 4 and do not use the result
proved in the fundamental proposition 5. Recall L stands for a constant strictly
greater than 2‘31

PROPOSITION 6 (Uniform Lipschitz controls). Let u = (,uts)0<s<t<T be a C!-
approzimate flow on V. Then, given € > 0, there exists a positive constant § such
that the inequality

Hﬂms - MtSH(;l < L|t - 3|a
holds for any partition ms of [s,t] of special type €, whenever t — s < 9.

PROOF — We proceed by induction on the number n of sub-intervals of the partition
as in the proof of lemma 4. The case n = 2 is identity (1.2). Suppose the
statement has been proved for n > 2. Fix 0 < s <t < T with t — s < ¢, and
let ms = {so =5 <81 <+ < 8, < Syp1 =t} be an e-special partition of [s, ¢]
of special, splitting the interval [s, ¢] into (n + 1) sub-intervals. Let u be a point

of the partition with ¢ < 72 < 1 — ¢, so that the two partitions 7, and

are both e-special, with respective cardinals no greater than n. Then, for any

x € V, one can write D, pi,,. — Dypss as a telescopic sum which involve only

some controlled quantities.

Dapin,, = Dapiss = Da(fimy, © pimns) — Daiss
( s @ P = Diyirg (xwtu) (Dapim,.) + ((Dum @) ttw — Dy (o) Hitu) (Dmum))
n
= (1

(D) ) (Dmms - Dmus) + ((Duus(xwtu) (Daptus) — Dxuts)
)+(2)+(3) + (4)

We treat each term separately using repeatedly the induction hypothesis, con-
tinuity assumption (1.1) for pys in C? topology, and lemma 4 when needed. We
first have

()] < Lt —ul* (1 + 05(1)).
Also,

Dy @ btu — Doyt < 04—u(1) |fir, (2) = pus(@)| < 0p—u(1) Lju — s]°,
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As the term D,fir,, has size no greater than (1 + 05(1)) + L|u — s|*, we have
@)] < on(1) [u— s
Last, we have the upper bound
[(3)] < (1+05(1)) Lu — 5|,
while }(4)} < H,utu O flys — '“tSHcl < |t — s|* by (1.2). All together, and writing
( —

t—u=p(t—s), for some 5 € [e,1 — €, this gives
}Dm/ims - D:vlutS} < <(1 + 05<1)) (Ba + (1 - 6>G)L +a + 05(1)> |t —s|”
< Lt —s|*
for 0 small enough, as m. < 1. >

Propositions 5 and 6 together prove theorem 2. Note that an explicit choice of §
is possible as soon as one has a quantitative version of the estimate H,uts — IdH 2 =
0i—s(1). Note also that proposition 6 provides an explicit control on the Lipschitz
norm of the ¢y, in terms of the Lipschitz norm of ;s and L.

2. Exercices on flows

To get a hand on the machinery of C'-approximate flows, we shall first see how theorem
2 gives back the classical Cauchy-Lipschitz theory of ordinary differential equations for
bounded Lipschitz vector fields on R%. Working with unbounded Lipschitz vector fields
requires a slightly different notion of local C'-approximate flow — see [6].

Theorem 2 can be understood as a non-commutative analogue of Feyel-de la Pradelle’s
sewing lemma [7], first introduced by Gubinelli [9] as an abstraction of a fundamental
mechanism invented by Lyons [20]. Exercices 2-4 are variations on this commutative
version of theorem 2, as already sketched in the introduction to this part.

1. Ordinary differential equations. Let V4,...,V; be C,? vector fields on R? (or
a Banach space), and hi,...,hy be real-valued C' controls. Let ¢ stand for the flow
associated with the ordinary differential equation
dx; = Vi(zy)dht.
a) Show that one defines a C'-approximate flow setting for all z € R?

wes(z) = x + (ht - hS)ZVZ(:U)

b) Prove that ¢ is equal to the flow associated to p by theorem (2). In that sense,
a path z is a solution to the above ordinary differential equation if and only if it satisfies
at any time s the Taylor-type expansion formula

fx) = fas) + (R — BL) (Vif) (2s) + o(t — s),
for any function f of class CZ. Show that the above reasoning holds true if we only assume
that the Rf-valued control h is globally Lipschitz continuous. (It is actually sufficient to
suppose h is a-Holder, for some o > %)
c) Does anything go wrong with the above reasoning if the Lipschitz continuous
vector fields V; are not bounded?
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d) Show that ¢ depends continuously on A in the uniform topology for ¢ and the
Lipschitz topology for h, defined by the distance

d(h,n") = |ho — hg| + Lip(h — 1),

where Lip(h — h’) stands for the Lipschitz norm of h — h’. (A similar result holds if h is
a-Holder, for some o > %, with the Lipschitz norm replaced by the a-Ho6lder norm.)

2. Feyel-de la Pradelle’ commutative sewing lemma. Let V be a Banach space
and p = (,uts)o <oi<l be a V-valued continuous function. The following commutative
version of theorem 2 was first proved under this form by Feyel and de la Pradelle in |7];
see also [8]. Suppose there exists some positive constants ¢y and a > 1 such that we have

(21) |(Mtu + Nus) - Nts| < CO|t - 5|a

for all 0 < s <u <t < 1. We say the p is an almost-additive functional (or map).

Simplify the proof of theorem 2 to show that there exists a unique map ¢ = (got)0<t<1,

whose increments @y := oy — g, satisfy
“pts - Mts‘ < C‘t - S‘a

for some positive constant ¢ and all 0 < s <t < 1.

3. Integral products. Let o > % be given, and (At)0<t<1 be an a-Hélder path with

values in the space L.(V) of continuous linear maps from V to itself. Set A;; = A; — As,
for 0 < s <t <1, and use the notation | - | for the operator norm on L.(V).

a) Use theorem (2) to show that setting pys = Id + Azs determines a unique flow ¢
on V. A good notation for ¢y is Hs<r<t (Id + dAT) = Hs@"@ edAr,
b) Let (Bi), ., be another L (V)-valued a-Holder path. Show that we define a

C'-approximate flow W osetting s = (Id + Ats) (Id + Bts). Prove as a consequence the
well-known formula

. Ao Bg\2"
eAotBo — Jim <e2”e2") .
n

4. Controls and finite-variation paths. A control is a non-negative map w =
(wts)o <sctcq Dull on the diagonal, and such that we have

Wty + Wauys g Wts

foral 0 <s<ug<t<l

a) Show that Feyel and de la Pradelle’ sewing lemma holds true if we replace ¢t — s
by wys, if we suppose that w? is a control.

b) Recall that a V-valued path z = (xt)ogtgl
some p > 1, if the following quantity is finite for all 0 < s <t < 1:

is said to have finite p-variation, for

p

|z, ,

pvarsa] = P ) (xtm ~
with a sum over the partition points ¢; of a given partition of the interval [s,¢], and a
supremum over the set of all partitions of [s,¢]. Such a definition is invariant by any
reparametrization of the time interval [s,t]. Given such a path, show that setting w;s =

|zfP defines a control w.
p—var;|[s,t]’
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c) Show that a path with finite p-variation can be reparametrized into a %—Hé’)lder
path, with 1-Holder paths being understood as Lipschitz continuous paths. Given an
Rf-valued path h with finite 1-variation, set

(s = inf{t 2 0; ‘hll—var;[o,t] Z 3}'
We define a solution x4 to the ordinary differential equation
dry = Vi(z,)dh
driven by h as a path x, such that the reparametrized path y := x o ( is a solution to the
ordinary differential equation '
dys = Vi(ys)d(h o )},
driven by the globally Lipschitz path ho (.

d) Prove that the flow ¢ constructed in this case from theorem 2 depends contin-
uously on A in the uniform norm for ¢ and the 1-variation topology associated with the
norm |-|1—_var for h. (Following the remarks of exercice 1, one can actually prove the results
of questions c¢) and d) for paths with finite p-variation, for 1 < p < 2.)

5. Young integral. Given another Banach space E, denote by L.(V,E) the space of
continuous linear maps from V to E equipped with the operator norm. Let o and 3 be
positive real numbers such that o 4+ 5 > 1. Given any 0 < a < 1, we denote by Lip,(E)
the set of a-Holder maps. This unusual notation will be justified in the third path of the
course.

a) Given an L.(V,E)-valued a-Lipschitz map z = (zs) and a V-valued (-

0<s<1

Lipschitz map y = (ys) show that setting

0<s<1’
fits = s (Yr — Ys)

for all 0 < s <t < 1, defines an E-valued function p that satisfies equation (2.1), with a

constant ¢y to be made explicit.

b) The associated function ¢ is denoted by ¢; = f(f xsdys, for all 0 < ¢t < 1. Show
that it is a continuous function of € Lip, (Lc(V,E)) and y € Lipg(V).

6. Lipschitz dependence of ¢ on u. As emphasized in the remark following
theorem 2, inequality (1.8) implies that ¢, understood as a function of p, is continuous
in the C%-norm on the sets of u’s of the form { w; (1.2) holds uniformly}, equipped with
the C%norm. One can actually prove that it depends Lipschitz continuously on p in the
following sense.

Let u = (Mts)ogsgtgl and p = (M;s)ogsgtgl be Cl-approximate flows on V, with
associated flows ¢ and ¢’. Suppose that we have

s = pisllon < et = sl
and
H (:utu O Hys — MtS) - (:U’:fu o M;s - /‘z/ts) H61 Selt—sl®
for a positive constant e, with a > 1 as in the definition of the C'-approximate flows pu, 1/,
for all 0 < s < u <t < 1. Prove that one has
H (Spts - MtS) - (9023 - :U’:fs) Hoo S ce |t - 5|a’

for all for 0 < s <t < 1, for some explicit positive constant c.






CHAPTER 3

Rough paths

[Guide for this chapter J

Holder p-rough paths, which control the rough differential equations
dzy = F(z)X(dt), do; = F¥X(dt),
and play the role of the control A in the model classical ordinary differential equation
dx; = Vi(x,) dhi = F(z;) dhy

are defined in section 1.2. As Rf-valued paths, they are not regular enough for the
formula

,Uts(x) =T + thsv;('r)

to define an approximate flow, as in the classical Euler scheme studied in exercice 1.
The missing bit of information needed to stabilize the situation is a substitute of the
non-existing iterated integrals fst XJdXP*, and higher order iterated integrals, which
provide a partial description of what happens to X during any time interval (s, ).
A (Holder) p-rough path is a multi-level object whose higher order parts provide
precisely that information. We saw in the introduction that iterated integrals appear
naturally in Taylor-Euler expansions of solutions to ordinary differential equations;
they provide higher order numerical schemes like Milstein’ second order scheme. It
is an important fact that p-rough paths take values in a very special kind of algebraic
structure, whose basic features are explained in section 1.1. A Holder p-rough path
will then appear as a kind of %—Hélder path in that space. We shall then study in
section 2 the space of p-rough path for itself.

1. Definition of a Holder p-rough path

Iterated integrals, as they appear for instance under the form f: fsy dhi dhF or

f; fsy f;(- -+ ), are multi-indexed quantities. A useful formalism to work with such
objects is provided by the notion of tensor product. We first start our investigations
by recalling some elementary facts about that notion. Eventually, all what will be
used for practical computations on rough differential equations will be a product op-
eration very similar to the product operation on polynomials. This abstract setting
however greatly clarifies the meaning of these computations.

19
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1.1. An algebraic prelude: tensor algebra over R’ and free nilpotent
Lie group. Let first recall what the algebraic tensor product U ® V of any two
Banach spaces U and V is. Denote by V’ the set of all continuous linear forms on
V. Given u € U and v € V, we define a continuous linear map on V’ setting

(u@v)(v) = (', v)u,

for any v’ € V'. The algebraic tensor product U ® V is the set of all finite linear
combinations of such maps. Its elementary elements u ® v are 1-dimensional rank
maps. Note that an element of U ® V can have several different decompositions as
a sum of elementary elements; this has no consequences as they all define the same
map from V’ to U.

As an example, R* ® (R?) is the set of all linear maps from R’ to itself, that
is L(R’). We keep that interpretation for R* ® R’ as R and (RY)" are canonically
identified. To see which element of L(R*) corresponds to u ® v, it suffices to look at
the image of the j™ vector ¢; of the canonical basis by the linear map u ® v; it gives
the 7' column of the matrix of « ® v in the canonical basis. We have

(u®v)(e) = (v,6) .

~_defines the canonical basis of (Rf)®*.
1<217--'7/Lk<z

The family (eil Q- Ezk)

N
e For N € NU{oo}, write TK(N) for the direct sum € (Rf)@)r, with the convention
r=0

¢\ ®0 N N .
that (R ) stands for R. Denote by a= @ a" and b = @ b" two generic elements
r=0 r=0

of TZ(N). The vector space TZ(N) is an algebra for the operations

N
a+b= e_ao(a’“ +0b"),

(11) N : S P N
ab:refoc, WlthC:ZCL ®b " e (R
k=0

It is called the (truncated) tensor algebra of R’ (if N is finite). Note the
similarity between these rules and the analogue rules for addition and product of
polynomials.

The exponential map exp : Tg(oo) — T, Z(OO) and the logarithm map log : Tg(oo) —
Téoo) are defined by the usual series

(12) exp(a) = 320 tosm) = 3 0wy

n=0 ’ n>1

with the convention a® =1 € R C Tg(oo). Denote by 7y : TZ(OO) — TZ(N) the natural
projection. We also denote by exp and log the restrictions to TE(N) of the maps
mn o exp and 7y o log respectively. Denote by TZ(N)’l, resp. TZ(N)’O, the elements

ag® -+ D cy of TE(N) such that ag = 0, resp. ag = 1. All the elements of TE(N)’1 are
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invertible, and exp : TZ(N)’0 — TZ(N)’1 and log : TZ(N)’1 — TZ(N)’0 are smooth reciprocal
bijections. As an example, witha=1® a! ®a® € TZQ’l, we have

1
loga=0@ (—a") @ (—al ®a' — a2>.

2
The set TZ(N)’1 is naturally equipped with a norm defined by the formula

(1.3) Jafl == > [l

where ||a’||,,, stands for the Euclidean norm of ' € (R)®, identified with an

1
i
Eucl’

element of R* by looking at its coordinates in the canonical basis of (R)®*. The
choice of power % comes from the fact that TK(N)’1 is naturally equipped with a

dilation operation
(1.4) Sr(a) = (1, Ad', ..., ANal),

so the norm || - || is homogeneous with respect to this dilation, in the sense that one
has
[ax(a)]| = [A/[la]

for all A € R, and all a € T,

The formula [a,b] = ab — ba, defines a Lie bracket on T, K(N). Define inductively
f:=f! := R, considered as a subset of TZ(OO), and {1 = [f,§"] C TZ(OO).

DEFINITION 7. e The Lie algebra g}’ generated by the f*,... f¥ in TE(N)
1s called the N-step free nilpotent Lie algebra.
e As a consequence of Baker-Campbell-Hausdorf-Dynkin formula, the subset

exp (gév) of TZ(N)’1 1s a group for the multiplication operation. It is called
the N-step nilpotent Lie group on R and denoted by &Y.

As all finite dimensional Lie groups, the N-step nilpotent Lie group is equipped
with a natural (sub-Riemannian) distance inherited from its manifold structure. Its

definition rests on the fact that the element au of TZ(N) is for any a € Q5EN) and

ueR C TK(N) a tangent vector to QSEN) at point a (as u is tangent to L’5§N) at the
identity and tangent vectors are transported by left translation in the group). So
the ordinary differential equation

dat = ay ilt

makes sense for any Rf-valued smooth control h, and defines a path in QS;N) started
from the identity. We define the size |a| of a by the formula

1
al :inf/ | he dt,
0

where the infimum is over the set of all piecewise smooth controls A such that a; = a.
This set is non-empty as a € exp (gN ) can be written as a; for some piecewise C!
control, as a consequence of a theorem of sub-Riemannian geometry due to Chows;
see for instance the textbook [11] for a nice account of that theorem. The distance
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between any two points a and b of Q5§N) is then defined as ’aflb’. It is homogeneous
in the sense that if a = exp(u), with u € R* C TE(N), then ’exp()\u)} = |Al]a|, for all
AeRandallueR TV,

This way of defining a distance is intrinsic to Q5§N) and classical in geometry.
From an extrinsic point of view, one can also consider L’5§N) as a subset of TE(N)
and use the ambiant metric to define the distance between any two points a and
b of Q5§N) as Hafle. It can be proved (this is elementary, see e.g. proposition 10
in Appendix A of [12], pp. 76-77) that the two norms |- | and || - || on Q5§N) are

equivalent, so one can equivalently work with one or the other, depending on the
context. This will be useful in defining the Brownian rough path for example.

1.2. Definition of a Hoélder p-rough path. The relevance of the algebraic
framework provided by the N-step nilpotent Lie group for the study of smooth paths
was first noted by Chen in his seminal work [13]. Indeed, for any R*-valued smooth
path (xs)s>0, the family of iterated integrals

t S1
N . _
X, = (1,33—3:3,/ / dx32®d:1:31,...,/ d:vsl®-~-®dazsN)
s Js §<81<SSN Kt

defines for all 0 < s < t an element of TZ(N)’1 with the property that if z, is scaled
into Az, then XV becomes 5, X. We actually have XY € @éN). To see that, notice
that, as a function of ¢, the function XY satisfies the differential equation

dxN = xN dx,,

in TL,(N) driven by the Rfvalued smooth control z, so it defines a QSE,N)—Valued path
as an integral curve of a field of tangent vectors. The above differential equation

also makes it clear the we have the following Chen relations
XN =xN xN

tu)

for all 0 < s < w < t, which is nothing but the "flow" property for ordinary
differential equation solutions; they imply in particular the identity

—1
X = (xN) x,

Rough paths and weak geometric rough paths are somehow an abstract version of
this family of iterated integrals.

DEFINITION 8. Let 2 < p. A Holder p-rough path on [0,7] is a TK([pD’l-valued
path Xt € [0, T~ 10X} & X2®---® X such that
Xi
L= sup | ts‘ .
P 0<s<t<T |t — s|¥

for alli=1...[p], where we set X;s := X;'X;. We define the norm of X to be
(1.6) 1X]| := max | X

=1

(1.5) | X

< 00,

i
P
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and a distance d(X,Y) = || X = Y| on the set of Holder p-rough path. A Holder

[p]

weak geometric p-rough path on [0,7] is a &) -valued p-rough path.

So a (weak geometric) Holder p-rough path is in a way nothing but a (QSEN) or)

T Z(N)’l-valued %-Hélder continuous path, for the || - ||-norm introduced above and the
use of XX, in place of the usual X; — X,. Note that the Chen relation
X = Xy Xy

is granted by the definition of X, = X;1X.
For 2 < p < 3, Chen’s relation is equivalent to
(i) ths = thu + Xl

Condition (i) means that X}, = X}, — X, represents the increment of the R%valued

path (X§0)0<T<T. Condition (ii) is nothing but the analogue of the elementary

property fst f; = fsu f; + fi fsu + flf f;, satisfied by any reasonable notion of integral
on R that satisfies the Chasles relation

[+

This remark justifies thinking of the (R’ ® R’)-part of a rough path as a kind
of iterated integral of X! against itself, although this hypothetical iterated integral
does not make sense in itself for lack of an integration operation for a general Holder
path in R?. In that setting, a p-rough path X is a weak geometric p-rough path iff
the symmetric part of X2 is X} ® X}, forall 0 < s <t < T.

Note that the space of Holder p-rough paths is not a vector space; this prevents
the use of the classical Banach space calculus.

It is clear that considering the iterated integrals of any given smooth path defines
a Holder p-rough path above it, for any p > 2. This lift is not unique, as if we
are given a Holder p-rough path X = (X', X?), with 2 < p < 3 say, and any %—
Holder continuous (RY)®?-valued path (1)
M2 = My — M, and

o<t We define a new rough path setting

Xio = (X, X7, + M)
for all 0 < s <t < 1. Relations (i) and (ii) above are indeed easily checked.

Last, note that a Holder p-rough path is also a Hdélder g-rough path for any
p<q<]|p]+1

2. The metric space of Holder p-rough paths

The distance d defined in definition 8 is actually not a distance since only the
increments X;; — Yy are taken into account. We define a proper metric on the set
of all Holder p-rough paths setting

d(X,Y) =|X; — Yy | +d(X,Y).
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PROPOSITION 9. The metric d turns the set of all Hélder p-rough paths into a
(non-separable) complete metric space.

PROOF — Given a Cauchy sequence of Holder p-rough paths X, there is no loss
of generality in supposing that their first level starts from the same point in

R?. Tt follows from the uniform Holder bounds for ||(™ X is — mx is

, and (an

e

easily proved version of) Ascoli-Arzela theorem (for 2-parameter maps) that ™ X
converges uniformly to some Holder p-rough path X. To prove the convergence
of ™ X to X in d-distance, it suffices to send m to infinity in the inequality

i

(n)th _ (m)X; <e |t _ 5‘£’

which holds for all n, m bigger than some N, uniformly with respect to 0 < s <
t<1.

An uncountable family of Rf-valued i—Hélder continuous functions at pairwise %—
Holder distance bounded below by a positive constant is constructed in example
5.28 of [3]. As the set of all first levels of the set of Holder p-rough paths
is a subset of the set of Rf-valued %—H(’jlder paths, this examples implies the
non-separability of set of all Holder p-rough paths. >

The following interpolation result will be useful in several places to prove rough
paths convergence results at a cheap price. It roughly says that uniform bounds in
a strong sense together with a convergence property in a weak sense are sufficient
to prove a convergence result in a mild sense.

PROPOSITION 10. Assume ™MX is a sequence of Hélder p-rough paths with uni-
form bounds

(2.1) sup H(")XH < C < oo,

which converge pointwise, in the sense that MX,. converges to some Xy, for each
0 < s <t< 1. Then the limit object X is a Hélder p-rough path, and ™X converges
to X as a Holder q-rough path, for any p < q < [p] + 1.

PROOF — (Following the solution of exercice 2.9 in [5]) The fact that X is a Holder
p-rough path is a direct consequence of the uniform bounds (2.1) and pointwise
convergence:

v

X}, = lim| "X,

<Clt—s

Would the convergence of X to X be uniform, we could find a sequence ¢,
decreasing to 0, such that, uniformly in s, t,

X, - x;, < 20|t — 57

< €n, }ths - (n)Xis

Using the geometric interpolation a Ab < a'~%Y, with 0 = g < 1, we would have

. i 1-2 i
ths_(n)th < €n q|t_s|q7

which entails the convergence result as a Holder g-rough path.
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We proceed as follow to see that pointwise convergence suffices to get the result.
Given a partition 7 of [0,1] and any 0 < s < ¢ < 1, denote by 3, the nearest
points in 7 to s and ¢ respectively. Writing

(2.2) d(th, <">th> < d(Xew Xi) + d(xgg, <">Xg§) n d((”)ng, <">th)
and the fact that
Xis = XXXy, X5 = XX WX,

and the uniform estimate (2.1) to see that the first and third terms in the
above upper bound can be made arbitrarily small by choosing a partition with
a small enough mesh, uniformly in s, ¢ and n. The second term is dealt with the
pointwise convergence assumption as it involves only finitely many points once
the partition 7 has been chosen as above. >

3. Controlled paths and rough integral

It will be the set of Holder weak geometric p-rough paths that will play the main
role in the sequel, as a set of driving signals in rough differential equations. Unlike
the space of Holder p-rough paths, this set is not a linear space, nor even a(n infinite
dimensional) manifold, simply a metric space for which none of the classical tools
of Banach space calculus can be applied in a straightforward way. It is fortunate,
however, that Gubinelli developped in [9] some intermediate spaces of rough paths
which have some Banach space structure built in. Their definition requires the
introduction of the notion of controlled path, which will appear as the good notion
of integrand in the definition of a rough integral. The formalism of this section will
be used in part IV of the course on stochastic analysis, where we shall recast the
theory of rough differential equations developped in part III of the course in therms
of Taylor-Euler expansion properties, using the rough integral introduced in this
section. A reference Holder p-rough path X is fixed throughout this section, with
2 <p<3.

DEFINITION 11. An R-valued path z, is said to be a path controlled by X if

its increments Zys = 2y — zg, Satisfy

Zts = Z;th + Rt87
for all0 < s <t <1, for some L(RZ,Rd) -valued %-Lipschitz map Z., and some
R?-valued %-Lipschitz map R.

The following example shows that a controlled path z, may have several deriva-
tives Z,. Choose a Holder p-rough path X with X, = (¢t — s)v, for some fixed vector
v € RY. For any path z, controlled by X, one can write

Zis = Z1(t — s)v+ RZ
for any choice of %—H(’jlder function Z’ as the term Z(t — s)v can always be inserted

in the remainder. So, strictly speaking, a controlled path is a pair (z, Z") with the
above properties. We sometimes abuse notations and talk of the controlled path z,.
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Using the notation || - ||, to denote the a-Hélder norm of a 1 or 2-indices map, it
is straightforward to see that one defines a complete metric on the set of Re-valued
paths (z, Z’) controlled by X, together with their derivative, setting

1. 2| = 12l + | Rllz + |0

)

where || - || stands for the a-Lipschitz norm. It is elementary to see that the image
of a controlled path z, by an R™-valued C! map F on R is a controlled path F(z,)
with derivative D, F' o Z].

The definition of a controlled path involves only the first level of the rough path
X. The reference to X itself comes from the following crucial property of controlled
paths: they admit an natural lift into a Hdlder p-rough path, whose definition
involves all of X. Given two linear maps A4, B € L(R?,R%), and any a,b € R, we
set

(A® B)(a®b) := (Aa) ® (Bb).

PROPOSITION 12. Let (2, Z') be an R¥-valued path controlled by X. We define
an almost-additive map setting

His ‘= Zs X Zts + Z; & Z;tha
for all 0 < s <t < 1. Its associated additive map s is denoted by

t
ym ::/ Zus R dzy,.

The pair (z,7) is a Holder p-rough path.

PROOF — An elementary computation using Chen’s relation X;; = Xy, + X5 + Xys ®
X, forany 0 < s <u <t <1, gives

(Htw + Hus) — Bits = Zus @ Zyu + (2L, @ Zl, — Z2 @ Z) X4 — (22 ® Z0) Xus @ X
= Zs @ (Ziw — Z! X)) + O (|t — s|7)
— Zus @ ((Z, = Z) @ Xp,) + O(|t — s|) = O(|t — s7).
The %—Hélder character of Z;, is immediate from the identity
Zyy = s + O(|t = s17),
while Chen’s relations are straightforward to check. >

Let (Ft)0<s<t<1 be an L(R* R")-valued path controlled by X. The same compu-
tation as above shows that we define an almost-additive map by the formula

Fths + F;tha

it associated additive map is denoted by

t
/ FdX,

and called the rough integral of F with respect to X.
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There exists, for any p > 3, a notion of path controlled by a Hdélder p-rough
path. However, the good algebraic setting to work with these objects is not the
tensor algebra introduced in this part of the course, but a Hopf algebra of labelled
trees. Rough paths are replaced in that setting by branched rough paths. This
somewhat heavier algebraic setting makes the use of branched rough paths not so
convenient. Fortunately, we shall only need the results contained in this section to
investigate stochastic differential equations driven by Brownian motion in part IV
of the course. See Gubinelli’s original work [16] on the subject, or the nice account
[15] given by Hairer and Kelly to get some more insights on this question.

4. Exercices on rough paths

Exercice 7 presents a fundamental result of Lyons of primary importance in the
original formulation of the theory. It essentially means that a p-rough path has
a unique extension into a g-rough path, for any ¢ > [p] + 1. The extension of a
rough path to all higher degrees defines an object called the signature of the rough
path, whose importance for real life data analysis is actively investigated presently.
Exercices 8 and 9 emphasize the fact that rough paths naturally appear in highly
oscillating systems as a class of controllers (this fact will appear clearly after reading
Part III of the course). Exercises 10 an 11 deal with the question of lifting a path
or a pair of rough paths into a single rough path.

7. Lyons’ extension theorem [20]. Let n be a positive integer. A T, 1 _valued map
X = (th) is said to be multiplicative if we have

th = Xusxtu

0<s<t<1

forall 0 < s <u<t<1. Itis said to be almost-multiplicative if we have

k
XE — (XusXra) ( <elt — sk

forall 0 < s <u<t<1and 0 <k < n, for some positive constants ¢ and a > 1; the
notation X* stands here for the (RY)®*-component of an element X of T, L Prove that if
Xisa Tg(n)’l—valued multiplicative map and Y;"*! is a continuous (R%)®(™+1)_valued map
such that the T’ 11 valued map

Y= (1, X ..., X"yt

n+1)

is almost-multiplicative, then there exists a unique (R%)®(+1)_valued map X{;H with

‘thsﬂ _ Y;rszﬂ‘ < e[t — s|HDa
for some positive constant ¢y, such that
Z = <1 X1 xn X”“)
is a T; 11 valued multiplicative map.
Starting from a Hoélder p-rough path X and Y+ = 0, one can apply iteratively the

above procedure to extend uniquely X into a Holder g-rough path, for any ¢ > [p] + 1, in
a consistent way. This provides a Tzoo’l—valued extension of X called its signature.
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8. Pure area rough path. Let 2" be the R2-valued path defined in complex notations
by the formula
z = —exp (2imn’t),
n
for 0 <t < 1. Let 2 < p < 3 be given.

a) Show that the natural lift X" = (:U",X") of 2™ to a Holder p-rough path
converges pointwise to the Holder p-rough path X = (X, X) with X =0 and

Xpo = 7 (¢ — 5) (_01 é)

b) Prove the uniform bounds sup,, Hx"“l < oo and sup,, HX"HI < 00.
2

c) Conclude by interpolation that the convergence of X™ to X takes place in the
space of Holder p-rough paths.

9. Wild oscillations. Find a widely oscillating piecewise smooth path converging to
(0,0,¢I) in the space of Holder p-rough paths, for 3 < p < 4. The letter I stands here for
the element of (RZ)®3 given in the canonical basis by I;;z = ;0.

10. Lifting a-Ho6lder paths to rough paths, for a > % Show that using the
Young integral defined in exercice 5 one can lift any a-Holder paths, with o > %, into a

Holder p-rough path, for any p > 2.

11. Pairing two rough paths. The problem we address in this exercice is the
following. Given two rough paths defined on some (different) spaces, are these two rough
paths "pieces" of a higher dimensional rough path? This is a non-trivial question, when
formulated in this generality, due to the fact that there is no canonical way of constructing
the cross-iterated integrals between the two rough paths. However, this question has a
simple answer when one of the two rough paths is actually a sufficiently regular Holder
path (this exercice), or when one can use probabilistic arguments to construct the missing
iterated integrals (exercice 19).

Let X be a Holder p-rough path over RY, with 2 < p < 3, and h be a %—Hé’)lder Re-
valued path, with %—{—% > 1; so in particular % > % We describe an element of (Rf x RY)®?

as a 2 X 2 matrix (g g),WithAofsizefxf,Bofsizefxd,CofsizedxéandDof

size d x d. Show that one defines a rough path Z = (Z,Z) over R* x R? setting
Zts = (tha hy — hs)

T — Ats Cts
s Bts Dts ’

with Ay = Xgs, Dys = [L hus @ dhy and By = [ hys @ dXy, Chs = [1 Xys © dhy,, where
Dy and Cyg are Young integrals and the integral Bys is defined by the integration by parts
formula

and

t t
/ hus ® dXy = hys @ X — / dhy, @ Xys.

We say that Z is a pairing of X and h. Would could you possibly pair them if X were a
Holder p-rough path over R, without any rstriction on p > 2, and the condition % + % >1
still holds?



CHAPTER 4

Flows driven by rough paths

[Guide for this chapter ]

We have seen in part I of the course that a C!-approximate flow on a Banach
space E defines a unique flow p = (gots) on E such that the inequality

0<s<t<1
(0.1) [ors — pus|, < clt — 5|

holds for some positive constants ¢ and a > 1, for all 0 < s < t < T sufficiently
close. The construction of ¢ is actually quite explicit, for if we denote by pi,. the
composition of the maps p,, ¢, along the times ¢; of a partition m; of an interval
[s,t], the map py, satisfies the estimate

2 — c? T }7?,55

oo<1_21 ‘ail

(0.2) HSOts — My

)

where ¢; is the constant that appears in the definition of a C'-approximate flow

(03) H/ituolius_,utsHCl < Cl|t_3‘a'

It follows in particular from equation (0.1) that if x4 depends continuously on some
metric space-valued parameter \, with respect to the C°-topology, and if identity
(0.3) holds uniformly for A moving in a bounded set say, then ¢ depends continuously
on A, as a uniform limit of continuous functions.

The point about the machinery of Cl-approximate flows is that they actually pop
up naturally in a number of situations, under the form of a local in time description
of the dynamics under study; nothing else than a kind of Taylor expansion. This
was quite clear in exercice 1 on the ordinary controlled differential equation

with C! real-valued controls hl,... h and C? vector fields V;,...,V, in R% The
1-step Euler scheme

pus(x) = & + (hy — h) Vi(x)

defines in that case a Cl'-approximate flow which has the awaited Taylor-type ex-
pansion, in the sense that one has

(0.5) f(pes(x)) = f(2) + (bt — he) (Vif ) (@) + O([t — s77)

for any function f of class C?; but y fails to be a flow. Its associated flow is not only
a flow, it also satisfies equation (0.5) as a consequence of identity (0.1).

29
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We shall proceed in a very similar way to give some meaning and solve the rough
differential equation on flows

(0.6) do = Vdt + FOX(dt),

where V' is a Lipschitz continuous vector field on E and F = (Vl, cee Vg) is a col-
lection of sufficiently regular vector fields on E, and X is a Holder p-rough path
over RY. A solution flow to equation (0.6) will be defined as a flow on E with a
uniform Taylor-Euler expansion of the form

(0.7) f(pis(@) = f@)+ D XL (Vif)(x) +O(|t = "),
[1I<[p]
where I = (i1,..., i) € [1,(]* is a multi-index with size k < [p], and X/, stands for

the coordinates of X,, in the canonical basis of Tg[p M The vector field V. is seen here
as a 1%-order differential operator, and V; = Vj, ---V;  as the Et-order differential
operator obtained by applying successively the operators V; .

For V = 0 and X the (weak geometric) p-rough path canonically associated with
an Rf-valued C! control h, with 2 < p < 3, equation (0.7) becomes
(0.8)

F (@) = F@)+ (=K (Vif) () + ( [ [ dh';) (ViVif) @)+ O(lt— sI*1).

which is nothing else than Taylor formula at order 2 for the solution to the ordi-
nary differential equation (0.4) started at = at time s. Condition (0.7) is a natural
analogue of (0.8) and its higher order analogues.

There is actually a simple way of constructing a map p;s which satisfies the
Euler expansion (0.7). It can be defined as the time 1 map associated with an
ordinary differential equation constructed form the V; and their brackets, and where
X,s appears as a parameter under the form of its logarithm. That these maps
form a C'-approximate flow will eventually appear as a consequence of the fact that
the time 1 map of a differential equation formally behaves as an exponential map,
in some algebraic sense.

The notationally simpler case of flows driven by weak geometric Hélder p-rough
paths, with 2 < p < 3, is first studied in section 1 before studying the general case
in section 2. The latter case does not present any additional conceptual difficulty,
so a reader which who would like to get the core ideas can read section 1 only, or
directly go to section 2. The two sections have been written with almost similar
words on purpose.

1. Warm up: working with weak geometric Hoélder p-rough paths, with
2<p<3

Let V be a C? vector field on E and V4,...,V, be C} vector fields on E. Let
X = (X,X) be a Hélder weak geometric p-rough path over R’ with 2 < p < 3. Let
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s be the well-defined time 1 map associated with the ordinary differential equation

WD) ==V + (X4 3XEVE]) () 0w

it associates to any x € E the value at time 1 of the solution of the above equation
started from z; it is well-defined since V' and the V; are in particular globally Lips-
chitz. It is a direct consequence of classical results on ordinary differential equations,
and of the definition of the topology on the space of Holder weak geometric p-rough
paths, that the maps ;s depend continuously on ((s, t), X) in the uniform topology,
and that

(1.2) || es —1d|| o = 01—s(1).

Also, considering y, as a function of z, it is elementary to see that one has the
estimate

(1.3) |y — IdHC1 <c(1+ X2t —s)'?, 0<u<,

for some constant depending only on V' and the V;.

1.1. From Taylor expansions to flows driven by rough paths. The next
proposition shows that ps has precisely the kind of Taylor-Euler expansion property
that we expect from a solution to a rough differential equation, as described in the
introduction to that part of the course.

PROPOSITION 13. There exists a positive constant ¢, depending only on V and
the V;, such that the inequality
(1.4)

|Fom—={r+t—svirxi@in) + X in) | <e(1+IXI) 1 les [t =l

holds for any f € C}.

The proof of this proposition and the following one are based on the following
elementary identity, obtained by applying twice the identity

F) = £ t=3) [ VN aueX, [ (i a3 [ (15.1) ) dn
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first to f, then to V f, V;f and [Vj, Vk}f inside the integrals. One has

1

Fia) = 1)+ =) [ VD )au X, [ W) )ass+ 538 [ (105117 ()

= f@) 4 (=) (V) () + (¢t —s) / (V) () — (V@) hdu

+ X[, (Vif) (@) + (t — 5) X, /0 /0 ) (VVif) (ys,) dsads:

1

1 S1
+ 5 XX (VVif ) (@) + X3 X /O /0 (Vi) (ve) = (ViVif ) () } dsads,

1 ) ) 1 S1
X [ [ (VA () dsads
0 0
1

Fym (il )@+ 5 [ {(11) ) - (1% 5) @

Note that since the Holder p-rough path X is assumed to be weak geometric, the
symmetric part of X, is equal to %th ® Xis, so one has

(1.5) f(ues()) = f(2) + (¢ = )V )(2) + X0, (Vif ) (@) + XI3 (ViVaSf ) (2) + el (),

where the remainder ¢/, is defined by the formula

@)= (=) [ VA () — (VA @) Ydu+ (2 — )X / 1 |00 () dsads,
+ X3, X /O 1 /0 ’ {(VaVi) (ve) = (ViVif ) () } dsads,
b5 XiX /0 1 /0 ([ VVir ) (u,) dsads

1

w3 [ (i) ) - ()@ du

PROOF OF PROPOSITION 13 — It is elementary to use estimate (1.3) and the regular-

ity assumptions on the vector fields V, V; to see that the remainder e,{s is bounded

above by a quantity of the form ¢(1 4 [|X||?) || flles [t — s|%, for some constant
depending only on V' and the V. >

A further look at formula (2.7) and estimate (1.3) also make it clear that

f
6ts

(1.6)

3
LS IXI) - s,

for a constant ¢ depending only on V' and the V;. This is the key remark for proving
the next proposition.

PROPOSITION 14. The family (uts) forms a Ct-approzimate flow.

0<s<t<T
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It will be convenient in the following proof to slightly abuse notations and write
Vi(z) for (V;Id)(x), for any multi-index I and point z.

PROOF — We first use formula (1.5) to write

Hiu (Nus(x)) = NUS(x)+(t_u)V(Mus (x))+qu‘/; (Mus(x)) +Xf5 (VJV;@) (Mus(ff)) +€£2; v (Mus(l‘))

We deal with the term (£ — u)V (p1us(2)) using estimate (1.3) and the Lipschitz
character of V:

3
(6= )V () — (¢ — )V ()] < (14 [XIP) Ju— sl
The remainder €} (15(2)) has a C*-norm bounded above by ¢(1+ HXH?’)Z\t—u\ ,

by the remark preceeding proposition 14 and the C!-estimate (1.3) on p,s. We
develop V; (puus(2)) to deal with the term X7, V;(pus(2)). As

Vi (rmus(2)) = Vi) + (u = ) (VV0) (@) + X (VeVi) (@) + K5 (VViVi) (@) + ()
we have
(1.7) X3 Vi (s (2)) = X, Vilw) + X X0, (Ve Vi) (@) + e (),
where the remainder z—:Xj,us has C'-norm bounded above by

Vi

(18) gtul;,us

3 3
L el IXIP) Ju = sl

for a constant ¢ depending only on V' and the V,,. Set

¢
gtu,us(l‘) = Z&Xﬁ,us(x)
i=1
The term XJ" (V;Vi) (ftus()) is simply dealt with writing

(1.9) KI5V () = XEE(VIVA) @)+ 0 (VIVA) () — 22 (V1) ).

and using estimate (1.3) and the C} character of V;Vj to see that the last term

on the right hand side has a C'-norm bounded above by ¢(1 + [|X||*) |u — s|7.
All together, this gives

e (s () = pus(@) + (£ = W)V (2) + X}, Vi(@) + X0 X7, (ViVi) () + X5 (ViVi) (2) + Epuus (@)
=+ (u—s)V(x)+ X, Vi(x) + XE(V;Vi) (@) + e (@) + ()
=z + (t — )V (2) + X[, Vi(x) + X (V;Vi) (@) + ea () + Emus()
= ps(2) + () + Epuus(2),

so it follows from estimates (1.6) and (1.8) that p is indeed a C!-approximate
flow. >

_|_
_|_

The above proof makes it clear that one can take for constant c; in the C!-
approximate flow property (1.2) for p the constant ¢(1 + ||X]*), for a constant ¢
depending only on V' and the V.
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Recalling proposition 13 describing the maps p in terms of Euler expansion,
the following definition of a solution flow to a rough differential equation is to be
thought of as defining a notion of solution in terms of uniform Euler expansion

|£ 00w —{f+xivis +xitvivir}| <ele— s,

DEFINITION 15. A flow (i)
equation

(1.10) dp = Vdt + F® X(dt)

0<s<t<T is said to solve the rough differential

if there exists a constant a > 1 independent of X and two possibly X-dependent
positive constants & and ¢ such that

(1.11) [ors — pus|| o, < ]t — 5]
holds for all 0 < s <t < T witht —s < 6.

If for instance X is the weak geometric Holder p-rough path canonically associ-
ated with an Rf-valued piecewise smooth path A, it follows from exercice 1, and the
fact that the iterated integral f: f; dh, @ dh, has size |t — s|?, that the solution flow
to the rough differential equation

dp = Vdt + F®X(dt)
is the flow associated with the ordinary differential equation
U = V(y,)dt + Vi(y,) dh.
The following well-posedness result follows directly from theorem 2 on C!-approximate
flows and proposition 14.
THEOREM 16. The rough differential equation on flows
dp = Vdt + F® X(dt)

has a unique solution flow; it takes values in the space of uniformly Lipschitz con-
tinuous homeomorphisms of E with uniformly Lipschitz continuous inverses, and
depends continuously on X.

PROOF — Applying theorem 2 on C!-approximate flows to p we obtain the existence
of a unique flow ¢ satisfying condition (2.12), for § small enough; it further
satisfies the inequality

2
(1'12) HSOts - :uﬂtsHoo < C(l + ||X||3) T ‘Wts

‘afl’
for any partition 7 of [s,¢] C [0,T] of mesh |m,| < §, as a consequence of
inequality (1.8). As this bound is uniform in (s,¢), and for X in a bounded
set of the space of weak geometric Holder p-rough paths, and since each map
[tr,. 18 a continuous function of ((s, t), X), the flow ¢ depends continuously on

((s, t), X)



1. WARM UP: WORKING WITH WEAK GEOMETRIC HOLDER p-ROUGH PATHS, WITH 2 < p <33

To prove that ¢ is a homeomorphism, note that, with the notations of part I of
the course,

-1
(uﬁ?’) =pg k0 op . si=s+i27M(t—s),

can actually be written (,ugb))fl = Hgpnspn_, © " O Mg s> tor the time 1 map 7z
associated with the rough path X;_,. As [z enjoys the same properties as u, the
maps (ug))fl converge uniformly to some continuous map ;," which satisfies

by construction ¢y, o ¢t = Id.

Recall that proposition 6 provides a uniform control of the Lipschitz norm of the
maps @ys; the same holds for their inverses in view of the preceeding paragraph.
We propagate this property from the set {(5, t)e[0,T]?;s<t, t —s< 5} to
the whole of the {(s, t) €10, 7T]*; s < t} using the flow property of . >

REMARKS 17. (1) Friz-Victoir approach to rough differential equa-
tions. The continuity of the solution flow with respect to the driving rough
path X has the following consequence, which justifies the point of view
adopted by Friz and Victoir in their works. Suppose the Hélder weak geo-
metric p-rough path X s the limit in the rough path metric of the canoni-
cal Holder weak geometric p-rough paths X" associated with some piecwise
smooth R -valued paths (x7)o<icr. We have noticed that the solution flow
©" to the rough differential equation

de™ = Vdt + FEX"(dt)
15 the flow associated with the ordinary differential equation

As ||¢@" — ¢lloo = 0n(1), from the continuity of the solution flow with respect
to the driving rough path, the flow @ appears in that case as a uniform
limit of the elementary flows ¢". A Hdélder weak geometric p-rough path
with the above property is called a Holder geometric p-rough path; not all
Holder weak geometric p-rough path are Hélder geometric p-rough path [17],
although there is little difference.

(2) Time-inhomogeneous dynamics. The above results have a straightfor-
ward generalization to dynamics driven by a time-dependent bounded drift
V(s; ) which is Lipschitz continuous with respect to the time variable and C?
with respect to the space variable, uniformly with respect to time, and time-
dependent vector fields V;(s;-) which are Lipschitz continuous with respect
to time, and C3 with respect to the space variable, uniformly with respect to
time. We define in that case a C'-approzimate flow by defining pus as the
time 1 map associated with the ordinary differential equation

Ju = (t = $)V(s;9a) + XpVilsiva) + X[V, Vi (ha), 0<u <1,
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1.2. Classical rough differential equations. In the classical setting of rough
differential equations, one is primarily interested in a notion of solution path, defined
in terms of local Taylor-Euler expansion.

DEFINITION 18. A path (ZS)O<3<T 1s said to solve the rough differential
equation
(1.13) dz =Vdt +FX(dt)

with initial condition x, if zg = x and there exists a constant a > 1 independent of
X, and two possibly X-dependent positive constants 6 and ¢, such that
(1.14)

[£Go) = { £z + (L= )V 1) (z) 4 XE (Vi) (20) 4 XEE (ViVid ) (z0) | < el It =]

holds for all0 < s <t < T, witht — s < 8, for all f €C}.

THEOREM 19 (Lyons’ universal limit theorem). The rough differential equation
(1.13) has a unique solution path; it is a continuous function of X in the uniform
norm topology.

PROOF — a) Existence. It is clear that if (¢t5)0<8<t<1 stands for the solution flow
to the equation
dp = Vdt + F®X(dt),
then the path z; := ¢y (x) is a solution path to the rough differential equation
(1.13) with initial condition x.

b) Uniqueness. Let agree to denote by O.(m) a quantity whose norm is
bounded above by ¢m. Let a stand for the minimum of % and the constant a in
definition 18, and let y, be any other solution path. It satisfies by proposition
13 the estimate

’yt - (pts(ys)} < C|t - $|oz.
Using the fact that the maps ¢;s are uniformly Lipschitz continuous, with a

Lipschitz constant bounded above by L say, one can write for any € > 0 and any
integer k£ < %

Yke = Pre(b—1)e (Yk—1)e) + Oc(€*)
= @kg,(k_ng(@(k—ng,(k_z)g(y(k_z)g) + O, (ea)) + O, (eo‘)
= ka‘e,(k72)e(y(k—2)e) + O, (60‘) + O, (eo‘),

and see by induction that
Yre = ke (h—n)e (Yh—n)e) + Ocr((n — 1)e*) + O.(€%)
= @reo() + Ocr, (ke*) + 0c(1)
= Zpe + O, (k;eo‘) + 0.(1).

Taking € and k so that ke converges to some t € [0, 7T, we see that y, = z;, since
a > 1.
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The continuous dependence of the solution path z, with respect to X is trans-
fered from ¢ to z,. >

The map that associates to the rough path X the solution to the rough differential
equation (1.13) is called the Ito map.

2. The general case

We have defined in the previous section a solution to the rough differential equa-
tion
do = Vdt + F®X(dt),
driven by a weak geometric Holder p-rough path, for 2 < p < 3, as a flow with
(s, t; x)—uniform Taylor-Euler expansion of the form

f(@rs(@)) = f@) + (t = $)(V F)(@) + XL, (Vif ) (@) + X5 (V;Vief) () + O (|t — s|7).
The definition of a solution flow in the general case will require from ¢ that it
satisfies a similar expansion, of the form

(21)  flews(n) = fl@) + (= )V )@) + Y XL(Vif)(@) + Ot = s[7").
111<[p]

As in the previous section, we shall obtain ¢ as the unique flow associated with
some Cl-approximate flow (Mts)o coctel? where ;5 is the time 1 map associated with
an ordinary differential equation\can\structed from the V; and their brackets, and V'
and Xy,. In order to avoid writing expressions with loads of indices (the XZ), T will
first introduce in subsection 2.1 a coordinate-free way of working with rough paths
and vector fields. A Cl-approximate flow with the awaited Euler expansion will be
constructed in subsection 2.2, leading to a general well-posedness result for rough
differential equations on flows.

To make the crucial formula (2.7) somewhat shorter we assume in this section
that V' = 0. The reader is urged to workout by herself/himself the infinitesimal
changes that have to be done in what follows in order to work with a non-null drift

V. From hereon, the vector fields V; are assumed to be of class Cl[)p 1 We denote by

CP(E, E) the set of CP™ vector fields on E. We denote for by m, : T2° — (RY)*
the natural projection operator and set m¢p = ngk ).

2.1. Differential operators. Let F be a continuous linear map from R’ to

Céle(E, E) - one usually calls such a map a vector field valued 1-form on R®. For any
v € R, we identify the CIP/*! vector field F(v) on E with the first order differential
operator

F@(v) : g € CY(E) = (D.g)(F(v)(") € C°(E);
in those terms, we recover the vector field F(v) as F¥(v)Id. The map F® is extended
to T/ by setting
F?(1) :=1d: C°(E) — C°(E),
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and defining F¥(v; @ --- @), forall 1 <k < [p]+1and v; @ - - @ v, € (RH)®F) as

the k'-order differential operator from C*(E) to C°(E), defined by the formula
FO( @ @) = F®(v1) . -F®(vk),

and by requiring linearity. So, we have the morphism property

(2.2) F®(e) F¥(e) = F®(ee)

for any e, e € Tg[p 1 with ee € Tg[p 1 This condition on e, e’ is required for if
e = v ® - ® v, with v; € R’ the map F?(e')Id from E to itself is Clgp}ﬂ_k,
F®(e) F®(e’) only makes sense if ee’ € Tz[p 1 We also have

Fo(e), F¥(e)| = F¥([e.¢])

SO

[p]+1

for any e, e’ € T’ with ee’ and €’e in Té[p 1 This implies in particular that F®(A)

is actually a first order differential operator for any A € ggp Hl, that is a vector field.
Note that for any A € g™ and 1 <k < [p] + 1, then AF := m,(A) is an element of
ng], and the vector field F® (A*)Id is Clgp]ﬂfk.

We extend F® to the unrestricted tensor space T7° setting
(2.3) F®(e) = F®(m<p41e)
for any e € T;°.

Consider as a particular case the map F defined for u € R by the formula

F(u) = v’ Vi(-).
Using the formalism of this paragraph, an Euler expansion of the form
fe(@) = f(x) + D2 XL(Vif) (@) +O(It — s).
17I<[p]

as in equation (2.1), becomes

Fn@) = (F° (X)) (@) + O (It = 1Y),

2.2. From Taylor expansions to flows driven by rough paths: bis. Let
2 < p be given, together with a 6%’ |_valued weak-geometric Holder p-rough path X,
defined on some time interval [0, 7], and some continuous linear map F from R’ to
the set Clgp]H(E, E) of vector fields on E. For any 0 < s < t < T, denote by Ay the
logarithm of Xy, and let s stand for the well-defined time 1 map associated with
the ordinary differential equation

This equation is indeed an ordinary differential equation since Ay, is an element of
ng]. For 2 < p < 3, it reads

, i 1/ 1o
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As the tensor X, ® X;, is symmetric and the map (j, k) — [V], Vk] is antisymmetric,
this equation actually reads

1 .

which is nothing else than equation (1.1), whose time 1 map defined the C!-approximate
flow we studied in section 1.1.

= X;Vi(ya) +

It is a consequence of classical results from ordinary differential equations, and
the definition of the norm on the space of weak-geometric Holder p-rough paths,
that the solution map (7, z) — y,, with yo = x, depends continuously on ((s, t), X)
in C%-norm, and satisfies the following basic estimate. The next proposition shows
that ps has precisely the kind of Taylor-Euler expansion property that we expect
from a solution to a rough differential equation.

(2.5) e =1l ps < (14 IXIF) [t = 5|7, 0<r <1

PROPOSITION 20. There exists a positive constant ¢, depending only on the V;,
such that the inequality

[p]+1
26) ||foms = FE(Xu) £ <1+ 1K) [ f e [t = 5|

holds for any f € C£p1+1(E).

In the classical setting of an ordinary differential equation
20 =W(z,), z0=u,

driven by a C! vector field W on E, we would get a Taylor expansion formula for
f(z1) from the elementary formula

_ Zl% (W f) (@) + / (W f) (ys.) ds

n

obtained by induction, where WO f = f and Wl f .= W(W"" f ), and

A= {(s1,...,8,) €0, T]"; 8, < -+ < 51},
with the notation ds for ds,, ...ds;. We proceed along these lines to obtain a similar

formula for the solution to the preceeding equation with

[pl+1
W = F®(Ay) Z F®(AR).

Some care however is needed to take into account the fact that the vector fields
F®(Af}) have different regularity properties.

Recall F(0) is the null map from C°(E) to itself and moA = 0 for any A € g,
The proof of this proposition and the following one are based on the elementary
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identity (2.7) below, obtained by applying repeatedly the identity

fyr) = flz) + /0 (F® (Ats)f) (yu) du

Pl+1 .
@)+ 3 [ (P 0<r<

k1=0

together with the morphism property (2.2). As emphasized above, the above sum
over ki is needed to take care of the different regularity properties of the maps

FE(AR)f.

Flo) = 50+ (P @+ 3 [ [ (PR AR (1) dss s

k1 +ka<[p]+1
~ @)+ ()@ + | 1 | (F2a)) (0) dsats

We use here the notation 2 to denote the multiplication A$? = Ay Ay, not to be
confused with the second level A2 of Ay; the product is done here in T7°, and
definition (2.3) used to make sense of F¥(A$?) f. Repeating (n— 1) times the above
procedure in an iterative way, we see that

Fel) = 1)+ 5 L (F(A) 1)) + | (P ) ds
k=1 n

1)+ 30 = (FO(AR) ) )+ [ AFE @) ) - (7oA @)} ds.

An
Note that m; A =0, for all j <n —1, and

7]

1 [ ]
el | D AR | =X
k=1

. . . 2} .
also m¢p (Atip ]> = (ths)@)[p] is of size |t — s . We separate the different terms
in the above identity according to their size in |t — s|; this leads to the following
expression for f(fus(z)).

(2.7)

flz)+ <F® (mewi{ i % Aif})f) () + /An {(FO (remA2) 1) (us) = (F® (mepAts) f) @) } ds
+ <F® (7w kz 4 A:f})f) @+ [ {7 (mpaat) 1) ) = (P2 (mp A 1) @)} s
—1 n

We denote by €//"(z) the sum of the two terms involving Tp)+1 in the above line,
[pl+1
P

1
made up of terms of size at least |t —s| » . Note that for n = [p], the integral term
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in the first line involves m[, (A@) = (ths)@)[p] and the increment y,, — x, of size
(el+1 £ [P]( ).

|t — s|%, by estimate (2.5), so this term is of size [t —s| » ; we include it in ¢

PROOF OF PROPOSITION 20 — Applying the above formula with n = [p], we get the
identity
[ (pusl)) = (F*(X0) ) (@) + e V).

It is clear on the formula for el{;; p }(x) that its absolute value is bounded above

[p]
by a constant multiple of (1 + ||X||[p]) |t — s ppﬂ, for a constant depending only
on the data of the problem and f as in (2.6). >

A further look at formula (2.7) makes it clear that if 2 < n < [p], and f is C;'*,
the estimate

fin
6ts

(2.8)

(14 1X7) | llenss

holds as a consequence of formula (2.5), for a constant ¢ depending only on the V;.

PROPOSITION 21. The family of maps (,uts) is a Ct-approzimate flow.

0<s<t<T

PROOF — As the vector fields V; are of class Cl[)le, with [p] + 1 > 3, the identity

H:uts - IdHCQ = Otfs<1)

holds as a consequence of classical results on ordinary differential equations; we
turn to proving the C'-approximate flow property (1.2). Recall X/ stands for
TmXys. We first use for that purpose formula (2.7) to write

Htu (Nus<x>) = <F® (Xtu) Id) (Nus(x)) + 612; ? (,uus (I))
(2.9)
= Hus( Z (P (X1 (tas(2)) + st (106(2)).

We splitted the function F®(Xy,)Id into a sum of functions F®(X/?)Id with
different regularity properties, so one needs to use different Taylor expansions
for each of them. One uses (2.8) and inequality (2.5) to deal with the remainder

Id; 2 [pl+1
eta " (sl |, < (1 1K) e =

To deal with the term <F® (ng)ld) (1tus()), we use formula (2.7) with n =

[p] —m and f =F®(X]2)Id. Writing ds for dsjy_, . ..ds;, we have
(2.10)

[p]—m
(P (X72)10) (prus(@) = (F® (X72)1d) (2)+ (F® ({Rm 3 %A;’;} X;;f;) Id) (@)+e3iP " ().
k=1
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The notation * in the above identity stands for the Cl[)p]”_m function F® (ng)ld;
it has C'-norm controlled by (2.8). The result follows directly from (2.9) and
(2.10) writing

pus(2) = (F® (X1 (2) + €l 7)),

and using the identities exp (Ays) = Xy and Xy = XXy, in Te[p I >

DEFINITION 22. A flow (p5;0 < s < t < T) is said to solve the rough
differential equation

(2.11) dp = F® X (dt)

if there exists a constant a > 1 independent of X and two possibly X-dependent
positive constants & and ¢ such that

(2.12) 15 = pslloo < cft — 5|
holds for all 0 < s <t < T witht —s < 6.

This definition can be equivalently reformulated in terms of uniform Taylor-Euler
expansion of the form

flou(@) = f@)+ Y XL(Vif)(z) +O(It - s|7).

[I<[p]

The following well-posedness result follows directly from theorem 2 and proposition
21; its proof is identical to the proof of theorem 19, without a single word to be
changed, except for the power of || X]| in estimate (1.12), which needs to be taken
as [p| + 1 instead of 3.

THEOREM 23. The rough differential equation
dp = F® X(dt)

has a unique solution flow; it takes values in the space of uniformly Lipschitz con-
tinuous homeomorphisms of E with uniformly Lipschitz continuous inverses, and
depends continuously on X.

Remarks 17 on Friz-Victoir’s approach to rough differential equations and time-
inhomogeneous dynamics also hold in the general setting of this section. Section
1.2 on classical rough differential equations has a straightforward analogue in the
general setting of this section. We leave the reader the pleasure to adapt it and check
that Lyons’ universal limit theorem holds, with exactly the same proof as given in
section 1.2. Note only that we ask the vector fields V; to be CIEP 1 When working
with a weak geometric Holder p-rough path; the drift vector field V' is only required
to be C?.
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3. Exercices on flows driven by rough paths

We first see in exercice 12 how some general result on flows and C!-approximate
flows proved in exercice 6 can be used to strengthen the result on the continuous
dependence of the solution to a rough differential equation with respect to the driving
rough path into a local Lipschitz dependence. The next two exercices are variations
on the notion of solution flow. Roughly speaking, they are defined in terms of
uniform Taylor-Euler expansion property. What happens if the driving vector fields
allow for a priori higher order expansion? How robust are these expansions with
respect to perturbation of the driving rough path? Exercices 13 and 14 partly
answer these questions. Exercise 15 makes a crucial link between the ’differential
formulation’ of a solution path to a rough differential equation introduced above
and the 'integral formulation’ that can be set in the setting of controlled paths. The
equivalence between these two formulations will be fundamental for the applications
to stochastic analysis exposed in the last part of the course.

12. Local Lipschitz continuity of ¢ with respect to X. Use the result proved in
exercice 6 to prove that the solution flow to a rough differential equation driven by X is a
locally Lipschitz continuous function of X, in the uniform norm topology.

13. Taylor expansion of solution flows. Let Vi,...,V} be Cl[)p 1 Sector fields on
a Banach space E, and X be a weak geometric Holder p-rough path over Rf, with 2 < p.
Set F = (Vl, ey Vg). The solution flow to the rough differential equation
do = FOX(dt)
enjoys, by definition, a uniform Taylor-Euler expansion property, expressed either by writ-
ing
llprs — s ||, < clt — s|®

for the Cl-approximate flow (,uts) contructed in section 2.2, or by writing

0<s<t<1
foew— > XEVif|| <clt—sl"
H1<[p] 00

What can we say if the vector fields V; are actually more reqular than CI[)p]le ¢

Assume N > [p] + 2 is given and the V; are C}'. Let Y be the canonical lift of X
to a 05?7 -valued weak geometric Holder N-rough path, given by Lyons’ extension theorem
proved in exercice 7. Let O € gév stand for log Yys. For any 0 < s <t < 1, let 145 be the
time 1 map associated with the ordinary differential equation

Zy = F®(@t5)(zu), 0<u<l.

a) Prove that vy enjoys the following Euler expansion property. For any f € Cév 1 we
have

Nt1

(3.1) | foves —F2(Yu) ||, <clt—s| 7,
where the contant ¢ depends only on the V; and X.

b) Prove that (Vts)ogsgtgl

c) Prove that ¢y, satisfies the high order Euler expansion formula (3.1).

is a Cl-approximate flow.
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14. Perturbing the signal or the dynamics? Let 2 < p be given and Vi,...,Vp
be Clgp 1 Vector fields on E. Let X be a weak geometric Holder p-rough path over R, and
ac ng] be such that mja = 0 for all j < [p] — 1. Write it

a= ) dep,
H1=[p]

where (61, ... ,eg) stand for the canonical basis of RY, and for I = (il, ... ,ik),

e = |ei [ [ewen] |

in Te[p]. The ef;’s form a basis of ng] with m,e = 0 if n # |I|. Recall the definition of
exp : Té[p 10 Tz[p]’1 and its reciprocal log.

a) Show that one defines a weak geometric Holder p-rough path X over R setting
X5 = exp (log Xis + (t — s)a).

b) Show that the solution flow to the rough differential equation
dip = F® X(dt)
coincides with the solution flow to the rough differential equation
do = Vdt + F® X(dt),
where the vector field V is defined by the formula
V =al Vi

15. Differential and integral formulations of a rough differential equation.
Recall the setting of controlled paths investigated in exercise 11, and let F = (Vl, e ‘/g)
be a collection of C;:’ vector fields on R?, seen as a linear map from R’ to the set of vector
fields on RY. Let also X be a weak geometric Holder p-rough path, with 2 < p < 3. Prove
that the path (z;)o<t<1 is a solution path to the rough differential equation

dxt = F(Sﬂt) X(dt),

in the sense of definition 18, if and only if it is a solution to the integral equation
t
2t = w0+ / F(z,) dX,
0

(in the set of R%-valued paths controlled by X), where the above integral is the rough
integral defined in exercise 11. Note here that the setting of controlled paths offers the
possibility to define the above integral for non-weak geometric Holder p-rough paths, so
one can also define fixed-point problems and solve rough differential equations in that
setting. (See the excellent forthcoming lecture notes [?] for this point of view on rough
differential equations.) Given what we have done in section 3 on controlled paths, we are
bound however to working with Hélder p-rough paths, with 2 < p < 3. Fortunatley, this
will be sufficent to deal with stochastic differential equations driven by Brownian motion
in the next part of the course.



CHAPTER 5

Applications to stochastic analysis

[Guide for this chapter J

So far, I have presented the theory of rough differential equations as a purely deter-
ministic theory of differential equations driven by multi-scale time indexed signals. Lyons,
however, constructed his theory first as a deterministic alternative to It6’s integration the-
ory, after some hints by Follmer in the early 80’s that It6’s formula can be understood
in a deterministic way, and other works (by Bichteler, Karandikhar...) on the pathwise
construction of stochastic integrals. (Recall that stochastic integrals are obtained as limits
in probability of Riemann sums, with no hope for a stronger convergence to hold as a rule.)
Lyons was not only looking for a deterministic way of constructing Itd integrals, he was
also looking for a way of obtaining them as continuous functions of their integrator! This
required a notion of integrator different from the classical one... Rough paths were born
as such integrators, with the rough integral of controlled integrands, defined in exercise
13, in the role of 1t6 integrals. What links these two notions of integrals is the following
fudamental fact. Brownian motion has a natural lift into a Hélder p-rough path, for any
2 < p < 3, called the Brownian rough path. This object is constructed in section
1 using Kolmogorov’s classical regularity criterion, and used in section 2 to see that the
stochastic and rough integrals coincide whenever they both make sense. This fundamental
fact is used in section 3 to see that stochastic differential equations can be solved in a two
step process.

(i) Purely probabilistic step. Lift Brownian motion into the Brownian rough
path.

(ii) Purely deterministic step. Solve the rough differential equation associated
with the stochastic differential equation.

This requires from the driving vector fields to be C3, for the machinery of rough differential
equations to make sense, which is more demanding than the Lipschitz regularity required
in the It6 setting. This constraint comes with an enormous gain yet: the solution path to
the stochastic differential equation is now a continuous function of the driving Brownian
rough path, this is Lyons’ universal limit theorem, in striking contrast with the measurable
character of this solution, when seen as a function of Brownian motion itself. (The twist
is that the second level of the Brownian rough path is itself just a measurable function
of the Brownian path.) Together with the above solution scheme for solving stochastic
differential equations, this provides a simple and deep understanding of some fundamental
results on diffusion processes, as section 4 on Freidlin-Wentzell theory of large deviation
will demonstrate.

We follow the excellent forthcoming lecture notes [5] in sections 2 and 3.

1. The Brownian rough path

45
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1.1. Definition and properties. Let (Bt) o<t D€ an R’-valued Brownian motion

defined on some probability space (€2, F,P). There is no difficulty in using 1t6’s theory of
stochastic integrals to define the two-index continuous process

(1.1) B .= // dB, ®dBu—/ Bus ® dB,,.

This process satisfies Chen’s relation
BItO BItO _{_ng) + Bus ® Btu
for any 0 < s <u <t < 1. Asis B well-known to have almost-surely %—Hélder continuous
sample paths, for any p > 2, the process
BIté _ (B BIt@)

will appear as a Holder p-rough path if one can show that B is almost-surely %—Hé’)lder
continuous. This can be done easily using Kolmogorov’s regularity criterion, which we

recall and prove for completeness. Denote for that purpose by D the set of dyadic rationals
in [0,1] and write D, for {k27"; k = 0..2"}.

THEOREM 24 (Kolmogorov’s criterion). Let (S,d) be a metric space, and ¢ > 1 and
B> 1/q > 0 be given. Let also (Xt)teu])be an S-valued process defined on some probability
space, such that one has

<Ot —s,

(1.2) Hd(Xt’XS)HILq =
for some finite constant C, for all s,t € D. Then, for all a € [0,5 — %), there exists a

random variable C,, € LY such that one has almost-surely
d(Xs, X;) < Colt — s|%,
for all s,t € D; so the process X has an a-Hdélder modification defined on [0,1].
PROOF — Given s,t € D with s < ¢, let m > 0 be the only integer such that 2-(m+1) <
t —s < 27™. The interval [s,t) contains at most one interval [Tm+1, Tmal + 27 (m+1))
with 741 € Dipgr. If so, each of the intervals [s,rpq1) and [rmy1 + 27 (m+1) 1)

contains at most one interval [Tm+2, Tm+2 + 2_(m+2)) with 7,10 € Dpyyo. Repeatlng
this remark up to exhaustion of the dyadic interval [s,t) by such dyadic sub-intervals,
we see, using the triangle inequality, that

d(Xe, X)) <2 ) Sa,
n>m—+1

where Sy, = sup,ep,, d(Xu7 Xu+2—n). So we have

d(Xt’ 2 Z S 2(m+1 Ca
(t—S n>m-+1

where Co 1= 23, -(2"*S,. But as the assumption (1.2) implies

E[S?] < [Z d( Xy, Xypon) ] <2"C(27)18,

teD,
we have

[Call e <2D°2"(ISnlly < 2022 a=f+3

n=0 n=0
so C,, is almost-surely finite. The conclusion follows in a straightforward way. >
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Recall the definition of the homogeneous norm on Tf’l
Jall = 1 &' &2 = ] + /a7
introduced in equation (1.3), with its associated distance function d(a,b) = |la='b||. To

see that B! is a Holder p-rough path we need to see that it is almost-surely %—Hé’)lder

continuous as a (T€2,1’ |-]|)-valued path. This can be obtained from Kolmologorv’s criterion
provided one has

IBI®||, < Clt — 5|2,

for some constants g with 0 < % — % < %, and C'. Given the form of the norm on ng’l, this
is equivalent to requiring

(13) I1Bisll, < Cle—sl2,  [BE| g <Clt—s|

o

These two inequalities holds as a straightforward consequence of the scaling property of
Brownian motion. (The random variable Blltoé is in any LY as a consequence of the BDG
inequality for instance.)

COROLLARY 25. The process B is almost-surely a Hélder p-rough path, for any p
with % <ic % It is called the It6 Brownian rough path.
p
Note that B is not weak geometric as the symmetric part of B}'® is equal to % Bs ®
Bys — %(t — s)Id. Note also that we may as well have used Stratonovich integral in the
definition of the iterated integral
t u t
Btsstr = / / 0dB, ® odBy, = / Bys ® odBy;
S S S

this does not make a big difference a priori since
5 1
B = BIO + 5t = 9)id.

So one can define another Holder p-rough path Bt = (Bts, Bf’;f) above Brownian motion,
called Stratonovich Brownian rough path. Unlike It6 Brownian rough path, it is weak
geometric. (Compute the symmetric part of B$!) Whatever choice of Brownian rough
path we do, its definition seems to involve [t0’s theory of stochastic integral. It will happen
to be important for applications these two rough paths can actually be constructed in a
pathwise way from the Brownian path itself.

Given n > 1, define on the ambiant probability space the o-algebra F;, := O'{BkQ—n ; 0<
k< 2”}, and let Bﬁn) stand for the continuous piecewise linear path that coincides with B

at dyadic times in D,, and is linear in between. Denote by B the coordinates of B,

There is no difficulty in defining

t
B\ = / B ® dB{™
S
as a genuine integral as B(™ is piecewise linear, and one has acutally, for j # k,
" .
(1.4) BY =E[Byu|F), B =E[BL | F]

and B{"" = <B§;‘)”') ’
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PROPOSITION 26. The Hélder p-rough path B = (B("),IB%(")) converges almost-surely
to BSY in the Holder p-rough path topology.

PROOF — We use the interpolation result stated in proposition 10 to prove the above con-
vergence result. The almost-sure pointwise convergence follows from the martingale
convergence theorem applied to the martingales in (1.4). To get the almost-sure uni-
form bound

(1.5) sup HB(")H < 00
n
it suffices to notice that the estimates
|Bt5| ng\t—S\%, |BStr,Jk| Cg‘t—s]%
obtained from Kolmogorov’s regularity criterion with C, € L9 for (any) ¢ > 2, give
1 ik 2
BE| <E[C|F] It —sl7,  [B*| <E[C2|F]lt - s]7,

so the uniform estimate (1.5) follows from Doob’s maximal inequality, which implies
that almost-sure finite character of the maximum of the martingales E[C; or 2|fn],
since this maximum is integrable. >

1.2. How big is the Brownian rough path? The upper bound of HBMH 1 provided
p
by the constant C'1 of Kolmogorov’s regularity result says us that HBM’H 1 is in all the
P P

L spaces. The situation is actually much better! As a first hint, notice that since B}

has the same distribution as & \/EBII%A’, and the norm of BI¥ has a Gaussian tail (this is

elementary), we have

(1.6) [exp <H ali )] = E[ exp ||BIF|*) | < o0

The following Besov embedding is useful in estimating the Holder norm of a path from its
two-point moments.

THEOREM 27 (Besov). Given a € [0, %) there exists an integer ko and a positive
constant C,, with the following properties. For any metric space (S,d) and any S-valued
continuous path (xi)o<t<1 we have

Cm &
HCUOHCV S </ / < bos ) ds dt) .
t -5

It can be proved as a direct consequence of the famous Garsia-Rodemich-Rumsey
lemma. Applied to the Brownian rough path B*®, Besov’s estimate gives

[HBItOHQIc CQk/ / ( H?f[) dsdi — C;kE[HBmHQk]

So it follows from (1.6) that we have for any positive constant ¢

ckHBItaHik

Z T” <E[exp 002 |BIt°H )}
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SO exp HBItéHi will be integrable provided c is small enough, by (1.6).
P

COROLLARY 28. The p-rough path norm of the Brownian rough path has a Gaussian
tail.

2. Rough and stochastic integral

Let X be any Rf-valued Holder p-rough path, with 2 < p < 3. Recall a linear map A
from R’ to R? acts on (RY)®2 as follows: A(a®b) = (Aa) @ b. Recall also that we defined
in section 3 the integral of an L(R’, R?)-valued path (Fs) controlled by X = (X, X)
as the well-defined limit

1
/ FdX =1lim > Fp, Xy 0+ FL X0,
0

0<s<1

where the sum is over the times ¢; of finite partitions 7 of [0, 1] whose mesh tends to 0. This
makes sense in particular for X = B"°. At the same time, if F is adapted to the Brownian
filtration, the Riemann sums ) | Fy, By, 4, converge in probability to the stochastic integral
fol Fs dBs, as the mesh of the partition 7 tends to 0. Taking subsequences if necessary, one
defines simultaneously the stochastic and the rough integral on an event of probability 1.
They actually coincide almost-surely if F’ is adapted to the Brownian filtration! To see this,
it suffices to see that ) FQiXti +1t; converges in IL? to 0 along the subsequence of partitions
used to define the stochastic integral fol FsdBs. Assume first that F’ is bounded, by M
say. Then, since it is adapted and F;Z is independent of By, , ;,, an elementary conditioning

gives
2
2 : /! mItd _ 2 : 2 2 :
H FiBela L2 ‘ L2 sM HB“““

which proves the result in that case. If F’ is not bounded, we use a localization argument
and stop the process at the stopping time

™ ::inf{ué[o,l]; | >M}/\1'

F;Bltf)

2 2
i tig1t; 1.2 <;A4-‘WL

The above reasoning shows in that case that we have the almost-sure equality

TM 1
/ FdB = / F7V dB,,
0 0

from which the result follows since 73, tends to co as M increases indefinitely.

PROPOSITION 29. Let (Fy),_ ., be an L(R",R%)-valued path controlled by B"® =

(B,B), adapted to the Brownian filtration, with a derivative process F' also adapted to that
filtration. Then we have almost-surely

1 1
/ FdB™" = / F, dB;.
0 0

If one uses BS™ instead of B in the above rough integral, an additional well-defined
term )
= li Fi = (tiq1 —t;)1d
) 0 2_F 5 (b1 — 1)
appears in the left hand side, and we have almost-surely

1 1 1
/FdBStf:/ FdBIM(*):/ F,dB, + (%).
0

0 0
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To identify that additional term, denote by Sym(A) the symmetric part of a matrix A and
recall that

l(ti-i-l - ti)Id = Sym (BStr ) - Sym(BIté

2 tit1ts tiv1ti

note also that the above reasoning showing that > F} B

)= %IBB?Z — Sym(Bi'® , );

itr1ts i+1ti

Ito

T2
tro.t, converges to 0 in L= also

shows that ZFQiSym (Bgi m) converges to 0 in 2. So (x) is almost-surely equal to the

limit as || N\, 0 of the sums

1 ! m®2
5 Z FtiBti+1ti'

, p—
FtiBti+1ti - Fti+1tz’ + Rti+1ti

Since

for some %—Hé’)lder remainder R, the above sum equals

1
5 ( Z Ft¢+1ti]Bt¢+1ti) + 0|7r\ (1)

We recognize in the right hand side sum a quantity which converges in probability to the
bracket of F and B.

COROLLARY 30. Under the assumptions of proposition 29, we have almost-surely

1 1
/ FdBStf:/ F, odB;.
0 0

3. Rough and stochastic differential equations

Equipped with the preceeding two results, it is easy to see that the solution path to a
rough differential equation driven by BS™ or BI*® coincides almost-surely with the solution
of the corresponding Stratonovich or It stochastic differential equation.

THEOREM 31. Let F = (Vl,...,Vg) be Cg’ vector fields on R®. The solution to the
rough differential equation

(3.1) dry = F(z,) B (dt)
coincides almost-surely with the solution to the Stratonovich differential equation
dz = V(%) o dB..
A similar statement holds for the It6 Brownian rough path and solution to It6 equations.

PROOF — Recall we have seen in exercise 16 that a path is a solution to the rough differential
equation (3.1) if and only if it is a solution path to the integral equation

¢
T = X0 +/ F(z,) dBSY.
0

Given the result of corollary 30, the theorem will follow if we can see that x, is
adapted to the Brownian filtration; for if one sets Fy := F(z,) then its derivative
F. = D, F'F(zs), with DF the differential of F with respect to x, will also be adapted.
But the adaptedness of the solution x4 to equation (3.1) is clear from its construction
in the proof of theorem 19. >
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We obtain as a corollary of theorem 31, Lyons’ universal limit theorem and the con-
vergence result proved in proposition 26 for the rough path associated with the piecewise
linear interpolation B of B the following fundamental result, first proved by Wong and
Zakai in the mid 60’.

COROLLARY 32 (Wong-Zakai theorem). The solution path to the ordinary differential
equation

(3.2) dz{" = F (") aB"
converges almost-surely to the solution path to the Stratonovich differential equation
dxy = F(xy) o dB;.
PRrRoOOF — It suffices to notice that solving the rough differential equation
dzgn) =F <z§n)) B™ (dt)

is equivalent to solving equation (3.2). >

4. Freidlin-Wentzell large deviation theory

We shall close this course with a spectacular application of the continuity property of
the solution map to a rough differential equation, by showing how one can recover the basics
of Freidlin-Wentzell theory of large deviations for diffusion processes from a unique large
deviation principle for the Stratonovich Brownian rough path. Exercise 18 also uses this
continuity property to deduce Stroock-Varadhan’s celebrated support theorem for diffusion
laws from the corresponding statement for the Brownian rough path.

4.1. A large deviation principle for the Stratonovich Brownian rough path.
Let start this section by recalling Schilder’s large deviation principle for Brownian motion.

a) Schilder’s theorem. L Define for that purpose the real-valued function I on
C%([0,1],R?) equal to &||h[%, = %fol VLS‘Q ds on H', and oo elsewhere. We agree to write
I(A) for inf{I(hs); h € A}, for any Borel subset A of C°([0,1],R?), endowed with the C°
topology.

THEOREM 33. Let P stand for Wiener measure on C°([0, 1],Rd) and B stand for the
coordinate process. Given any Borel subset A of CO([O, 1],Rd), we have
~1(A) <Tm e log P(= B, € A) < —1(A).

PROOF — The traditional proof of the lower bound is a simple application of the Cameron-
Martin theorem. Indeed, if A is the ball of centre h € H' with radius §, and if we
define the probability Q by its density

dQ e g2
@ = exp (—6 A hsst — Tl(h)
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with respect to P, the process Bo := By — ¢ 'h is a Brownian motion under Q, and
we have

o 3 3 1 872
P(leB—h| <6) =P(|B| <e7'6) =Eq [1|§‘<€1éexp <—s 1/0 hsdBs — Tl(h)ﬂ

> 676;21(@ Q({F{ < 5716> = efgl(h) (1—o02(1)).

One classically uses three facts to prove the upper bound.

(1) The piecewise linear approximation B (") of B introduced above obviously satisfies
the upper bound, as B™ lives (as a random variable) in a finite dimensional space
where it defines a Gaussian random variable.

(2) The sequence aBSn) provides an exponentially good approximation of €B,, in the
sense that

lim sup &2 log[P’({eB(”) — eB‘Oo > 6) — —o00.

6\0 m—0o0

(3) The map I enjoys the following ’continuity’ property. With A° := {z; /,d(z, A) <
0}, we have

I(A) = %1{%1(,45).

The result follows from the combination of these three facts. The first and third points
are easy to see. As for the second, just note that B™ — B is actually made up of 2"
independent copies of a scaled Brownian bridge 9- "5 Elf, with each B" defined on
the dyadic interval [kQ*", (k+ 1)2*"]. As it suffices to look at what happens in each
coordinate, classical and easy estimates on the real-valued Brownian bridge provide

the result. >

b) Schilder’s theorem for Stratonovich Brownian rough path. The extension
of Schilder’s theorem to the Brownian rough path requires the introduction of the function
J, defined on the set of (’5?—Valued continuous paths e, = (el, e%) by the formula

j(e.) = I(e}).
Recall the definition of the dilation §y on T?, given in (1.4). Given any 0 < % < %, one

can see the distribution P, of §.BS" as a probability measure on the space of %—Hélder
Qi?—valued functions, with the corresponding norm.

1
THEOREM 34. The family P. of probability measures on Cr ([O, 1], Qi?) satisfies a large
deviation principle with good rate function J.

It should be clear to the reader that it is sufficent to prove the claim for the Brownian
rough path above a 2-dimensional Brownian motion B = (Bl7 BQ), defined on C° ([0, 1], RQ)
as the coordinate process. We shall prove this theorem as a consequence of Schilder’s
theorem; this would be straightforward if the second level process B — or rather just its anti-
symmetric part — were a continuous function of the Brownian path, in uniform topology,
which does not hold true of course. However, proposition 26 on the approximation of the
Brownian rough path by its 'piecewise linear’ counterpart makes it clear that it is almost-
surely equal to a limit of continuous functional of the Brownian path. So it is tempting
to try and use the following general contraction principle for large deviations. (See the
book [19] by Kallenberg for an account of the basics of the theory, and a proof of this
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theorem.) We state it here in our setting to avoid unnecessary generality, and define the
approximated Lévy area A}? as a real-valued function on the CO([O, 1],R2) setting

t

AP = % /0 (B}ms] dB? — dB! B@).
It is a continuous function of B in the uniform toplogy. The maps A™ converge almost-
surely uniformly to the Lévy area process A, of B. We see the process A, as a map defined
on the space C° ([0, 1], RQ), equal to Lévy’s area process on a set of probability 1 and defined
in a genuine way on H'! using Young integrals. (Note that elements of H! are %—Hé’)lder
continuous. )

THEOREM 35. (Eztended contraction principle) If

(1) (Exponentially good approximation property)

m—o0

lim sup €2 long(HAm — AHOO > 5) — —00,
15

(2) (Uniform convergence on I-level sets) for each r > 0 we have

| (a™ — — 0,

A) ‘{IgT’}HOO m—00
then the distribution of Ao under P, satisfies a large deviation principle CO([O, 1],9%) with
good rate function inf{I(w); a = A(w)}.

PROOF OF THEOREM 34 — The proof amounts to proving points (1) and (2) in theorem 35.
The second point is elementary if one notes that for h € H' ([0, 1], RQ), we have

/Ot (h[mTf] —hs) ® dh,

1

<l ()

1
< |hllFpm™z.

As for the first point, it suffices to prove that

t
limsup €2logP; | sup / (B; — B%ms]) dB? >e %] — —o0,
€ tef0,1] Jo Tm m=—r00

which we can do using elementary martingale inequalities. Indeed, denoting by M; the

2
martingale defined by the above stochastic integral, with bracket fg ‘Bi — B@ ds,

the classical exponential inequality gives
1 52 -2 .7
P, <M1* > 672, (M) >e2*m p) < exp <_ﬂ> ’

while we also have

Py (M) > m e ) <Py (| B >
P

So the conclusion follows from the fact that the %—Hélder norm of B! has a Gaussian
tail. >
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4.2. Freidlin-Wentzell large deviation theory for diffusion processes. All to-
gether, theorem on the rough path interpretation of Stratonovich differential equations,
Lyons’ universal limit theorem and the large deviation principle satisfied by the Brownian
rough path prove the following basic result of Freidlin-Wentzell theory of large deviation
for diffusion processes. Given some Cg’ vector fields Vi,...,V; on R? and h € H', denote
by y" the solution to the well-defined controlled ordinary differential equation

= Vi(ul) o dh,

THEOREM 36 (Freidlin-Wentzell). Denote by P, the distribution of the solution to the
Stratonovich differential equation

dzxy = eVi(xy) o dBy,
started from some initial condition xo. Given any % < %, one can consider P. as a prob-

1
ability measure on Cr ([0, 1],]Rd). Then the family P, satisfies a large deviation principle
with good rate function

J(ze) = inf {I(h); yh = Ze .

5. Exercises on rough and stochastic analysis

Exercise 16 provides another illustration of the power of Lyons universal limit theorem
and the continuity of the solution map to a rough differential equation, called the It6 map.
It shows how to obtain a groundbreaking result of Stroock and Varadhan on the support
of diffusion laws by identifying the support of the distribution of the Brownian rough path.
Exercise 17 gives an interesting example of a rough path obtained as the limit of a 2-
dimensional signal made up of a Brownian path and a delayed version of it. While the first
level concentrates on a degenerate signal with identical coordinates and null area process
as a consequence, the second level converges to a non-trivial function. Last, exercise 18 is
a continuation of exercise 11 on the pairing of two rough paths.

16. Support theorem for the Brownian rough path and diffusion laws. We
show in this exercise how the continuity of the It6 map leads to a deep result of Stroock
and Varadhan on the support of diffusion laws. The reader unacquainted with this result
may have a look at the poloshed proof given in the book by Ikeda and Watanabe [18] to
see the benefits of the rough path approach.

a) Translating a rough path. Given a Lipschitz continuous path h and a p-rough
path a=1@ a' @ a?, with 2 < p < 3, check that we define another p-rough path setting

t t t
(@) =18 (afy + his) & (a?s + / aye ® dhy + / hus ® da, +/ hus ® dhu),

where the integral f; hys ® dal is defined as a Young integral by the integration be parts
formula

t t
/ hus @ dal := hys @ al, —/ dh, @ al,.
S S

b) Given any Rf-valued coninuous path z,, denote as in section 1 by z(") the piecewise
linear coninuous interpolationof z, on dyadic times of order n, and let X(™ stand for its
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associated rough path, for 2 < p < 3. We define a map X : CO([O, 1],R£) — ((’5?’1)[0’1]
setting

: t A
m(X(2e)) = 2e,  m(X(24))) = hmnsup/o 20 @ dg (W,

So the random variable X(z,) is almost-surely equal to Stratonovich Browian rough path
under Wiener measure P.

(i) Show that one has P-almost-surely
X(x+h)="1, (X(m))
for any Lipschitz continuous path h.

(ii) Prove that th law of the random variable 75, o X is equivalent to the law of X
under P.

Recall that the support of a probability measure on a topological space if the smallest
closed setof full measure. We consider X, under PP, as a C %([0, 1], 67)-valued random
variable.

(iii) Prove that if a, is an element of the support of the law of X under P, then
Tha as well.

c) (i) Use the same kind of arguments as in proposition 26 to show that one can ind

an element a, in the support of the law of X under P, and some Lipschitz coninuous paths
(n)

Ze ’ such that HT:B(”)aH tends to 0 as n — oo.

1
(ii) Prove that the support of the law of B3 in C7 ([0, 1], ®2) is the closure in %
Holder topology of the set of of Lipschitz continuous paths.

d) Stroock-Varadhan support theorem. Let P stand for the distribution of the

solution to the rough differential equation in R¢
dx; = Vi(z;) o dB.,
driven by Brownian motion and some Cg’ vector fields V;. Justify that one can see P as a
1
probability on C» ([O, 1], Rd). Let also write y” for the solution to the ordinary differential
equation
dyt = Vi(y}') dhj
driven by a Lipschitz Rf-valued path h. Prove that the support of P is the closure in
1

C7 ([0,1],RY) of the set of all y", for h ranging in the set of Lipschitz R’valued paths.

17. Delayed Brownian motion. Let (B;)o<t<1 be a real-valued Brownian motion.
Given € > 0, we define a 2-dimensional process setting

xy = (Bi—c, By);

its area process

1

t
AES = 5 / <BU767576dBU - BusdBufe)
s

is well-defined for 0 <t — s < ¢, as Bs_ and B, are independent on [s,t] in that case.
1) Show that we define a rough path X¢ setting
X§ = exp (v + Af) € T,
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2) Recall that d stands for the ambiant metric in T%. Prove that one can find a positive
constant a such that the nequality

€ € 2
exp (aid( t’XS) )
t—s

holds for a positive constant C' independent of 0 < ¢ < 1 and 0 < s <t < 1. Asin
section 1.2, it follows from Besov’s embedding theorem that, for any 2 < p < 3, the weak
geometric Holder p-rough path X€ has a Gaussian tail, with

sup E [exp (aHXeHz)} < 00

0<e<1

E <C <o

for some positive constant a.

3) Define 1 as the vector of R? with coordinates 1 and 1 in the canonical basis, and
set

¢
Y, := exp (Btl _ 5Id).

Write d, for the distance on the set of Hélder p-rough paths given in definition 8. Prove
that d, (Xe,Y) converges to 0 in LY, for any 1 < ¢ < oo.

18. Joint lift of a random and a deterministic rough path. Let 2 < p < 3 and
X = (X,X) be an R%valued Holder p-rough path. Denote by B the It6 Brownian rough
path over RY. Given j € [1,d] and k € [1,£], tdefine he integral

t
" ,
zlf = [ xbap]
S
as a genuine It6 integral, and define the integral fst Bﬁstﬁ by integration by part, setting
t t
Ztsj ::/ szdeu = Bngts _/ XusdejL
S S
Prove that one defines a Holder p-rough path Z over (X, B) € R4 defining the (jk)-

component of its second order level, as equal to X/* if 1 < j,k < d, equal to B/¥ if
d+1<j,k<d+/¢, and by the above formulas otherwise.



CHAPTER 6

Looking backward

1. Summary

It is now time to forget the details and summarize the main ideas.

Chapter 2 provides a toolbox for constructing flows on Banach spaces from approximate
flows. The interest of working with this notion comes from the fact that approximate flows
pop up naturally in a number of situations, more or less under the form of "numerical
schemes", as the step-1 Euler scheme for ordinary differential equations encountered in
exercise 1, or the higher order Milstein-type schemes 5 used in chapter 4 to define solutions
to rough differential equations. Rough paths appear in that setting as coefficients in the
numerical schemes, and as natural generalizations of multiple integrals in some Holder
scales space. The miracle that takes place here is essentially algebraic and rests on the fact
that solving an ordinary differential equation is algebraically very close to an exponentiation

[p]

operation. This echoes the fact that the tensor space Tgp in which rough paths live also has
natural notions of exponential and logarithm. As a matter of fact, this "pairing" ODE-
exponential-rough paths works in exactly the same way with the branched rough paths
introduced in [16] by Gubinelli in order to deal with rough differential equations driven by
non-weak geometric rough paths.

We have concentrated in this course on one approach to rough differential equations
and rough paths. There are other approaches, with their own benefits, to start with Lyons’
original formulation of his theory, as exposed in Lyons’ seminal article [20] or his book [2]
with Qian. Its core concept is a notion of rough integral which associates a rough path to
another rough path. As you may guess, it can be shown to be a continuous functions of
both its integrand and integrator. In that setting, as solution path to a rough differential
equation is a fixed point to an integral equation in the space of rough paths; it was first
solved using a Picard iteration process. Two crucial features of Lyons’ original formulation
were spotted by Gubinelli and Davie. The first level of a solution path z, to a rough
differential equation locally look like the first level of X, and it suffices to know z, and
X to get back the entire rough path solution to the rough differential equation in Lyons’
sense. This led Gubinelli to the introduction of the notion of controlled paths, which have
far reaching applications to difficult problems on stochastic partial differential equations
(SPDEs), as illustrated in the recent and brilliant works of Gubinelli and his co-authors.
It also was one of the seeds of Hairer’s groundbreaking theory of regularity structures [21],
which enabled him to construct a robust solution theory for some important up to now
ill-posed SPDEs coming from physics deep problems. The forthcoming lecture notes [5]
by Friz and Hairer provides a very nice introduction to Gubinelli’s point of view on rough
paths theory.

On the other hand, Davie uncovered in [22] the fact that one can characterize the
first level of a solution path to a rough differential equation in Lyons’ sense in terms of

57
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numerical schemes of Milstein type. Has was able in that setting to prove sharp well-
posedness and existence results, under essentially optimal regularity conditions on the
driving vector fields, for p-rough paths with 2 < p < 3. No notion of integral is needed in
this approach, and we only work with R%valued paths, as opposed to Lyons’ formulation.

His ideas were reworked and generalized by Friz and Victoir [23], who defined solution
paths to rough differential equations driven by some rough path X as limits of solution
paths to controlled ordinary differential equations, in which the rough path canonically
associated with the (smooth or absolutely continuous) control converges in a rough paths
sense to X. The book [3| by Friz and Victoir provides a thorough account of their approach.
See also the short 2009 lecture notes [24] of Friz. (My presentation in section 4 of the
material on Freidlin-Wentzell large deviation theory follows his approach.) The point of
view presented in these notes builds on Davie’s approach and on the inspiring work [7] of
Feyel and de la Pradelle; it is mainly taken from the article [6].

I hope you enjoyed the tour.!

IPlease do mnot hesitate to send me any comments or suggestions to the email address
ismaelbailleul@univ-rennesl.fr.
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2. A guided tour of the litterature

The litterature on rough paths theory is increasing rapidly. To help you find your way
in this bush, I comment below on a few references whose reading may be helpful to get
a better view of the domain. Reference numbers refer to the bibliography following this
paragraph, while stared references refer to the above bibliography.

Lecture notes. Here are collected a few references that aim at giving a pedagogical
presentation of rough paths theory, from different point of views.

Lejay gave in [1] a self-contained and easily accessible account of the theory of
Young differential equations, which correspond to rough differential equations
driven by p-rough paths, with 1 < p < 2.

The lecture notes |2] by Lejay provides a well-motivated and detailled study of
the algebraic setting in which rough paths theory needs to be formulated. It is
easily readable.

The approach of Friz-Victoir to rough differential equations, as described in re-
mark 17, was put forward in [23]*; it is developped thouroughly in their mono-
graph [3]*. The lecture notes [24]* by Friz, and [4]* by Baudoin, provide an easy
access to that approach.

We warmly recommend the reading of the forthcoming lecture notes [5]* of Friz
and Hairer on the theory of rough paths and rough differential equations seen
from the point of view of controlled paths. Although it does not lend itself to an
easy access when the roughness index p is greater than 3, this approach is the seed
of the very exciting development of a new framework for handling SPDEs which
were previously untractable. Have a look for instance at the (hard) work [3, 4]
of Hairer on regularity structures, or the somewhat more "down-to-earth" work
[5] of Gubinelli, Imkeller and Perkowski to see how ideas from controlled paths
can enable you to do some forbidden operation: multiplying two distributions!

Historical works. I have chosen to put forward here a few references that illustrate the
development of the theory.

Lyons’ amazing seminal work [6] is a must.

One owes to Strichartz 7] a far reaching generaiztion of the well-known Baker-
Campbell-Dynkin- Hausdorff formula expressing the multiplication in a Lie group
as an operation in the Lie algebra. This fantastic paper was the basis of basis of
groudbreaking works by Castell [8], Ben Arous and others on Taylor expansions
for stochastic differential equations, and can somehow be seen as a precursor to
the approach to rough differential equations put forward in this course.

The other paper that inspired our flow-based approach is the sewing lemma
proved in |7, 8] by Feyel, de la Pradelle and Mokobodzki.

The work [22]* by Davie showing that one could understand rough differential
equations in terms of numerical schemes — or Taylor expansions — was also in-
strumental in the development of Friz-Victoir’s approach to the subject, as well
as to the present approach.
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Today. The theory of rough paths is presently experiencing a fantastic development
in all sorts of directions. Just a few of them: Malliavin related business, differential
geometry and machine learning, to testify of the diversity of directions that are actively

bein% investigated.
2cm

- There has been much industry in proving that one can use Malliavin calculus
methods and rough paths theory to show that solutions of rough differential equa-
tions driven by Gaussian rough paths have a density at any fixed time under some
bracket-type conditions on the driving vector fields and some non-degeneracy con-
ditions on the Gaussian noise. For two landmark results in this direction, see the
works [9] of Cass and Friz, and what may be a temporarily final point [10] by
Cass, Hairer, Litterer and Tindel.

- Rough path theory has an inherent geometric content built in, to start with the
nilpotent Lie group on which rough paths live. Given that most all of physics
takes place on finite or infinite dimensional manifolds (configuration spaces), it is
natural to try and give an intrinsic notion of rough path on a manifold. Starting
with the seminal work [11] of Cass, Litterer and Lyons that makes a first step
in this direction, this important question is being investigated. See the work
[12] of Cass, Driver and Litterer, for a nice reworking of the ideas of [11], giving
an intrinsic notion of rough path on a compact finite dimensional manifold, and
my own work [13] for a general framework for dealing with rough integrators on
Banach manifolds.

- Lyons’ group in Oxford is presently exploring the potential application of the
use of signature (the set of all iterated integrals of a rough path) to investigate
learning questions! See for instance the works [14] by Levin, Lyons, Ni and [15],
by Gyurko, Lyons, Kontkowski and Field.
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