KPZ IN A MULTIDIMENSIONAL RANDOM GEOMETRY OF
MULTIPLICATIVE CASCADES

I.LF. BAILLEUL

ABSTRACT. We show in this note how the one-dimensional KZP formula obtained by Ben-
jamini and Schramm in [BS09] can be extended to a multidimensional setting.

1. HAUSDORFF DIMENSION IN A NESTED MEASURE SPACE

1.1. Dimension. Let (S,S, ) be a measure space and suppose given a nested family of
countable o-algebras S, = o(A4%; i > 1), with A € S disjoint up to g null sets, and

p(AL) > 0 for each i > 1 and n > 1. Suppose further that €, := sup p(A?) decreases to 0 as
n goes to infinity. Given s > 0 and § > 0, set for any measurable £ € S

H(E) = inf 3 p(AL)"

where the infimum is over the set of coverings E C |, 4 A of E, indexed by a subset A of
N* x N*, and such that ¢,, <0 for all &« € A. The quantity Hj(K) increases as § decreases
to 0. Set

H(E) = lim?;(E).

Like in the usual definition of the Hausdorff dimension of a set, it is easy to see that if
e H%(E) < oo then HY(K) = 0 for any sy < t,
e H*(FE) = oo then H*(K) = 0 for any s < s,
so it makes sense to define the dimension (,(E) of E as sup{s > 0; H*(E) = oo} = inf{t >

0; HY(E) = 0}. As H' coincides with y, it follows that (,(E) < 1, for any E € S. So only
sets with null g-measure have a dimension smaller than 1.

Open question. Let us work in the space S = C([O, 1],R), with its Borel o-algebra and
Wiener measure. Define A" as {w eC([0,1],R); w((j +1)27") —w(j27™) € [k27, (k +

1)2*”)}, for 0<j<2'—1landk€Z andset S, =o(APY;0<j <2~ 1, kez)
Let us call Wiener-Hausdorff dimension the above dimension of a measurable subset
of C([O, 1],]R). Compute the Wiener-Hausdorff dimension of the set of a-Hdolder continuous
paths, for a > %

1.2. Frostman lemma. If (S,8S) is R? with its Borel o-algebra, and S, is the o-algebra
generated by the dyadic cubes of side 27", then the above definition of dimension coincides
with the usual Hausdorff dimension, up to a multiplicative constant é; see section 2.4, Chap.
2, in |Fal03|. We adopt the above definition of dimension for the sequel. Like its classical
counterpart, the above set function H*(+) can be shown to be an (R U{co})-valued measure
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on (R? Bor(R?)). The Euclidean background will not appear anymore except under the form
of the nested family (S,,),>0-

Given two points z,y € RY, define the ball B(x,y) as the smallest dyadic cube containg z
and y, and define their “distance” as p(B(z,y)). Define accordingly the ball B,(z) = {y €
R?; p(B(z,y)) < r}. Working exactly as in theorem 4.10 and proposition 4.11 in [Fal03],
one can prove the following proposition.

PROPOSITION 1. For any Borel set E with 0 < H*(E) < oo, there exists a constant ¢ and a
compact set K C E with H*(K) > 0 such that

H*(K N B,(x)) < cr’
for all z € R and r > 0.

It follows classically that the following version of Frostman lemma holds in our setting.
Given any non-negative measure v on (R? Bor(R%)), define its s-energy as

v(dz)v(dy
L) = [ [ A8,
n(B(z,y))
THEOREM 2. If E is a Borel set with 0 < H*(E), then there exists a non-negative measure

v with support in (a compact subset of) E such that I,(v) < oo, for all t < s. This is in
particular the case if s < (,(E).

Remark. The work [RV10] contains in section 5.1 a similar, though different, notion of
dimension in a metric measure space.

2. A DIMENSION-FREE KPZ FORMULA

Let D,, = Uii A7 be the dyadic “partition” of the unit cube of R? by closed dyadic cubes
of side length 27". Given m < n, each A} is a subset of a unique Azl(m). Let W be a positive

real-valued random variable with E[W] = 1, and let {(Wﬁ)fﬁ ;n > 1} be an iid sequence
of random variables with common law the law of W. Define the measure pu, by its density

wy,(x) with respect to Lebesgue measure. It is constant, equal to H;ZO W]?(””m), on each A}.
We adopt as in [BS09] the notation ¢ for z([0,1]%). It has expectation no greater than 1.

PROPOSITION 3. Almost-surely, the measures ji,, converge weakly to some random measure (i,
which does not charge any dyadic hyperplane. It is almost-surely non-null if E[W log W] < d.

PROOF  The proof works exactly as in the 1-dimensional proof, with 2¢ independent copies
of ¢ rather than only two. >

The next result generalizes Benjamini and Schramm’s result |BS09| obtained in a one-
dimensional setting.

THEOREM 4. Let E be any Borel set of [0,1]%. Denote by (y its dimension as defined above

using Lebesque measure, and let 1 be its dimension using the random measure p. Suppose
that E[W log W] < d, and E[W~*] < oo, for all s € [0,1). Then ¢ is almost-surely a constant
and satisfies the identity
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The above conditions are satisfied by an exponential of Gaussian with a small enough
variance.

PROOF — The proof mimicks word by word the proof of |BS09|. Write |A| for the Lebesgue
measure of a Borel set A. Set, for s € [0,1], ¢(s) = s — Iny E[IW*]. Note that since the
notion of dimension introduced in section 1 is no greater than 1 the function ¢ is an
increasing homeomorphism from [0, 1] to itself.

a) Lemma 3.3 becomes here: E[u(B(z,y))’] < }B(x,y)’¢(s), for all z,y € [0, 1]%.
Note that the balls B(xz,y) are always dyadic balls; suppose the given ball belongs to D,,, so
!B(x,y)‘ =274 Then, we have by the independence in the construction of p

E[u(B(x.y))*] = 2 " EW* " E[E] < {2749 = |B(a,y)|*",

as 0 < s < 1, so E[¢*] < E[/)* = 1. Tt follows directly that we have almost-surely ¢(¢) < (o.

b) The proof that ¢(¢) > (o, theorem 3.5, works identically, replacing the usual energy of
a measure by its above modification, and using the version of Frostman lemma provided
in theorem 2. A straightforward adaptation of the proof that E[{~*] < oo if E[IW ~°] < oo,
given in [BS09|, gives the same result in our setting. Note also that a different choice of
Holder coefficient is needed to prove that the sequence yn([(), 1]) is uniformly bounded
in some L7, >

Note that the above theorem does not come as a surprise and should actually hold on much
more general state spaces than [0,1]%. Tt should be interesting in particular to investigate
what happens on random trees like Galton-Watson trees, and tree-like objects like random
fractals.
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