KPZ IN A MULTIDIMENSIONAL RANDOM GEOMETRY OF MULTIPLICATIVE CASCADES

I.F. BAILLEUL

ABSTRACT. We show in this note how the one-dimensional KZP formula obtained by Benjamini and Schramm in [BS09] can be extended to a multidimensional setting.

1. Hausdorff dimension in a nested measure space

1.1. **Dimension.** Let (S, \mathcal{S}, μ) be a measure space and suppose given a nested family of countable σ -algebras $\mathcal{S}_n = \sigma(A_n^i; i \ge 1)$, with $A_n^i \in \mathcal{S}$ disjoint up to μ null sets, and $\mu(A_n^i) > 0$ for each $i \ge 1$ and $n \ge 1$. Suppose further that $\epsilon_n := \sup \mu(A_n^i)$ decreases to 0 as n goes to infinity. Given $s \ge 0$ and $\delta > 0$, set for any measurable $E \in \mathcal{S}$

$$\mathcal{H}^{s}_{\delta}(E) = \inf \sum \mu \left(A^{i_{\alpha}}_{n_{\alpha}} \right)^{s},$$

where the infimum is over the set of coverings $E \subset \bigcup_{\alpha \in \mathcal{A}} A_{n_{\alpha}}^{i_{\alpha}}$ of E, indexed by a subset \mathcal{A} of $\mathbb{N}^* \times \mathbb{N}^*$, and such that $\epsilon_{n_{\alpha}} \leq \delta$ for all $\alpha \in \mathcal{A}$. The quantity $\mathcal{H}_{\delta}^s(K)$ increases as δ decreases to 0. Set

$$\mathcal{H}^{s}(E) = \lim_{\delta \downarrow 0} \mathcal{H}^{s}_{\delta}(E).$$

Like in the usual definition of the Hausdorff dimension of a set, it is easy to see that if

- $\mathcal{H}^{s_0}(E) < \infty$ then $\mathcal{H}^t(K) = 0$ for any $s_0 < t$,
- $\mathcal{H}^{s_0}(E) = \infty$ then $\mathcal{H}^s(K) = 0$ for any $s < s_0$,

so it makes sense to define the dimension $\zeta_{\mu}(E)$ of E as $\sup\{s \geq 0; \mathcal{H}^{s}(E) = \infty\} = \inf\{t \geq 0; \mathcal{H}^{t}(E) = 0\}$. As \mathcal{H}^{1} coincides with μ , it follows that $\zeta_{\mu}(E) \leq 1$, for any $E \in \mathcal{S}$. So only sets with null μ -measure have a dimension smaller than 1.

Open question. Let us work in the space $S = \mathcal{C}([0,1],\mathbb{R})$, with its Borel σ -algebra and Wiener measure. Define $A_n^{(j,k)}$ as $\left\{\omega \in \mathcal{C}([0,1],\mathbb{R}) : \omega((j+1)2^{-n}) - \omega(j2^{-n}) \in [k2^{-n},(k+1)2^{-n})\right\}$, for $0 \leq j \leq 2^n - 1$ and $k \in \mathbb{Z}$, and set $\mathcal{S}_n = \sigma(A_n^{(j,k)} : 0 \leq j \leq 2^n - 1, k \in \mathbb{Z})$. Let us call **Wiener-Hausdorff dimension** the above dimension of a measurable subset of $\mathcal{C}([0,1],\mathbb{R})$. Compute the Wiener-Hausdorff dimension of the set of α -Hölder continuous paths, for $\alpha \geq \frac{1}{2}$.

1.2. **Frostman lemma.** If (S, \mathcal{S}) is \mathbb{R}^d with its Borel σ -algebra, and \mathcal{S}_n is the σ -algebra generated by the dyadic cubes of side 2^{-n} , then the above definition of dimension coincides with the usual Hausdorff dimension, up to a multiplicative constant $\frac{1}{d}$; see section 2.4, Chap. 2, in [Fal03]. We adopt the above definition of dimension for the sequel. Like its classical counterpart, the above set function $\mathcal{H}^s(\cdot)$ can be shown to be an $(\mathbb{R}_+ \cup \{\infty\})$ -valued measure

on $(\mathbb{R}^d, \mathsf{Bor}(\mathbb{R}^d))$. The Euclidean background will not appear anymore except under the form of the nested family $(\mathcal{S}_n)_{n\geqslant 0}$.

Given two points $x, y \in \mathbb{R}^d$, define the *ball* B(x, y) as the smallest dyadic cube containg x and y, and define their "distance" as $\mu(B(x, y))$. Define accordingly the ball $B_r(x) = \{y \in \mathbb{R}^d : \mu(B(x, y)) \leq r\}$. Working exactly as in theorem 4.10 and proposition 4.11 in [Fal03], one can prove the following proposition.

PROPOSITION 1. For any Borel set E with $0 < \mathcal{H}^s(E) < \infty$, there exists a constant c and a compact set $K \subset E$ with $\mathcal{H}^s(K) > 0$ such that

$$\mathcal{H}^s(K \cap B_r(x)) \leqslant cr^s$$

for all $x \in \mathbb{R}^d$ and r > 0.

It follows classically that the following version of Frostman lemma holds in our setting. Given any non-negative measure ν on $(\mathbb{R}^d, \mathsf{Bor}(\mathbb{R}^d))$, define its s-energy as

$$I_s(\nu) = \iint \frac{\nu(dx)\nu(dy)}{\mu(B(x,y))^s}.$$

THEOREM 2. If E is a Borel set with $0 < \mathcal{H}^s(E)$, then there exists a non-negative measure ν with support in (a compact subset of) E such that $I_t(\nu) < \infty$, for all t < s. This is in particular the case if $s < \zeta_{\mu}(E)$.

Remark. The work [RV10] contains in section 5.1 a similar, though different, notion of dimension in a metric measure space.

2. A DIMENSION-FREE KPZ FORMULA

Let $\mathcal{D}_n = \bigcup_{k=1}^{2^{dn}} A_k^n$ be the dyadic "partition" of the unit cube of \mathbb{R}^d by closed dyadic cubes of side length 2^{-n} . Given m < n, each A_k^n is a subset of a unique $A_{k(m)}^m$. Let W be a positive real-valued random variable with $\mathbb{E}[W] = 1$, and let $\{(W_i^n)_{i=1}^{2^{nd}}; n \ge 1\}$ be an iid sequence of random variables with common law the law of W. Define the measure μ_n by its density $w_n(x)$ with respect to Lebesgue measure. It is constant, equal to $\prod_{m=0}^n W_{k(m)}^m$, on each A_k^n . We adopt as in [BS09] the notation ℓ for $\mu([0,1]^d)$. It has expectation no greater than 1.

PROPOSITION 3. Almost-surely, the measures μ_n converge weakly to some random measure μ , which does not charge any dyadic hyperplane. It is almost-surely non-null if $\mathbb{E}[W \log W] < d$.

PROOF – The proof works exactly as in the 1-dimensional proof, with 2^d independent copies of ℓ rather than only two.

The next result generalizes Benjamini and Schramm's result [BS09] obtained in a one-dimensional setting.

THEOREM 4. Let E be any Borel set of $[0,1]^d$. Denote by ζ_0 its dimension as defined above using Lebesgue measure, and let η be its dimension using the random measure μ . Suppose that $\mathbb{E}[W \log W] < d$, and $\mathbb{E}[W^{-s}] < \infty$, for all $s \in [0,1)$. Then ζ is almost-surely a constant and satisfies the identity

$$2^{\zeta_0} = \frac{2^{\zeta}}{\mathbb{E}[W^{\zeta}]}$$

The above conditions are satisfied by an exponential of Gaussian with a small enough variance.

- PROOF The proof mimicks word by word the proof of [BS09]. Write |A| for the Lebesgue measure of a Borel set A. Set, for $s \in [0,1]$, $\phi(s) = s \ln_2 \mathbb{E}[W^s]$. Note that since the notion of dimension introduced in section 1 is no greater than 1 the function ϕ is an increasing homeomorphism from [0,1] to itself.
 - a) Lemma 3.3 becomes here: $\mathbb{E}[\mu(B(x,y))^s] \leq |B(x,y)|^{\phi(s)}$, for all $x,y \in [0,1]^d$. Note that the balls B(x,y) are always dyadic balls; suppose the given ball belongs to \mathcal{D}_n , so $|B(x,y)| = 2^{-nd}$. Then, we have by the independence in the construction of μ

$$\mathbb{E} \left[\mu \big(B(x,y) \big)^s \right] = 2^{-nd} \, \mathbb{E} [W^s]^{nd} \, \mathbb{E} [\ell^s] \leqslant \{ 2^{-nd} \}^{\phi(s)} = \big| B(x,y) \big|^{\phi(s)},$$

as $0 \le s \le 1$, so $\mathbb{E}[\ell]^s = 1$. It follows directly that we have almost-surely $\phi(\zeta) \le \zeta_0$.

b) The proof that $\phi(\zeta) \geqslant \zeta_0$, theorem 3.5, works identically, replacing the usual energy of a measure by its above modification, and using the version of Frostman lemma provided in theorem 2. A straightforward adaptation of the proof that $\mathbb{E}[\ell^{-s}] < \infty$ if $\mathbb{E}[W^{-s}] < \infty$, given in [BS09], gives the same result in our setting. Note also that a different choice of Hölder coefficient is needed to prove that the sequence $\nu_n([0,1])$ is uniformly bounded in some \mathbb{L}^p .

Note that the above theorem does not come as a surprise and should actually hold on much more general state spaces than $[0,1]^d$. It should be interesting in particular to investigate what happens on random trees like Galton-Watson trees, and tree-like objects like random fractals.

References

- [BS09] I. Benjamini and O. Schramm. KPZ in one dimensional random geometry of multiplicative cascades. *Comm. Math. Phys.*, 289(2):653–662, 2009.
- [Fal03] K. Falconer. Fractal geometry. John Wiley & Sons Inc., Hoboken, NJ, second edition, 2003. Mathematical foundations and applications.
- [RV10] R. Rhodes and V. Vargas. Multidimensional multifractal random measures. Electron. J. Probab., 15:no. 9, 241–258, 2010.

STATISTICAL LABORATORY, CENTER FOR MATHEMATICAL SCIENCES, WILBERFORCE ROAD, CAMBRIDGE, CB3 0WB, UK

 $E ext{-}mail\ address: i.bailleul@statslab.cam.ac.uk} \ URL: http://www.statslab.cam.ac.uk/~ismael/$