
Paracontrolled calculus

I. BAILLEUL1

Abstract. At the same time that Hairer introduced his theory of regularity structures,
Gubinelli, Imkeller and Perkowski developed paracontrolled calculus as an alternative play-
ground where to study a number of singular, classically ill-posed, stochastic partial dif-
ferential equations, such as the 2 or 3-dimensional parabolic Anderson model equation
(PAM)

Btu “ ∆u` uζ,

the Φ4
3 equation of stochastic quantization

Btu “ ∆u´ u3 ` ζ,

or the one dimensional KPZ equation

Btu “ ∆u` pBxuq
2 ` ζ,

to name but a few examples. In each of these equations, the letter ζ stands for a space
or time/space white noise who is so irregular that we do not expect any solution u of the
equation to be regular enough for the nonlinear terms, or the product uζ, in the equations
to make sense on the sole basis of the regularizing properties of the heat semigroup. Like
Hairer’s theory of regularity structures, paracontrolled calculus provides a setting where one
can make sense of such a priori ill-defined products, and finally give some meaning and solve
some singular partial differential equations. We present here an overview of paracontrolled
calculus, from its initial form to its recent extensions.

1 Introduction

Starting with T. Lyons’ work on controlled differential equation [15], it is now well-
understood that the construction of a robust approximation theory for continuous
time stochastic systems, such as stochastic differential equations or stochastic partial
differential equations, requires a twist in the notion of noise that allows to treat the
resolution of such equations in a two step process.

(a) Enhance the noise into an enriched object that lives in some space of analytic
objects – this is a purely probabilistic step;

(b) given any such object pζ in this space, one can introduce a pζ-dependent Ba-

nach space S
`

pζ
˘

such that the equation makes sense for the unknown in

S
`

pζ
˘

, and it can be solved uniquely by a deterministic analytic argument,
such as the contraction principle, which gives the continuity of the solution

as a function pζ.

These two steps are very different in nature and require totaly different tools.
Hairer’s theory of regularity structures [13] provides undoubtedly the most com-
plete picture for the study of a whole class of singular stochastic partial differential
equations (PDEs) from the above point of view – the class of the so-called singular
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subcritical parabolic stochastic PDEs, of which the 2 or 3-dimensional parabolic
Anderson model equation (PAM)

Btu “ ∆u` uζ,

the Φ4
3 equation of stochastic quantization

Btu “ ∆u´ u3 ` ζ,

or the one dimensional KPZ equation

Btu “ ∆u` pBxuq
2 ` ζ,

are typical examples. It comes with a very rich algebraic structure and an entirely
new setting that are required to give flesh to the guiding principle that a solution
should be described by the datum at each point in space-time of its high order ’jet’
in a basis given by the elements of the enhanced noise. Regularity structures are
introduced as a tool for describing these jets. At the same time that Hairer built his
theory, Gubinelli, Imkeller and Perkowski implemented in [10] this idea of giving a
local/global description of a possible solution in a different way, using the language
of paraproducts and avoiding the introduction of any new setting, but providing
only a first order description of the objects under study. This is what is called the
first order paracontrolled calculus. While this kind of approach may seem far from
being as powerful as Hairer’s machinery, the first order paracontrolled approach to
singular stochastic PDEs has been successful in recovering and extending a number
of results that can be proved within the setting of regularity structures, on the
parabolic Anderson model and Burgers equations [10, 2, 3, 9], the KPZ equation
[12], the scalar Φ4

3 equation [6], the stochastic Navier-Stokes equation [18, 19, 20],
or the study of the continuous Anderson Hamiltonian [8], to name but a few.

The recent works [3, 4] extend the scope of paracontrolled calculus to a class
of equations that is much closer to Hairer’s class of singular subcritical parabolic
stochastic PDEs, by providing an analytic setting where one can do an arbitrary high
order paracontrolled analysis of some equation, such as advertised in point (b) above.
The development of point (a) within this setting is presently under investigation.

We describe in this introductory paper the basics of paracontrolled calculus, such
as it has evolved from its inception in [10] by Gubinelli, Imkeller and Perkowski to
its more elaborate version developed in the works [2, 3], and finally [4]. No previous
knowkedge of stochastic PDEs or even PDEs is needed to grasp the core of the
story. For informations on regularity structures, see the gentle introductions [14, 7]
by Hairer and Chandra-Weber. As we shall not comment on it, note here that all
this story can be told in an unbounded manifold setting at the price of working with
weighted functional spaces.

2 The product problem and its solution for controlled ODEs

2.1 The product problem

The common feature of all the above equations is the presence of terms in the
equation that are not expected to make sense even for the most optimistic analyst.
This is fundamentally linked to the fact that we cannot generically multiply a dis-
tribution by anything else than a smooth function. Even in the more restrictive
setting of Hölder spaces, Bony showed in [5] that one can define the product of two
Hölder functions, with possibly negative regularity exponents α and β, if and only
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if α ` β is positive. Denote by pα ´ 2q the (possibly parabolic) Hölder regularity
exponent of the noise in any of the above equations; we have α “

`

2´ d
2

˘

for a space

white noise in dimension d, and α “ 1´ d
2 for a time/space white noise in dimension

d. In each case, one expects the solution u to be of Hölder parabolic regularity α
as a consequence of the regularising properties of the heat semigroup. This gives u
of regularity 2 ´ d

2 for the (PAM) equation, of regularity ´1
2 for the Φ4

3 equation,

of regularity 1
2 for the KPZ equation. These regularities are not sufficient to make

sense of the terms uζ, u3 and pBxuq
2 respectively, on a purely analytic basis.

There is actually no need to work with PDEs to see this problem appearing, and
it is already here when one tries to make sense of, and solve, an ordinary controlled
differential equation in Rd

9xt “ V pxtq 9ht, (2.1)

where V is an Rd-valued one form on R`, say, and h is some α-Hölder R`-valued
control defined on some time interval r0, T s. One expects indeed x to be α-Hölder

as well since 9ht will be pα´ 1q-Hölder regular, which will make the product V pxtq 9ht
well defined only if p2α´1q is positive. While one can indeed set the equation in the
setting of Young integrals for α-Hölder controls, with α ą 1

2 , there is no ’classical’
analytic theory that can give any sensible meaning to equation (2.1), as testified by
T. Lyons’ no-go theorem [16].

2.2 Controlled ODEs

One of T. Lyons’ deep insight in his theory of rough paths [15] is that one needs
to enrich the notion of control in order to make sense of the equation and give
conditions under which it can be solved uniquely. The enhancement of the control
h consists here in assuming that we are given a priori all the ’iterated integrals’2

ż t

s

ż u

s
dhr b dhu,

for all 0 ď s ď t ď T , or simply the products

dhr b dhu;

the sensible point here is that these ’integrals’ cannot be defined by any analytic
means from the sole data of h. One assumes in addition some natural algebraic
and analytic conditions on the a priori given quantities. In a probabilistic setting
where the control is random, one typically constructs these iterated integrals by
using stochastic calculus, as limits in probability of elementary quantities.

On the other hand, one expects naively that, whatever the meaning of the integral
below, the following first order Taylor expansion formula will hold for any solution
to the controlled equation (2.1)

xt ´ xs “

ż t

s
V pxuqdhu “ V pxsq

`

ht ´ hs
˘

`Opht ´ hsq
2.

So, in the end, we do not want to define the product V pxtq 9ht for any path x but
only for paths whose increments look like, at small time scales, the increments of
the driving control, such as implied by the above Taylor formula. One says that the
path x is controlled by h. This requirement, and the a priori datum of the ’iterated
integrals’, happen to be sufficient to make sense of the equation, when 1

3 ă α ď 1
2 ,

as a fixed point equation in the space of paths whose increments locally look like

2The tensor product is only here to deal with the multidimensional character of the control h.
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the increments of the control. The naive and formal second order Taylor expansion
formula

xt´xs “

ż t

s
V pxuqdhu “ V pxsq

`

ht´hs
˘

`
`

DxsV
˘

V pxsq

ż t

s

ż u

s
dhrbdhu`Opht´hsq

3

provides indeed an explicit and sufficiently fine description of xt ´ xs, up to a re-
mainder of size |t´s|3αą1, to get back x uniquely from the datum of its increments.3

It happens then to be able to make sense an integral
ż ¨

0
V pxsqdhs,

for a path x controlled by h, and to solve the equation (2.1) as a fixed point for some
functional from the space of controlled paths to itself. Using fixed point procedures
has the extraordinary benefit to provide a solution path that depends continuously
on the enhanced control pdh, dhb dhq – see e.g. [15, 17, 1].

2.3 General fixed point scheme

Hairer’s theory of regularity structures and paracontrolled calculus both approach
the problem of giving sense to an ill-posed stochastic PDE with the same strategy
as Lyons in his theory of rough paths and rough differential equations.

(a) Enhance the noise into an enriched object that lives in some space of analytic
objects – this is a purely probabilistic step;

(b) given any such object pζ in this space, one can introduce a pζ-dependent Ba-

nach space S
`

pζ
˘

such that the equation makes sense for the unknown in

S
`

pζ
˘

, and it can be solved uniquely by a deterministic analytic argument,
such as the contraction principle, which gives the continuity of the solution

as a function pζ.

Note that the enhancement pζ of the noise and the ansatz solution space S
`

pζ
˘

both depend on the equation under study.

3 Paraproducts as a tool for local comparison

3.1 The Fourier picture

The above mentioned solution space S
`

pζ
˘

for a given singular equation is made
up of functions/distributions that locally look like some reference function(s) / dis-
tribution(s). Bony’s notion of paraproduct [5] provides a very efficient tool for
constructing in a multidimensional setting some functions/distributions that look
like another reference function/distribution. Roughly speaking, this bilinear oper-
ator Πfg provides an object obtained as a modulation of the high frequencies of g
by the low frequencies of f , which justifies that Πfg should indeed look like g at
small scales where it has its possibly wild oscillations. In the model case of space-
dependent functions on the d-dimensional torus, recall that any distribution f can

be described as an infinite sum of smooth functions fi whose Fourier transform pfi

3Indeed, if one has xt ´ xs “ µts `O
`

|t´ s|ą1
˘

, for some known quantities µts, then the path x

is determined uniquely from its initial condition and the knowledge of µ.
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is essentially equal to the restriction of pf on a compact annulus depending on i. A
product of two distributions f and g can thus always be written formally as

fg “
ÿ

figj “
ÿ

iďj´2

figj `
ÿ

|i´j|ď1

figj `
ÿ

jďi´2

figj

“: Πf pgq `Πpf, gq `Πgpfq.

(3.1)

The term Πf pgq is called the paraproduct of f and g, and the term Πpf, gq is called
the resonant term. The paraproduct is always well-defined for f and g in Hölder
spaces, with possibly negative indices α and β respectively, while the resonant term
only makes sense if α` β is positive.

3.2 The heat semigroup approach

It is a non-trivial task to give a robust analogue of these operators on a manifold
M , or even a measures metric space, where no Fourier analysis can be used. We
used instead in [2, 3, 4] heat semigroup technics to make sense of some paraproduct
and resonant operators on the parabolic space M :“ r0, T s ˆM , that have the very
same analytic properties as its basic counterpart. We use a semigroup associated
with an operator L that plays the role of the Laplacian ∆ in the above equations, on
which we only require some Gaussian type estimates for its heat kernel and possibly
on its ’derivatives’. To set the stage, we work here in a closed manifold M , with a
possibly sub-elliptic operator L in Hörmander form

L “
ÿ̀

i“1

V 2
i ,

for some smooth vector fields Vi on M . Doubling and Alhfors regularity properties
for the metric measured ambiant space are typically required when working on more
general settings than a closed manifold – see [2, 3, 4] for more details. The scale
of space and parabolic Hölder spaces pCαqαPR can be defined purely in terms of the
semigroup associated with L.

To be a little more specific, given a real-valued integrable function φ on R, set

φtp¨q :“
1

t
φ
´

¨

t

¯

;

the family pφtq0ătď1 is uniformly bounded in L1pRq. We also define the “convolution”
operator φ‹ associated with φ via the formula

φ‹pfqpτq :“

ż 8

0
φpτ ´ σqfpσqdσ.

Given an integer b ě 1, we define a special family of operators on L2pMq setting

Q
pbq
t :“ γ´1

b ptLq
be´tL and ´ tBtP

pbq
t “ Q

pbq
t ,

with γb :“ pb´1q!; so P
pbq
t is an operator of the form pbptLqe

´tL, for some polynomial

pb of degree b ´ 1, with value 1 in 0. The operator Q
pbq
t can be thought of as an

intrinsic replacement for the Littlewood-Paley projectors that depend only on L, in
a Fourier-free setting. For defining the time/space counterpart of these operators,
choose arbitrarily a smooth real-valued function ϕ on R, with support in

“

1
2 , 2

‰

, unit
integral and such that for every integer k “ 1, .., b

ż

τkϕpτq dτ “ 0.
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(This kind of condition ensures some crucial cancellation property; see [3].) Set

Ppbqt :“ P
pbq
t b ϕ‹t and Qpbqt :“ ´tBtPpbqt .

The operators Pt weakly tend to the identity on Lp0pMq (the set of functions f P
LppMq with time-support included in r0,8q), p P r1,8q, and the set of functions f P
C0pMq with time-support included in r0,8q, as t goes to 0; so we have the following
Calderón reproducing formula. For every continuous function f P L8pMq with
time-support in r0,8q, then

f “

ż 1

0
Qpbqt pfq

dt

t
` Ppbq1 pfq. (3.2)

Noting that the measure dt
t gives unit mass to intervals of the form

“

2´i´1, 2´i
‰

, and

considering the operator Qpbqt as a kind of multiplier roughly localized at frequencies

of size t´
1
2 , Calderón’s formula appears as nothing else than a continuous time

analogue of the Littlewood-Paley decomposition of f , with dt
t in the role of the

counting measure. Building on Calderon’s formula, and using iteratively the Leibniz
rule for the differentiation operators Vi or Bτ , we have the following decomposition
decomposition

fg “
ÿ

Ib

aI,Jk,`

ż 1

0

´

AI,J
k,` pf, gq `AI,J

k,` pg, fq
¯ dt

t
`
ÿ

Ib

bI,Jk,`

ż 1

0
BI,Jk,` pf, gq

dt

t
,

where

‚ Ib is the set of all tuples pI, J, k, `q with the tuples I, J and the integers k, `
satisfying the constraint

|I| ` |J |

2
` k ` ` “

b

2
;

‚ aI,Jk,` , b
I,J
k,` are bounded sequences of numerical coefficients;

‚ for pI, J, k, `q P Ib, AI,J
k,` pf, gq has the form

AI,J
k,` pf, gq :“ Ppbqt

´

t
|I|

2
`kVIB

k
τ

¯´

Spb{2qt f ¨
`

t
|J|

2
``VJB

`
τ

˘

Ppbqt g
¯

,

‚ for pI, J, k, `q P Ib, BI,Jk,` pf, gq has the form

BI,Jk,` pf, gq :“ Spb{2qt

´!

`

t
|I|

2
`kVIB

k
τ

˘

Ppbqt f
)

¨

!

`

t
|J|

2
``VJB

`
τ

˘

Ppbqt g
)¯

,

for some operators Spb{2qt with nice properties – different occurences means different
operators.

Definition. Given f in
Ť

sPp0,1q Cs and g P L8pMq, we define the paraproduct Π
pbq
g f

by the formula

Πpbqg f :“

ż 1

0

#

ÿ

Ib; |I|

2
`ką b

4

aI,Jk,` A
I,J
k,` pf, gq `

ÿ

Ib; |I|

2
`ką b

4

bI,Jk,` B
I,J
k,` pf, gq

+

dt

t
,
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and the resonant term Πpbqpf, gq by the formula

Πpbqpf, gq :“
ż 1

0

#

ÿ

Ib; |I|

2
`kď b

4

aI,Jk,`

´

AI,J
k,` pf, gq `AI,J

k,` pg, fq
¯

`
ÿ

Ib; |I|

2
`k“ |J|

2
``“ b

4

bI,Jk,` B
I,J
k,` pf, gq

+

dt

t
.

With these notations, Calderón’s formula becomes

fg “ Πpbqg pfq `Π
pbq
f pgq `Πpbqpf, gq `∆´1pf, gq

with the “low-frequency part”

∆´1pf, gq :“ Ppbq1

´

Ppbq1 f ¨ Ppbq1 g
¯

.

The integer-valued parameter ’b’ in the formulas is here tuned on demand, for
technical purposes; it is not crucial to understand its use, and we write in the
sequel Π for Πpbq, for a well-chosen, sufficiently big, parameter b.

4 Controlled distributions/functions and the product problem

4.1 The basics

Let a reference distribution Z in some parabolic Hölder space Cα be given. Let
β ą 0 be given. Let say momentarily that a pair of distributions pf, gq P Cα ˆ Cβ is
said to be paracontrolled by Z if

pf, gq7 :“ f ´ΠgpZq P Cα`β. (4.1)

The distribution g is called the derivative of f with respect to Z, and one can
prove that for any e, e1 in the parabolic space

fpeq » fpeq ` gpeq
`

Zpe1q ´ Zpeq
˘

up to a remainder term that is pα`βq-Hölder as a function of the parabolic distance
between e1 and e; see [4]. The twist offered by this definition, as far as the multi-
plication problem is concerned, is best illustrated on the example of the parabolic
Anderson model equation (PAM)

pBt ` Lqu “ uζ, (4.2)

where one wants first to give sense to the product uζ. Take for Z the solution to
the equation pBt ` LqZ “ ζ, with null initial condition, and a space noise ζ that
is pα ´ 2q-Hölder. From purely analytic data, the product uζ is meaningful only
if α ` pα ´ 2q ą 0, that is α ą 1. For a distribution pu, u1q controlled by Z, with
β “ α, say, and 2α-Hölder remainder pu, u1q7 in the decomposition (4.1), the formal
manipulation

uζ “ Πupζq `Πζpuq `Πpu, ζq

“ Πupζq `Πζpuq `Π
`

Πu1pZq, ζ
˘

`Π
`

pu, u1q7, ζ
˘

“: Πupζq `Πζpuq ` CpZ, u1, ζq ` u1ΠpZ, ζq `Π
`

pu, u1q7, ζ
˘

,
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gives a decomposition of uζ where the first two paraproduct terms are always well-
defined, with known regularity, and where the last term makes sense provided 2α`
pα´ 2q is positive, that is α ą 2

3 . It happens that the corrector

CpZ, u1, ζq :“ Π
`

Πu1pZq, ζ
˘

´ u1ΠpZ, ζq

can be proved to define an
`

α`α` pα´ 2q
˘

-Hölder distribution if α ą 2
3 , although

the resonant term Π
`

Πu1pZq, ζ
˘

is only well-defined on its own if α ą 1. So we see
that the only undefined term in the decomposition of uζ is the product u1ΠpZ, ζq,
where the resonant term ΠpZ, ζq does not make sense so far. What is gained in
this analysis is the fact that this formal quantity ΠpZ, ζq does not depend on any
potential solution of the equation, it depends only on the noise ζ, given the definition
of Z.

If ever one can define by some purely probabilistic means the quantity ΠpZ, ζq as a
random variable with values in the space of parabolic pα`α´2q-Hölder distributions,
then we see that the product u1ΠpZ, ζq is actually well-defined since under the
assumption that α`p2α´2q is positive, that is α ą 2

3 . This purely probabilistic step
of defining ΠpZ, ζq as a random variable is step (a) in the above general resolution
scheme. Step (b) is provided here by setting the problem in the space of functions
controlled by the reference function Z; we have just seen that defining the product
uζ, or rather pu, u1qζ, is indeed not a problem in this setting, and one can then set the
(PAM) equation (4.2) as a fixed point problem in the above space of paracontrolled
functions. Note here that defining ΠpZ, ζq may not be that obvious. The naive idea
that consists in regularizing the noise ζ into ζε by convolution with a smooth kernel,
defining Zε accordingly, and take a limit of the well-defined quantity Π

`

Zε, ζε
˘

in
any reasonable sense is indeed bound to fail. One needs indeed to substract to
Π
`

Zε, ζε
˘

a diverging ε-dependent constant to see anything in the limit; this is the
core phenomenon of renormalisation, that we do not touch upon here.

4.2 A pair of intertwined paraproducts and a Taylor formula

This is the basic scheme of the first order paracontrolled calculus invented by
Gubinelli-Imkeller-Perkowski in [10]. To run it properly, one requires some continuity
estimates for a commutator operator between the resolution operator R for the heat
equation and the paraproduct. This continuity result happens to limit critically the
analysis of equations by this method to a first order description, such as given in the
above definition of a controlled function/distribution. In order to set the stage for
an arbitrary high order paracontrolled expansion, we introduced in [3] a modified

parabolic paraproduct rΠ characterized by the intertwining relation

RpΠfgq “ rΠf pRgq.

It happens to enjoy the same continuity properties as the operator Π.

Definition. Let β ą 0 be given. A pair of distributions pf, gq P Cα ˆ Cβ is said to
be paracontrolled by Z if

pf, gq7 :“ f ´ rΠgpZq P Cα`β.

A corrector operator associated with this choice of definition for a paracontrolled
function/distribution can be introduced and proved to have the same continuity
properties as the above operator C, so the above scheme works equally well with
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the definition of a controlled function/distribution. The interest of introducing this
modified paraproduct is clearly seen when one tries to solve the fixed point equation

u “ Rpuζq,
assuming a null initial condition for u. Indeed, since

uζ “ Πuζ ` p¨ ¨ ¨ q,

the above fixed point relation becomes

rΠu1Z ` pu, u1q7 “ R
`

Πuζ ` p¨ ¨ ¨ q
˘

“ rΠupRζq `Rp¨ ¨ ¨ q

“ rΠuZ `Rp¨ ¨ ¨ q,
which allows a relatively elementary analysis. The use of an ansatz space where the

comparison operator Π is used in place of rΠ does not allow such a straightforward
analysis.

This notion of paracontrolled function provides somehow a first order Taylor ex-
pansion of a function in terms of a reference object. One can give similar expansion
representations in terms of two or more reference objects. It happens then to be
crucial, when working with nonlinear function of the unknown, to be able to give a
description of fpuq in terms of the reference objects given an initial description of
u in those terms. The following Taylor expansion formula [4] provides in that re-
spect the perfect tool for doing that; it is a generalisation of Bony’s paralinearisation
formula [5].

Theorem 1 (High order Taylor expansion). Let f : R ÞÑ R be a C4 function with
bounded fourth derivative, and let u be a real-valued α-Hölder function on the para-
bolic space M, with 0 ă α ă 1. Then

fpuq “ Πf 1puqpuq `
1

2

!

Πf p2qpuqpu
2q´2Πf p2qpuqupuq

)

`
1

3!

!

Πf p3qpuqpu
3q´3Πf p3qpuqupu

2q ` 3Πf p3qpuqu2puq
)

` fpuq7

for some remainder fpuq7 of parabolic Hölder regularity 4α.

One can actually give an arbitrary high order Taylor expansion formula, see [4].

5 Paracontrolled calculus

In its final form [4], and given as input a noise ζ and some initial condition, the
resolution process of a typical singular parabolic equation

pBt ` Lqu “ fpu, ζq, (5.1)

involves the following elementary steps.

1. Paracontrolled ansatz. The irregularity of the noise ζ, and the form of the
equation, dictate the choice of a Banach solution space made up of func-
tions/distributions of the form

u “
k0
ÿ

i“1

rΠuiZi ` u
7, (5.2)
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for some reference functions/distributions Zi that depend formally only on
ζ, to be determined later; we have for instance Z1 “ Rpζq, if the equation
is affine with respect to ζ. The derivatives’ ui of u also need to satisfy such
a structural equation, to order pk0 ´ 1q, and their derivatives a structural
equation of order pk0 ´ 2q, and so on. One sees the above description (5.2)
of u as a paracontrolled Taylor expansion at order k0 for it; denote by pu the
datum of u and all its derivatives.

2. Right hand side. The use of a Taylor expansion formula, Theorem 1, and
continuity results for some operators, allow to rewrite the right hand side
fpu, ζq of equation (5.1) in the canonical form

fpu, ζq “
k0
ÿ

j“1

ΠvjYj ` p7q

where p7q is some nice, in particular sufficiently regular, remainder and the
distributions Yj depend only on ζ and the Zi.

3. Fixed point. Denote by P the resolution of the free heat equation

Pu0 :“ pτ, xq ÞÑ
`

e´τLu0

˘

pxq.

Then the fixed point relation

u “ Pu0 `R
`

fpu, ζq
˘

“ Pu0 `

k0
ÿ

j“1

R
´

ΠvjYj

¯

`Rp7q

“ Pu0 `

k0
ÿ

j“1

rΠvjZj `Rp7q,

imposes some consistency relations on the choice of the Zi “ RpYiq that
determine them uniquely as a function of ζ and Z1. Those expressions inside
the Yi’s that do not make sense on a purely analytical basis are precisely those

elements that need to be given as components of the enhanced distribution pζ.
Schauder estimates for R play a role in running the fixed point argument.
Note that, strictly speaking, the fixed point relation is a relation on pu rather
than u. We choose to emphasize that point by rewriting the equation under
the form

pBt ` Lqu “ f
`

pu, pζ
˘

.

As expected, the elements that need to be added in pζ to ζ are those needed to
make sense of the corresponding ill-defined products in the regularity structures

setting. List the elements of pζ in non-decreasing order of regularity and consider
them as a basis of a finite dimensional space. A renormalisation map is a linear map
of the form

M : pζ ÞÑ T pζ ´ Ξ,

for some upper triangular constant matrix T , with a unit diagonal, and some possibly
space-time dependent renormalisation functions/constants Ξ.
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4. Symmetry group. The role of the extra components of pζ in the dynamics is
completely clarified by writing

fpu, ζq “ f
`

pu, pζ
˘

“ f0ppu, ζq ` f1

`

pu
˘

pζ (5.3)

as a sum of a continuous function f0 of pu and ζ, and a continuous function

f1 of pu and pζ, that is linear with respect to pζ. If ζ is a stochastic noise
and ζε stands for a regularized noise, with associated canonical enhancement
pζε, and if a renormalisation procedure M ε provides an enhanced distribution

M ε
pζε converging in probability to some limit element in the space of enhanced

distributions, then the solution to the well-posed equation

pBt ` Lqu
ε “ f

`

uε, ζε
˘

` f1pu
εq
`

M ε ´ Id
˘

pζε

converges in probability to the first component u of the solution to the equa-
tion

pBt ` Lqu “ f
`

pu, pζ
˘

. (5.4)

Decomposition (5.3) makes it clear how the renormalisation group acts on the
equation as a symmetry group. Three ingredients are used to run the above scheme
in any concrete situation.

(i) The pair
`

Π, rΠ
˘

of intertwined paraproducts introduced in [3]. It is crucially

used to define a continuous map Φ from S
`

pζ
˘

to itself. The use of an ansatz

solution space where Π-operators would be used in place of rΠ-operators would

not produce a map from S
`

pζ
˘

to itself.

(ii) A high order Taylor expansion formula generalizing Bony’s paralinearization
formula is used to give a paracontrolled Taylor expansion of a non-linear
function of u, starting from a paracontrolled function u.

(iii) Continuity results. The technical core of Gubinelli-Imkeller-Perkowski’ sem-
inal work [10] is a continuity result for the operator

Cpf, g ;hq “ Π
`

Πfg, h
˘

´ fΠpg, hq.

The work [4] introduces a number of other operators and prove their con-
tinuity. These operators are used crucially in analyzing the right hand side
fpu, ζq of the equation, step 2.
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