High order paracontrolled calculus

I. BAILLEULT and F. BERNICOTH

Abstract. We develop in this work a general version of paracontrolled calculus that allows to treat
analytically within this paradigm a whole class of singular partial differential equations with the
same efficiency as regularity structures. This work deals with the analytic side of the story and
offers a toolkit for the study of such equations, under the form of a number of continuity results for
some operators, while emphasizing the simple and systematic mechanics of computations within
paracontrolled calculus, via the introduction of two model operations E and F. We illustrate
the efficiency of this elementary approach on the example of the generalised parabolic Anderson

model equation
(0t + L)u = f(u)q,
on a 3-dimensional closed manifold, and the generalised KPZ equation
(0t + Lyu = f(u)¢ + g(u)(0u)?,

driven by a (1 + 1)-dimensional space/time white noise.

Contents
1. Paracontrolled calculus . . ...ttt i ittt ettt i i m
2. High order paracontrolled expansion...............ouiiiiiiiinnnnnennnnnnnnns 9|
3. A toolkit for paracontrolled calculus .................oiiiiiiiiiiiii [11]
4. Nonlinear singular PDES ....... ..ottt it iiiiiaeeee e nnnnnns 38
A. Parabolic SEtting . ... ....iutei ittt
B. Proof of the high order paracontrolled expansion .....................c0uun, 54
C. Continuity resUILS . ....uueieeett ettt ettt et eat e eaeaeaieananeananans [56]

1 — Paracontrolled calculus

Thirty years after T. Lyons’ seminal work on controlled differential equations [31], it is now
well-understood that the construction of a robust approximation theory for continuous time
stochastic systems, such as stochastic differential equations or stochastic partial differential
equations, requires a twist in the notion of noise that allows to treat the resolution of such
equations in a two step process.

(a) Enhance the noise ¢ into an enriched object 2 that lives in some space of analytic
objects — this is a purely probabilistic step.

(b) Given any such object E in this space, one can introduce a Banach space S such that
the equation makes sense for the unknown in the image of S by a simple 6—dependent
map. The equation can be formulated in S, and solved uniquely by a deterministic
analytic argument, such as the contraction principle, which gives the continuity of the
solution as a function of E .
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These two steps are very different in nature and require totally different tools. The present
work deals with the deterministic side of the story, point (b), for the study of singular partial
differential equations (PDEs). The term singular refers here to the fact that the noise’ in the
equation is not regular enough for all the expressions in the equation to make sense analytically,
given the expected regularity of the solution in terms of the regularity of the 'noise’. Recall
that one can generically not make sense of the product of a distribution with a continuous
function.

1.1  Overview

Hairer’s theory of regularity structures [24] provides undoubtedly the most complete picture
for the study of a whole class of singular stochastic PDEs from the above point of view — the
class of the so-called singular subcritical parabolic stochastic PDEs. It comes with a very rich
algebraic structure and an entirely new setting that are required to give flesh to the guiding
principle that a solution should be described by the datum at each point in space-time of its
high order ’jet’ in a basis given by the elements of the enhanced noise. Regularity structures
are introduced as a tool for describing these jets. At the same time that Hairer built his theory,
Gubinelli-Imkeller-Perkowski implemented in [20] this idea of giving a local/global description
of a possible solution in a different way, using the language of paraproducts and avoiding the
introduction of any new setting, but providing only a first order description of the objects under
study. This is what we shall call from now on the first order paracontrolled calculus. While this
kind of approach may seem far from being as powerful as Hairer’s machinery, the first order
paracontrolled approach to singular stochastic PDEs has been successful in recovering and
extending a number of results that can be proved within the setting of regularity structures,
on the parabolic Anderson model and Burgers equations [20, [, 2, T3], the KPZ equation [22],
the scalar ®4 equation [J], the stochastic Navier-Stokes equation [33, 34} [35], or the study of
the continuous Anderson Hamiltonian [I2], to name but a few.

We develop in this work a high order version of paracontrolled calculus that allows to treat
analytically within this paradigm some parabolic singular partial differential equations that
are beyond the scope of the original formulation of the theory. We refer to our setting as para-
controlled calculus. By a 'noise’ in an equation we shall simply mean a function/distribution-
valued parameter ¢ — realisations of a white noise are typical examples. Within our setting,
and given as input a noise ( and some initial condition, the resolution process of a typical
parabolic equation

ZLu:= (0t + L)u = f(u,ou,(), (1.1)
involves the following elementary steps. Write ! := (9, + L)™' for the resolution operator,
and keep in mind that we have in hands two space-time paraproducts P and |5, related by the
intertwining relation

L ToP=Pog!,
all the objects are properly introduced below.

1. Paracontrolled ansatz. The irreqularity of the noise (, and the form of the equation,
dictate the choice of a solution space made up of functions/distributions of the form

ko
u= NPz + . (1.2)
i=1
for reference functions/distributions Z; that depend formally only on C, to be determined
later. The ’derivatives’ u; of u also need to satisfy a similar a structure equation ; their
derivatives as well, and so on. See Definition [1] below. One sees the above description
of u as a paracontrolled expansion at order kg for it. Denote by U the datum of u
and all its derivatives, and by 0° the datum of all their derivatives.



2. Right hand side. The use of a high order paracontrolled expansion formula, and a
number of continuity results for some operators, allow together to rewrite the right
hand side f(u,0u,() of equation (L.1)) in the canonical form

ko
Flu,0u,¢) = > PLY; + () (1.3)
j=1

where (b) is a nice remainder and the distributions Y; depend only on ¢ and the Z;.
3. Fixed point. Denote by P the resolution of the free heat equation
Pugy := (1,2) — (e_TLuo)(a:).
Then the fized point relation
u = Pug + L (f(u,0u,())

k
— Pug + ZO I (ijyj) + 2710

j=1

ko
= Pug+ Y|Py, Zj + 27 (b),
j=1
imposes some consistency relations on the choice of the Z; = £~ Y(Y;) that define them
uniquely as functions of ¢, and induces a fized point relation for 4, or rather Q.

See Proposition for a justification of the name ’derivative’ for the u; in identity .
The expressions inside the Y;’s that have no proper analytical sense need to be given a priori as
components of the enhanced distribution 6 . As expected, the enhanced noise 6 contains what
is needed to make sense of the corresponding ill-defined products in the regularity structures
setting. We shall not touch in this work on renormalisation matters, and we invite the reader
to read the latest developments of Hairer & co-authors on the subject; see [0 [7, 10]. In any

case, we shall assume here that the enhancement 2 of ( is given.

We single out here the notion of paracontrolled system involved in point 1 above, in the
setting that will be sufficient to deal with the generalised (PAM) and (KPZ) equations studied
in Section {4} It corresponds to having ky = 3. Fix 2/5 < a < 1/2. For each 1 < i < 3, we

denote below by Z; a finite collection (Zi(m)) of spacetime functions of parabolic regularity ic.

Given a collection (ugni)) of bounded functions indexed by the same set (n;) as Z;, we write
Py Z; for ), ﬁungf’”).
Definition 1. A third order paracontrolled system is a family
U= (U, Ui, Wij, “ijk)1<i,i+j,i+j+k<3
of collections of bounded parabolic functions defined by the datum of remainders
ufe el ufe CUTI b e Wl e, 1<iitgi+j+k<3

via the identity

1=1..3
U; = Z Puiij + ’U,g,
~1.3

itj=1..
I [5) §
Ujj = Z Puy 2k + Uz,
it+j+k=1.3

Uijk = Uijp-



The above system is a shorthand notation for
i 5 i)\ B
ul(n ) = Z Pu(fli)Zj + (uz(n )) ,
i+j=1.3 Y
and so on. There is only one function of the form w;j; above, namely wj11.

One sees on the above synopsis that we shall in particular obtain solutions of the (gPAM)
and (gKPZ) equations under the form

U = Pf(u)Zl + (20&).

Corollary 1.11 of Hairer and Pardoux’ work [27] follows then from Proposition proved in
Appendix [Cl We denote here by [0, 7] a time interval on which the solution of the equation is
defined.

Corollary 2. Let f be Cp. For 0 <t < T, there exists a positive constant C such that one has
the estimate

u(e!) — u(e) ~ F(ule)) (Zi(¢) ~ Zi(e))| < O (VI ol +ly—a) "
uniformly in e = (0,y) and e = (7,z) with |7 — 0| < L.

1.2  The mechanics of computations within paracontrolled calculus

The basics of the paracontrolled analysis of singular PDEs are easily grasped by a paral-
lel with It6 calculus. Denote by a,b, ¢ three generic continuous martingales. The following
computational rules appear as fundamental in stochastic calculus.

e The basic Ito formula
d(ab) = adb + bda + d{a,b).
o [t6 formula
d(f(a)) = f'(a)da + %f”(a) d{a,a).

e Bracket rule for stochastic integrals

d<fadb,c>—ad<b,c> _o.

The building blocks of the first order paracontrolled calculus devised by Gubinelli, Imkeller
and Perkowski in [20] are the exact counterparts of the above three points, with the paraprod-
uct operator in the role of the (derivative of the) stochastic integral and the diagonal operator
in the role of the (derivative of the) bracket. For a,b, ¢ functions or distributions with some
precise regularity properties, we have the following facts.

e Paraproduct decomposition
ab = Pyb + Pya + MN(a,b)

where P is the paraproduct and II the resonant part
e Bony’s paralinearisation

f(a) = Py (q)a + (remainder)
e Fundamental corrector estimate. The operator
C(a,b,c) := N(Pgb,c) — al(b,c) (1.4)

is continuous for certain ranges of regularity exponents for its arguments.



The three step resolution process of Section for the study of a singular PDE requires
that we refine these tools. The task of writing the right hand side f(u,du,() of a singular
PDE under the form can be divided into two sub-tasks. First, making sense of the ill-
defined products that appear in f(u, du, (), up to the datum of a number of formal multilinear
functions of the noise { — the enhancement 2 . Second, writing f(u, du, () under the form ,
needed to run the fixed point argument — step 3 in Section [I.1} Ill-defined quantities appear
under the form of (possibly multi-)linear maps E(-), defined on Holder spaces, and formally
taking values in a Holder space C7 of negative regularity exponent v < 0.

e In the line of identity (1.4)), to deal with the first task, we systematically use the
paracontrolled structure to write the following kind of decomposition. Let E stand for
a map that formally sends C? into C7. For a € C® and b € C?, with «, > 0, one has

E(Pub) = aE(b) + E* (a,b)

= PLE(b) + Peya + N(a, E(b)) + E* (a,b), (15)

for some linear operator E* (-, b) that formally takes values in the Holder space C7YT.
The map I (-, E(b)) also formally takes values in C7*%, while the two paraproduct terms
make perfect sense if E(b) does. The regularity exponents of the two possibly ill-defined
terms ﬂ(a, E(b)) and E*(a,b) have been increased by «, compared to the regularity
exponent of E(P,b). One can iterate the kind of expansion given by on M(a, E(b))
and E*(a,b) if a has a paracontrolled structure. Iterating the expansion as many
times as necessary, if possible, eventually leads to a decomposition of the initial quantity
into a sum of well-defined terms, up to the a priori datum of a number of terms, like
the above E(b).

e The second task involves giving a special form to the evaluation on some paraproduct
terms of well-defined continuous linear functions F. We systematically use for that
purpose the following kind of decomposition. If F takes values in a Holder space C7,
whatever v € R, and for a € C* and b € C?, one has

F(Pub) = P.F(b) + F*(a,b), (1.6)
for some continuous bilinear operator F™ that takes values in C7+¢.

As an example of computation, let a1, as,b be a-Hdélder functions, with 0 < a < 1, and let
E send the space of a-Holder functions into the space of v-Hélder functions, for some negative
regularity exponent v with —2a < v < —a. One has from formula (|1.5])

E(Pab) = PLE(b) + Pggya + N(a, E(b)) + ET(a,b),

where the first term is 7-Holder, the second term is (v + «)-Holder, an elementary property
of the paraproduct operator, and the third and fourth terms have formal regularity v + «.
If a = P4 a9, then we have the F-type decomposition for the (v + «)-Holder valued function
a +— PE(b)a,

PE(b)a = Pg, (PE(b)ag) + I'I‘E*(b) (al, CLQ),

with the first term of regularity (7 + «) and the second term of regularity (v + 2a). We also
have the two E-type decompositions

M(a,E(b)) = aiN (b1, E(D)) + N(- E®)) " (a1,b1)

= Pau (b1, E®) + Py, gy + o010, E®))) + N(~E®)* (a1,b1),

and
E*(a,b) = a1E* (a2, b) + {E*(-, )}t (a1, a2)
= Py, E" (a2, b) + Pe+ (g, pya1 + M(a1, E* (a, b)) + {E*(-,0)} (a1, a2),



In both expressions, the first term has regularity (y+«), the second term has regularity (v+2a),
while the third and fourth terms have formal regularity (v + 2«). If one is only interested in
having a description of E(P,b) up to terms (f) of true or formal positive regularity (v + 2a),
one then has, with a = Py, as,

E(Pp,,0:8) = Pp.,a;E(B) + {Puy (Peqyaz) + Pay M(a2, E(B)) + PuyE¥ (a2, b) | + (£).

None of the computations of Section [4 dealing with the paracontrolled analysis of concrete
examples of singular PDEs, is more complicated than what we have just done. Convenient
notations will be used to work with iterated operators; they are introduced in Section|3| (Note
here that such expansions can be done on systems of singular PDEs as well.) On a technical
level, three ingredients are used to run the three step scheme of Section [1.1

o The pair (P, ﬁ) of intertwined paraproducts introduced in [2]. It is used to define a
continuous map ® from the solution space S to itself.

e A high order paracontrolled expansion formula generalizing Bony’s paralinearization
formula is used to give a paracontrolled expansion of a non-linear function of any a-
Holder function u, for 0 < a < 1. See section [2}

e Continuity results. We introduce in Section [3| a number of operators and prove their
continuity. These are the operators that appear in applying the decompositions (|L.5]
and (|1.6) in the analysis of a generic right hand side f (u, ou, ¢ ) for equation ([1.1)).

1.3  Setting and results

We adopt in this work essentially the same geometric and functional setting as in our
previous work [2], slightly restricted so as not to bother here the reader with the use of weighted
functional spaces. All this work could be formulated in the more general geometric/functional
setting of [2]; we refrain from doing this as it may blur the simple ideas that we want to
promote in this work. Let then (M,d, ) stand for a compact smooth Riemannian manifold
equipped with a doubling measure p that may differ from the canonical Riemmanian volume

measure. Let Vi,..., V), stand for some smooth vector fields on M, identified with first order
differential operators. Given a tuple I = (iy,...,ix) in {1,...,6}*, we shall set |I| := k and
V= Vi Vi
Set
Lo
L:=-YV}
=1

and assume that L is elliptic, so that the V; span smoothly at every point of M the whole
tangent space. So there exist smooth functions (7;)i1<i<e, such that for every function f €
CY(M,R) and z € M we have

V@) = > ve(@)Velf) (@) Vi(x).

The operator L is then a sectorial operator in L?(M), it is injective on the quotient space of
L?(M) by the space of constant functions, it has a bounded H*-calculus on L?(M), and —L
generates a holomorphic semigroup (e %)~ on L?(M) — see [I7]. The above class of operators
includes obviously the Laplacian on the flat torus. Note that under the above smoothness and
ellipticity conditions, the semigroup e * has regularity estimates at any order, by which we

1] |1]
mean that for every tuple I, the operators (tT VI) e tL and e tF (tT VI) have kernels K;(x,y)



satisfying the Gaussian estimate
1 _ed@w)?
u(B(x, V1))
and the following regularity estimate, for some constants which may depend on |I|. For

d(x,2) </t

‘Kt(x7y)‘ §

d(z,z") 1 o Az
e
vt p(B(w, V1))
Note again that we could equally well develop paracontrolled calculus in the more general

setting adopted in our previous work [2]; we refrain from doing that here as it could obscure
the simplicity of the ideas put forward here.

Kilw,y) - Ki(o' )| <

Given a finite time horizon T', we define the parabolic space M as
M :=[0,T] x M,

and equip it with the parabolic metric

p((r,2),(0,y)) = /|7 — o] + d(z,y)

and the parabolic measure v = dt ® p. Then (M, p,v) is a doubling space of homogeneous
type. Note that for (7,2) € M and small positive radius r, the parabolic ball BM((T,x), 7“)
has volume

u(BM (7, ), r)) ~ r? (B (z,7)).
We shall denote by e = (7, ) a generic element of the parabolic space M.

We have chosen to work in the scale of Holder spaces; this makes life easier, although we
could equally develop paracontrolled calculus in the functional setting of Sobolev spaces, in
the line of what we did in our previous work [I]. For a real number s, we will denote by C* =
C*(M), the Holder space on M of order s, defined in terms of Besov spaces; and C* = C5(M),
the parabolic Holder space. We refer the reader to Appendix [A]for more details on these spaces.
Following our previous work [2], one can define from L only parabolic paraproduct and resonant
operators that have good continuity properties in the scale of parabolic Holder spaces — see
Appendix The high order paracontrolled expansion formula and the continuity results
stated in Section [2] and Section [3] respectively, and fully proved in Appendix [B] and [C] make
use of these operators and provide the spine of paracontrolled calculus. They are the main
contributions of this work.

We illustrate our approach of the study of singular PDEs by proving well-posedness results
for the 3-dimensional generalised parabolic Anderson model equation (gPAM)

Lu = (0 + L)u = f(u)(, (1.7)
and the generalised KPZ equation
Lu = f(u)C + g(u)(ou)?, (1.8)

on the one-dimensional torus, with a space/time white noise. The generalised parabolic An-
derson model equation is a natural nonlinear generalisation of its linear counterpart, for which
f(u) = u. The latter equation describes the evolution of a Brownian particle in a white noise
environment. The generalised (KPZ) equation appears in the study of the random motion of
a string on a manifold [26]; its study in the setting of regularity structures is the object of
Hairer and co-authors’ works [26], [6]. The renormalisation of the 70ish terms that appear in the
models for this equation motivated the development of systematic renormalisation procedures,
such as done in the recent works of Bruned-Hairer-Zambotti [7] and Chandra-Hairer [10]. In
the present work, we assume that a proper enhancement 6 of the noise ( is given. Defining 6
in a stochastic setting is a very different question that is not addressed here.



We have organised this work as follows. Section [2|is dedicated to the statement and proof of
a high order paracontrolled expansion formula generalising Bony’s paralinearisation formula.
The core results of the mechanics of computations within paracontrolled calculus are obtained
in Section [3] under the form of continuity results for a number of operators. We test paracon-
trolled calculus on the examples of the 3-dimensional generalised parabolic Anderson model
equation (Theorems [24] and [25]), and the generalised KPZ equation (Theorem [26)),
in Section[dl Appendix [A] contains all the relevant details about the parabolic setting, approx-
imation operators, Holder spaces and paraproducts. Appendices [B] and [C] contain the proofs
of a number of statements.

Aknowledgements. The authors warmly thank the reviewers for their thorough readings of
previous versions of the present work.

2 — High order paracontrolled expansion

We explain in this section a simple procedure for getting an arbitrary high order expansion
of a nonlinear map of a given Holder function w defined on the parabolic space M, in terms
of its parabolic regularity properties. It provides, in the setting of Holder spaces, a refinement
of Bony’s paralinearisation theorem in the form of a viable alternative to the paradifferential
calculus of Chemin [I4]; see also [15], Theorem 2.5, p.18, for a more readable account of [14]
in the case of a second order expansion.

In its simplest form, the classical paraproduct operator (f,g) — H(}g on the d-dimensional
torus is defined via Fourier analysis by modulation of the high frequencies of a given ’refer-
ence’ function/distribution g by the low frequencies of another function/distribution f. For a
function f on the torus, we denote by f = >, A;(f) its usual Littlewood-Paley representation,
where A;(f) is the dyadic bloc with Fourier coefficients essentially only at the frequency scale
2!, Consider the Littlewood-Paley decompositions of two functions

F=2.0:8), g9=>09),
i j

as sums of smooth functions with localized frequencies; the paraproduct of g by f is defined
as
Mhg= >, A9, (2.1)
i<j—1
and the resonant part as
li—jl<1

so we have the product decomposition

fg=T0f + g +1°(f,9).

In the parabolic setting of Section[I.3] one can define some paraproduct and resonant operators
associated with the operator L and its semigroup, that have the same regularity properties in
the scale of parabolic Holder spaces as the operator I1° in the scale of spatial Holder spaces. We
denote by P this paraproduct, introduced in [2], and whose definition is recalled in Appendix
It depends implicitly on an integer-valued parameter b that is chosen once and for all,
and whose precise value is irrelevant for our purposes. It is not crucial at that stage to go into
the details of the definition of P.

The mechanics of the proof of our general Taylor expansion formula is fairly simple and bet-
ter understood in the light of the proof of Bony’s paralinearisation theorem given by Gubinelli,
Imkeller and Perkowski in [20], which we recall first.



Theorem 3. Let f:R— R be a C’g function and u be a real-valued a-Hoélder function on the
d-dimensional torus, with 0 < a < 1. Then

for some remainder f(u)t of spatial Holder regularity 2cv.

Proof — This is a copy and paste from [20]. Denote by K the kernels of the Fourier projectors
A; corresponding to the Littlewood-Paley decomposition operator, and write K< for
Yi<k Ki, with associated operator Sy := >}, A;. Note that by their definition we have,
for any i > 1,

y Ki(y) dy = 0; (22)

or more properly SRd K(ac y) dy = 0, for any = € R%. The trick is then simply to write

Fu) =% () = > A(f o (F ) Ag(u) = ) e

2) = sz’(%y)K@—z(xa z){f(u(y)) ~ 7/ (u(=)uly) } dzdy.

and to take profit from the fact that K; has null mean for ¢ > 1, as put forward in identity
-, to see that one also has, for i > 1,

0) = | Kitw.p)Kaslo 2 {£ulw) - £ (1) = 7 (u(2) (uly) ~ u(2))} dad.
One thus has

with

|5z | < | f”|oof‘K z,y)K (x,z ||u (z)|2 dzdy < 272 HuH(Qja

Since the functions ¢; are frequentially supported on the annulus of frequencies at the
scale 2¢, and the e; are uniformly bounded by 272, the serie Y. € defines a 2a-Holder
function. >

One can play exactly the same game and prove a general expansion result in a parabolic
setting, with our paraproduct P in the role of the comparison operator.

Theorem 4. Let f : R — R be a Cgl, and let u be a real-valued a-Holder function on the
parabolic space M, with 0 < o < 1. Then

£l = Ppruy(u) + 5 4P oy (2) = 2P a0}

1
n a{Pf@)(u)(@ﬁ)_3Pf<3)(u)u( 2) 4 3P o)y (1 )} + )t

for some remainder f(u)ti of parabolic Holder reqularity 4a. If f € C’l‘:’ then the remainder term
f(u)t is a locally Lipschitz function of u, in the sense that

|f(@)f = F () s < (1 + Julce + olca)u — v]ca. (2.4)

(2.3)

We give here a proof of this statement in the case where u is a time-independent function
on the d-dimension torus and we can use the elementary paraproduct II° instead of P. The
full proof of Theorem [4] is given in Appendix [B] Theorem we hope this way of proceeding
will make the reasoning clear and technical-free.

Proof — Let us prove the second order formula in the special case where u : T¢ — R, and
we use the elementary paraproduct II° in place of P. The claim amounts in that case to
proving that

(%) := f(u) = T, () —% {H[}@Mu)( ) = 2T 4, (0 )}
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is a 3a-Holder function on the torus. As in the proof of Bony’s paralinearisation result,
write (x) under the form

DMIA(f(w) = Sia(f () Ai(u) — {;si_z (FP () A (u?) — Si—a f(Q)(u)u)Ai(u)} =) e

For each i = 1, we have

x) = fKi(l’,ilJ)Kgiz(fE,Z)

1
{ fo £ (u(z) + tluly) — u(2) (uly) — u(z))> tdt

which we can rewrite as

- JK,;(:r,y)Kgi—2(9€,Z)

f f FO (u(z) + st(uly) —u(2))) (u(y) — u(z))’ ds t*dt d=dy,

using once again the fact that the kernels K;(z,-) have null mean. One reads on this
expression for €; that it is of order 273 uniformly in x. See Appendix [B|for a full proof
of the statement in the parabolic setting.

To prove the stability estimate (2.4)), write
u)Ti = Z&',u, f(v)ti = ZEi,v
i i

with €;, equal to the above ¢; and ¢; , defined similarly with v in place of u. A uniform
estimate of €; , — €;, provides an estimate on f (u)'i — f(v)%. The expression for Eiu— Eiv
involves the difference

FO (u(z) + st(uly) — u(2))) (uy) —u(2))® = £ (0(z) + st(o(y) — v(2))) (v(y) - v(2))".

Use the fact that f®) is Lipschitz continuous, that u and v are C%, to see that each of the
two terms above is controlled by d(y, 2)3* and

FO(u(z) + st(uly) — u(z)) ) = fO(v(z) + st (0(y) = 0(2)) )| < |FD o]0 = V]
o )= )

and
3 3 2
[(uly) = u(2))” = (v(y) = v(2))"] S |u = v]ce d(y, 2)** (Julce + [v]c=)"
Estimate ([2.4) is obtained by combining these two estimates together. >

Observe that the expansion (2.3) is exact, f(u)f = 0, for a polynomial function f of degree
at most 3. The above expansion formula for f(u) is conveniently rewritten under the form

1 1
f(u) = Pf’(u)—uf(2)(u)+%u2f(3)(u)(u) T3 P @) () —uf® () (U )+ = 6 P @) () (u )+ fw)t.
Note here that the general paracontrolled expansion formula writes
AN (™ e n—j b
flu) = 25 00 2D ) Pus oo (@) + S (W),
for a function f of class C¥*! with bounded (k + 1) derivative, and a remainder f(u)* of

parabolic Holder regularity (k + 1)a. Note that each paraproduct P, £ (w) (u™=7) is only of
regularity «, while the two brackets that appear in (2.3]) are respectively 2 and 3a-Holder.
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We shall see in Proposition how to write each bracket in (2.3) as a sum of terms of regularity
2ac and 3, respectively.

3 — A toolkit for paracontrolled calculus

As said in Section the mechanics of computations within paracontrolled calculus lies in
the analysis of how some operators behave when estimated on paraproduct terms. As a rule
of thumb, an ill-defined operator E satisfies an expansion of the form

E(P.b) = aE(b) + E* (a,b),
and well-defined operators F satisfy an expansion of the form
F(Pub) = P,F(b) + F'(a,b).

Both E* and F* are expected to take values in spaces of functions/distributions that are more
regular than the typical elements of the spaces where E and F take values, respectively. Gu-
binelli, Imkeller and Perkowski’s continuity result is the archetype of such an expansion.
To iterate this kind of expansion, we introduce in this section a number of operators and prove
their continuity properties. Together with the Taylor formula of Section [2| the results of this
section are our main contribution.

The development of paracontrolled calculus beyond the first order calculus of [20] requires
the introduction of a modified paraproduct IS, introduced in [2], and the use of expansion
formulas of the form

E(Pab) = aE(b) + E* (a,b),

F(Pab) = P.F(b) + F* (a,b).
This technical point is needed to run the fixed point procedure described in step 3 of the
three step process of the paracontrolled analysis of a given singular PDE; see Section

Concretely, one works with P as one works with P. The modified paraproduct Pis given by
the formula

Prgi= 27 (P1(2y)).
where . stands for the parabolic differential operator (0, + L) on the parabolic space M. See

Section 4.1 of [2] for a study of the continuity properties of IS, and Appendix @ for a digest.
Recall from Section the parallel between the basic rules of stochastic calculus and the
fundamentals of the first order paracontrolled calculus. This integral picture of paraproduct
provides a useful guide for the intuition, where the time derivative d plays the role of the
operator .Z. In that comparison, P ;g corresponds to the formal quantity

[ (o) ra- s

after an integration by parts. So the difference between P and P is a kind of bracket’ term,
reminiscent of the [to-to-Stratonovich rule for stochastic integration.

We provide in this section a number of continuity results for some operators involving the
paraproduct and resonant operators, together with the modified paraproduct P. We state
in this section our results in their general form, in the parabolic setting of Section and
give proofs in the time-independent, space setting of the torus, of versions of each statement
where we use I instead of P. This should make it easier for the reader to go to the core of
the machinery without fighting with some possibly overwhelming technicalities; full proofs are
given in Appendix [C] We hope this way of proceding will convince the reader that the basic
ideas involved here are elementary. It is not necessary, for the purpose of solving a particular
singular PDEs using the paracontrolled calculus method, to get into the details of the proofs
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of the different results given here. We invite the reader to have a look at the results only and
then go directly to Section |4 to see them on stage.

A word of caution. We repeatedly use below the fact that Py f = f for an arbitrary dis-
tribution. This is not true, strictly speaking, as one rather has P1f = f + (smooth), for an
infinitly smooth additional term that is continuous and linear with respect to f, for f in any
Holder space, with positive or negative Holder exponent. Using the first identity rather than
the second has no effect whatsoever on the analysis below, so we prefer not to burden the
reader with these somewhat irrelevant additional terms and stick to the identity Py f = f.

3.1 Corrector C, commutator D, and their iterates

We introduce in this section and four operators C,D and R,S. The operators C and D are
used to make sense of ill-defined products, while the operators R and S are used to write the
right hand side f(u,du,() of Equation in the form needed to run a fixed point
argument. The definitions of these operators involves the paraproduct and resonant operators
and the modified paraproduct P. We define similarly operators C°, D° and R°,S° using P
instead of P.

To motivate the introduction of the different operators C,D and their iterates, let set our-
selves the task of making sense of the product u¢, of u € C* and ¢ € C*2, with % <a< % As
a product of a S-Hélder function () with (¢ is well-defined if 8+ o — 2 > 0, and paraproducts
are always well-defined in a Holder setting, we concentrate here on the ill-defined terms that
appear in the computations and write

(B)¢ ~0
to mean that the product (8)( is well-defined, and

u¢ ~ N(w, )
rather than
u¢ = Py + Peu + M(w, ().
This convention is only used in this paragraph. If the resonant term [M(u,() were defined

it would have regularity 2a — 2; we say that the term lM(u, () has formal regularity 2a — 2.
Assume

3
u= Y PuZi+ (4a),
i=1
for some functions u; € C%, some functions Z; € C*® depending only on the noise ¢, and a
remainder (4a) € C4*. We do not specify the structure of the remainder term (4a) as its

product with ¢ is well-defined. In the present work, all multilinear functions of the noise ¢
only are assumed to be well-defined, even if they have negative formal regularity. Then

3
uC ~ 3 NPy, Z;, C),
i=1

and setting
C°(a,b,c) :=M(Pyb, c) — all(b, c),

for the above map IT", one has

I
N
2
D

@
Il
_

(w20 0) + € (i, 2.0))

¢
e

@
Il
—

(n(uu N(Z;,¢)) + C°(uy, Zi;()).
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Gubinelli, Imkeller and Perkowski proved in [20] that C°(a,b,c) is essentially well-defined
whenever the sum of the Holder exponents of a,b and ¢ add up to a positive number, in
which case it defines an element of regularity the sum of the regularity exponents. (There is
a mild restriction on the range of the different regularity exponents.) The term M(Z;, () is of
regularity (i + 1)a — 2, so we have

ug ~ 22: (n(uz‘, N(Zi,C)) + CO(%AZ»C))-

The formal regularity (i + 2)a — 2 of C°(u;, Z;, () is negative. To proceed we assume that each
u; is also given in paraproduct form

2
U; = Z Pu”Z] + (3&),
71

for u;; € C* and a remainder (3«v) of regularity 3a. Setting
CO((al,az),b, c) = CO(Pa1a2,b, c) —a1C%(ag, b, ¢),

for the operator (C°)*, we shall prove in Theorem |8 that this map is well-defined whenever
the sum of the Holder exponents of aj,as,b and ¢ add up to a positive number. (Here again,
there is a mild restriction on the range of the regularity exponents.) So we have

¢ ~ 22] (M (i3 (2520, )) ) + € (i, Z), Z0:€))
i=1 (3.1)

- I'I(un, n(z, I'I(Zl,g“))) +C*((ua1, Z1), 21, €).

Assuming uj; = Py, Z1 + (2a), for uip; € C* and a 2a remainder (2«v), and iterating once
more the F-expansion that we have just done twice shows that u( is be well-defined, under
the assumption that all the multilinear functions of the noise ( only that appear above are
well-defined and have regularity their formal regularity. This kind of computation explains
why we need the corrector operator C° and its iterates. (The above mentioned restriction on
the range of the regularity exponents in the continuity results for C° imposes that the term
C°((3a), Zi,¢) in C°(ui, Z;, ) is treated differently from the others. A refined corrector is
introduced for that purpose in Section 3.1.1. Its use justifies identity )

New things happen when we look at the product u?(, as
¢~ M(2Pyu + M(u,w) , ¢) ~ 2C° (uyu,¢) + N(M(u, 1), ).

The C° term is dealt with as above. For the resonant term [1 (ﬂ(u, u), () we need first to use
an F-type expansion on N(u,u) before using an E-type expansion. We have

3
M, u) = 3 (PuN(Ziyu) + D°(wi, Ziyw)),
i=1
with D°(+,-,u) := I (-, -,u), with the notation of Section The resonant terms
N(Py,M(Zi,u), ()

are dealt with as above, using the corrector operator C°. For the resonance of D°(u;, z;, u)
with ¢, we use the paracontrolled structures of v and wu; and the fact that the operator D°
satisfies an F-type expansion with respect to its first and third arguments — this is proved in
the next section. This gives

3
Z D°(us, Zs, u) = D°(u1, Z1,u) + (4a)
=1
= Pull (Pu1 DO(Zla Zla Zl)) + (40[)/,
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for remainders (4, (4a)’ of regularity 4, and

2 D°(us, Zi, u),¢) ~ ui1N(Py,D°(Z1, Z1,21),¢) ~ uinuN(D°(Z1, Z1, Z1),¢) ~ 0,

provided I_I(DO(Zl7 721, 71), C) is given a priori as an element of C4*~2,

3.1.1 Corrector C and the outer centering operator %. Define on the space L*® of bounded
measurable functions on the parabolic space M the corrector C as the operator

C(f.9.:h) = N(Psg, k) = f (g, D).

The next theorem is the workhorse of the first order paracontrolled calculus, such as devised
in [20] by Gubinelli, Imkeller and Perkowski; we recall it here, together with its proof, as this
is our starting point. Recall we denote by C'* the spacial Holder spaces on the torus and by
C® the parabolic Holder spaces over the compact manifold M.

Theorem 5. Let «, 3, be regularity exponents, with o € (0,1),5 € (=3,3) and v € (-0, 3).
Assume a4+ 3 < 3, and
O<a+p+vy<1, while pB+~v<O.

Then, the corrector C extends continuously as a function from C® x CP x CY¥ to CoHP+7.

Proof — As advertised above, we prove here this continuity result for a simplified version of
the operator C, and refer the reader to Proposition [40] in Appendix [C] for full proofs.
Assume we are working in the time-independent setting of the d-dimensional torus, with
the operator

C'(f,g,h) =T (g, h) — fF11°(g, h).

We prove the continuity of the corrector C°, as a function from C® x C? x C7 to C+8+7,
under the above assumptions on «, 3, .

e We first give a heuristic proof of the statement. The resonant operator is given by

M(a,b) =~ > Ay (3.2)
li—jI<1
Write
C(fg.h) = Y, Ai(Thg)Ash— fAilg) Ay(h),
li—jl<1
and set

g 1= A (H(}g> — fAi(g),
so we have

Co(fagvh): Z g’ltA](h)

li—jl<1

The fact that ¢, has L®-norm of order 2-1a+8) can be guessed on the expression

2) = | Kt {(159)0) - @)gt0) |y

- j K y) {19019 ) dy.

As y is concentrated near z, at scale 277, and we are looking at the i*® Littlewood-Paley
block of P;_)g, we expect

[ei(@)] = 277

9], <271 = £@)] loles,
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with a term H f—flx involving only the neighborhood of x of size 27¢, that is with

|f = @) 0 < 27 fll o

since f is a-Holder. Such an estimate would imply the continuity of the corrector C as a
function from C% x OB x C7 to CFF+7 if a + B + 7 is positive, since h is y-Holder. This
heuristic argument, however, does not make it clear why we need 5 + v to be negative to
get the result.

)

e A mathematically correct version of the above sketch of proof is done by estimating the
L*-norm of the dyadic blocks of €;. For k > i + 2 then

Apei = =D (fAi(g) ~ —Ak(f)Ailg);

here and below the ~ means that the right hand side is equal to a finite sum of terms
of the given form. This is here a direct consequence of frequency considerations with the
frequency supports of the dyadic projections Ay, for k = i + 2. So we have

|Ake] o < 27277 | flleallglos-
For k < i — 2 then
Agei = —Ak(fAi(g)) = —Ax(Ai(f) Ai(g))
hence
[Akei] e = 27 | floalglos.
We adopt the classical notation Sy f for the partial sum »}, ;o Ag(f) of the Littlewood-
Paley decomposition, so for |i — k| < 2 we have

Apei ~ Ay, <Ai(g)5i—2(f) - 5k+2(f)Ai(9)>,

hence '
| Ak o < 2750 fllca gl
As a consequence, we always have the following estimate

|Aked] o s 27 27 ™R £ oa gl e (3-3)

We can then estimate CY(f, g;h) in some Holder space. For a non-negative integer k, we

have ( - ) . Ak( )

li—jl<1
= Y A Y Ae(Bieh a5m)
i<k—2 k<i—2
li—j|<1 li—j|<1
w0 Au(Sie) )
|k—i|<2
li—j|<1

which is then controlled, using estimate (3.3]), by
o),

< | D) 2arkegrivg M ogriledBia) g N 9m eI | £ ca g s o
i<k—2 k<i—2 k—i|<2

< 27HFB)| £l callgll s Pl o

we used the condition S+v < 0 to estimate the first sum, and the condition a+8+~ > 0, to
estimate the second sum. The fact that the latter estimate holds uniformly in & concludes
the proof of the (a + 8 + «y)-Holder regularity of the corrector. >
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We emphasize the importance of the above heuristic proof of continuity of the corrector C
by introducing a notation.

Definition. Given an endomorphism A of some function space, we denote by € f, or €, f, the
function

(€)= f() = f=),
recentered around its value at the 'running’ variable x, so that
A(C f)(@) = A(f - f(2))(2).

Strictly speaking, the operator € is an operator on the space of operators A. The choice of
letter € for this operator is for ’centering’, and we call € the outer centering operator.

In those terms, we have
C(f.9:h) = NPy, 1), (3.4)
and

I_I(P‘KP%obcg¢ h) (x) =Tl (PPb_b(x)c—(Pb_b(x)c)(a:)g7 h‘) (.%'),

for instance. The main property of this operator is the following. For a function f € C"‘(Td)
with « positive, we have

SHEL) (@) = Si(f = @) (@) = Se(F) (@) — f(a)
S Adf)(@)
=k+1

Since f has positive regularity, the L® size of the dyadic blocks A,f are exponentially de-
creasing with ¢, so

1Sk(€ Flloo + Ak Sl < 27, (3.5)

A very similar property holds in the parabolic setting, which is used in the proofs of the
continuity results of this section given in Appendix [C]

3.1.2 Dealing with remainders: refined corrector C(;). The outer centering operator allows
to take profit from the Hoélder continuity regularity property of a function. To take further
profit from the ~-Lipschitz regularity property of a function, with 1 < v < 2, one introduces
a refined corrector, defined as follows in the model setting of the flat torus; see Definition
for the definition in the parabolic setting. This operator is used to take care of a number of
remainder terms in the paracontrolled analysis of ill-defined terms. Set

C(()l) (fag7h) = HO(Pfgah) - fHO(gah) - f/H[()l)(g? h)7
where

(g h)(x) == D Ai((- = 2)g)(x) (Ajh) (=),

li—jl<1
for x € T. An elementary refinement of the proof of Theorem [5] gives the following statement.
We refer the reader to Definition [37|for the definition of the parabolic counterpart C ) of C((]1)-

Theorem 6. Let o, 3, be regularity exponents, with o € (1,2),5 € (—=3,3) and v € (-0, 3).
Assume o+ 3 < 3, and
O<a+pB+vy<1, while B+v<D0.

Then, the corrector C(yy extends continuously as a function from C* x CB x CV to CotBH,

The proof of the next statement is identical to the proof of the continuity result for C from
Theorem [5} it is left to the reader. Recall from Definition (37 that C(;) is defined using the

l
operators I'I(l).
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Theorem 7. Let o, 3,7 be regularity exponents, with o, € (0,1), and v € (—0,3). Assume
B+v7+1<0<a+f+y+1<1.

Then all the operators
(f,9:h) =Ny (Prg. h) — Ny (g, )

extend continuously as functions from C* x CP x CY to COTAH L for 1 < 0 < 4.

3.1.3 Iterated correctors. Given a tuple of bounded functions (a, b, ¢, d), set
§02(a7 b, c) = Igﬁabc

and

~

P (a,b,c,d) := Ppes(qpe @

and give similar definitions of I1°%(a,b,¢) and I1°%(a,b,c,d), using only P operators, and
(1%)°2(a, b,c) and (I1°)°3(a,b,c,d), using only II' operators, respectively. Depending on
whether or not such a paraproduct appears in the low frequency, in place of f, or high fre-
quency, in place of g, in the formulas for the corrector C(f, g, h) or the commutator D(f, g, h),
we shall talk about lower or upper iterated operators.

e We define the 4 and 5-linear lower iterated correctors by the formulas
C((ah a?)v g, h) = C<§a1a27 9, h) —ai C(a27ga h’)

B n(ﬁ02(a17a27g)’ h) N {(iSQIG’Q) n(g, h) + ay n(ﬁ%a297h>}7 (3'6)

and
C(((Ql, (12), a3)7g7 h) = C((§a1a27 a3))gu h) — a1 C((G‘Qa a3)797 h’)a (37)
also equal to
n(ﬁog(ahama&g)» h) - {('502(@1,@2,@3)) ﬂ(g,h) + ('Salaz) n(’ﬁ(gagg7h’> + ap ”(ﬁ(gﬁ%%asg, h)}

The conditions (---) < 3 that appear in Theorem |8 below are purely technical; a choice of
implicit constant b in the definition of the paraproduct operator P = P(®) would change the
bound 3 for any other bound. In any concrete situation, one can assume that such a good
choice of parameter b has been done and forget about that condition.

Theorem 8. Let oy, ag, 1 be reqularity exponents in (0,1), and as € (—3,3). Let v € (—o0, 3]
be another regularity exponent.

o Assume (a1 +ag + p) < 3, and
a+pu+r<0, ag+p+rv<0
(a1 +az+pu+v)e(0,1).
Then the 4-linear lower iterated corrector
CO 5 (92  OF % OV — CO1Fa2tuty
(al,ag,g, h) —> C((al,ag),g,h)
18 CcONtinUuoOus.
o Assume that (a1 + ag + ag + p) < 3, and
(g +p+v)<0, az+az+pu+v<0
(a1 +ag+ B+ az+v)e(0,1).
The 5-linear lower iterated corrector

CM % 0% % 0 x CM x CY — Ca1+a2+a3+u+u

(a17a27a37.ga h) = C(((a’17 a’2)7a3>’g’ h)
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1§ continuous.

Proof — To get a clear idea of the mechanics at play, we only prove here the analogue statement
of the time-independent setting of the flat torus. That means that we aim to prove that
the formula

HO((HO)O3(a1, az,as,g), h>

— {(HO)O2(a1, as,a3)%(g, h) + (Hglag) 11° (ng%g, h) +a; II° (H%Hgg%asg, h) }

defines a continuous map from C% x C* x C* x CF x C¥ to CorToztastuty ynder the
above conditions on the regularity exponents. We then let the reader to complete and
adapt the proof in the full parabolic setting.

To see how the second term in the expansion arises, use formula for the corrector
and write

{0 ()% (a1, a2,a3,9) , ) = (1) (a1, a3,a3) (g, ) }(2) = € (1) (a1, a2, 05), 931 ) (0)

0 (70
=11 <H<@O(H0)02(a1,a27a3)g, h) ($)
Note that since
Hglag = (H21a2> (a:) + %Hglag,
we have the identity
€ (11°)°2(ay, ag, a3) = (HglaQ)(:c) Cas + %H%Hglmai’)'
It follows that II° ((H0)°3(a1, az,as,g), h) is equal to
002 0 0 0 (170 0 (170
(1) (a1, a2, a3) T(g, 1) + (113, a2) 11° (115, g, ) + 11 (nggngmasg, R).
Writing a; = aj(x) + a1, in the above expression for the remainder yields the formula

C(ay, az,as, g, h) = 11° (H?g‘no 39 h). (3.8)
%HggalaQ

The fact that it defines a (a1 +as+as+u+ V)—Hélder function if this exponent is positive
can be seen as follows. For every x we have

S IS TS
Cay 2 k “lga, 22
~ Z Sk_2 (%H%H(Bgal a2a3) (l‘) Ak (g) (l‘) Ak‘(h) (l‘)
k

~ D Apa (Mo a1a2a3) () Ar(g)(x) Ap(h) (),
k
where we used . Iterating the reasoning, we get
(W 0 20> X Ak slar)(@) A a(o2)(w) A-2(a) () Arlo) () Mul1)2)
k

Cay @2

(3.9)
and so since (a1 + a3 + a3 + u + v) is non-negative, and setting
m = ||ar|cer||az|cezlas|cs|glces| bl
we conclude that
11° (H?gno 09> h) ()

0
%H%”al ag

< mZ 9—k(ar+as+f+az+v)
k
s m,
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uniformly in x, which yields that the main quantity defines a bounded function. Using
(3.9), we can also obtain its Holder character. For z # y, we have

0
II (H%HO

0
%Hcg a1

80 )@ =T g )W)

<Z‘Ak 6(a1)(z)Dp— 4(a2)(l‘)Ak—2(az)(fU)Ak(g)(f)Ak(h)(@

- Ak—G(al)(y)Ak—4(a2)(?/)Ak—Q(a3)(y)Akz(g)(y)Ak(h)(y)‘

<m Z 9—k(cn+az+pf+asz+v) + Z |x _ y| ok—Fk (a1+az+B+asz+v)
1<2k|z—y] 122k |z—y]
altag+p+tasztr,

in the second sum, over 1 > 2¥|z —y|, we have used the finite increment theorem together
with the fact that differentiating one operator Ay is equivalent to multiplying it by 2%,
together with the condition (a1 + as +as + p+v) € (0,1). >

It is also necessary and possible to ’expand’ the corrector C simultaneously on its first two
arguments. Define

C((al, ag), (bl, bQ), h) = C((al, ag), Pble, h) — Pb1C((a1, ag), bg, h) .
We let the reader write this operator in terms of the outer centering operator %, like in identity

B3).

Proposition 9. Assume that (aq + oo + 1 + p2) < 3, and
(g +ps+v)<0, ag4+pu2+v<0
(a1 + o+ p1 +pz+v)e(0,1) and pg € (0,1).

Then the 5-linear iterated corrector
CA % 2 x CHM1 x CH2 x CY — Ca1+a2+u1+u2+u

(al, ag, bl, bg, h) —> C((al, ag), (bl, bg), h)
18 continuous.

Proof — As in the proof of Theorem |8 observe that (in the flat torus setting) we have
C((a1,a2), Py, ba, h) ~ Z Ap_4(a1)Ag—2(a2)Ag(Py, ba) Ag(h)
k

~ > Ap_g(a1) Ap_a(az) Sk—a(b1) Ag(b2) Ay (h).

At the same time,

Py, C((a1,02), ba, h) = ' Sk-a(b1) Ak (C((a1,a2), b2, 1) )
k
=3 5k—2(bl)Ak<Z Aj—4(a1)Aj—2(GQ)Aj(bz)Aj(h)>-
k J

In the previous sum, the parameters k,j have to be equivalent in order to have a non-
vanishing contribution. With the normalization > Ay = Id, we obtain

(*) = C(((Il,ag) Pblbz,h) (ZL‘) — PblC((al,ag),bQ,h) (ZL‘)
~ ZAk< j—4 a1 j— 2(@2)(5]'_2([)1) — Sk_g(bl)(l'»Aj(bg)Aj(h)) (.CE‘)
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From this decomposition, it is easy to check that for £ > 0 and because a1 +ao+ 1 +us+v €
(0,1), and p; € (0,1), we have
|A(%)] o < Z Q—j(a1+az+uz+V)(2—j + 2—k)u1m
k,jzt

< 2—€(a1 +oa+p1 +“2+V)m,

with
m = |a1|cer |az] gz [bi] co b2 cue [Rllcv-
>
The 5-linear iterated corrector will never appear explicitly in our computations as it will

provide a remainder term. The 4 and 5-linear upper iterated correctors are defined by the
formulas

C(f, (a1, az), h) := c(f, ﬁm@,h) — a1 C(f,an, h).
and

C(f7 (al, (az,ag)),h> = C(f, (al,f’QQag),h) —as C(f7 (al,ag),h).

Theorem 10. (i) Assume p, a1 € (0,1), and the exponents (u+ a1 +v) and (p + oo + v)
are negative, and
(W+ a1 +az+rv)e (0,1).
Then the 4-linear upper iterated corrector

C“ % Cal % Cag % Cl/ N Cu+a1+az+u

(fa ag, az, h) — C(f7 (ala a2)7 h)
18 continuous.

(i1) Assume p, a1, a9 € (0,1), and the exponents (u+ c; +v) are all negative, for 1 < i < 3,
and
(b+a1+ay+as+v)e(0,1).
Then the 5-linear upper iterated corrector

CM % Ca1 % Cozz % Cag % Cu s Cu+a1+a2+a3+u

(f7 ai, az,as, h) = C(fa (ala ((12, (13)), h)
18 continuous.
Proof — We only sketch the proof of the continuity result of the 4-linear operator in the model
case of the time-independent setting of the flat torus, and rely on formula (3.2)) for the
diagonal operator I1%(-, -) for that purpose. See Proposition [44]in Appendix for a fully

detailed proof in the parabolic setting. In the present setting, the quantity C°(f;a1,as;g)
is then given by a sum of the form

Co(f, (al,ag),h) = Z z’:‘g Ajh,
li—j|<1
with
6; = {Ai(Pf(Palag)) - alAi(Pfag)} + f{alAiaQ - Ai(Pa1a2)}

We read on the expression
(o) = [ Kt [P (Pusaa) () = a1 @) (Praz) () + (fan)(@aa(y) — £ () (Payaz) )| dy

= JKZ(:I;’ y) Pf—f(x)l (P(Ll—lll(l')la2> (y) dy7

that
E; = Al <P(gf (chal a2)>
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has L®-norm of order 2~ 1ta1+02) a9 4 consequence of . The proof is then not fully
completed, since the block €/A;h is not perfectly localized in frequency at scale 2! so an
extra decomposition is necessary. The same thing happens in the proof of Theorem [ We
do not give the details here and refer the reader to the proof of Proposition [44]in Appendix

[Cl >

3.1.4 Commutator D. Define on the space L* of bounded measurable functions on the
parabolic space M the commutator D as the operator

D(f.g,h) := N(Pg, h) — Pf(n(g, h)),

Theorem 11. (a) For positive regularity exponents «, 3 and -y, the commutator D is con-
tinuous from C* x C8 x CY to COtA+7,
(b) The commutator D is bounded from C* x C® x C7 into C**P*+7 for a € (—1,0) as soon
asa+ [+ v>0.

Proof — Assume we are working in the time-independent setting of the d-dimensional torus,
with the operator

DO(f, g, h) = II° (Hglg, h) — 119 (Ho(g, h)).

(a) We refer the reader to Proposition[40} in Appendix[C.1] for a full proof of the regularity
statement for the commutator D. We simply mention here that in the special case of D?,
the regularity estimate comes from the following identity

Ae(D(f,9:1) = D0 Ak(Be(9)Se-a(AR)) = Sia(NA(Aelg)Ae())

I=k—2

= Y Au(De@)Se-a(£)AelR) = Sima(£)Delg)Aelh)) (3.10)
L=k—2

(b) This case is easy and do not use the ’difference’ structure in the commutator. Indeed
since & < 0 then o+ 3+~ > 0 implies 5 + v > 0 and so by using the boundedness of the
paraproducts and those of the resonant part, it directly comes

rl(ﬁfg,h) eC*™Bt and P (n(g,h)) € cotB+.
>

3.1.5 Back to the high order paracontrolled expansion (2.3). The high order paracontrolled
expansion ([2.3) might seem far from a possibly expected ordinary Taylor-type expansion, such
as it appears for instance in regularity structures [24]. The difference is not that big, as we
see in this section by looking at the resonant term M(f(u), (). This intermezzo has a formal
character. Recall we denote by C°, D° the corrector, commutator and their iterates, built from
the resonant operator and the usual paraproduct I1, P instead of the modified paraproduct F’;
they enjoy the same continuity properties as C and D. We consider in this section the case
where u € C%, with % <a< %, and for a function g € C’g, we write the second order version
of formula (2.3)), giving the paracontrolled expansion of g(u), under the form

1
9(u) = Pyt + 5{Pyeuyu? = Py} + ()

the exponent (1) refering to the fact that g(u)") € C3* < C!, so it can be differentiated in the
space direction. We work in our general parabolic setting over a Riemannian manifold so the
refined corrector involves the additional term Zg‘;l (Vi f )I'Ifl)(g, h), from Definition The
reader can think of the time-independent flat torus setting, where the additional term in the
definition of the refined corrector is simply f’ I'I?l)(g, h), with ’ denoting space derivative.
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Notation. Given any 3 € R, denote by (3) an element of C® whose precise definition is unim-
portant for the reasoning, and whose only noticeable property is its regularity. Its definition
may change from line to line.

Pick now a function f e C’f. Writing
u? = 2P u + M(u, u),
u? = Pyou + 2P, (Pyu) + Pu(M(u,u)) + 2N (u, Pyu) + N(u, My, w)),
the third order paracontrolled expansion formula writes
f(u) = Payu+ PayPyu + Py, (Pu(Pyu)) + Po, (Py2u)
+ Py, M(u, u) + Py, (Pul'l(u,u)) + Pp, (I'I(u, Puu))
+ P (M, N, w) ) + (),
where f(u)f € C*, and
ar = /() — ufO(w) + 30O w),
az = () = uf® (u),

as = 3 [ (),
a =5 O,
b= (FP ) - fOw),
by = 2 O (),
by = 5 /O (w),
ci= ¢ O

Plugging this formula inside ﬂ( f(w), C) gives for it the expression
ay N(u, ¢) + C°(a1,u, ¢)
+ agu(u, ¢) + a2C®(u, u, ¢) + uC(az, u, ) + C°(ag, (u,u),q)
+ azu® N(u, ¢) + 2a3u C°(u, u, ¢) + u? C°(as, u, ¢) + 2u C° (as, (u,w),¢) + as C°(u, (u, u), ()
+ aqu? N(u, ¢) + ag C°(u?,u, ¢) + u* C°(aq, u, ) + C°(au, (uQ,u),C)
+ b ﬂ(ﬂ(u, u),() + Co(bl, ﬂ(u,u),()
+ bou I'I(I'I(u, u), C) + by C° (u, M(u,u), C) +uC° (bg, M(u,u), C)
+ bsu I'I(I'I(u, u),() + b3 Co(u, ﬂ(u,u),() + b3 I'I(Do(u, u,u),{) + uCo(bg, I'I(u,u),C)
+ e N(N(u, N(u,u)),¢) + (5o — 2).

To get this expression in terms only of primitive quantities involving ill-defined terms where
u appears rather than a function of u, use the identity

Co(ai(u),u,g) = aj(u) C°(u,u, () + aEQ)(u) CO((u,u),u, C) +
+ (ba—2) + C° (ai(u)(l),u7 C)

aEQ) (u) Co(ﬂ(u,u),u, C)

[N

= a}(u) C°(u,u,¢) + a?)(u) Co((u,u),u, C) + aZ@)(u) Co(ﬂ(uju),u, C)

N | =

Lo
B —2) + 3 Vilar(w®) My ().
/=1



23

We expand C°(u?, u, () using the identity u? = 2P, u+T(u,u) and the iterated corrector. After
simplification, one gets the following multiplicative decomposition for Tl ( f(u),¢ )

P00 M Q)+ ) { € fu.0)+ 5 1w,

+ f(3)(u) {1C°(u, (u,u),C) + 1C"((u,u),u, C) —i—lCo(u,I'l(u,u),C) —I—ECO(I'I(u,u),u, C)

3 3 6 6
+ % I_I(Do(u,u,u),C) + é ﬂ(ﬂ(u, ﬂ(u,u)),{)}
Lo
+ 25 (e My () + (5 — 2),
- (3.11)
with

(x)p 1= WVg(al(u)(l)) + uw%(ag(u)(l)) + u? 'yﬂ/g(ag(u)(l) + a4(u)(1)> e L, (3.12)

In the time-independent setting of the flat torus, this reduces to
Lo

D1 M (,0) = { (@@ V) + u(az(@ D)+ u (as(w) + as(@)V) } sy (1, ).

=1
The term I'Ifl)(u, () has formal regularity 2a — 1, slightly less than 0, and the product with the
above bracket term {-} is well-posed provided I'Ifl)(u7 () can be given meaning as an element

of regularity 2a — 1.

Write each expression 1 (uk ,C ) in multiplicative form and asign to a product the regularity
of its term of lowest regularity. For an expression B in multiplicative form, we can then denote
by | B|ka—2 the part of B that is of formal regularity (ka — 2). So we have for instance

N0, =neo.

and
N(Pyu,¢) = ul(u, ) + C°(u,u, (),
with
NP0, =un(u,)
and

NP, | = Cu,0).

3o—2
In those terms, formula for M(f(u), () takes the following Taylor-type form
_ 2) u? 3) u
(. ¢) = 7/ [P 0], -+ /00 (50| 0w (5]
N (3.13)

+ e (Velai(w) )N (4, ) + (5o — 2).
{=1

3.1.6 lterated commutators. In addition to the above continuity properties for the iterated
correctors, we also need the following continuity result on iterated commutator operators D.

Proposition 12. o Given positive reqularity exponents a1, aa,7,d, the formulas

CY % C x OV x Cé N Ca1+a2+'y+6

(ahaQ’gah) i D<|3a1a27gah) - PalD((JQ,g,h),
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for the lower iterated commutator, and

CY x CY x (% x C(S N C~/+o¢1+a2+5

(f: a17a2>h) — D(fv ’|5a1a2ah) - Pa1D(f7 a27h)7

for the upper iterated commutator, define continuous operators. The result also holds
true if aq € (0,1) and —1 < ay < 0, with ag + v+ § > 0.

o Fix a,7,01 > 0 and dz € (0,1). The high frequency commutator

CY x C7 x C51 « C52 N Ca+7+61+62
(f?ga hla h2) — D(fv g, ﬁ)h1h2> - Ph1D(f7 g, h2)a
is bounded. This continuity result also holds true if a € (—1,0), provided a+~+d2 > 0.

Proof — As in the proof of Theorem [5, we analyse in the present proof what happens in the
time-independent setting of the d-dimensional torus, in the case where we also use II°
instead of P. So we set

Do(al)QQ)gvh) =D’ <H21a27g) h) - H(a),l Do(a27g,h)

and have a look at its continuity properties on the spacial Hélder spaces. Using formula
(3.10)), it follows that we have

Ax(D"(a1,az,9,1)) = A (DO (Payaz, g.h) ) = Si-a(ar) Ar(D(az, g, h) )

~ Z Ak{Az(Q)Az(h) (5272(%1 a2) — Sk—2(Payaz) — Sk—2(a1)(Si—2a2 — Sk72a2)) }

(=k—2
The quantity inside the brackets is equal to

Si—2(Paya2) —Sk—2(Pa,a2) — Sk—2(a1) (Se—2(az) — Sp—2(az))

-2
= Z A]’(Palag) — Sk_z(al)Aj(ag)
k-1
2
o~ Sj—2(a1)Aj(az) — Sk—2(a1)Aj(az)
k-1
-2
~ (Sj—2a1 — Sp—2a1) Aj(az),
j=k—1
which is bounded in L* by
¢
> 27 ayear 2798 agflees € 27K gy | can [lag]| e
j=k+1

This estimate allows us to conclude that
| Ak (D%(a1, az,9, 1)), < 27 H @+ gy | g | az] ooz gl Bl o5

uniformly in k, which proves the continuity result for the 4-linear operator DY. A very sim-
ilar proof gives the continuity of the simplified version of the upper iterated commutator;
we leave the details to the reader.
For the second statement of the first item of the proposition, with ag € (—1,0) we follow
the same computations and since we have now

-2

Y, 27" arflear 2772 agflcon S 27520y g laz] oo,

j=k—1
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then

|AK(D(a1,a2,9,))| , < X, 27 272 ) ay gy laz| oz g on | P o
(=k
< 271 Jay| cen la] cos gl e R s,
since 8+ v+ d > 0.

For the second item of the proposition, the same reasoning can be applied by observing

that now
Ak[D<f>gv §h1h2> - Ph1D(f797 h?)]
~ Z Ay [Aj(g) (Se—af — Sk—af)Asha(Se—2h1 — Sk72h1)]§
=k
we conclude by using the regularity of the four functions. >

3.2 lterated paraproducts

The operators C and D introduced in Section |3 are used to analyse ill-defined products.
The operators R and S that we introduce in this section are used to write down the different
terms that appear from using the C and D operators in the paraproduct form required to
apply the fixed point strategy for the analysis of Equation — Step 3 in Section . As
a motivating example, let us set ourselves the task of writing the paraproduct P;u under the
form Z?:l Py, Yj + (5 — 2), for some v; € C*, some Y that depend only on the Z; and the
noise, and a remainder (5ar — 2) of regularity 5o — 2, assuming if necessary that the u; also
have a paracontrolled expansion up to some wu;-dependent order. We repeatedly use for that
purpose the F-type decomposition on the paraproduct map and its iterates. We use here
the sign ~ for the equality of functions, up to some term of positive regularity. We have

3
Peu~ Y PPy, Zi,
=1

and setting
SUC uiy Zi) = PcPu, Zi — Pu,Pc Zi,

we have
3
Peu~ Y (Pui PeZi + S°(C,us, Zi)>.
=1

Theorem below shows that the ’swap’ operator S° sends continuously C*2 x C* x C*? into
Co—2tamta Qo we have

3
PCu ~ Z PWPCZZ + SO(C7UI7Z1) + SO(C,UQ,ZQ).
=1

The first three terms on the right hand side have a good form. To analyse the two S°((,-,-)
terms, we do an F-type expansion on each of them, taking profit from the paracontrolled
expansion

2
up = Y Pu,Zi+(3a),  uy=PuyZ1 + (2),
j=1
of u; and us. The map

SZ((al,ag),b) = SO(C, Palag,b) — PalSO(C,ag,b)
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happens indeed to send C*~2 x C*t x C®2 x C# into CY¥~2+1+a2+8 continuously — Theorem
so we have

3 2
Peu~ Y Py (PeZi) + ) Puy,S°(C, Z5, Z1) + Puyy S°(C, 21, Z2) + S°(Counn, Z1, Z1). - (3.14)
i=1 j=1

A further F-type expansion on the last term in the above right hand side does the job.
New things happen when we look at the paraproduct P<u2, as we have to deal with a term

PcPyu = PyPeu + S°(¢, u, u).
Using (3.14)), we end up with terms of the form P,P, Y,. A similar thing happens in the
analysis of S°((,u,u) and P¢:M(u,u). To deal with P,P,, Y, we use the merging operator R°
PuPu,Ys =: Pyuu, Yo + R%(u, ug, Ya),

and prove some continuity results and some expansion property of R® with respect to its first
two arguments.

In this section, we define and state continuity results for the swap and merging operators
S and R defined below. We prove here some of the results in the model setting of the time-
independent flat torus and refer the reader to Appendix|[C.2 for the description of how things
work in the parabolic setting.

3.2.1 Swap operator S. The result stated below in Theorem [13]is fully proved in Appendix
— see Proposition [38 and Proposition Given Holder distributions f, g1, 92,93,9, h, we
define the modified commutator on paraproducts, and its iterates, by the formulas

S(f:9:h) := Py ('Sgh> =Py (Psh),
and
S(f,(91:92). 1) = S(£.Pgy g2,k ) = Py (S(f, 92, 1)) (3.15)
and
S(1, ((91:92),95) 1) = S(1, (P2 98), 1) = Py (S(F: (920950, 1)) (3.16)

The continuity properties of these operators are given in the following statement. The range
(—3,3) in the next statement is purely technical and can be replaced by any other interval by
an adequate choice of constant b in the definition of the paraproduct P = P®). Note that no
gain of regularity comes from the first argument in the regularity statements below.

Theorem 13. Pick v e R.
(@) Pick o€ (0,1) and § € R such that v+ o+ € (—=3,3). The map
C7 x C% x CB N C(“{/\O)-‘r&-ﬁ-ﬁ
(f,9,h) = S(f,g,h)

18 CcONtinuous.
(b) Pick a1,z € (0,1) and B € R such that v + a1 + aa + 5 € (—=3,3). The map
C7 x C x €% x (P — (A0 +artazths
(f.91,92,h) = S(f, (91, 92), h)
18 continuous.
(c) Pick aj,az,a3 € (0,1) and B € R such that v+ a1 + ag + ag + B € (=3,3). The map
CY x C™ x 0% x 0% x CP — c(r0)+artaztas+f

(fv 91,92, 93, h) — S(f7 ((g1792)793)7h)

1S continuous.
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3.2.2 Merging operator R and inner difference operator 2. The value at x € T? of some
paraproduct P,v is a sum over the integers i of terms of the form

(1290) @) = [[ KsGo ) aia (0. 2) u(a)ot0) oy
We thus have for f e L® g e C* with a € (0,1), and h € C¥,
0,(i 0,(i
(10 (115m) 130 ) = [ Kt 9) Kaia () 72 (1 1) () ddy
= || it Kaioa o 2) £ (101 () ddy
The above identity defines the inner difference operator ( = .@z). In those terms, we have

RO(f, g, h) i= T3 (1) — T, = T3 (T1%,)

and, given the definition of the inner difference operator in the parabolic setting of Section [C]
we have more generally,

(3.17)

R(f,g,h) i= Py (Poh) = Prgh = Py (Pogh). (3.18)

We use the same letter & in the spatial and parabolic settings. Compare this expression with
the formal multiple integral, where we use the same letters to make it more stricking,

[ s ([ gan) )= [ gaan+ [ s ([ - gtean) o

A similar reasoning as in the proof of continuity of C(f, g, h) =1 (P(g 19, h), shows that R sends
continuously L® x C* x C¥ into C**", as soon as a € (0,1). A subtle thing happens here,
though, as one has actually a refined continuity estimate on R° that also takes into account
the regularity of f as well. It is related to the fact that R°(1,g,h) = R°(f,1,h) = 0, for all
£y g, h, whereas R(1,g,h) # 0.

Proposition 14. e Fora,fe|0,1) and v € (—3,3), we have
IR°(£. 9, 1) cassen < [ fllca gles [l (3.19)

e For ay,as,h e C®, one has
R(1,Pa a2, h) — Po,R(1, a2, h) € C**.
e Ifag,g € C* with 0 < a < 1/2, and a1 € C”, with v € (0,1/2), and h € C7 for
v € (—3,3), then we have
R°(Pq,a2,9,h) — Pa,R%(az, g, h) € C**H7H7, (3.20)

Note that we need both f and g to be in C% in (3.19)); this is required by the method of
proof, based on an interpolation argument.

Proof — The first statement (3.19) is proved in details in the third statement, inequality

(C.3), of Proposition in Appendix The second statement is a particular (u = 1)
case of Proposition [43] also in the same appendix. Let us check the last statement (3.20)).

Because of the symmetry character that the first two arguments of R° play in the proof of
its regularity properties, Proposition [43] implies the boundedness of the operator

(CLl,CLQ,g,h) - RO(Pal(IQ)guh) - PalRo((I?)gvh)

from C? x L® x C%* x C” into C?* 2% because 2v, 2ac < 1. We also have the boundedness
of that operator from L® x C?* x L® x CY into C>**7, because 2a: < 1 — we only use
to estimate the two quantities and do not use the difference structure in the commutator.
We conclude by interpolating between these two estimates. >
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Theorem 15. o Let f,ge L™ and h € C¥ be given for v e (—3,3). Let also a; € C** and
ag € C*2 be given, with oy, as € (0,1). Then both
R*(f, (a1, a2), ) i= R*(f,Pa,az,h) = R*(fay,az, h) (3.21)
and
RO((al,ag),g, h) = R° (Palag,g, h) — P4, R%(az, g,h) (3.22)

are elements of Co1T2+V,
o If feCH, withpue (0,1), and a1 € C** and az € C*2, and h € C¥ with v € (—3,3), then
we have

R°(f, (a1, as),h) — P; <R°(1, (a1, as), h)) € Crtontanty, (3.23)

The range (0, 1) for the exponent «, § and 7, is dictated by the operator &, which involves
a first order increment and so can only encode regularity at order at most 1.

Proof — The second estimate (3.22)) is proved in the Appendix, see Proposition because the
first two arguments of R° play a “symmetric” role in the proof of the continuity estimates;
see Remark [16l

We prove the two other corresponding statements (3.21)) and (3.23)) in the model time-
independent setting of the flat torus. We prove first (3.21)). We have

0 0 0 0 0 0 0 0 0
Iy (Hnglazg) ~ 119 0,9 — Wjay (H@agg) =1y (H@nglazg) —1ja, <H@a29)

is a sum over ¢ of double integrals

f f Ko, ) Kei (2, 2) () (W g 0o 19) (0) dodly
- [| Kt Eaate, ) 1) (W, 0) ) dedy

on which we read off that their L® norm is of order 2-“@1+@2+v) " Thig point finishes the
proof since the last quantity corresponds to the dyadic blocks A; (R(f, (a1,a2), 9)).

We prove (3.23)). On the other hand, we have that
Ai(Pr(R(1: (a1,a1)39)) ) ()
= fjf Ki(z,y)K<i—2(z,u) f(u)K<i—2(z, 2) (Hogno%lwg) (y) dzdydu.

So using that the kernel K¢;_1(z,-) has an integral equal to 1, we deduce that the difference
of the two dyadic blocks is given by

fjf Ki(z,y)K<io(z,2) K<ia(x,u) (f(2) — f(u)) (Hgﬁﬂ?@alazg) (y) dzdydu,
on which we read off that their L® norm is of order 2~ i(ntai+az+v), >

Remark 16. The operator R° is not symmetric in a proper sense, but rather in terms of
how the reqularity properties of its first two arguments are taken into account. The frequency
analysis is exactly the same, if we assume a reqularity on f or on g. Since R° involves only
P-paraproducts and not F’—pamproducts, we can exploit the difference structure between P,
and Py or Py. In the operator R, one can only exploit the regularity on g in R(f, g, h) because

of the Is-opemtor on g. This phenomenon is illustrated by the observation that
R°(1,g9,h) = R°(f,1,h) =0 =R(f,1,h),
while R(1, g, h) = Pyh — Pyh # 0.
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3.2.3 Back again to the high order paracontrolled expansion . Recall from Proposition
that the operator R°(a,b,c) = P,Pyc — Pgye, has better regularity properties than the
merging operator R. We can use the continuity properties of R° to rewrite the high order
paracontrolled expansion and clarify the cancellations that happen in each of its brackets.
We have first that

P @yt = 2P p@ uyutt = P 2 )11 (1, 1) + 2P o) () (Putt) = 2P pi2) 0
= Py M(u, v) + 2R°(f(2 (w), u,u)
= Pf@)(u)ﬂ(u,u) + 2P 43 () R® (u U u) (2a A 1+ 2a),
from Bony’s paralinearisation f(2) (u) =P FO@U+ (2a) and the continuity properties of the
merging operator R. Write D°(a,b,c) for M(Pyb,c) — P,M(b,c); this operator has the same

regularity properties as D. The third order expansion formula is only needed when a < 1/2.
In that case, an elementary computation shows that

P 1@ (uyt” = 3Py 5@ (uyu” + 3Pz 1) ()

= <3RO (f(3) (u), u?, u) + 2P ) () R(u, u,u) + P e () (2Do(u,u,u) + M, N(w, u)))
— 6R° (uf(3)(u), u, u)) + 3R° (f(s)(u), u, M(u, u))

= Py (2R7 (1, ,0) + 2D° (0, 0) + M(w, N(us ) )

+ {3R°(f<3> (w), N, u), u) + 6R° (£O) (u), (u, 1), u) + 3R (FP (), u, N(u, u))}

is the sum of 3a-terms and a 4a-term, as one can use in that case the refined continuity

estimates (3.20) on R.

Corollary 17. Let f e Cp. If a < 1/2, one has
1
1 Pre Ny, v)

f(u) = Pf/(u)u + ol

1 (3.24)
+ 3 Prow (8 R®(u, u, u) +2D°(u, u, u) + N(u, ﬂ(u,U))) + fw),

for a remainder f(u)? e Ci*.

Proposition 18. Let a noise ( € C*2 be given, together with a function u given by a paracon-
trolled system with reference functions Z, and f € Cl‘:’. Then one can write the product f(u)(
under the form

2
F@)C =Py + Y P rayu, Vi + Ppruyun, Vi1 + P wyuzY(,1) + (1) (3.25)
b

for explicit reference distributions Y ’s that depend only on the noise ¢ and Z, and a remainder
term

() e (') = co?,

that depends continuously on U and the Y'’s.

The proper interpretation of the above statement is that the remainder (#) € .Z(C*®),
provided the noise ( is enhanced into Z , with components belonging to .Z(C**~?2)-spaces; the
remainder (f) also depends on QA'; see Remark 1 after the proof. We first give a detailled
proof of the statement, in which the reader will see that we keep repeating the same kind of
computations. The mechanics at play here will be emphasized after the proof; this is nothing
but the mechanics of Section [I.2l
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Proof — We start from the identity

and treat the second and third terms separately. We shall denote by (b) a term in .£(C*?®)
that may change from place to place. A term of the form P¢b, with b e C3%, is a (b)-term;
so is a term P, (b), if a has non-negative parabolic Holder regularity. We use below the

following fact proved in Proposition [38- (C.1]) and Proposition [42| of Appendix
Lemma 19. Let a3 € C* a9 € C*?,a3 € C*3 be given, with o; € (0,1). The quantities
SO(C? ai, a2)7 S(Ca ai, a2)7 S(Ca (ala a?): a3)>

belong to L (C*®), if a1 + ag = 3a for the first two quantities, and oy + as + a3 = 3a,
for the third quantity. These operators are continuous functions of the a; under these
assumptions.

1. We have
Pef(u) = PeP iy + % PeP sy (1 10) + (0)
= PprwyPeu +S°(C, f(u),u) + % P r2) () P (w, ) + (0),
from Lemma So P¢ f(u) is equal to
P 1w Pus (Pc Zi) + P pruyS(C ui, Zi) + S°(C, f (u), u) + % P @ ()PcPu2l(Z1, Z1) + (0)
= (P PeZi + RO (f' ()i, PeZi) ) + (PP, (G, 25, Z0) + 0))
+ (oS (6. 21, 20) + () + <; Py Pz (PCN(Z1, 20)) + (b)) + (),

from Lemma [19| again. Note that it follows from the sharp continuity estimate (14]) from
Proposition hat R° (f/(u), u;, PCZl-) is a (b)-term. Also, one has from Lemma |19 that
S(¢, Z;, Zi) € Z(COHI+De) and S°(C, Z;, Zi) € L(CUHHDY) while PcM(Zy, Z1) € Z(C3).
This allows us to write P¢ f(u) under the required form

Pef(u) = Ppruyu,(PeZi) + Ppruyus, S(C 21, Z1) + Py 0)u2S°(C, 21, Z1)

1

2. Consider now the resonant term I'I( f(u), ¢ ), and start for that purpose from the mul-
tiplicative formula (3.11)

P0G €) 4 ) { € (a.0) + 5 1M 0,)

+ f(3)(u) {;Co(u, (u,u),C) ~I—%CO((u,u),u, C) +éC°(u,|’l(u,u),C) —I—éCO(I'I(u,u),u, C)

[

+ & N(D°(u, u,u), ) + é n(N(w, ”(“’“))’g)}

w

Lo
+ D2 (0)e Ny (1, ) + (5 — 2)
(=1

for M(f(u),¢) — recall (), is defined in (3.12)). It suffices to see that each term in this
decomposition has the form (3.25|) of the statement; we proceed from the more to the less
regular terms.
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2.1. Use Theorem (7| on the expansion rule for the operator I, and the first order
paracontrolled structure of u, to write

I—Ifl)(u7 C) = ulnfl)(zl, C) + (30( — ].)
This gives the paracontrolled representation
(¥)e My (1, ) = Payua (1) (21,0) + (5 — 2), (3.26)
since o < 1/2.

2.2. Write {u} for the bracket term after f©)(u). The first order paracontrolled structure
of u and the continuity properties of the correctors and commutators give

@) (u){u} = P& wu{Z1} + (ba —2),
for a remainder term (5 — 2) € C59~2. The fact that {Z;} € .£(C*®) is part of the data C.

2.3. We use the paracontrolled structure of u and the continuity results on correctors to
write the term I_I(I_I(u7 u), C) in multiplicative form. This gives

N(N(u, w),¢) = MN(Py,N(Z;,u),¢) + N(D(ui, Zi, u),¢) + (5o — 2)
= uZI'I(I—I(ZZ, ’LL), C) +C° (Uz” H(ZZ,U), C) + uqrull (D(Zl, VAR Zl), C) + (50[ - 2)
= uiujI'I(I'I(Zi, Zj), C) + uri1u (*) + (5a — 2)
with
(%) :=2C°(Z1,N(Z1, Z1),¢) + 2N (D(Zh Zy, Z1)7C>,
after elementary computations. The fact that M(M(Z1,Z2),¢) and () are elements of
Z(C*) is part of the data E Now,
so, recalling that an element in C5*~2 is of (b)-type, we have
F@ (s N(N(Z1, Z1),¢)
= P i@ w2M(N(Z1, 21),¢) + (0) + ﬂ(f<2><u>u%, n(n(z, zmc))
= P w2 M(N(Z1, 21),¢) + P2f<2>(u)uluu+f<3>(u)ugrl(Zr, n(n(z, Z1)7<)> + ().

Here again, the fact that I'I(Zl, I'I(I'I(Zl, Z1), C)) is of (b)-type is part of the data E, so the
term f3 (u)u?l (N(Z1, Z1),¢) has indeed the right form. Similar computations show that
1@ (u)uluzl'l(l'l(Zl, Zs), C) and wuiiuq (*) also have the right form.

Very similar computations give the right decomposition of the term f (2)(u) C°(u,u, (),
once C°(u,u, () has been put in multiplicative form. We start from the identity
C*(u,u,¢) = € (Pu Ziyu,¢) + € (R(Lur, Z1), u,¢ ) + € (uV, 0,€) + (50— 2)
with N N
U(1> =u-— PulZl — Pu2ZQ

an element of C3* — C!, since 3o > 1. Recall Definition [37] of the refined corrector, and
observe that because of Theorem 10l

C(u™,u,¢) = u C°(uM, Z1,¢) + (5o — 2),

since 3w — 1 > 5 — 2. Then using the continuity result on the refined corrector C(;) from
Theorem [6] and the fact that o > 5o — 2, one has

C(uM, 21,¢) wa N0y (Z1,0) + (o - 2). (3.27)
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The fact that I_Ifl)(Zl, ¢) € ZL(C?***1) is part of the data ¢, and it follows from the fact

that bao — 2 > 0, that the preceding sum is a (b)-term. This gives, from Proposition
the identity

C*(u,u,¢) = u;iC°(Z;,u,¢) + C°((wi, Zi),u,¢) +u1C°(R(1, Z1, Z1),u, ¢) + (0) + (b — 2).
The multiplicative decomposition of C°(u,u, () follows by an elementary computation.
2.4. Last, we have the term f/(u)M(u, ). We first put MN(u, ) in multiplicative form

N(u, ¢) = wil(Zi, ¢) +uijC(Z;, Zi, O) + uin C((Z1, Z1), Z1,€) + C(uh, Z1,¢) + (5a—2). (3.28)

The term C(ug, Z1,(C ) is treated using the refined corrector, as above, which gives a con-
tribution

Zf JVelu ey (21,0) + (e — 2), (3.29)

for that term, in the analys1s of f'(u)M(u,(); this is a remainder term of (b)-type. Look
at the term f'(u)ui1MN(Z1,(); the other terms are dealt with similarly. One has

S (w)urN(Z1,¢) = P pr(uyu, (21, ) + Prizy.o)f (wyur + N(f (w)ur, N(Z1,¢))

= Pf’ u)u1 N(Z1,¢) + Prczie) (P rwyur + Puy f'(w) + Prgz, o M(f (u),u1)
(u (Z ) + Co(f( ) ul,I'I(Zl,C))
+U1”( "(u),N(Z1,¢)) + C°(u1, f'(u),N(Z1,())

+ N (W), ). N(Z1,0))

The last six terms in the right hand side are of regularity (4a — 2); a first order expansion
of f'(u) and u; allows to put the in the right form (3.25]). For the second and third terms
in the right hand side, simply write

Prz.oPrwtr = PpuwPriz,ou + S (M(Z1,0), f/(u),u1).

The last term has regularity (4o — 2), and a first order expansion of f’(u) and u; allows
to put the in the right form. Also we have

PrwPniziou = PruwPnz.oPu, Zi + (5a —2)
= P Pur,Prczo)Zj + PpyST (M(Z21,€) w1y, Z5) + (ba — 2)
= Pprwyur, Priczi.0Zi + Pprwyun S°(M(Z1,€), Z1, Z1) + (0)
from PropositioAn Once again, the fact that SO(I'I(Zl7 ), Z1, Z1) is of (b)-type is part
of the data on (; this eventually gives
PrwPrz,gu = P, Pz + 0).
The term Pz, ¢)Pu, f'(u) is treated similarly. >

Remarks — 1. The proof of Proposition [18| gives the structure
(#) = 0) + Pp, @) Yia—2 + (5a — 2)
for the remainder (f) in (3.25|), with an implicit sum in n in the right hand side, explicit
functions hy(u) € C* depending continuously on U, and reference distributions Y,",_, assumed
to be in £ (C**), along the way; the latter are components of ( — see Section .
2. The above computations have a simple structure, that can be summarized using the
E and F notations from Section . Denote by F? (+), or =& (+,+), a well-defined function on

parabolic Holder spaces that sends C** into Ck*+8 | respectively Ck* x C* into C*k+0e+8 and
enjoying the F-type expansion property. We allow ourselves to write identities like

Fﬁ(Pma?) = Pa1 FB(GZ) + F|a2|+ﬁ(a1); (330)
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for ap € Clo2l. Also, denote by EP(-), or E?(-,-), an operator satisfying an E-type expansion
formula, sending formally C® into C**5 respectively Ck* x Ct into Ck+0e+8 I those terms,
we have

Ef (P, as) = Py, EP (ag) + FAH192l(q)) + EFHIa2l (). (3.31)
The above proof of decomposition (3.25)) starts from the identity

)¢ =PrayC + F2(f(u) + E*2(f(u)),

and proceeds by writing

Fo—2 (f(u)) = F*2(y) 4+ F*2 (f’(u),u) + FO‘_Q(I'I(u,u)) + (b)
= F*2(y) 4+ F*2 (u,u) + (),

and

E*72(f(u) = f'(w) E**(u) + P () E* 2 (u,u) + fP () E* 2 (u, u,w) + (0).

One then uses the paracontrolled structure of u and the expansion rules (3.30)) and (3.31) to
run the computations.

3. Note that Proposition [1§ makes sense from a regularity structures point of view. Let us
work in the regularity structure of the (gPAM) equation on the 3-dimensional torus, together
with a model on it. Let u be represented by the modelled distribution

u=ul +u'X +u;r = Y ug Z,
aesd

in D7, for v = (3/2)*. Denote by o the noise symbol in the regularity structure. Then one
would have

Flu)o = Fu) o +F (uta Z, o o5 O whtats Z,Z, 0+ 57 7O (e Z,2,7.0,

with sums in </ restricted to |al,|a| + |b],|a| + |b| + |¢| < 3. Using Theorem 1 in Bailleul and
Hoshino’s work [4], we would have for f(u)( the paracontrolled representation

1 1
Pf(u)C + Pf’(u)ua [Zao] + 5 Pf(2)(u)uaub [ZaZbO] + ? Pf@)(u)uaubuc [Z ZbZ O] (50{ - 2)

1
= Pf u)c + Pf’ u)ua[Z O] Pf(g)(u)uaub[z ZbO] + (b),
(3.32)

for distributions [Z 0], [Z,Zy0), [Z,ZpZ.0], built from the regularity structure and the model.
This is the content of identity , and one reads off the functions hy(u) of point 1 in the
preceding formula. The term f'(u)u’Xo from the regularity structures picture appears in the
above paracontrolled analysis under the form f’(u)ugl(Zs, (), in identity . This makes
perfect sense if one considers that the piece of u that is differentiable is in its paracontrolled
representation is given by M, Zs + uf, and we recall the pointwise first order expansion for
paraproducts from Corol]aryE The term f'(u)?u’ o Z(Xo) from the regularity structures

picture appears above under the form

F/(w) e Vi(ud) Ny (21, 0),

in identity ((3.29 -, while the term f2) ( ) f(u)u'X o Z(o) from the regularity structures analysis

appears in the form of identities and (3.27). (Recall Zz 1veVi(v) = ', on the flat
torus.)
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3.3 Dealing with derivatives

We work in this section in the one dimensional torus T, with x as canonical coordinate and
L = 02 =: 9%, The study of the generalised KPZ equation requires the analysis of quantities
of the form Pgp,40h, or similar quantities where f, g or h is itself given by a paraproduct. The
following remark provides the key to the analysis of such terms.

Recall the notations Py and Q, for the parabolic projectors from the standard collection of
operators with cancellation — Definition 27]in Appendix [A.T] and the notation v = dt ® dx for
the parabolic volume measure.

Lemma 20. Both Paydg and N(0f,0g) can be written under the form
Y1 xi, g o di
J Ept (Q%f Qth) e

0

with O, 9% € GC', and P, € StGCIOH,

Proof — Consider P, one of our localization operator at the parabolic scale t¥/2, then by
integrating by parts in space, we see that for e := (7, )

(Puf)(e) = fM Kp, (e, ¢)of (¢ (de’)
__ J o Kop, (e, ¢) (¢ (de')
M

= —t—1/2f Y20, Kp, (e, e ) f(e v(de).
M

Then since we assume regularity estimates on the heat kernel, it follows that 1/ 26x/K7>t (e, )
satisfies the same kind of pointwise estimates as Kp,. Moreover its first momentum is null,
which is a cancellation property of ordre 1

f 120, Kp, (e, e v(de) = f Y20, Kp, (e, e v(de) = 0.
M M
In terms of the notation introduced and described in Appendix the collection (tl/ 2577t)t>0
belongs to the class GC!. That legitimates to use the notation
ét = t1/287)t7
from which the representation of the statement follows. A similar observation holds for

the operator M(0f, dg). >

Remark — In the model setting of spatial paraproducts on the one dimensional torus

Pardg = Y Sk-2(0f)Ak(9),
k

so an integration by parts shows that
Sk—a(0f) = 22 A4 o f,

for some Fourier multiplier Aj,_o acting on a distribution f(-) = Sepet™, as

(Ak_gf) (x) = 2~ (k=2) Z cpine™ = Z Pcnemm,
‘n|<2k72 |n|<2k72
with symbol 21277121|n|<2k—2. This symbol is not exactly supported on the annulus at scale 272,
as it is the case for the Fourier projector Ay, but it satisfies some decay property at 0 and at
infinity, so it still encodes some cancellation property. We have
Pasdg = Z 2272 (A f) (ALg),
k
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for operators A}, perfectly localized at frequencies of scale 2. The resonant operator N(0f, 0g)
has the same structure

N(af,09) = Y 2% Ar(£)Ak(9),

k

for operators Ak perfectly localized at frequencies of scale 2F.

It follows from that lemma that all the continuity results of Section [3.1] on the corrector C
and its iterates have direct counterparts in terms of the operator (f,g) — Psrg. We single
out three of them here to make that point clear. Define on the space of bounded measurable
functions on the parabolic space M the correctors

C5((f1, f2), 9) = Paﬁhﬁ&g — fiPay,0g,
C5(f. (g1,92)) := P&f(lsgng) — 91Pss0go,
C5 ((f1. f2).9) = N(Py, f2,09) — fN(0f2, Og).

We use the exponent < in the notation to remind the reader from the fact that paraproducts
P g are defined in a Fourier setting with frequencies of f strictly smaller than those of g, while
the resonant operator involves frequencies that are essentially equal.

Theorem 21. o Let «, B, be regularity exponents, with € (0,1) and o+ 5 < 1. If
B+y—2<0<a+fB+~v—2,
then the maps
CYx CP x ¢V — cothrr2
(f,9:0) = C5((f,9),h).C5 (f. (9, h))
are continuous.
o Let o, B,v1,72 be regularity exponents, with a,,y1 € (0,1) and o + f < 1. If
B+m+yr—-2<0<a+B+71+72—2,
then the map

CY x C8 x O x O — CotB+mM+r2—2

((fa 9), (h, hz)) = C;((fa 9), IShlhz) —h Ca((f»g),h@)

1S continuous.

Proof — Let us concentrate first on the first statement, in the model case of the flat torus,
where

C5((£,9):h) = 2,222 (Rxa(1Thg) — f(Ax_29) ) Af(R).

Note that since

51@72(11?9) — fAy_og = Z 27 R=20(S, f — £)Ayg,
t<k—2
we have the estimate
s (Wg) — F(Arag)| = 3 276202 flcuglcs
0<k2

< 27M D) calgl e,
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since a + B < 1. We see here the importance of the decay of the symbol of the operator
Ak 5, encoded in the factor 2=(=2-0_ The conclusion follows then from the estimate

lau(cE(ronm)| = (Z D) 2‘"a2"“<ﬁ”—2)> Ifle=lglcalhlor

k<n—1

< 27| flca gl os bl e
If now h = H21h27 then Ag(h) ~ (Sk—2h1)(Arh2), and we have

C5((f.9),Pn h2) —h1Ca((f, 9), k) = 221“2 (ﬁk—z(Pfg) - fﬁk—w) Ay (h2) (h1 — Sk—2h1)

and we may conclude by the same reasoning as above, with the extra exponents coming
from the positive regularity of hi, since

[Py = Sk—aha], < 2757 [ha]lom.

>

We let the reader state and prove the other continuity results for the iterated versions of
C5 and C35. Set
A = {015, 15k} (1), (45 +R)<35 (3.33)
and set

li| := i, |ij|:=i+j, |ijkl:=i+j+k.

Proposition 22. Let u be given by a paracontrolled system with reference functions Z, together
with a function g € Cit. Then one can write the product g(u)(du)? under the form

g(u)(au>2 = Z Pg(u)uc1 Ucy XC162 + Z Pg’(u)uaucl Ucq Xac162

c1,c069 a,c1,co69
le1|+ez|<4 lal+[e1|+|ez| <4 (3.34)

1
+ 57 Py put X111 + (5o = 2)

for some remainder term of regularity 5a — 2, and some explicit reference distributions X ’s
that depend only on the noise ( and Z.

As in Corollary [18 on the paracontrolled representation of f(u)(, the proper interpretation
of the above statement is that the remainder is of parabolic regularity 5a — 2, provided the
X’s are well-defined as elerllents of their natural spaces. In the present work, these X'’s are
given by the enhancement ¢ of the noise.

Proof — If one is not interested in the precise form of the X, in (3.34)), one can proceed very
efficiently making only computations with E and F notations, as in the proof of Corollary
We first provide a multiplicative decomposition for

(0u)? = (0u)? = 2Ps,0u + N(du, du) =: E~%(u,u)

as follows. The function E=2 is a function of E-type with respect to its two arguments.
Recall that two E operators in the same identity may mean different E-type operators.
Distributions of regularity 3 that do not depend on u are denoted by X?. Write ~ to



37

mean equality up to a remainder term of regularity 5o — 2. One has
(0u)? = E"2(u,u)

= w B2 (u) + 7% (uy, u)

= wju; X072 L EOHDa=2(y ) 4 EGFDa=2(y)

_ uiqu(i+j)o¢—2 I uiuij(i+j+k)Oé—2 I uiE(i+j+k)a—2(ujk)
T ugju X2 | a2y

~ ul_qu(Hj)afz + uiuij(i+j+k)a72 + uiujMX(iJerrkM)a—Q
+ uz-ju;.CX(iJ”‘Jrk)O‘_2 + uz-jukgE(”jJrkM)o‘_Q

~ wju X o2 4 uiuij(i+j+k)a_2 + (wurny + ufy) X172

The above implicit sums are restricted to (i + 7), (i +j + k), (i + j + k + ) < 4. Look now
at the term g(u)u?X?*~2 and show that it can be written in the form (3.34)); the other
terms are easier to deal with. We have

g(u)u%Xzo‘_2 = Pg(u)u%Xza_2 + F2a—2 (g(u)u%) + E22 (g(u)u%), (3.35)
with
F22(g(w)ui) = Py F** 72 (uf) + P2F** 2 (g(u)) + F***(g(u), u)
= Pyu)Pus FP 7 (1) + Py F** (w1, u1) + P2F** 7 (g(u))
gz X 072+ (5a —2)
F2072 (1) + P2, X072 4 PaF? 72 (g(u)
X472 4 (5o — 2).

+P

= Pywyu
4P

g (w)uiui
One writes the first term in the right hand side in the good form

P ouyus F20-2 (U1) = Py Pule(2+j)a_2 + F3a—2(u11)
—P X@the=2 4 p  x42 4 (50 —2).

g(u)urui;

We use the paracontrolled expansion
1
g(u) = Pg/(u)uiZi + Pg/(u)uuR(l, Z1, Zl) + 5 Pg@)(u)u%I‘I(Zl, Zl) + (36!)7
of g(u) to order 2 to get

P2F? 2 (g(w) = Pyruyus X** 72 + Py wyutun X% + Pyu

uT U1

Xda=2 4 Pg(2)(

da—2
upu X

+ Pg’(u)u%uu u)u‘llX4a_2 + (50[ — 2)

The term E2*~2 (g(u)u%) in (3.35)) is dealt with similarly, using the E-type expansion rule
E**?(g(u)u?) = g(w)E***(u) + «fE** 2 (g(w)) + E***(g(u), uf) + E** 72 (N(g(u), u))

and the above second order paracontrolled expansion for g(u), to put E2*—2 (g(u)u%) in

multiplicative form first, and then use the F-type expansion to put it in the form of
Equation (3.34]). Details are left to the reader. >

Remark — Similarly to Proposition Proposition (22 makes perfect sense from a regularity
structures point of view. Note also that the above proof implicitely uses a refined version of
the C3 corrector to deal with a first argument ug of regularity strictly bigger than 1. This
term corresponds to the term 2g(u)f(u)f'(u)u'0Z(X0)0Z (o), that appears in the regularity

structures analysis.
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We summarize here the notations introduced in this section.
C(f,9,h) = N(Pyg.h) = £ N(g, h),
D(f.9.h) = N(Prg,h) = P;N(g.h).
S(f,9.h) = Py (Pyh) =Py (Psh),
R(f,9:) =Py ('Sgh) — Prgh

We use the same letters for the iterates of these operators, such as they were defined above.
The © operators are defined by the corresponding formulas where P is replaced by P. To deal
specifically with the derivatives, we have the operators

C5((f1, f2),9) == Pob, 1,09 = fiPos. 09,

C5(f. (g1,92)) := Paf(aﬁg1g2) — 91Pay0g2,
Cg(f17f2ag) = n(an1f27ag) - fln(afZaag)’

and their iterates. The only thing that matters from a computational point of view is to
identify which operators are of E-type, and which operators are of F-type.

4 — Nonlinear singular PDEs

We choose to illustrate the use of paracontrolled calculus for the study of singular partial
differential equations on the examples of the 3-dimensional generalised parabolic Anderson
model equation

Lu = f(u),
and the generalised (KPZ) equation

Lu = f(u)C + g(u)(ou)®.

on the one-dimensional torus. We introduce the notion of enhanced noise, and consistent
enhancement, in Section We define in Section the maps that are used to give a fixed
point formulation of the (gPAM) and (gKPZ) equations in Section

4.1 Enhanced noise

The archetype of singular equation is given by the controlled ordinary differential equation
dl‘t = V(l’t)dht, (41)

where h is a non-differentiable R’-valued control and V an L(R‘ R%)-valued one form on
RY, say. Think of a Brownian path for the control h. One of the deepest insights of T.
Lyons in his theory of rough paths [31] was to understand that one needs to change the
notion of control to make sense of such an equation, and that this enhanced control takes
values in a very specific universal algebraic structure. In simple terms, the enhanced control
consists of h and the collection of a number of objects playing the role of the non-existing
iterated integrals Ssgslg---gskst dhs, ® -+ ® dhs, — such iterated integrals cannot be defined
as continuous functions of their integrands, here (h, ..., h), if h is not sufficiently regular; see
Proposition 1.29 in [8]. Once given these extra data, one can make sense of, and solve uniquely,
the controlled ordinary differential equation (4.1)) under some appropriate regularity conditions
on the one form V', and the solution path happens to be a continuous function of the enhanced
control, in some appropriate topology. The enhancement of the control cannot be made on a
purely analytic basis and requires some extra input, typically the use of probabilistic methods
when the control A is random.
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Hairer’s theory of regularity structures provides a conceptually close framework for the study
of a large class of singular partial differential equations containing the generalised parabolic
Anderson model equation

ZLu = f(u). (4.2)

as a particular case. To make sense of equation , one needs to enhance the distribu-
tion ¢ with the a priori datum of a number of other distributions. Contrary to the case of
the controlled ordinary differential equation , this enhanced ’control’ takes values in an
equation-dependent algebraic structure. The resolution process is also different, as the equa-
tion is first recast in some abstract space of jets of solutions, where it can be solved under
appropriate conditions. This corresponds to looking for a solution in a specific space of distri-
butions where one can actually make sense of all the terms in the equation, especially some
a priori ill-defined products. A fundamental tool, the reconstruction operator, allows then to
associate to this abstract solution a classical distribution. The equation-dependent algebraic
structure in which the enhanced distribution lives also allows to give sense to this solution
distribution as a limit of solutions to some family of classically well-posed equations in which
the distribution ¢ has been smoothened. The latter point is related to renormalisation matters.

Recall now Proposition and Remark 1 following its proof, giving the paracontrolled
expansion of f(u)(, under the assumption that a number of quantities (Yia—2)o<k<a
are given a priori as elements of the .2 (C**)-spaces, as measurable functions of ¢ and Z; write
Y =:Y((,Z). A choice of 3; € C*, with 2 < k < 4, and

L3k = Yia—2,

defines an enhancement Z = ((,3) of the noise ¢ for the generalised parabolic Anderson
model equation

Lu = fu)C.
Enlarge the finite collection 32 by adding M(Z1, Z1) and R(1, Z1, Z1) into it. This defines the
collection 3. Set 3; := 3, for 3 < k < 4. We define this way the finite collection 3. An
enhancement E is said to be coherent if

Z3; = Yja—2(¢, (30)2<i<3) 2<j <3

A coherent enhancement of the noise ¢ for the (gPAM) equation can be used to work with
Z = 3 in a paracontrolled setting. The introduction of M(Z7, Z;) and R(1, Z1, Z1) in the system
is necessary not only to give a paracontrolled represention of the solution u of the equation
but also a lower order paracontrolled representation of its derivatives, amongst which f(u).
This is reminiscent of the use of two spaces of trees in the regularity structures setting.

The study of the generalised (KPZ) equation
Lu = f(u)¢ + g(u)(0u)?,

requires the introduction of further quantities (Xc, ¢y, Xaciep, X1111,--.) that appear in (3.34))
and the proof of this decomposition. They are assumed to be elements of .Z(C**)-spaces, and
measurable functions of ¢ and Z. Write

Xka—2 = Xka—2(¢, Z),

and recall that Zs, Z3 may stand for tuples (Z52), (Z3?). The joint choice of 3 and elements
X" e Ck such that
LXy = Xpa—2(¢, Z),

defines an enhancement 6= (¢, 3,X) of the noise ( for the generalised (KPZ) equation. This
enhancement is said to be coherent if

4

LXy = Xpa—2 (C, (3 )a<e<s (5{6)2<e<3)>-
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In accordance with the regularity structures picture, the different terms that form the en-
hanced noise correspond to the different pieces of a paracontrolled /resonant expansion of all the
formal products that appear in the tree of negative homogeneity in the regularity structures
expansions of the right hand sides of the generalised (PAM) and (KPZ) equations. Con-
structing coherent enhancements is the task of renormalisation of stochastic singular partial
differential equations. This has been implemented in the setting of regularity structures in the
groundbreaking works [7, [10] of Hairer and co-authors. This work has not been done yet in the
paracontrolled setting, but the use of Bailleul and Hoshino’s results in [4] allows to construct
coherent enhancements from the renormalised models built from [10].

4.2 Fixed point equation

We give in this section the fixed point formulations of the generalised (PAM) and (KPZ)
equations. In both cases, we assume a coherent enhancement 6 of the noise ( is given, and work
with the associated reference system Z. Recall % <a< %, so 5a — 2 > (0. To avoid working
with time-weighted Holder spaces with exploding weights, we assume the initial conditions
up € C*, to have Pug € C*®, and treat this term in the integral formulation of the equation
as a remainder term — recall P stands for the heat propagator. See [20, 3] or [32] for a sample
of works where ug € C%, in a first order paracontrolled setting.

4.2.1 Generalised (PAM) equation. Recall from ([3.33) the definition of the index set <.
We obtained in Proposition [18| the paracontrolled decomposition

1 ~
F@)C = PG+ P Yo + 57 PrerusYin + () + Py Yaul o + (5a — 2)(@),

with implicit sums restricted to |a| < 2a, and (b) € £(C*®). The function (5a—2)(4) € C>*~2,
is a locally Lipschitz function of u. Define v € C%, setting, with obvious notations,

vi= Pug+ £ " (f(u)g)
= [5) IS 1 _
= Pf(u)Zl + Pf/(u)uaZ|a|+1 + 5 Pf(Q)(u)u%Z?E ) + ¥ 1(b) (43)
+ ﬁhg(a)Zy) + .,2”_1((504 - 2)(@)) + Puy.

Note that f(u) has a second order paracontrolled expansion

~

F(w) = Ppwyu 21 + P pruyus Z2 + P ey wyuzap e, R(L 215 21)
1 5 -~
+ o Preuu (21, Z0) + f(w) (@), (4.4)
P = P rey s a2+ (F (wun)*(@).

Equations (4.3) and (4.4) show that v is the first component of a paracontrolled system .
Write 4f for the collection of all the remainders that define @, and o for the collection of all
the remainders that define v. Set

®(af) := 0% (4.5)
4.2.2 Generalised (KPZ) equation. Set

B = {(0102), (c1e9¢3), (c1cac3eq) 5 ¢ € o |er|+]cal, [er]+|ea] +es|, [er] + || + |es| + |ea] < 4a}.
6

(4.6)
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Proposition [18 and Proposition [22] together give the decomposition

1 a—
f(u>< + g(u)(@u)Q = Pf(u)C + 2 Pf’(u)uaYa + 21 Pf(Q)(u)u%YH + (b) + Phg(ﬁ)Y? 2
la|<2a '
(47)
+ D P @Xs + (5a — 2)(2),
be#

for the explicit functions g of u that appear in formula (3.34). We have for instance hq1(u) =
g(u)u?, and one checks that hq1() has a second order paracontrolled expansion, using the
paracontrolled expansion of g(u). One has

g(u)ud = Py, Z1 + Py uyzuy Z2 + P, W(Z1, 20) + P R(1, 21, Z1) + (3a)(@),  (4.8)

uug

(*)1 :=2g9(w)ujui; + 9'(“)“?7

1
(*)2 := g(wui; + 3 9@ (wyut + 29 (w)uiun
(0)3 := fO (i + f'(wufunr + ¢ (w)ui + ¢ (w)ufun
+ 24 (w)udury + 2g(w)u?; + 2g9(w)uruis + ¢ (w)ud + 3¢ (w)uduir,
and a remainder in C3® that is a locally Lipscthiz function of @i. (Note that the two reference
functions MN(Z1, Z1) and R(1,Z;, Z1) are already in the Zs-collection, since we are working
with a coherent enhancement of the noise. They appear separetely in (4.8) as a result of

computations.) The other functions gy(u) that appear in formula all have a first order
paracontrolled expansion, obtained by elementary means. Setting

v:= Pugy + Zil(f(u)c + g(u)(&u)2)

defines the first component of a paracontrolled system. (Recall we assume ug € C**, so
Pug € C*, and one can treat it as a remainder term.) Write 0% for the collection of all the
remainders that define v, and set

®(af) = 0% (4.9)

4.3 Solving the equation

Recall we work on the parabolic space [0,7) x M, for some possibly infinite positive time
horizon T'.

4.3.1 Generalised (PAM) equation. Let an initial condition ug € C**(M) for (gPAM)
equation be given. Assume a coherent enhancement ¢ of the noise ¢ is given. We work

with the associated reference system Z = (21, Zy, Z3) € 1_[2:1 cka. Pick regularity exponents
(Ba)acer such that

g < Bi < Bij < Bijk <, (1), (1)), (ijk) € o, (4.10)

and set S := minj¢;<3 ;. Define a map

H C(3f\a|)a+ﬁa « C3oz+ﬁ 0% x H ce

acdd acd

((ug)aeﬂy uﬁ) U= (ua (Ua)aez/)a
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given by the paracontrolled system

u = PuiZi + Uﬁ,
1=1..3
U; = Pu,; Zj + ug,
i+j=1.3
— p #
U5 = Z Puiijk + Uz
i+j+k=1.3
Uijk = Wijp-

Write af for ((ug)ae%, u*). Recall the synthetic form (3.32) obtained in Section 3.2.3 for f(u)¢,
and the second order paracontrolled expansion (4.4]) for f(u). One reads on these formulas
the fact that a ’solution’ of the equation needs to satisfy the constraint

Uqg = ha(u)7
for explicit functions h,. (A proper definition of a solution to the (gPAM) equation is given
in Definition below.) One has for instance

1 1 2 1
wn = ), = (F N = fus = (7)), uf? = 5 D = 5 (FD () (),

and so on. Note that a ’solution’ u has null derivatives in the M(Z1,7;) and R(1, Z1, Z1)
directions. Define

1

S;am(uO) = {aﬁ’ ug|’r=0 = ha(uo), U?TZO = U()};

equipped with the natural norm induced from [ [ .., CcB-labatBa  c30+8 the space ST (uo)
is complete. Recall the definition of the map ® defined in (4.5)).

Proposition 23. A choice of time horizon T sufficiently small ensures that ® is a contraction
of ST (up).

Proof — The formulae defining the family of remainders 9% are actually explicit — see the end
of the proof for a sample, and one can read on them that

O(SP™ (up)) < H c(3-lahat8,  plats’
acd

with g8, > (B, and B’ > 3, as a consequence of the choice of exponents — we use
the regularity assumptions on the components of the enhanced noise Z and the classical
Schauder estimate on Holder space of positive regularity. So not only do we have that
® sends S7™(up) into itself, but we also have that @ is locally Lipschitz from S} (uo)
into [ [, CB=lahatBs  c3e+8 a5 a consequence of the locally Lipschitz character of the
corrector and commutator and their iterates, and the refined corrector. The contraction
property of ® : 8P (ug) — S} (uo), for T sufficiently small, follows then from the
elementary estimate

59—8,
lwles; ST 72 |wlless, W= =0 (4.11)

that holds for any do > d; > 0.

Here are explicit formulae for the components vtli and vg = v?l of f. The term vg is the

remainder in the second order paracontrolled expansion of f(u). Denote by (3c)s(u) the
3a-remainder in the second order paracontrolled expansion for f(u), defined by

1
flu) = Py + B Pf(g)(u)l—l(u, u) + (3a) ¢(u).
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The function (3a); sends continuously C* into C3*. One has
3
Uﬁ = Z R"(f’(u),ui, ZZ) + Z Pfl(u)R(]., U]’, Zj) + Pf'(u)R(17 PU12Z2 —+ U%, Zl)
i=1 j

1
+ R(l, (Ulla Zl), Zl) + Pf/(u)uﬁ + 5 Pf<2)(u)D(ui, Zl,u) + (30&) (u)

1
+ 5 R(f(2)(u),ul, I'I(Z,J, u)) + R(f’(u),un, R(l, AR Z1 Z Pf(z) Z], u)
1
+§Z P 1) (uyuy (21, Puy, Zi + ) + = Pf(g)(u)ulD(ul,Zl,Zl)
Jj=2
1
+5 R(f wur,u, (21, 21)) + R(L [ (w)uz, Zo) + R(L, f'(w)urn, R(1 21, Z1)
1
+ 5 R(L /D@t N(Z1, 20) + R(Lo5y, 20) + R(L (PO ) + f/(wpunn, 21), 21)

+R(1, fP(u )ul,n(zl,zl)),zl)_

The term vg = v%l is the 2a-remainder in the first order paracontrolled expansion of

f'(w)ui. Denote by (2a) s (u) the 2a-remainder in the paralinearisation formula for f’(u),
defined by

f(u) = Prayyu + (20) g (u).
One has

vy = vl = N(f (w),u1) + Py (PuZ1 + 1) + (20) pr(u) + R(f (u), w1, Z1)
3
+ R (ur, f@ (u),u) + R(1, f'(w)urr, Z1) + ZPf<2) ) (Pu Zi + )

+RO(fP (wyur, ur, Z1) + R(1, f (u)ul,zl).

The explicit expressions for the other terms of 0¥ are similar or easier to obtain. These
expression are simpler in the case where f(u) = u, as f/(u) = 1 and f®(u) = 0, and
Ro(1,...) = 0 and Pi(%) = (). >

Definition 4.1. A solution to the generalised (PAM) equation is a fized point of ® in
ST (up).

We obtain the following well-posedness result as a direct consequence of Proposition

Theorem 24. The generalised (PAM) equation has a unique solution in ST (ug); it depends
continuously on the coherent enhancement C of the noise (.

Remarks.

e So far, the theory of regularity structures has not been developed in a manifold setting.
The recent work [16] of Dahlqvist-Diehl-Driver shows how this can be done in the sim-
plest case where the noise is not too rough, corresponding in our setting to a regularity
exponent o > % A first order description of the objects is sufficient in that setting, as
was the case in our previous work [1], whose content covers partly their results.

e We assume here that the initial condition is in C*®. We use that fact to put the term
P(ugp) in the remainder. One can improve upon this constraint on ug and only require
that ug € C®, at the price of working with weighted Hélder spaces with a temporal
weight, explosive at 7 = 0, for example a space equipped with the norm

sup 77 [[u(7)|ce
0<r<T
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for some v > 0. See |20} B] or [32] for a sample of works where ug € C?, in a first order
paracontrolled setting.

The next statement is about the linear (PAM) equation
ZLu = uC. (4.12)

Theorem 25. Assume the noise ¢ in the (PAM) equation is a space white noise on M, and
the components 3, Xy of the enhanced noise Z” are such that both L3 and LX; take values
in LXCk=2_ Then equation has a unique, global in time, solution in S (ug). Its
restriction to any finite time interval depends continuously on the coherent enhancement E of
the noise C.

Proof — Define a temporal weight

w(r) = e, (4.13)
for some non-negative constant x to be fixed later, and work in weighted parabolic Holder
space Cy,, described in Appendix We let the reader to check that all the proofs of
continuity for the paraproduct, resonant, correctors and commutators, still hold in the
setting of weighted parabolic Holder spaces, with estimates that are uniform in x > 0.
This uniform character of the continuity estimates comes from the important fact that
all our approximation operators Py, Qy, ... are supported only on “past time”-half spaces.
Indeed, if T" is an operator acting on the time variable with a kernel K (7, 0) supported on
the past time half space {(7,0),0 < o < 7}, then

w(r) ) = e TN = [ Kno)e ™ (o) do
_ JOT K(T, U)e_H(T—a)e—mTf(o.) dO’,

so we are reduced to the case of T(w™'f), up to an extra coefficient e=*("=%) which is
k-uniformly bounded by 1, because of the time-support of the kernel K.

With this point in mind, we repeat the previous computations in the weighted Holder
spaces. The assumptions on the components of the enhanced noise allow us to use Schauder
estimates, Theorem and gain an extra factor £~ (%2791)/2_ This is the analogue of
in the above unweighted proof. Taking x large enough allows to compensate any "implicit’
constants in the different estimates and get the contraction property of the map ®. We
then conclude the proof of the existence and uniqueness of the fixed point, for an arbitrary
horizon time. This approach using weighted spaces only works for a linear application f.
>

4.3.2 Generalised (KPZ) equation. We proceed exactly as in the preceding section, working
with an initial condition ug € C**(T). We assume a coherent enhancement ¢ of the (gKPZ)
noise ( is given, and work with the associated reference system Z. Recall from that the
components of Z are naturally indexed by the index sets & and B3, := {b € AB; b < 3a}.
Here again, a ’formal’ solution of the equation needs to satisfy the constraint

up = hy(u),

for b € P<3, and explicit functions hy, in addition to the constraints u, = hg(u), a € &7, on
the components that are common with the (gPAM) equation. One has for instance

hayay (W) = (gf*) (W), hayeyw) = (9f>f) (W), haymayw) = (9°f%)(u).
(Our index notation becomes a bit messy on concrete examples, and the tree-indexed notation
of regularity structures seems more appropriate to get concise notations.) Set

S;pz(uﬂ) = {ﬁj? UEL\T:O = ha(u())7 U?TZO = UO}-
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Equipped with the natural norm induced from Haeduggqa CB=laba+fa . c3a+8  the space
S;pz(uo) is complete. Recall the definition of the map ¥ defined in (4.5)).

Definition. A solution of the (gKPZ) equation is a fized point of W in Sf*(ug).

The very same reasoning as above provides the local in time well-posed character of the
(gKPZ) equation; details are left to the reader.

Theorem 26. Given ug € C**(T), one can choose the time horizon T sufficiently small for
the generalised (KPZ) equation to have a unique solution in Sy*(ug). This solution depends

continuously on the coherent enhancement Z of the noise (.

A — Details on the parabolic setting

For the reader’s convenience, we recall in this Appendix a number of notions/facts intro-
duced and studied in detail in our previous work [2], with the hope that this will make the
reading of the present work self-contained. We refer the reader to [2] for the proofs of the
different statements given here. We describe in Section a class of operators with some
cancellation property; they play here the role played by the Fourier projectors A; on dyadic
blocks in Littlewood-Paley theory. Parabolic Holder spaces are described in Section
together with Schauder estimates in this scale of spaces. We introduce the pair (P, |5) of
paraproducts in Section The statements given here are explicitly used in the proofs of
the continuity results of Section [3] to be found in Appendix [C]

We use the notations introduced in Section and assume the operator L satisfies the
assumption stated there. Recall we denote by e a generic element of the parabolic space M.

A.1  Approximation operators

The use of paraproducts and other kind of singular operators involve the fundamental notion
of approximation operators, some aspects of which we discuss in this section. Recall typical
space/time points are denoted by (7,z) and (o, y).

The following parabolic Gaussian-like kernels (G;)o<t<1 will be used as reference kernels.
For0<t<1and o <, set

—0

2
-1 p (’T,SU),(O',y)
Gi((r, ), (0:9) = v(Baa (7). V) (1 2T )
and set G, = 0 if 7 < 0. We do not emphasize the dependence of G on the positive constant
¢ in the above definition, and we shall allow ourselves to abuse notations and write G; for two
functions corresponding to two different values of that constant. So we have for instance, for
s,t € (0,1), the estimate

J;v[ gt ((7-7 $), (07 y)) gS ((Ja y)7 ()‘7 z)) V(dady) < gtJrs ((Tv .7}), ()\a Z)) . (Al)

Presently, note that a choice of large enough constant ¢; in the definition of G; ensures that
we have

sup sup | Gi((7,2)(0,0) vldody) < e,

te(0,1] (r,x)eM IM

so any linear operator on M, with a kernel pointwisely bounded by some G; is bounded in
LP(v) for every p € [1, 0.
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Definition. We shall denote throughout by G the set of families (Py)o<i<1 of linear operators
on M, with kernels pointwisely bounded by

’Kpt(e,e')‘ < Gile, €).
Given a real-valued integrable function ¢ on R, set

Pr() 1= %Qﬁ(Z)’

the family (¢¢)o<¢<1 is uniformly bounded in L!(R). We also define the “convolution” operator
¢* associated with ¢ via the formula

¢%nvw=ﬁfwT—@fwma

Note that if ¢ has support in R, then the operator ¢* has a kernel supported on the same set
{(0,7);0 < 7} as our Gaussian-like kernel. Moreover, we let the reader check that if ¢, ¢o
are two functions in L', with ¢5 supported on [0, 0) then

(¢1 % ¢2)" = @7 0 ¢3,

where ¢1 * ¢o stands for the usual convolution of ¢; and ¢o.
Given an integer b > 1, we define a family of operators on L?(M) setting

ng) = ’}/b_l(tL)be_tL and _ tatpt(b) _ ng)’

with v, := (b — 1)!; so Pt(b) is an operator of the form p,(tL)e~'*, for some polynomial p,
of degree b — 1, with value 1 in 0. Recall from Section the definition of the differential
operators V7, for I a multiindex. Under the assumptions on L stated in Section the

operators Pt(b) and ng) both satisfy, for any multi-index I, the Gaussian regularity estimates

2
1 e d(ziy)

Vﬁémﬁ”ﬂgwmmﬂ»e ’

K x,
’ t@VIR( y)

with R standing here for Pt(b) or ng), as well as the following pointwise regularity estimates.
For d(z,z) < /t, we have

d(z, z) 1 _ o dz)?

Vi Vo

where K is the kernel of either t%l ViR or t%‘ RV;.

[ (@,y) = K (z,y)| <

The parameters b and ¢ are chosen large enough and fixed once and for all — see [2] to see
how to choose these parameters. The reader should simply keep in mind that the higher b and
{1 are, the higher order of regularity we can deal with. In our applications, we need all the
objects to have a regularity order in the range (—3,3), so b and ¢; are chosen big enough to
allow for this range in all the following continuity results.

Definition 27. Let an integer a € [0,2b] be given. The following collection of families of
operators is called the standard collection of operators with cancellation of order a,
denoted by StGC®. It is made up of all the space-time operators

171 a—|J|—2k () *)
t2Vy)(tL 2 P
(( 7)(tL) t@m 0<t<1
where k is an integer with 2k + |J| < a, and c € [1,b], and m is any smooth function supported
on [%,2] such that

JTim(T) dr =0, (A.2)
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for all 0 < i < k— 1, with its first b derivatives bounded by 1. We also set
stGclo®l.— | ] steee.

0<a<2b

The above mentioned cancellation effect is quantified by the property (A.3)) stated in Propo-

s1t10nbelow. Note here that it makes sense at an intuitive level to say that L™ 2~ encodes

cancellation in the space-variable of order a — |J| — 2k, that V encodes a cancellation in space
of order |J| and that the moment condition (A.2)) encodes a cancellation property in the time-
variable of order k for the convolution operator m;. Since we are in the parabolic scaling,

a cancellation of order k in time corresponds to a cancellation of order 2k in space, so the
~1J|-2

operator VJL Pt(c) ®my is expected to have a space-time cancellation property of order

a.

Definition. Given an operator Q := Vi ¢(L), with |I| = 1, defined by functional calculus from
some appropriate function ¢, we write Q° for the formal dual operator

Q* = ¢(L)Vr
ForI =, and Q = ¢(L), we set Q°* := Q. For an operator Q) as above we set
(Q ® m*). =Q*®@m".

Note that the above definition is not related to any classical notion of duality, and emphasize
that we do not assume that L is self-adjoint in L?(p). This notation is only used to indicate
that a (); operator , resp. a ()7 operator, can be composed on the right, resp. on the left,
by another operator (L), for a suitable function v, due to the functional calculus for L.
L is supposed to be sectorial and to have a holomorphic functional calculus, so for example
it is known to give a sense to ¢(L) for every holomorphic function ¢ (or function Which are
holomorphic and bounded in a small sector of the complex plane around (0, 0), as ¢(z) = zFe™?
for example).

Proposition 28. Consider Q' € StGC* and Q2% € StGC® two standard collections with can-
cellation, and set a := min(a1,as). Then for every s,t € (0,1], the operator QL o Q?* has a
kernel pointwisely bounded by

Korarted) = (552) Glend) (A.3)

The above mentioned orthogonality property of standard operators with cancellation is en-

a

(s+t)
as s or t is small compared to the other.

coded in the factor (%) ? that appears in the above estimate. This factor is small as soon

Definition. Let a be an integer in [0,2b]. We define the subset GC* of G of families of
operators with the cancellation property of order a as the set of elements Q of G
with the following cancellation property. For every 0 < s,t < 1 and every standard family
Se StGCa/, with a' € [a,2b], the operator Q; o St has a kernel pointwisely bounded by

< () Gtend) (A4)

’KQ‘OS;(e’ ¢) s+1)

We introduced above the operators ng) and Pt(b) acting on functions/distributions on M; we
now introduce their parabolic counterpart. Choose arbitrarily a smooth real-valued function
@ on R, with support in [ ,2], unit integral and such that for every integer k = 1,..,b

JTkgo(T) dr = 0.
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Set
Pt(b) = Pt(b) ® p; and ng) = —t@tpt(b).

An easy computation yields that
b b * b *
() £)®<Pt+Pt()®¢t

where (o) = p(0) + o¢’(0). Note that, from its very definition, a parabolic operator ng)
belongs at least to GC2, for b > 2. Note also that due to the normalization of ¢, then for every
f € LP(R) supported on [0,0), we have the convergence in LP

oi(f) —> [

t—0

So, the operators P; tend weakly as t goes to 0 to the identity on LJ[DO ) (M), the set of functions

f € LP(M) with time-support included in [0, c0), with p € [1,0). The same convergence holds
on the set of functions f € C°(M) with time-support included in [0,00). The following
Calderén reproducing formula follows as a consequence. For every continuous function
f e L*(M) with time-support in [0, o), then

f= JQt —+7D1 ¥, (A.5)

Noting that the measure % gives unit mass to intervals of the form [2 =12~ ] and consid-

ering the operator ng) as a kind of multiplier roughly localized at ”frequencies” of size t_%,
Calderén’s formula appears as nothing else but a continuous time analogue of the Littlewood-
Paley decomposition of f, with % in the role of the counting measure.

A.2 Parabolic Holder spaces and Schauder estimates

We recall in this section the definitions and basic properties of the space and space-time
weighted Holder spaces, with possibly negative regularity index. We also recall the fundamen-
tal regularization properties of the heat operator, quantified by Schauder estimates.

Let us start recalling the following well-known facts about Holder space on M, and single
out a good class of weights on the parabolic space M. Given 0 < o < 1, the classical metric
Holder space H® is defined as the set of real-valued functions f on M with finite H%-norm,
defined by the formula

/(@) = f()]
o 1= o+ osup T < o0,
b= = [ sryeM  d(z,y)*
Definition. For a € (—3,3), define C* := C*(M) as the closure of the set of bounded and
smooth functions for the C*-norm, defined by the formula

Il = ™ flmqun, + 08, € 2101 oo
<t<

This norm does not depend on the integer b > g—‘, and the two spaces H® and C'* coincide
and have equivalent norms when 0 < az < 1 — see for instance Proposition 2.5 in [I]. These no-
tions have parabolic counterparts which we now introduce. Recall we work with the parabolic
space M = [0,T] x M, for a finite time horizon T. The introduction of a time weight in the
next definition thus has no effect on the space involved, nor on its topology. Its introduction
happens however to be a convenient freedom which allows to simplify a number of arguments.
Let then a non-negative parameter s be given and denote by w the weight

w(r) = e, (A.6)
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For 0 < a < 1, the metric parabolic Holder space H* = H*(M) is defined as the set of all
functions on M with finite H*norm, defined by the formula

B _ |f(75$)__f(07y)
[l o= o g + sup w(7) o
| Ity 0<p((r2) (o 3))<1; 750 p((1, ), (0,y))

As in the above space setting one can recast this definition in a more functional setting, using
the parabolic standard operators. A set of distributions was introduced in [2], whose precise
definition is irrelevant here.

Definition. For o € (—3,3), we define the parabolic Holder space
C*=CY(M)=C(M)=C
as the closure, in the set of distributions, of the set of bounded and continuous functions on

M for the C* — w-norm, defined by
[flca := sup Hwilgl(f)HLw(M) + sup  sup t*%wath(f)HLw(M).

QestGek Qestgck  0<t<l1
0<k<2b || <k<2b

We write Cg, if we want to emphasize the dependence of the norm on w. The following result
was proved in [2], building on Calderén’s formula (A.5)).

Proposition 29. Choose any finite non-negative parameter k in the definition (A.6) of the
weight w. Given a € (0,2), set

ca . (Cﬁ‘/QL;O> A (L200§‘>7

and endow this space with its natural norm. Then £ is continuously embedded into CS.
Furthermore, if a € (0, 1), the spaces E*,CS and H® are equal, with equivalent norms.

The weighted version (L;‘PC?) of LXCY is the same space, equipped with the norm
w

o<T<T

|f|< ) = sup e[ f(7,)] g
LECY
We use the following regularization properties of the heat operator associated with L, in the

proof of global in time well-posedness for the (PAM) equation. It is proved under this form in
Section 3.4 of [2].

Theorem 30. e For any choice of parameters B and € > 0, such that —2 + 2 < 8 < 0,
we have

-1 _
H.iﬂ (U)H(Zf}“*% ST K ‘EH'U“ (L%’Cf)w'
e Given € (0,2) and € € [0,1), we have the continuity estimate
|27 (0)]| gp+2-20-22 < K750l
for an implicit constant in the inequality ndependent of k.

Before turning to the definition of an intertwined pair of parabolic paraproducts we close
this section with another useful continuity property involving the Holder spaces CJ; it is used
in the proof of the continuity properties of the swap an merging operators, Proposition [38| in
Appendix [C] Recall the manifold M is compact.

Proposition 31. Given a € (0,1), a space-time weight w, some integer a = 0 and a standard
family P € StGC®, there exists a constant ¢ depending only on the weight w, such that

) (Pef) () = (Pof) ()] < ¢ (s 0+ ples D) e

uniformly in s,t € (0,1] and e = (1,2) and € = (0,y) € M, with T > 0.
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It is possible, and necessary for our purpose here, to make the link between the notions
of regularity defined in terms of the operator L and the usual notion of regularity given by
the differentiable structure of the manifold, for regularity indices in the range (1,2). Since
the collection of vector fields (V;)1<i<s, spans smoothly each tangent space, for every function
feCYM) and every x € M

Vi) = Y %@)Vif)(x) Vi(z),

1<i<tp

for a collection (7;)1<i<s, of smooth coefficients. For two points 2,y € M and f € C*(M) we
have

|f (@) = fy) = (Vf(2), o g)rm| S5 dl,y)?,

where T, M is the canonical tangent space of M at the point x € M, and 7, is a tangent
vector of T,, M of length d(x,y), whose associated geodesic reaches y at time 1. Such a tangent
vector 7, is unique if d(x,y) is no greater than rz, the injectivity radius of the compact
manifold M. Combining these two facts, we have

(@) 2 @)Vl D) @) Vel@), moyr, | < dl,y)’.
We can then define for a € (1,2), the space H* defined by the norm

(@) = Fy) = S @ Vel D) @)X Vel@), Ty

i = iy + 502, TEme o

d(z,y)<rM
(A7)
Following Proposition 2.5 in [1], it can be easily proved that for « € (1,2) then C* is continu-
ously embedded into H%: Uniformly in 2,y € M with d(z,y) < rs, one has

Zw (@)(Ve(2), ma ), 01| S d(,y)* | e (A.8)

The parabolic counterpart goes as follows, taking into account the fact that because of the
parabolic scaling, a regularity of order @ < 2 can be encoded in finite increments in time,
with no need of a higher order expansion, and a first order expansion in space. The precise
statement takes the following form.

Proposition 32. Given a € (1,2) and f € C%, there exists a positive implicit constant such that
for every e = (1,z), € = (0,y) in M, with p(e,e’) < rar then

f(e Zw WeH) () Ve(w), may)rnr| S | flew ple, ).

Proof — We do not give all the details of the proof since it follows exactly the proof of Propo-
sition 2.5 in [I]. Here is a guideline.

We decompose f at the scale r = p(e, e’) with

f=(f=P%f)+ cfo PrQu(f) %

We plug this decomposition in the left hand side of the desired inequality. One gets
estimate on the contribution of the first part (f — 7332 f) using that

If=P2f], sl fleas [VilF = PR S 7 flleo
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and recalling that m,, has length d(z,y) < r. For the second part, we integrate the
contributions along ¢ > r2, applying (A.8) at order 2 to the kernel Kp, to obtain, for
e = (1,2) and € = (0,y), the estimate

2
‘Kpt(e76,) Kp, (e Zw ) Kv,p, (e, " )(Ve(), 7Tac,y>TIM’ < (\2) Gi(e,e”),

where G; is the Gaussian kernel. Integrating this estimate against Q(f) gives a factor

2
(%) /2 which can then be integrated along ¢ € (12, 0) since a € (1,2). >

A.3  Parabolic paraproducts

We give here a quick presentation of the pair of intertwined paraproducts introduced in [2],
following the semigroup approach developed first in [I]. The starting point for the introduction
of the operator II is Calderén’s reproducing formula . Using iteratively the Leibniz rule
for the differentiation operators V; or 0,, we have the following decomposition

fg_EaMf (AL fg+AHg,> +Zb f )tt’

where

o T is the set of all tuples (I, J, k, ¢) with the tuples I, J and the integers k, ¢ satisfying
the constraint

1] + || b
k+1L0=—;
9 + Kk + %
o i‘g, bI 7 are bounded sequences of numerical coefficients;
o for (I,.J,k,0) € T,, Ay (f,9) has the form
(f g) )(t 2‘+kv ak‘) <St(b/2)f ( lJ‘-ﬁ-@V a@)fpt(b) )

with St/2) e GCY?;
o for (I,.J,k,0) € T, B} (f,g) has the form
(g = U ({7 viah PO gk { (7 sl P}

with S®/2) ¢ GCY/2,

Definition. Given f in ey C* and g € L*(M), we define the paraproduct Py f by the
formula

! dt
Péb’f:f { > wh AL+ Y b B >} :
0 Ty 4kt Tyl 4 k> 2

and the resonant term II)(f, g) by the formula

! IJ 1,0 oI, J dt
f 2 ( (f g) +~Ake(97 f)) + Z bklé Bk;:g (f,9) L

Tyl 4k Tp; 4=l o2
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With these notations, Calderén’s formula becomes

fg =Py f+P lg+ 11O (f,9) + A1 (f,9)

with the “low-frequency part”
b
i(F.9) =P (P PPg).

If b is chosen large enough, then all the operators involved in the paraproduct and resonant
terms have a kernel pointwisely bounded by a kernel G; at the right scaling. Moreover,

(a) the paraproduct term Pgb) f is a finite linear combination of operators of the form

[l ot (atr-pia) %

with Q1, Q2 € StGCH, and P! e StGC0Y],
(b) the resonant term II®)(f, g) is a finite linear combination of operators of the form

1 dt
Pi(Qif - Qlg) —
JO t ( t t ) t
with Q1, 02 € StGCT and P! e StGCOH,

We invite the reader to see what happens of all this when working in the flat torus with its
associated Laplacian. Note also that chb)(l) = H®(f,1) = 0, and that we have the identity

b b b
PV f = =P (Pf),
as a consequence of our choice of renormalizing constant. Therefore the paraproduct with
the constant function 1 is equal to the identity operator, up to the strongly regularizing

operator 77£ ) o P(b) The regularity properties of the paraproduct and resonant operators can
be described as follows; it behaves as its classical, Fourier-based, counterpart ([2.1)).

Proposition 33. (a) For every real-valued regularity exponent «, 8, and every positive reg-
ularity exponent v, we have

[A-1(f, 9] < [flle=lgles-
(b) For every a € (—3,3) and f € C*, we have
PO, < lall s
for every ge L*, and
POF,..p S lglslFleo
for every g e CP with B <0 and o + € (—3,3).
(c) For every a, 5 € (—3,3) with a + 8 > 0, we have the continuity estimate

nO(.9)|.,.,, < 1fleelgles-

Cca+B

Definition. We define a modified paraproduct P setting
PI =27 (PO(2))).

The next proposition shows that if one chooses the parameter ¢; that appears in the reference
kernels G, and the exponent b in the definition of the paraproduct, both large enough, then
the modified paraproduct P(®) has the same algebraic /analytic properties as p®).



53

Proposition 34. e For a choice of large enough constants ¢1 and b, the modified para-
product Py f is a finite linear combination of operators of the form

[ a(atr mia)

with Q' € GC:~2, Q% € StGCi and P! e StGCIOW.
o For every a € (—3,3) and e € (0,1) with « —e € (—3,3) and f € C*, we have

s

e S0 e

for every g e L™.

The notation Q'* does not make sense for a generic element Q' of GC. The operator that
appears in this formula is actually of the form Qf = Q;t 1.¥~! with Q € StGC, for which
the notation Q!* makes sense. Note that the norm | f|ce above has no weight. Note here the
normalization identity

P = f =2 o P o P
for every distribution in f € S!; it reduces to
P = =PUPY ()
if f|‘r:0 -

Following the definition of the inner difference operator 2 given in Subsection we
extend it to the parabolic setting defining .@ =9, ) by the formula

f (21)( - j j g(e) vde)v(de’);

with this notatlon, the crucial motivating relatlon
Pf (Pag> - Pfa.g = Pf<P@ag>
holds true.

Last, we prove an elementary property of the modified paraproduct that provides some
pointwise information on the solutions to singular partial differential equations.

Proposition 35. Let a, 3 be positive reqularity exponents, and let u,Z € C* with v € C? be
given, with Z(0,-) = 0. Assume that

uw—P,Z eCtP,
and define vy := min(a + ,1). If a + f # 1, we have
[u(e) — u(e) — v(e)(Z(e) — Z())| < ple. €'},
uniformly in e, e’ € M with p(e,e') < 1. If a« + 8 = 1, we have an additional logarithmic loss

’u(e) — u(e/) —v(e) (Z(e) — Z(e'))’ < ple, e') log (1 + p(e, e’)*1>.

Proof — Due to the assumption, one has
[u(e) —u(e) —v(e)(Z(e) = Z())| < ple, )’ + (%)
with
%) = ‘(F’UZ)(e) — (B,2)(¢)) — v(e)(Z(e) — Z(e’))‘ .
Using Calderén reproducing formula, or the normalization, yields

P.Z=2Z
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since Z(0,-) = 0, and we see that () is equal to

)

L Q7 (QiZPw)(e) — Qf (e ZPw)(e) — v(e)Qf (¢ Z) (e) + v(e) Qf (2 Z) (¢) %

(x) < Jo J(Kgg(e, a) — Kgg(el, a)) Q.7 (a) (Ptv(a) — v(e))u(da)

Using the regularity estimates on v and on the kernel of the approximation operators, one

SO
dt

sees that
1 /
. e, e 4 dt
() oles [ [min {125 Gie.@z(@] (04 plan ) vide)
0 Vi t
plee’)? dt Lo ple,e) dt
< Tl ((2aty)/a Gt Tl f f PLE:€) (aaty)/a At
foles)Zlee | et Zler | [ 24 /
< [vleslZlcap(e, )7,
which concludes the proof. >

B — Paracontrolled expansion formula

We give in this section a detailed and rigorous proof of Theorem The parameter b is
fixed, and we note II for II(®).

Theorem 36. Let f : R+— R be a C* function, and let u be a real-valued and C* function on
M, with a € (0,1). Then

1
F() = Ppray() + 5 {P o) = 2P o .}

1
+ g{PfB)(u) (Ug) — 3Pf(3)(u)u(u2) + 3Pf(3)(u)u2 (u)} + f(’u,)ti

for some remainder f(u)f € C**. If moreover f is of class C®, then the remainder term f(u)t
1s locally-Lipschitz with respect to u, in the sense that

| (@) = F ()] s < (1 + e + vlca)” u — v]jca. (B.2)

(B.1)

Proof — Let us give a detailed proof of the third order expansion, that claims that

(#) = f(u) = Pprguy () - % {P ) (1) = 2P gy ()

is a 3a-Holder function. We invite the reader to follow what comes next in the light of
the proof given in Section [2|in the time-independent, flat, model setting of the torus.

As, by definition, the paraproduct operator Pg4(-) is a finite sum of different terms, each
of them of the form

A0 = [ ot (@) &,

with Q', Q2 at least to StGC3, it is sufficient to prove that the following function
! 2 1 L 27,2y pl( ¢(2
(+) = f<u>—f0 {Qt'(gt P W) + 591 (2P PP (w)
dt

~0}* (Gt P (P )| 5
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is an element of C3®. Using Calderén’s reproducing formula together with the normaliza-
tion of the paraproduct, we have

1
flu) > | atrek(rpi)

up to a remainder quantity corresponding to the low frequency part that is as smooth as
we want. So one can write (x) under the form

1
t
o) & (B.3)

with
e :=QF (f(w))PH1) — Q(w) P} (1 (w)
- 5@ PP W) + Q) P (1O ).

Due to the orthogonality/cancellation property of the operators Q;°, it suffices for us to
get an L® control of ;. Using the kernel representation of the different operators, we have
for every e e M

o) = [[Kaptese) Kyt 7 (ute)) — ulef (u(e)
MQ
- %uQ(e/)f@) (u(e”) + u(e’) f? (u(e"))u(e”)} v(de"v(de”)
Note also that we have from the usual Tayor formula for f

Fu(e)) —ule) f (ue") - %uQ(e’)f @ (u(e") +u(e) £ (u(e”))u(e")

= Jff @ (U(eﬁ) + 535281 (u(e’) — U(e")))5251 (u(e") — u(e”))3 dssdsodsy
[0,1]3

F 1)+ ule)f () + 30 ( )7 (ule")).

When we integrate against Kgz(e,e’)Kpi(e,e”) a quantity depending only in e” has no
contribution, since the latter kernel satisfies a cancellation property along the e’-variable.
So we have exactly

cile) = f f Kosle.€)Kpy (e, ")

M
fff f(s) (u(e”) + 35251 (u(e/) — u(e”))>8251 (u(e') — u(e”))3 dssdsodsy |v(de')v(de”).
01

Since K Q? and K»Ptl are both pointwisely dominated by the Gaussian kernel G;, and using

the fact that f®) is bounded on the range of u, we obtain the uniform control
lei(e)| < ff Gi(e, €' )Gi(e, €") (u(€e') — u(e”))3 v(de")v(de")
M2

< Jula £272,

from which the fact that (x) belongs to C3 follows from (B.3]). We used for that purpose
the identity

u(e) —u(e’) = (u(e’) - u(e)) + (u(e) — u(e")),
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together with Proposition on the characterization of parabolic regularity in terms of
increments, to see that

[u(e’) —u(e”)| < (d(e,e) + d(e”, €)) " | flle=-

The fourth order expansion of the statement is proved by a very similar reasoning left
to the reader. One proceeds exactly as in the proof of Theorem [4] to prove the stability

estimate (B.2]). >

Observe the fact that one can give a paracontrolled expansion formula with the P operator
in place of the P operator, as a consequence of Proposition [34] on the structure of the modified
paraproduct P, and the proof of Theorem

C — Continuity results

Recall the definitions of the corrector
C(f,g.h) =11 (Ps(g),h) = f (g, h),
the (modified) commutators
D(f.9.h) = 11 (P(9),h) =Py (N(g. ).
R(f,9,h) = Py (Pyh) = Pygh,
S(f.9.h) =Py (Pyh) = Py (Psh),

and their iterates, introduced in Section [3l We use also their © variants, built with P in the
role of P; we have for instance

R°(f.g.h) = P; (Pgh> — Py,h.

All these operators are initially defined on the space of smooth functions. We prove in this
section the continuity results on these operators stated in Section

Let x stand for a smooth non-negative function on [0, ), equal to 1 in a neighbourhood of
0, with x(r) = 0 for r > rj. Given e = (t,x) € M, set

55(6, 6/) = X(d(:l}/, .1‘)) <VZ(‘T)777:L‘x’>TzM7

for ¢/ = (t',2") € M and exp,(mzr) = 2/, and 1 < £ < £y, and

N1y (9,h) == N(Ps, (.09, k) (e)-
Definition 37. The refined paraproduct is defined by the formula

Lo
Cay(f,9:1)(e) == C(f, g, h)(€) = X ve(Vf) Ny (g, h) (e).
=1

Recall from Section 3.1.1 the simple definition of the refined corrector in the model setting
of the flat torus.
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C.1 Boundedness of commutators/correctors

We start by looking at the case of the swap and merging operators S and R. We do not
emphasize in the next statement the choice of parameter x in the time weight. This has no
consequence on the use of these continuity results for the study of singular PDEs, as we only
use Schauder estimates in weighted spaces to deal with the terms from the enhancement of
the noise in the study of the linear (PAM) equation, not for all the well-defined terms builts
from the corrector, commutator and their iterates.

Proposition 38. o Let a, 3,7 be Hélder reqularity exponents with v € (—3,3),5 € (0,1)
and a € (—00,0). Then if
B+ v <3, and d:=a+p+v€e(-3,3),
we have
ISCf.g. Wles +[S°(f, 9. W) s < 1flle Igles [l (C.1)

so the modified commutator on paraproducts extends naturally into a trilinear continu-
ous map from C* x CP x CY to C9.

o If a = 0 then the product fg has a sense for f € L®(M) and g € C?, with 0 < § < 1,
and we have

IR°(f, 9, 0)|gpar + [RCF, 9:1) | oy < 1Flle lgllce [ leo- (C.2)
o If a, € (0,1) and v € (—3,3), then we have
IR, 9: 8| garaer < [ fllee Ngles I Rllev- (C.3)

Proof — Recall the operators Péb)(‘), respectively 55))('), are given by a finite sum of operators
of the form

A0 = [ @ (et0Pin) .

respectively
dt

1
A= | ar(@0rimn) T

0
where Q', Q2 QQ belong at least to StGC? and @1 is an element of GC3. We describe

similarly the operator chb)() as a finite sum of operators of the form

dt
-

1
A= | et (Qtepr))
0
Thus, we need to study a generic modified commutator
2 (71 142
A3 (A (R)) = AL (AF(R))
and introduce for that purpose the intermediate quantity

1
R ds
T A CORAOR AT B
(We proceed similarly for the study of S°.) Note here that due to the normalization
P1 ~ Id, up to some strongly regularizing operator, there is no loss of generality in

assuming that
d d d
f ora JQJQQ ! JQ;Q‘* & _ 1 (C.4)



58

Step 1. Study of Afc <.%T;(h)) —&(f,9,h). We shall use a family Q in StGC®, for some a >

|0], to control the Holder norm of that quantity. By definition, and using the normalization

(C.4), for every r € (0,1), the quantity O, <A2 (.%Tl (h)) —-£&(f, g, h)) is equal to

jfgrgg- {Qiar (G mPi) - PHn =
. j J 0,0*{ 0! i'(éﬂm(w(g)—m@»)-P3<f>}%,

where in the last line the variable of Pl(g) is that of Q3°, and so it is frozen through the
action of Q*Q}*. Then using that g € C# with 8 € (0,1), we know by Proposition 31| that
we have, for 7 = o,

(Plg)(e.7) — (Pha) (o) < (s + £+ pl(@. 7). (1.0)?) gl

Note that it follows from equation (A.1]) that the kernel of Q% N;“I is pointwisely bounded
by G:1s, and allowing different constants in the definition of G, we have

gt+s(($v 7-)? (ya 0)) (5 +1+ d($7 9)2)§ < (5 + t)g gt+s((l‘a 7-)7 (yv U)) (C5)

So using the cancellation property of the operators Q, resp. Q' and @i, at an order no
less than a, resp. 3, we deduce that

|2 (45 (Hw) ~eram)|,

<Uleeldlertile [ [ (255) (5255)

where we used that « is negative to control P2(f). The integral over ¢ € (0,1) can be
computed since v > —3 and S8 + v < 3, and we have

|2 (4 (Hm) ~eram)],

< Fllee lgles 2] H ALY
~ Wesiglesiitier 0 Jo \(s+7)?

[
S [ flealgleslhlerr>,

uniformly in 7 € (0, 1) because |a| > 0. That concludes the estimate for the high frequency
part. We repeat the same reasoning for the low-frequency part by replacing O, with Q;
and conclude that

A3 (Ay)) = E(fg.)]

ds dt ds

S

jg@ CRORHORAG)

vle
nlw

dsdt
st '

w2

B
2

[N]1)

(s+1t)zs

[ SIS0

ds
S

S [ flealgleslPles-

Step 2. Study of A] (A%(h)) —&(f,g,h). This term is almost the same as that of Step

1 and can be treated in exactly the same way. Note that Q, (Aé (A?(h)) - &(f, 9, h)) is
equal, for every r € (0,1), to

ds dt ds

j 0,03 (Q4m) - PHg) - P2(f)) =

S

[ 1 ) 0,01 (0¥ QWP - PL(o))
HQ,« {Qror(tm (P <>—7>;<g>)-7>3<f>)}

where in the last line the variable of P} (g) is that of Q}*, so it is frozen through the action
of Q3. The same proof as in Step 1 can be repeated, which gives the first statement of
the theorem.

dsdt
st
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Step 3. Proof of the second statement. For the second statement, Step 1 still holds. So
it only remains to compare E(f, g, h) with Afc ,(1). This amounts to compare P2(fg) with

P(fgP?(f). Using the regularity of g € C# and the uniform boundedness of f € L®, we
get
[PE(F9) = Pig)PE ()] e < 72

which allows us to conclude.

Step 4. Proof of the third statement. The key observation is that R° satisfies more
cancellation that R, namely

RO(]-?gah) = Ro(fa]-ah) = 0.

Taking advantage of that fact, for any Q € StGC?, we have for s € (0,1) and e € M, the
identity

Qu(R°(£.9.M) () = Qs (R°(f = f(e),9 = 9(e). h) ) (e).
The difference structure has been taken into account in this cancellation/identity and we

can now estimate each piece in the definition of R° separately. Using previous arguments,
one has

1Qu(Py— Py (W) (©)

s J H ot N te Nttt NG e )
~ Joap (s +t1)? (t1 + t2)? (tg + t3)2 s+t1(€,€ )Yt 1i5(€, €
M2

dty dto dts

£ = F@llate) — gle") ptaeywde" )i *hler THTET

o [ [(255) (5225) (255) vteusute.d)
SEO Yo GG+0)2) \(th+t2)2) \(ta+13)2) 7oH0\OC Fntnalce
M2

dtq dts dt
ple,e)ple, e") u(de v (de")t3/* —L =22
t1 to t3

3 3 3
Stl t1t2 t2t3 (a+B)/2 /2 dtl dt2 dt3
< t1+t ty/ " ———
F.g:h j[071]3 <(s + t1)2> <(t1 + t2)2> <(t2 + t3)2> (s + 41 +12) 5.t ty t3

< TR flealgles Rl

uniformly in e € M and s € (0,1), which concludes the proof of the desired estimate for
this first term. (The intermediate implicit constants in the upper bounds are constant
multiples of | f|ca|gllcs|R]cv.) The second estimate is obtained similarly, observing that

(£ = 1) (o) = ()] £ ple's )" flealgles,
and gives in the end
1Qu(R°(f.9:1) [ © 5@ | flea gl [l

Remark 39. The above proof actually shows the following property of the operator

Sthi=9—5S(f,9,h) (C.6)

where f € C* and h € CV are fized. For all families Q', Q% € GC* for some a > 0, the linear
operator Q%Sf’h Q?' has a kernel pointwisely bounded by

st 2

149 (255) Gualerd) e Il
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Proposition 40. o Let o, B, be Hélder regularity exponents with « € (0,1),5 € (—3,3)
and 7y € (—0,3]. Set

d:=(a+pB)A3+n.

If
O<a+pB+v<1 and B+v<0

then the corrector C extends continuously into a trilinear map from C* x C8 x CY to CO.

o If a, 8,7 are positive then the commutator D is a continuous trilinear map from C¢ x
CB x CY to CO.

Proof — The result on C was already proved in [I, Proposition 3.6] in a more general setting.
We only focus here on proving the boundedness of D. As already done above, we represent

the operator chb)(-) under the form

45005 | ENCOLIDE:

0 t’
and the resonant term I1(%) (g, h) as
! dt
Bla.h) = | P (i) T
0
Thus, we need to study a generic modified commutator
(*) = B(Af( ),h) = Ar(Blg, b))
- [ [ 7 (ater (@ pi) atm) 2

- [ [ e (ezpe@tmretmn) pin) L,
0 Jo s t
and introduce for that purpose the intermediate quantity

1
(= [ PR (PHDQQIM) T-

Then we compare the two quantities with £(f, g, h), such as done previously. Each of
these two comparisons makes appear an exact commutation on the function f, due to our
choice of normalization for our paraproducts. Using the C® regularity on f together with
the cancellation property of the QO operators, we get

Ll ro\? st dtds
o < B2/ o2 dt
ot < [ [ () (i) o2+
3
S\ Br2pn2(g 4 pos2 B dS
JJ <r+s ) <s+t> (s + 1) t s

1
< J (7”) pa+pe2 A f <7“> 1202y 4 pyar2 &
0 r+t t 0 r+t t

ST

which shows that (x) belongs to C°. >
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C.2 Boundedness of iterated commutators/correctors

We now turn to the study of the continuity properties of the iterated versions of commuta-
tors/correctors, and start with the (modified) iterated commutator on paraproducts.

Proposition 41. Ify € (0,1), a,v € (0,1/2) and B € (—3,3) then we have
HRO('U,, f7 Pag) - PllRO(“’: f? g)HCaJrBJr'erV S ”f”Ca Hchﬁ HU’HCV HGHCW. (07)
This statement is a combination of both (C.1]) and ((C.3|) of Proposition [38; we let the reader
write the proof. We now state the continuity result for the 4-linear iterated swap operator

defined in (3.15)); a similar continuity result holds for the 5-linear iterated operator defined in
(3.16]); its proof is left to the reader.

Proposition 42. Let «, 51, 82, be Holder reqularity exponents with v € (—3,3), 51,82 € (0,1)
and o € (—0,0). Then if

a+ P+ v <3, and di=a+pB+vy+rve(=3,3),

we have
IS(F. (91, 92). ) es < 17l Lt s Laelog il ()

so the commutator defines a quadrilinear continuous map from C* x CPt x CP2 x C7 to C9.

Proof — Fix some functions f € C* and go € C”?; we have

S(f7 (91792)7h) = S<f7 §91927h> - Pgls(f7927h>'

With the same notations as in the proof of Proposition for which we have relations

(C.4), we write
L el o dt
PoulS(f 9 m)] = | QI (QHS(f 0. 1)) Phan)
Ll e X ds dt
= J J Qt.(Q?[S(fv Q;.QEQQ,h)] Pt 1) t
0 Jo
Expanding S( 7 ﬁglgg, h) correspondingly, we get with Sy, defined in (C.6)),

ds dt

S(f, (91, 92), J J Qtsfh Ql'(Q2g2 (Plgr — 7’91)))} .

where the variable of P}gih is that of Q}*. Since g; belongs to C*', with 1 € (0,1), we
know from Proposition [31] that

|(Phan) (€) — (Pla) ()] (¢ + 5+ ple. ) grlon.

for all e, e’ € M. As above, fix a collection Q of StGC?, for some a > 3, to control Holder
norms. We need to estimate

(C.9)

H Q,S(f, (91, 92), h) H

Using decomposition ((C.9)) , we have

Lt rt 2 ds dt
lostrtan], o< || <(+t)) bt (C.10)

Iy := SUAI; Q%Sf,h<é;.(é§92 - (Plgi(e) — 73;91)))(6)-

Lo(M)

where
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Due to Remark we have a pointwise estimate of the kernel of the operator Q7S (QL*(+)),
so with the pointwise regularity estimate on h and ((C.5)), we deduce that

a+pB1+y

Ly < (s+1) 2 [Q2ga] 0 [ flleo lgilear Ihler

3
S (s+1)2 [ flex lgiles: lg2llcss Ihlen-

It follows from that estimate and the fact that |o| < a, that

H Q,S(f, (g1, 92),

3
W) e < 7 1l il laalcss Il

uniformly in 7 € (0,1). A similar analysis of the low frequency of S( £y (g1, 92), h) can be
done, which completes the proof of the Holder estimate. >

Proposition 43. Pick (1,2 € (0,1) with 1 + B2 < 1, and v € (—3,3). We have

||R(f7 ﬁ91927 h) - Pg1 R(f’ 92, h)HcB1+52+’Y + HRO(f’ P91927 h) - Pg1 Ro(fa 92, h)|‘cﬁl+52+’v
S [fllee lgilles [g2llce: |Rllc (C.11)

Proof — Fix a parameter r € (0,1) and look for a control (uniformly in e € M) of

(+) := Qr[R(f Pyi02,h) = Py, R(£, 92, )] ().
We follow the arguments of Proposition [38 — more precisely of (C.2) and (C.3)), since

N 1
(%) = Qu[R(f. Pyyge, )] (€) - fo Q. Q2[Pugr - QulR(f, 2. W)]] (©).

and we have seen there how tocontrol the composition of a Q operator with R. So we repeat
the exact same reasoning with replacing the function f by Py, f and now the commutator
(with the extra paraproduct Py, ) brings terms of the form

[Pg192(¢") — Py g2(e”)| = Pr(g1)(e")[g2(€") — ga(e”)]

for points €', e”,e” of the parabolic space M, multiplied by Gaussian kernels localizing
points at the scale p(e,e') + p(e,e”) + p(e,e”) < r/2. Using Proposition we deduce
that since g; € C%' and go € C?2 then

[Pyiga(e") = Pgyga(e”)] = Pr(g1)(€”)[g2(¢') — gale")]| < r1H02)/2,
The result follows by repeating the computations done in proving ((C.3]). >
We now look at the iterated corrector. The proof of continuity for the lower and upper

iterates are almost the same and the reader can see clearly on the model case of iterated
integrals what the difference is.

Proposition 44. Let o, 31 € (0,1),82 € (—3,3) and v € (=0, 3]. Assume that o + 1 + 52 < 3
with
di=a+p1+ P2+v€(0,1), a+PBy+v<0 and S+ P2 +7v<0.
Then the 4-linear upper iterated corrector C is a continuous map from C® x C#t x C#2 x C7 to 7.
Proof — Fix f € C* and h € C7 and set
C() :==C(f, D),
SO

C(f.(g91,92),h) = ﬁ(lsmgQ) — g1 C(g2).
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Using the same notation as previously, and omitting for convenience the indices on the
different collections @ and P, we write

C(FN)9192> = Ll (o) (ésgz : 77591) %,
91 C(g2) = o1 6<|51(92)) = g1 J: 6@; <@592 . 7351> %

Note that due to the conservation property of the heat semigroup associated with L, the
quantity Ps1 is either constant equal to 1 or to 0, depending on whether P, encodes some
cancellation or not. Thus, given e = (z,7) € M, and setting

Fs,e = ésQQ : (77591 - ,Ps(]-) '92(6))7
we have

1 ds

C( 1,92 1) (@) = €(Pouga) (€) 1 () Cla)(e) = | (O3 ) ()

0
As before, we can use that g; € C%, with 1 € (0,1). We have for e, e’ € M
|91(€) — g1(¢)] < ple, )’ |lg1llcon

and therefore, using the “Gaussian bounds” for P,

8
[(Psg1)(¢") = (Ps1)(¢) ga(e)] < (s + ple,€)?) ? |greon -
As done in the proof of Proposition [0} we introduce an intermediate quantity of the form

dt

1
S(a,b, c) = j Pt(th' QtC'PtG) PR
0

and write
C(GrFe ) (@) = NP Fu) k) (&) = S(£. QtFcs ) e)
+5(£. QP h) () = () - N(QFe,h) ()

= Il(S) +I2(3). (C.12)

e We start with the estimate for I>. One can then write with generic notations for the
resonant term 11

! dt
(S(f7 92, h) - f ’ n(g27 h>> (6) = L Pt(thQ : ch : (Ptf - f(e)))(e) 77
and it is known that the integrand is pointwisely bounded by ¢ ez Since this argument

only uses pointwise estimates, we can replace b by Q3 F} .. Therefore, by writing

Ll I(s) % = Jol fol Pt(Qt@;Fs,e - Qih - (Pef — f(e)))(e) %%

and using

. ot 3/2
0@t 41c00 % (Grgz) Wi (©13)
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with ¢ = F ., we obtain

1
d
Jo Ix(s) ?8 e
bt ~ dtd
<[ [ e Pi@@iF- i s - P @), T
o Jo L t s

S lgrlles lg2lles [ fleaPlc

| ! : 2\ T gy ety ds dt
[ (i) Gentend) (s plee) P

1,1 3
st 2 aty ds dt
< a h Pa/2(g 4 \P1/24%5 220
leslaalenlonlesatiler | [ (5305 ) o2 0 =2

S [ fllellgrllce: lg2lles: 1hller

since a + 81 + B2 + 7 > 0.

o Let us now estimate the regularity of Is(s). Let e,e¢’ € M with p(e,e’) < 1. We split
the integral in ¢ into two parts, corresponding to t < p(e,e’)? or t > p(e, e’)?. In the first
case, note that

/\2
JP(G,E) t(a+gl+ﬁg+7)/2 ﬂ < p(e e/>a+,31+52+’y
t ~ ) )
0

so that by repeating the arguments above, we get the desired estimate. In the case t > p?
with p := p(e, €’), write for s € (0,1)

J:Q {’Pt<Qté;F&e - Qih - (f(e) - Ptf))(e)

~ P (@GR Qb (5~ Puf) ) ()} T

- JZ {Pt(Qté;F&e - Qih - (f(e) - Ptf)) (e)
- Pt(Qté;Fs,e - Qih - (f(e) = Pif ))(6')} %

1 ~ ~
+ (@) - a) [ Pi(Q@80- Qb (1)~ Pup)) () T
P
1 ~
— (fle) = f(€)) f ] Pt(QtQ;FS,e : ch) () ? (C.14)

p

For the second and third term, we can assume s ~ ¢ by (C.13)). One obtains

dt

lg1(€) = gn(e))] fp 1 (01 Qugz- Qb (F(¢) = Pif) ) ()] 5

1 at+f1+v dt
< Ilealgrlen lgaless Ibller o [ 6557
p

< 1Flleelgr o lg2losa Dler o482+,
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since a + (B3 + v is negative, and

|f(e) = f ()] f

1
< | flleellgrles: g2l sz 1Rl cr o L t

p
04+51+52+V’

dt

(2Q:F. - Q)|

61+§2+w dt
t

S [ flleallgrllcer lg2lles: 1hllex o

since (1 + B2+ is also negative. For the first term in , we now repeat the arguments
of the proof of Proposition [0} which rely on the Lipschitz regularity of the heat kernel
as well as the fact that (a + 1 + S2 + ) € (0,1). Summarising, we have shown that for
e, e/ € M with p(e,e’) <1

[ (o) - Bs)) &

0
< ple )T fleallgiles g2less [Bller-

Let us now come to I1(s) as defined in (C.12)). Set ¢ := é;Fs,ea and write
‘I’I(ﬁf(qﬁ),h) —S(f, 92, h) J (P(A(, f) - Qih) ‘*
with
446, ) (f PG (G0 Pof) - PufPis).
Following the proof of Proposition and using , one obtains

HAt (QiFseru) HLOO(M)

$L1<<r:tt>2>g<<sfr>2>g Fren

d
Jh() >
0 S llLoo(m)

JJJ (r+t ) ((Si"ﬁ)m

and the triple integral is finite since (o + 81 + B2 + ) is positive.

r
7||f||ca lg1llcar lg2llcss

hence

S [ fllexlgiles: [g2lce: Ih]lc~

m‘,\?

atp dr ds dt
(rt)zd T8N
r st

o For the regularity estimate of I;(s), consider

1
Ne Ne dt
| {P(a@iF ) Q) @) = P (A @3 Fur, 1) - Qb)) -
0
The estimate of this expression is similar, though simpler, compared to the one of I5(s),
as here e is frozen only in one spot. As before, one deals with this terms using the heat
kernel regularity of P; and the regularity estimate for a. >
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