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Abstract. For incomplete sub-Riemannian manifolds, and for an associated second-order
hypoelliptic operator, which need not be symmetric, we identify two alternative conditions
for the validity of Gaussian-type upper bounds on heat kernels and transition probabilities,
with optimal constant in the exponent. Under similar conditions, we obtain the small-
time logarithmic asymptotics of the heat kernel, and show concentration of diffusion bridge
measures near a path of minimal energy. The first condition requires that we consider points
whose distance apart is no greater than the sum of their distances to infinity. The second
condition requires only that the operator not be too asymmetric.

1 – Introduction

Let M be a possibly unbounded connected smooth manifold, which is equipped with a
smooth sub-Riemannian structure X1, . . . , Xm and a positive smooth measure ν. Thus,
X1, . . . , Xm are smooth vector fields on M which, taken along with their commutator
brackets of all orders, span the tangent space at every point, and ν has a positive smooth
density with respect to Lebesgue measure in each coordinate chart. Consider the symmet-
ric bilinear form a on T ˚M given by

apxq :“
m
ÿ

`“1

X`pxq bX`pxq.

Let L be a second order differential operator on M with smooth coefficients, such that
L1 “ 0 and L has principal symbol a{2. In each coordinate chart, L takes the form

L “ 1

2

d
ÿ

i,j“1

aijpxq
B2

BxiBxj
`

d
ÿ

i“1

bipxq
B

Bxi
(1.1)

for some smooth functions bi on the coordinate chart. Write p for the Dirichlet heat kernel
of L in M with respect to ν, and write B “

`

Bt : t P r0, ζq
˘

for the associated diffusion
process. For x, y of M and t P p0,8q, set

Ωt,x,y :“
!

ω P C
`

r0, ts,M
˘

: ω0 “ x and ωt “ y
)

.

Consider the case where B0 “ x. While the explosion time ζ of B may be finite, we can
still disintegrate the sub-probability law µt,x of B restricted to the event tζ ą tu by a
unique family of probability measures

`

µt,x,y : y PM
˘

, weakly continuous in y, such that

µt,x,y
`

Ωt,x,y
˘

“ 1

and
µt,xpdωq “

ˆ
M
µt,x,ypdωq ppt, x, yqνpdyq.
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The probability measures µt,x,y are called bridge measures.It will be convenient to consider
these measures all on the same space Ωx,y :“ Ω1,x,y. So define σt : Ωt,x,y Ñ Ωx,y by
σtpωqs :“ ωst and define µx,yt on Ωx,y by

µx,yt :“ µt,x,y ˝ σ´1
t .

We focus mainly on two problems, each associated with a choice of the endpoints x and
y, and with the limit t Ñ 0. The first is to give conditions for the validity of Varadhan’s
asymptotics for the heat kernel

t log ppt, x, yq Ñ ´
dpx, yq2

2
, (1.2)

where d is the sub-Riemannian distance. The second is to give conditions for the weak
limit

µx,yt Ñ δγ (1.3)
where γ is a path of minimal energy in Ωx,y. We wish to understand, in particular, what
can be said without symmetry or ellipticity of the operator L, and without compactness or
even completeness of the underlying space M . The heat kernel and the bridge measures
have a global dependence on L, while the limit objects have a more local character, so the
limits depend on some localization of diffusion in small time. We will give two sufficient
conditions for this localization, the first generalizing from the Riemannian case a criterion
of Hsu [8] and the second requiring a ‘sector condition’ which ensures that the asymmetry
in L is not too strong. We will thus give new conditions for the validity of (1.2) and (1.3),
which do not require completeness, symmetry or ellipticity; no control on the diffusivity
a or the symmetrizing measure ν is needed either. In a companion paper [3], we have
further investigated the small-time fluctuations of the diffusion bridge around the minimal
path γ, which reveal a Gaussian limit process.

We define from the quadratic form a the energy Ipγq of an M -valued path γ and the
distance functions on M in the classical way; see the Notations paragraph at the end of
this section.

Let K be a closed set in M . Write pKc for the Dirichlet heat kernel of L in Kc, extended
by 0 outside Kc ˆKc. Define

ppt, x,K, yq :“ ppt, x, yq ´ pKcpt, x, yq. (1.4)
Then

ppt, x,K, yq “ ppt, x, yqµx,yt

´

 

ω P Ωx,y : ωs P K for some s P r0, 1s
(

¯

.

We call ppt, x,K, yq the heat kernel through K. In the case where Kc is relatively compact,
we write ppt, x,Kq for the hitting probability for K, given by

ppt, x,Kq :“ PxpT ď tq “ 1´

ˆ
Kc

pKcpt, x, yq νpdyq (1.5)

where T :“ inftt P r0, ζq : Bt P Ku.2 Define also
dpx,Kq :“ inf

 

dpx, zq : z P K
(

dpx,K, yq :“ inf
!

dpx, zq ` dpz, yq : z P K
)

2Note that
ppt, x,Kq ě

ˆ
M

ppt, x,K, yqνpdyq ě

ˆ
K

ppt, x, yq νpdyq

and the first inequality is strict if the process explodes, while the second inequality is always strict because
the process returns to U with positive probability after hitting K.
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and note that
dpx,Kq ` dpy,Kq ď dpx,K, yq.

Define
dpx,8q :“ sup

!

dpx,Kq : K closed and MzK relatively compact
)

.

It is clear that dp¨,8q is either finite or identically infinite. By the sub-Riemannian version
of the Hopf-Rinow theorem, the second case occurs if and only if M is complete for the
sub-Riemannian metric. Note that the triangle inequality does not apply ‘at K’ or ‘at 8’,
and dpx,Kq may exceed dpx,8q if MzK is not relatively compact.

1. Theorem – Suppose that there is a smooth 1-form β on M such that
Lf “ 1

2 divpa∇fq ` apβ,∇fq (1.6)
where the divergence is understood with respect to ν. Then, for all x, y PM and any closed
set K in M with MzK relatively compact, we have

lim sup
tÑ0

t log ppt, x,Kq ď ´dpx,Kq2{2 (1.7)

and
lim sup
tÑ0

t log ppt, x,K, yq ď ´pdpx,Kq ` dpy,Kqq2{2. (1.8)

Moreover, if there is a finite positive constant λ such that
sup
xPM

apβ, βqpxq ď λ2 (1.9)

then, for any closed set K in M ,
lim sup
tÑ0

t log ppt, x,K, yq ď ´dpx,K, yq2{2. (1.10)

Moreover, all the above upper limits hold uniformly in x and y in compact subsets of
MzBK.

The sector condition (1.9) limits the strength of the asymmetry of L with respect to ν
and plays the role of a uniform bound on the drift. We will deduce from Theorem 1 the
small-time logarithmic asymptotics of the heat kernel.

2. Theorem – Suppose that L has the form (1.6). Define

S :“
!

px, yq PM ˆM : dpx, yq ď dpx,8q ` dpy,8q
)

.

Then, as tÑ 0, uniformly on compacts in S,
t log ppt, x, yq Ñ ´dpx, yq2{2. (1.11)

Moreover, if L satisfies (1.9), then (1.11) holds uniformly on compacts in M ˆM .

We will deduce from Theorem 1 also the following concentration estimate for the bridge
measures µx,yt on Ωx,y. A path γ P Ωx,y is minimal if Ipγq ă 8 and

Ipγq ď Ipωq for all ω P Ωx,y.

We will say that γ is strongly minimal if, in addition, there exist δ ą 0 and a relatively
compact open set U in M such that

Ipγq ` δ ď Ipωq for all ω P Ωx,y which leave U.3 (1.12)

3When M is complete for the sub-Riemannian distance, all metric balls are relatively compact, so every
minimal path is strongly minimal. Also, if there is a unique minimal path γ P Ωx,y, which is strongly
minimal, then, by a weak compactness argument, for all relatively compact domains U containing γ, there
is a δ ą 0 such that (1.12) holds.
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3. Theorem – Suppose that L has the form (1.6). Let x, y PM and suppose that there is a
unique minimal path γ P Ωx,y. Suppose either that

dpx, yq ă dpx,8q ` dpy,8q,

or that the drift in L satisfies the boundedness assumption (1.9) and γ is strongly minimal.
Write δγ for the unit mass at γ. Then

µx,yt Ñ δγ weakly on Ωx,y as tÑ 0.

Theorems 1, 2 and 3 are our main results; they are proved in Section 5 as a consequence
of Proposition 6 and Proposition 7 that give Gaussian-type upper bounds, for heat kernels
and hitting probabilities respectively. The proof of the latter builds on the extension to
the incomplete case of the dual characterization for complete sub-Riemannian metrics,
proved by Jerison and Sanchez-Calle [11], given here in Section 3.

Notations. For an absolutely continuous path γ : r0, 1s ÑM , the energy Ipγq is given by

Ipγq “ inf

ˆ 1

0

@

ξt, apγtqξt
D

dt

where the infimum is taken over all measurable paths ξ : r0, 1s Ñ T ˚M such that ξt P T ˚γtM
for all t and, for almost all t,

9γt “ apγtqξt.

If γ is not absolutely continuous or there is no such path ξ, then we set Ipγq “ 8. The
sub-Riemannian distance is given by

dpx, yq “ inf
!

a

Ipγq : γ P Ωx,y
)

.

It is known that d defines a metric on M which is compatible with the topology of M .

Acknowledgements. The authors would like to thank Michel Ledoux and Laurent Saloff-
Coste for helpful discussions. J.N. would like to acknowledge the hospitality of Université
Paul Sabatier, Toulouse, where this work was completed.

2 – Discussion and review of related works

‚ The small-time logarithmic asymptotics for the heat kernel (1.2) or (1.11) were proved
by Varadhan [21] in the case when M “ Rd and a is uniformly bounded and uniformly
positive-definite. Azencott [1] considered the case where a is positive-definite but M is
possibly incomplete for the associated metric d. He showed [1, Chapter 8, Proposition
4.4], that the condition

dpx, yq ă max
 

dpx,8q, dpy,8q
(

(2.1)
is sufficient for a Gaussian-type upper bound which implies the small time logarithmic
asymptotics (1.2). In particular, completeness is sufficient. He showed also [1, Chapter 8,
Proposition 4.10], that such an upper bound holds for pU pt, x, yq, without further condi-
tions, whenever U is a relatively compact open set in M . Azencott also gave an example
[1, Chapter 8, Section 2], which shows that (1.2) can fail without a suitable global condi-
tion on the operator L. Hsu [8] showed that Azencott’s condition (2.1) for (1.2) could be
relaxed to

dpx, yq ď dpx,8q ` dpy,8q (2.2)
and gave an example to show that (1.2) can fail without this condition.
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Azencott and Hsu’s methods in [1] and [8] work ‘outwards’ from relatively compact
subdomains U in M and make essential use of the following identity, which allows to
control p in terms of pU . See [1, Chapter 2, Theorem 4.2]. Let U, V be open sets in M
with V compactly contained in U . Then, for x PM and y P V , we have the decomposition

ppt, x, yq “ 1U pxqpU pt, x, yq `

ˆ
r0,tqˆBV

pU pt´ s, z, yqµxpds, dzq (2.3)

where

µx “
8
ÿ

n“1

µnx, µnx
`

r0, ts ˆA
˘

“ Px
`

BTn P A, Tn ď t
˘

where we set S0 “ 0 and define recursively for n ě 1

Tn :“ inf
!

t ě Sn´1 : Bt P V
)

, Sn :“ inf
!

t ě Tn : Bt R U
)

.

This can be combined with the estimate
µx

`

r0, ts ˆ BV
˘

ď CpU, V q t, CpU, V q ă 8

to obtain estimates on ppt, x, yq from estimates on pU pt, x, yq. The same identity (2.3) is
also used elsewhere to deduce estimates under local hypotheses from estimates requiring
global hypotheses. See for example [12] on hypoelliptic heat kernels, and [6] on Hunt
processes.
‚ Varadhan’s asymptotics (1.2) were extended to the sub-Riemannian case by Léandre

[13, 14] under the hypothesis

M “ Rd and X0, X1, . . . , Xm are bounded with bounded derivatives of all orders.
(2.4)

Here, X0 is the vector field on M which appears when we write L in Hörmander’s form

L “ 1

2

m
ÿ

`“1

X2
` `X0.

Our Theorem 2 extends (1.2) to a general sub-Riemannian manifold for operators L of
the form (1.6), subject either to Hsu’s condition (2.2), understood for the sub-Riemannian
metric, or to the sector condition (1.9).
‚A powerful approach to analysis of the heat equation emerged in the work of Grigor’yan

[5] and Saloff-Coste [18, 19]. They showed that a local volume-doubling inequality, com-
bined with a local Poincaré inequality, implies a local Sobolev inequality, which then allows
to prove regularity properties for solutions of the heat equation by Moser’s procedure, and
then heat kernel upper bounds by the Davies–Gaffney argument. This was taken up in
the general context of Dirichlet forms by Sturm who proved a Gaussian upper bound [20,
Theorem 2.4] under such local conditions, without completeness and for non-symmetric
operators. Moreover, in this bound, the intrinsic metric appears with the correct con-
stant in the exponent, which allows to deduce the correct logarithmic asymptotic upper
bound (1.2). This intrinsic metric corresponds in our context to the dual formulation
of the sub-Riemannian metric. Our Gaussian upper bounds can be seen as applications
of Sturm’s result. For greater transparency, we will re-run part of the argument in our
context, rather than embed in the general framework and check the necessary hypothe-
ses. The approach thus adopted no longer relies on working outwards from well-behaved
heat kernels using (2.3), but reduces the global aspect to a certain sort of L2-estimate for
solutions of the heat equation, which requires no completeness in the underlying space.
One finds that the sector condition (1.9) on the drift is enough to prevent pathologies in
the L2-estimate, thus dispensing with the need for condition (2.2) on the end-points x, y.
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This is a significant extension: for example, (1.9) is satisfied trivially by all symmetric
operators Lf “ 1

2 divpa∇fq, without any control on the diffusivity a or the symmetrizing
measure ν near infinity.
‚ The small-time convergence of bridge measures is known in the case of Brownian

motion in a complete Riemannian manifold by a result of Hsu [7] and in the case of
Hörmander’s type operators L “ 1

2

řm
`“1X` ` X0, on a closed manifold, with no hori-

zontality assumption on the drift X0, by a result of Bailleul [2]. It is also known under
the assumption (2.4) and subject to the condition that apxq is positive-definite by work of
Inahama [9] on Rd. While the limit is the expected one, given the well-known small-time
large deviations behaviour of diffusions, a statement such as Theorem 3 appears new, both
for incomplete manifolds and in the unbounded sub-Riemannian case.
Remark. We have not attempted to minimize regularity assumptions for coefficients but
note that their use for upper bounds is limited to certain basic tools. The analysis [16]
of metric balls, in particular the volume-doubling inequality (3.2), is done for the case
where X1, . . . , Xm are smooth. Also the Poincaré inequality (3.6) is proved in [10] in this
framework. These points aside, for upper bounds, the smooth assumptions on a, ν and β
are used only to imply local boundedness. While the dual characterization of the distance
function is unaffected by modification of a on a Lebesgue null set, the definition as an
infimum over paths is more fragile, and current proofs that these give the same quantity
rely on the continuity of a. In contrast to the Riemannian case [17], for lower bounds in
the sub-Riemannian case, in particular for Léandre’s argument using Malliavin calculus,
current methods demand more regularity.

3 – Dual formulation of the sub-Riemannian distance

We review some basic analytic facts for sub-Riemannian manifolds before extending
Jerison and Sanchez-Calle’s dual formulation of the sub-Riemannian distance [11] to pos-
sibly incomplete settings.

3.1 – Analytic ingredients

The set-up of Section 1 is assumed. Nagel, Stein & Wainger’s analysis [16] of the
sub-Riemannian distance and of the volume of sub-Riemannian metric balls implies the
following statements. There is a covering of M by charts φ : U Ñ Rd such that, for some
constants αpUq P p0, 1s and CpUq P r1,8q, for all x, y P U ,

C´1
ˇ

ˇφpxq ´ φpyq
ˇ

ˇ ď dpx, yq ď C
ˇ

ˇφpxq ´ φpyq
ˇ

ˇ

α
. (3.1)

Moreover, there is a covering of M by open sets U such that, for some constant CpUq P
p1,8q, for all x P U and all r P p0,8q such that Bpx, 2rq Ď U , we have the volume-doubling
inequality

ν
`

Bpx, 2rq
˘

ď Cν
`

Bpx, rq
˘

. (3.2)
Moreover, in [16, Theorem 1], a uniform local equivalent for νpBpx, rqq is obtained, which
implies that, for all x PM ,

lim
rÑ0

log ν
`

Bpx, rq
˘

log r
“ Npxq. (3.3)

Here, Npxq is given by
Npxq “ N1pxq ` 2N2pxq ` 3N3pxq ` ¨ ¨ ¨ (3.4)
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where N1pxq ` ¨ ¨ ¨ `Nkpxq is the dimension of the space spanned at x by brackets of the
vector fields X1, . . . , Xm of length at most k. While the limit (3.3) is in general not locally
uniform, there is also the following uniform asymptotic lower bound on the volume of
small balls, for any compact set F in M ,

lim sup
rÑ0

sup
xPF

log ν
`

Bpx, rq
˘

log r
ď NpF q (3.5)

where
NpF q :“ sup

xPF
Npxq ă 8.

We recall also the local Poincaré inequality proved by Jerison [10]. There is a covering of
M by open sets U such that, for some constant CpUq ă 8, for all x P U and all r P p0,8q
such that Bpx, 2rq Ď U , for all f P C8c pMq, we haveˆ

Bpx,rq

ˇ

ˇf ´ xfyBpx,rq
ˇ

ˇ

2
dν ď Cr2

ˆ
Bpx,2rq

a
`

∇f,∇f
˘

dν (3.6)

where xfyB :“ 1
νpBq

´
B fdν “:

ffl
B fdν is the average value of f on B. As Saloff-Coste

claimed [19, Theorem 7.1], the validity of Moser’s argument, given (3.2) and (3.6), extends
with minor modifications to suitable non-symmetric operators. This leads to the following
parabolic mean-value inequality.

4. Proposition – Let L be given as in equation (1.6) and let U be a relatively compact open
set in M . Then there is a constant CpUq ă 8 with the following property. For any non-
negative weak solution u of the equation pB{Btqut “ Lut on p0,8q ˆ U , for all x P U , all
t P p0,8q and all r P p0,8q such that Bpx, 2rq Ď U and r2 ď t{2, we have

utpxq
2 ď C

 t

t´r2

 
Bpx,rq

u2
s dν ds. (3.7)

Moreover, the same estimate holds if L is replaced by its adjoint L̂ under ν.

For a detailed proof, the reader may check the applicability of the more general results
[4, Theorem 1.2] or [15, Theorem 4.6].

3.2 – Dual formulation of the sub-Riemannian distance

In Riemannian geometry, the distance function has a well known dual formulation in
terms of functions of unit gradient. Jerison & Sanchez-Calle [11] showed that this dual
formulation extends to complete sub-Riemannian manifolds. We now show that such a
dual formulation holds without completeness, and for the distances to and through a given
closed set.

5. Proposition – For all x, y PM and any closed subset K of M , we have

dpx,K, yq “ sup
!

w`pyq ´ w´pxq : w´, w` P F with w` “ w´ on K
)

(3.8)

and
dpx,Kq “ sup

!

wpxq : w P F with w “ 0 on K
)

, (3.9)

where F is the set of all locally Lipschitz functions w on M such that a
`

∇w,∇w
˘

ď 1
almost everywhere.
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Proof – Denote the right hand sides of (3.8) and (3.9) by δpx,K, yq and δpx,Kq for now.
First we will show that δpx,K, yq ď dpx,K, yq. Let ω P Ωx,y and suppose that ω is
absolutely continuous with driving path ξ and that ωt P K. Let w´, w` P F , with
w` “ w´ on K. It will suffice to consider the case where ω|r0,ts and ω|rt,1s are simple,
and then to choose relatively compact charts U0 and U1 for M containing ω|r0,ts and
ω|rt,1s respectively. Then, given ε ą 0, since a is continuous, for i “ 1, 2, we can find
smooth functions f´i , f

`
i on Ui such that

ˇ

ˇf˘i pzq´w
˘pzq

ˇ

ˇ ď ε and a
`

∇f˘i ,∇f
˘
i

˘

pzq ď
1` ε for all z P Ui. Then

w`pyq´w´pxq “ w`pyq´w`pωtq`w
´pωtq´w

´pxq ď f`1 pyq´f
`
1 pωtq`f

´
0 pωtq´f

´
0 pxq`4ε

and
f`1 pyq ´ f

`
1 pωtq ` f

´
0 pωtq ´ f

´
0 pxq

“

ˆ t

0

@

∇f´0 pωsq, 9ωs
D

ds`

ˆ 1

t

@

∇f`1 pωsq, 9ωs
D

ds

“

ˆ t

0

@

∇f´0 pωsq, apωsqξs
D

ds`

ˆ 1

t

@

∇f`1 pωsq, apωsqξs
D

ds

ď

ˆˆ t

0
a
`

∇f´0 ,∇f
´
0

˘

pωsq ds`

ˆ 1

t
a
`

∇f`1 ,∇f
`
1

˘

pωsq ds

˙1{2 ˆˆ 1

0
apξs, ξsqds

˙1{2

ď
a

p1` εqIpωq.

Hence w`pyq ´ w´pxq ď
a

Ipωq. On taking the supremum over w˘ and the infimum
over ω, we deduce that

δpx,K, yq ď dpx,K, yq. (3.10)
For w P F with w “ 0 on K and for y P K, we can take w´ “ ´w and w` “ 0 in
(3.8) to see that δpx,Kq ď δpx,K, yq. Hence, on taking the infimum over y P K in
(3.10), we obtain

δpx,Kq ď dpx,Kq.

Now we prove the reverse inequalities. Consider a smooth symmetric bilinear form
ā on T ˚M such that ā ě a and ā is everywhere positive-definite. Write Ī for the
associated energy function and write d̄ and δ̄ for the distance functions obtained by
replacing a by ā in the definitions of d and δ. Set

w`pzq “ d̄px,K, zq, w´pzq “ d̄px, zq, wpxq “ d̄px,Kq.

Note that w` “ w´ and w “ 0 on K. Since ā is positive-definite, the functions w´,
w` and w are locally Lipschitz, and their weak gradients ∇w˘ and ∇w satisfy, almost
everywhere,

ā
`

∇w˘,∇w˘
˘

ď 1, ā
`

∇w,∇w
˘

ď 1.

Hence
d̄px,K, yq “ w`pyq ´ w´pxq ď δ̄px,K, yq ď δpx,K, yq,

d̄px,Kq “ wpxq ď δ̄px,Kq ď δpx,Kq.

We will show that, for all ε ą 0 and all c P r1,8q, we can choose ā so that, for all
x, y PM with dpx, yq ď c,

dpx, yq ď d̄px, yq ` ε.

Then, for this choice of ā, we have also, for all closed sets K with dpx,Kq, dpy,Kq ď
c´ 1,

dpx,K, yq ď d̄px,K, yq ` 2ε, dpx,Kq ď d̄px,Kq ` ε.
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Since ε ą 0 and c ě 1 are arbitrary, this completes the proof. The idea in choosing ā
is as follows. While we have no control over the behaviour of a near 8, neither do we
have any constraint on how small we can choose ā´ a near 8. Given ε ą 0, this will
allow us to choose ā so that, for any path γ̄ P Ωx,y with Īpγ̄q ă 8, we can construct
another path γ P Ωx,y with Ipγq ď Īpγ̄q ` ε.
It will be convenient to fix smooth vector fields Y1, . . . , Yp on M which span the tangent
space at every point, so that

a0pxq “

p
ÿ

i“1

Yipxq b Yipxq

is a positive-definite symmetric bilinear form on T ˚M . There exists an exhaustion of
M by open sets pUn : n P Nq, such that Un is compactly contained in Un`1 for all n.
Set U0 “ H. Let pδn : n P Nq be a sequence of constants, such that δn P p0, 1s for all n,
to be determined. There exists a positive smooth function f on M such that f ď δn
on MzUn´2 for all n. We take ā “ a ` f2a0. Write d0 and I0 for the distance and
energy functions associated with a` a0. Recall that we write d̄ and Ī for the distance
and energy functions associated with ā. Then d0 ď d̄ ď d. Set εn “ d0

`

BUn, BUn`1

˘

.
By the sub-Riemannian distance estimate (3.1), there are constants αn P p0, 1s and
Cn ă 8, depending only on n and on the open sets pUn : n P Nq and the vector fields
X1, . . . , Xm and Y1, . . . , Yp, such that, for all x, y P Un`2,

dpx, yq ď Cn d0px, yq
αn .

Fix a constant c P r1,8q. Fix x, y P M with dpx, yq ď c and suppose that ω P Ωx,y

satisfies Īpωq ď c2. There exist absolutely continuous paths h : r0, 1s Ñ Rm and
k : r0, 1s Ñ Rp such that, for almost all t,

9ωt “
m
ÿ

`“1

X`pωtq 9h`t `

p
ÿ

i“1

fpωtqYipωtq 9kit

and ˆ 1

0
| 9ht|

2dt`

ˆ 1

0
| 9kt|

2dt “ Īpωq.

By reparametrizing ω if necessary, we may assume that | 9ht|2` | 9kt|2 “ Īpωq for almost
all t. Consider for now the case where ωt P Un`1zUn´1 for all t for some n and define
a new path γ by

9γt “
m
ÿ

`“1

X`pγtq 9h`t, γ0 “ x.

Then Ipγq ď Īpωq. By Gronwall’s lemma, there is a constant An P r1,8q, depending
only on n and on the open sets pUn : n P Nq and the vector fields X1, . . . , Xm and
Y1, . . . , Yp, such that

d0pγ1, yq ď DAnδn

provided that
cAnδn ď εn´2 ^ εn`1. (3.11)

We will ensure that (3.11) holds, and hence that γ1 P Un`2. Then

dpx, yq ď dpx, γ1q ` dpγ1, yq ď
b

Īpωq ` Cnd0pγ1, yq
αn ď

b

Īpωq ` CncAnδ
αn
n .

We return to the general case. Then there is an integer k ě 1 and there is a sequence
of times t0 ď t1 ď . . . ď tk and there is a sequence of positive integers n1, . . . , nk such
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that t0 “ 0, tk “ 1, and |nj`1 ´ nj | “ 1 and ωtj P BUnj`1 for j “ 1, . . . , k ´ 1, and

ωt P Ūnj`1zUnj´1

for all t P rtj´1, tjs and all j “ 1, . . . , k, and, if k ě 2, ωt P BUn1 for some t P rt0, t1s.
Set

Sn “ ttj : j P t1, . . . , k ´ 1u and nj`1 “ nu, χn “ |Sn|.

Since ω must hit either BUn`1 or BUn´1 immediately prior to any time in Sn, we have
pεn´1 ^ εnqχn ď c.

We have shown that

dpωtj´1 , ωtj q ď ptj ´ tj´1q

b

Īpωq ` CnjcAnjδ
αnj
nj

so

dpx, yq ď
k
ÿ

j“1

dpωtj´1 , ωtj q ď
b

Īpωq ` Cn1cAn1δ
αn1
n1 `

8
ÿ

n“1

CncAnχnδ
αn
n .

Now we can choose the sequence pδn : n P Nq so that (3.11) holds and

2
8
ÿ

n“1

Cnc
2Anδ

αn
n

εn´1 ^ εn
ď ε.

Then, on optimizing over ω, we see that dpx, yq ď d̄px, yq ` ε whenever dpx, yq ď c, as
required. �

4 – Gaussian-type upper bounds

Recall the definition ppt, x,K, yq of the heat kernel via K given in (1.4) and the definition
of the hitting probability ppt, x,Kq given in (1.5).

6. Proposition – Let L be given as in equation (1.6) and suppose that the drift in L satisfies
the sector/boundedness condition (1.9). Then there is a continuous function C : MˆM Ñ

p0,8q such that, for all x, y PM and all t P p0,8q, for

r “ min

#

t

dpx, yq
,

c

t

4
,
dpx,8q

4
,
dpy,8q

4

+

we have
ppt, x, yq ď

Cpx, yq
a

νpBpx, rqq
a

νpBpy, rqq
exp

"

´
dpx, yq2

2t
`
λ2t

2

*

. (4.1)

Moreover, for any closed set K “ MzU in M , there is a continuous function Cp¨, ¨,Kq :
U ˆ U Ñ p0,8q such that, for all x, y P U and all t P p0,8q, for

r “ min

#

t

dpx,K, yq
,

c

t

4
,
rpx,Kq

4
,
rpy,Kq

4

+

, rpx,Kq “ mintdpx,8q, dpx,Kqu

we have

ppt, x,K, yq ď
Cpx, y,Kq

a

νpBpx, rqq
a

νpBpy, rqq
exp

"

´
dpx,K, yq2

2t
`
λ2t

2

*

. (4.2)

The statements above remain true with the constant 4 replaced by 2, by the local
volume-doubling inequality. The value 4 will be convenient for the proof.
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Proof – We omit the proof of (4.1), which is a simpler version of the proof of (4.2). For
(4.2), we will show that the argument used in [17, Theorem 1.2], for the case where
a is positive-definite and β “ 0, generalizes to the present context4. Consider the set
ĂM :“M´YM`, where M˘ “ K YU˘ and U´, U` are disjoint copies of U “MzK.
Write π for the obvious projection ĂM Ñ M . For functions f defined on M , we will
write f also for the function f ˝ π on ĂM . Thus we will sometimes consider a as a
symmetric bilinear form on T ˚U˘ and β as a 1-form on U˘. Define a measure rν on
ĂM by

rνpAq :“ νpAXKq ` 1
2ν

`

πpAX U´q
˘

` 1
2ν

`

πpAX U`q
˘

.

Note that ν “ rν ˝ π´1. Now define

rppt, x, yq “

$

’

&

’

%

ppt, x, yq ` pU pt, x, yq, if x, y P U˘,
ppt, x, yq ´ pU pt, x, yq, if x P U˘ and y P U¯,

ppt, x, yq, if x P K or y P K.

Given bounded measurable functions f´, f` on M with f´ “ f` on K, write f for
the function on ĂM such that f “ f˘ ˝ π on M˘, and set f̄ “ pf´ ` f`q{2 and
fU “ pf` ´ f´q{2. Let φ´ and φ` be smooth functions on M , of compact support,
with φ´ “ φ` on K and define φ on ĂM and φ̄ and φU on M similarly. For t P p0,8q,
define functions ut on ĂM , ūt on M and uUt on U by

utpxq “

ˆ
ĂM
rppt, x, yqfpyq rνpdyq

and

ūtpxq “

ˆ
M
ppt, x, yqf̄pyq νpdyq, uUt pxq “

ˆ
M
pU pt, x, yqf

U pyq νpdyq.

Then ūt and uUt solve the heat equation with Dirichlet boundary conditions in M
and U respectively. It is straightforward to check that ut “ u˘t ˝ π on M˘, where
u˘t “ ūt ˘ u

U
t and we extend uUt by 0 on K. Henceˆ

ĂM
φut drν “

ˆ
M
φ̄ūt dν `

ˆ
U
φUuUt dν

and so
d

dt

ˆ
ĂM
φutdrν “

d

dt

ˆ
M
φ̄ūt dν `

d

dt

ˆ
U
φUuUt dν

“ ´
1

2

ˆ
M
ap∇φ̄,∇ūtqdν `

ˆ
M
apφ̄β,∇ūtq dν

´
1

2

ˆ
U
a
`

∇φU ,∇uUt
˘

dν `

ˆ
U
a
`

φUβ,∇uUt
˘

dν

“ ´
1

2

ˆ
ĂM
ap∇φ,∇utqdrν `

ˆ
ĂM
apφβ,∇utqdrν. (4.3)

Let pw´, w`q be a pair of bounded locally Lipschitz functions onM such that w´ “ w`

on K and a
`

∇w˘,∇w˘
˘

ď 1 almost everywhere. Define a function w on ĂM by setting

4The idea is to combine a standard argument for heat kernel upper bounds with a reflection trick. In terms
of Markov processes, we give a random sign to each excursion of the diffusion process into U , viewing it as
taking values in U´ or U`. Then a generalization of the classical reflection principle for Brownian motion
allows to express the density for paths from x to y via K in terms of this enhanced process. In fact the
heat kernel rp for this process may be written in terms of p and pU , and we find it technically simpler to
define rp in those terms, rather than set up the enhanced process.
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w “ w˘˝π onM˘. Fix θ P p0,8q and set ψ “ θw. We deduce from (4.3) by a standard
argument that
d

dt

ˆ
ĂM
pe´ψutq

2 drν “ ´

ˆ
ĂM
a
`

∇pe´2ψutq,∇ut
˘

drν ` 2

ˆ
ĂM
a
`

βe´2ψut,∇utqdrν

“ ´

ˆ
ĂM
a
`

∇ut,∇ut
˘

e´2ψ drν ` 2

ˆ
ĂM
a
`

pβ `∇ψqut,∇ut
˘

e´2ψ drν

ď

ˆ
ĂM
a
`

β `∇ψ, β `∇ψ
˘

pe´ψutq
2 drν ď ρ

ˆ
ĂM
pe´ψutq

2 drν

where
ρ :“

›

›

›
a
`

β `∇ψ, β `∇ψ
˘

›

›

›

8
ď pλ` θq2.

Then, by Gronwall’s inequality,ˆ
ĂM
pe´ψutq

2 drν ď eρt
ˆ
ĂM
pe´ψfq2 drν. (4.4)

There exists a locally finite cover U of U by sets of the form Bpx, rpx,Kq{4q, where
we recall that rpx,Kq “ mintdpx,8q, dpx,Kqu. For V :“ Bpx, rpx,Kq{4q P U , set
rV :“ Bpx, 7rpx,Kq{8q. Then rV is a relatively compact open subset of U . By the
triangle inequality, for all V P U and all x P V , we have Bpx, rpx,Kq{2q Ď rV . Fix
V1, V2 P U and write CpViq for the constants appearing in the parabolic mean-value
inequality for L on rV1 and for L̂ on rV2. Fix x P V1, y P V2 and t P p0,8q, and recall
that we set

r “ min

#

t

dpx,K, yq
,

c

t

4
,
rpx,Kq

4
,
rpy,Kq

4

+

.

Write x´ and y` for the unique points in U´ and U` respectively such that πpx´q “ x
and πpy`q “ y. Set

B´ :“
!

z P U´ : πpzq P Bpx, rq
)

, B` :“
!

z P U` : πpzq P Bpy, rq
)

.

Take f´ “ 0 and choose f` ě 0 supported on Bpy, rq and such that
´
M pf

`q2dν “ 2.
Then

´
ĂM
f2drν “ 1. Note that w ď w´pxq ` r on B´ and w ě w`pyq ´ r on B`.

Hence we obtain from (4.4), for all s ě 0,

e´2θpw´pxq`rq

ˆ
B´

u2
s drν ď eρse´2θpw`pyq´rq. (4.5)

Since u´t ě 0 and pB{Btqu´t “ Lu´t on p0,8q ˆ U , by the parabolic mean-value
inequality, for all τ P p0,8q such that r2 ď τ{2,

uτ px
´q2 ď CpV1q

 τ

τ´r2

 
B´

u2
sdrνds ď CpV1qνpBpx, rqq

´1e´2θpw`pyq´w´pxq´2rq`ρτ . (4.6)

Set vspzq “ pps, x,K, zq, then vs ě 0 and pB{Bsqvs “ L̂vs on p0,8q ˆ D. By the
parabolic mean-value inequality again,

ppt, x,K, yq2 ď CpV2q

 t

t´r2

 
Bpy,rq

pps, x,K, zq2 νpdzqds

ď CpV2q

 t

t´r2

 
B`

rpps, x´, zq2 rνpdzqds.
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Recall that r2 ď t{4. For each s P rt ´ r2, ts, we can take f` “ c‹ pps, x,K, .q1Bpy,rq,
where c‹ is chosen so that

´
ĂM
f2drν “ 1. For this choice of f`, we have

uspx
´q2 “

ˆ
B`

rpps, x´, zq2 rνpdzq.

Hence

ppt, x,K, yq2 ď
CpV2q

νpBpy, rqq

 t

t´r2
uspx

´q2 ds

ď
CpV1qCpV2q

νpBpx, rqqνpBpy, rqq
e´2θpw`pyq´w´pxq´2rq`ρt.

Here, we applied (4.6) with τ “ s, noting that s ě 3t{4, so r2 ď t{4 ď s{2. We
optimize over pw´, w`q and take θ “ dpx,K, yq{t to obtain

ppt, x,K, yq ď
CpV1, V2, x, yq

a

νpBpx, rqq
a

νpBpy, rqq
exp

"

´
dpx,K, yq2

2t
`
λ2t

2

*

where
CpV1, V2, x, yq :“ e2`λdpx,K,yq{2

a

CpV1qCpV2q.

Finally, since U is locally finite, there is a continuous function Cp¨, ¨,Kq : U ˆ U Ñ

p0,8q such that CpV1, V2, x, yq ď Cpx, y,Kq for all V1, V2 P U and all x P V1 and
y P V2. �

7. Proposition – Let L be given as in equation (1.6). Let U be a relatively compact open set
in M and set K :“MzU . There is a constant CpUq ă 8 with the following property. For
all x P U and all t P p0,8q, and for r “ t{dpx,Kq,

ppt, x,Kq ď
C

a

νpBpx, rqq
exp

"

´
dpx,Kq2

2t

*

. (4.7)

Proof – We adapt the argument of the proof of Proposition 6. Since νpUq ă 8 and
ppt, x,Kq ď 1, it will suffice to consider the case where dpx,Kq2 ě 2t. We modify the
measure ν and the 1-form β on K, if necessary, by multiplication by suitable smooth
functions, so that νpKq ď 1 and apβ, βqpxq ď λ2 for all x PM , for some λ ă 8. This
does not affect the value of ppt, x,Kq for x P U . Set f “ 1 ` 1U` ´ 1U´ and define,
for x P ĂM ,

utpxq “

ˆ
ĂM
rppt, x, yqfpyq rνpdyq.

Then ppt, x,Kq “ utpx
´q for x P U . Fix a locally Lipschitz function w on ĂM such

that w “ 0 on K Y U` and ap∇w,∇wq ď 1 almost everywhere. Then, as we showed
at (4.5), for all θ P r0,8q,ˆ

ĂM
peθwutq

2 drν ď eρt
ˆ
ĂM
f2 drν “ eρt

`

2νpUq ` νpKq
˘

where
ρ :“ sup

xPM
a
`

β ´ θ∇w, β ´ θ∇w
˘

pxq ď pλ` θq2.

By the same argument as that leading to (4.6), there is a constant CpUq ă 8 with
the following property. For all x P U and all t P p0,8q, for all r P p0,8q such that
Bpx, 2rq Ď U and r2 ď t{2, we have

utpx
´q2 ď C

 t

t´r2

 
B´

u2
s drνds
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where B´ :“ π´1pBpx, rqq X U´. Since dpx,Kq2 ě 2t, we can take r “ t{dpx,Kq.
Note that w ě wpx´q ´ r on B. Then

ppt, x,Kq2 “ utpx
´q2 ď C

 t

t´r2

 
B
u2
s drνds ď Cν

`

Bpx, rq
˘´1

exp
!

´ 2θpwpx´q ´ rq ` ρt
)

and, by optimizing over ε, θ and w, using Proposition 5, we obtain

ppt, x,Kq ď
C

a

νpBpx, rqq
exp

"

´
dpx,Kq2

2t

*

.

�

5 – Proofs of Theorems 1, 2, 3

Proof of Theorem 1 – The asymptotic upper bound (1.10) for the heat kernel through
K, under condition (1.9), follows directly from the Gaussian upper bound (4.2) and
the asymptotic lower bound (3.5) for the volume of small balls, on letting t Ñ 0.
Similarly, the asymptotic upper bound (1.7) for the hitting probability for K, when
MzK is relatively compact, follows from (4.7) and (3.5). It remains to show (1.8).
For this, we adapt an argument of Hsu [8] for the Riemannian case. Consider the
L-diffusion process

`

Bt : t P r0, ζq
˘

. Set

T “ inftt P r0, ζq : Bt P Ku.

We use the identity

ppt, x,K, yq “ Ex
”

ppt´ T,BT , yq1tTătu

ı

. (5.1)

Note that PxpT ď tq “ ppt, x,Kq and the estimate (4.7) applies. We estimate ppt, z, yq
for z P K using (2.3). Choose V relatively compact containing the closure of U . Then,
for z P BU ,

ppt, z, yq “ 1U pxqpV pt, z, yq `

ˆ
r0,tqˆBU

pV pt´ s, z
1, yqµxpds, dz

1q

where
µx

`

r0, ts ˆ BU
˘

ď CpU, V q t, CpU, V q ă 8.

For all z P BU ,

pV pt, z, yq ď
CV pz, yq

a

νpBpz, rpt, zqqq
a

νpBpy, rpt, zqqq
exp

"

´
dpz, yq2

2t
`
λ2
V t

2

*

where

rpt, zq “ min

#

t

dpz, yq
,

c

t

4
,
dpz, BV q

4
,
dpy, BV q

4

+

, λ2
V “ sup

zPV
apβ, βqpzq ă 8.

Now
inf
zPBU

dpz, yq “ dpy,Kq, sup
zPBU

dpz, yq “ CpU, yq ă 8

and, for r ą 0 sufficiently small

inf
zPŪ

νpBpz, rqq ě rNpŪq`1.
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For t ą 0 sufficiently small, we have rpt, zq “ t{dpz, yq for all z P BU , and then
a

νpBpz, rpt, zqqq
a

νpBpy, rpt, zqqq ě

ˆ

t

CpU, yq

˙NpŪq`1

.

Hence, for t ą 0 sufficiently small, and all z P BU ,

pV pt, z, yq ď
CU,V pyq

tNpŪq`1
exp

"

´
dpy,Kq2

2t
`
λ2
V t

2

*

where
CU,V pyq “ sup

zPBU
CV pz, yq ˆ CpU, yq

NpŪq`1.

This estimate, along with (4.7), allows us to short-cut some steps in Hsu’s argument.
On substituting the estimates into (5.1) and using the elementary [8, Lemma 2.1], we
conclude as claimed that

lim sup
tÑ0

t log ppt, x,K, yq ď ´
`

dpx,Kq ` dpy,Kq
˘2
{2.

�

Proof of Theorem 2 – First we will show the lower bound
lim inf
tÑ0

t log ppt, x, yq ě ´dpx, yq2{2 (5.2)

locally uniformly in x and y. Given ε ą 0, there exists a simple path γ P Ωx,y, with
driving path ξ say, such that

a

Ipγq ď dpx, yq ` ε. We can and do parametrize γ so
that apξt, ξtq “ Ipγq for almost all t P r0, 1s. Fix δ ą 0 and consider the open set

U :“
!

z PM : dpz, γtq ă δ for some t P r0, 1s
)

.

We can and do choose δ so that U is compactly contained in the domain of a chart.
Choose n ě 1 such that

dpx, yq ` ε

n
ď δ

and fix η P p0, δ{4q. For k “ 0, 1, . . . , n, set tk “ k{n and xk “ γtk and suppose that
yk P Bpxk, ηq. Then, for k “ 1, . . . , n,

dpyk´1, ykq ă dpxk´1, xkq ` 2η “
a

Ipγq{n` 2η ď
`

dpx, yq ` ε
˘

{n` 2η,

d
`

yk´1,MzU
˘

` dpyk,MzUq ě 2pδ ´ ηq ą
`

dpx, yq ` ε
˘

{n` 2η.

We can identify the chart with a subset of Rd and choose extensions rX0, rX1, . . . , rXm

to Rd of the restrictions of X0, X1, . . . , Xm to U such that the extended vector fields
are all bounded with bounded derivatives of all orders, such that rX1, . . . , rXm is a
sub-Riemannian structure on Rd, and such that rX0 “ χX0 for some smooth function
χ vanishing outside the chart. Then, by Léandre’s lower bound [14, Theorem II.3] in
Rd, for k “ 1, . . . , n, uniformly in yk´1 and yk,

lim inf
tÑ0

t log rppt, yk´1, ykq ě ´dpyk´1, ykq
2{2.

On the other hand, by Theorem 1, for k “ 1, . . . , n, uniformly in yk´1 and yk,
lim sup
tÑ0

t log rppt, yk´1,R
dzU, ykq ď ´dpyk´1,R

dzU, ykq
2{2

ď ´pdpyk´1,MzUq ` dpyk,MzUqq
2{2

Hence, by our choice of n and η, uniformly in yk´1 and yk,

lim inf
tÑ0

t log pU pt, yk´1, ykq “ lim inf
tÑ0

t log rpU pt, yk´1, ykq ě ´
`

dpxk´1, xkq ` 2η
˘2
{2.
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Now, by a standard chaining procedure, we obtain, uniformly in y0 and yn,

lim inf
tÑ0

t log pU pt, y0, ynq ě ´
n

2

n
ÿ

k“1

pdpxk´1, xkq ` 2ηq2 ě ´pdpx, yq ` ε` 2ηnq2{2.

This implies (5.2), since pU pt, x, yq ď ppt, x, yq and ε and η may be chosen arbitrarily
small.
It remains to show the upper bound

lim sup
tÑ0

t log ppt, x, yq ď ´dpx, yq2{2 (5.3)

locally uniformly in x and y. In the case where L satisfies (1.9), this follows from
Theorem 1 by taking K “ M . On the other hand, given ε ą 0 and a compact set F
in S, there is a relatively compact open set U in M such that, for K “MzU and all
px, yq P F ,

dpx, yq ´ ε ď dpx,Kq ` dpy,Kq.

Now the restriction of L to U satisfies (1.9), so
lim sup
tÑ0

t log pU pt, x, yq ď ´dU px, yq
2{2 ď ´dpx, yq2{2 (5.4)

uniformly in px, yq P F , while, by Theorem 1,
lim sup
tÑ0

t log ppt, x,K, yq ď ´pdpx,Kq ` dpy,Kqq2{2 (5.5)

also uniformly in px, yq P F . Since ppt, x, yq “ pU pt, x, yq ` ppt, x,K, yq and ε is
arbitrary, (5.3) follows from (5.4) and (5.5). �

In the following proof, we introduce an auxiliary real Brownian bridge, from 0 to 1 of
speed ε. This is known to converge weakly to a uniform drift as εÑ 0. So this auxiliary
process provides a new coordinate which acts as a surrogate for time, thereby allowing
us to lift the small-time estimate for the heat kernel to a weak convergence result for the
associated bridge.
Proof of Theorem 3 – Consider first the case where L satisfies (1.9) and γ is strongly

minimal. We will show, for all δ ą 0, for

Γtpδq :“
!

ωt : ω P Ωx,y, Ipωq ă dpx, yq2 ` δ
)

and for
r “ δ1{4

`

dpx, yq2 ` δ
˘1{2

that we have
lim sup
εÑ0

ε logµx,yε

´

 

ω P Ωx,y : d
`

ωt,Γtpδq
˘

ě r for some t P r0, 1s
(

¯

ď ´δ{2. (5.6)

Then, since γ is the unique minimal path in Ωx,y and γ is strongly minimal, for all
ρ ą 0, there exists δ ą 0 such that, for all ω P Ωx,y, we have Ipωq ě dpx, yq2 ` δ
whenever dpωt, γtq ě ρ for some t P r0, 1s. Hence dpz, γtq ă ρ for all z P Γtpδq and all
t P r0, 1s. Then it follows from (5.6) that, as εÑ 0,

µx,yε

´

 

ω P Ωx,y : dpωt, γtq ă r ` ρ for all t P r0, 1s
(

¯

Ñ 1

showing that µx,yε Ñ δγ weakly on Ωx,y.

Consider the operator rL and measure rν on ĂM “M ˆ R given by

rL “ L` 1

2

ˆ

B

Bτ

˙2

, rνpdx, dτq “ νpdxqdτ
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where τ denotes the coordinate in R. Then
rLf “ 1

2
Ădivpra∇fq ` raprβ,∇fq

where Ădiv is the divergence associated to rν and where

rapx, τq “ apxq `
B

Bτ
b
B

Bτ
,

B

rβpx, τq, v ˘
B

Bτ

F

“ xβpxq, vy, v P TxM.

Moreover, ra has a sub-Riemannian structure and

raprβ, rβqpx, τq “ apβ, βqpxq ď λ2

Write Ω0,1pRq for the set of continuous paths σ : r0, 1s Ñ R such that σ0 “ 0 and
σ1 “ 1. For σ P Ω0,1pRq, define

Ipσq “

$

&

%

ˆ 1

0
| 9σt|

2dt, if σ is absolutely continuous,

8, otherwise.

Set rx “ px, 0q and ry “ py, 1q, and define

rK :“ ĂMzrU, rU :“
!

pγt, σtq : pγ, σq P rΓpδq, t P r0, 1s
)

where
rΓpδq :“

!

pγ, σq P Ωx,y ˆ Ω0,1pRq : Ipγq ` Ipσq ă dpx, yq2 ` 1` δ
)

.

Then rK is closed in ĂM . Write β0,1
ε for the law on Ω0,1pRq of a Brownian bridge from

0 to 1 of speed ε. Then, with obvious notation,

rppt, rx, ryq “ ppt, x, yq
1
?

2π
e´1{p2tq, rµrx,ryε pdω, dτq “ µx,yε pdωqβ0,1

ε pdτq.

By Theorem 1, we have

lim sup
tÑ0

t log rppt, rx, rK, ryq ď ´rdprx, rK, ryq2{2 “ ´pdpx, yq2 ` 1` δq{2

so

lim sup
εÑ0

ε log rµrx,ryε
` 

pω, τq : pωt, τtq P rK for some t P r0, 1s
(

¯

ď lim sup
εÑ0

ε log rppε, rx, rK, ryq ´ lim inf
εÑ0

ε log rppε, rx, ryq ď ´δ{2 (5.7)

where we have used the lower bound from Theorem 2. By standard estimates, we also
have

lim
εÑ0

ε log β0,1
ε

´

 

τ : |τt ´ t| ě
?
δ{2 for some t P r0, 1s

(

¯

“ ´δ{2. (5.8)

Suppose then that ω P Ωx,y and τ P Ω0,1pRq satisfy pωt, τtq P rU and |τt ´ t| ă
?
δ{2

for all t P r0, 1s. Then, for each t P r0, 1s, there exist s P r0, 1s and γ P Ωx,y and
σ P Ω0,1pRq such that

ωt “ γs, τt “ σs, Ipγq ă dpx, yq2 ` δ, Ipσq ă 1` δ.

Then |σs ´ s| ď
?
δ{2 so |t´ s| ď

?
δ and so

dpωt,Γtpδqq
2 ď dpωt, γtq

2 “ dpγs, γtq
2 ď |t´ s|Ipγq ď δ1{2pdpx, yq2 ` δq.

The estimates (5.7) and (5.8) thus imply (5.6).
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We turn to the case where dpx, yq ă dpx,8q ` dpy,8q. Then there exists a relatively
compact open set U in M such that, for K “MzU ,

dpx, yq ă dpx,Kq ` dpy,Kq.

Then, by Theorem 1,

lim sup
εÑ0

ε log ppε, x,K, yq ď ´
`

dpx,Kq ` dpy,Kq
˘2
{2 ă ´dpx, yq2{2 (5.9)

while, by Theorem 2,
lim inf
εÑ0

ε log ppε, x, yq ě ´dpx, yq2{2. (5.10)

Set
Ωx,y
U :“

!

ω P Ωx,y : ωt P U for all t P r0, 1s
)

.

Then γ is the unique minimal path in Ωx,y
U , γ is strongly minimal in Ωx,y

U , and

ppε, x, yq1Ωx,y
U
pωqµx,yε pdωq “ pU pε, x, yqµ

x,y,U
ε pdωq. (5.11)

Consider the limit ε Ñ 0. Since the restriction of L to U satisfies (1.9), by the first
part of the proof, we have µx,y,Uε Ñ δγ weakly on Ωx,y

U . Since
ppε, x, yq “ pU pε, x, yq ` ppε, x,K, yq

it follows from (5.9) and (5.10) that pU pε, x, yq{ppε, x, yq Ñ 1. Hence, on letting εÑ 0
in (5.11), we see that also µx,yε Ñ δγ weakly on Ωx,y. �
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