
On the definition of a solution to a rough
differential equation

I. BAILLEUL12

Abstract. There are several ways of defining what it means for a path to solve a rough
differential equation. The most commonly used notion is due to Davie; it involves a Taylor
expansion property that only makes sense a priori in a given coordinate system. Bailleul’s
definition [2] is coordinate independent. Cass and Weidner [10] recently proved that the two
definitions are actually equivalent, using deep algebraic insights on rough paths. We provide
in this note an algebraic-free elementary short proof of this fact.

Résumé. Différentes notions de solution d’une équations différentielle rugueuses sont
disponibles dans la littérature. La notion la plus utilisée est due à Davie ; elle met en jeu
un développement de Taylor, dont le sens est lié à un choix de coordonnées. La définission
donnée par Bailleul dans [2] ne dépend pas d’un choix de coordonnées. Cass et Weidner [10]
ont récemment démontré que les deux définitions sont en fait équivalentes, en s’appuyant sur
des résultats algébriques élaborés. On donne dans cette note une démonstration courte et
élémentaire de ce fait.

1 – Main result

a) Setting – Rough paths theory was introduced by T. Lyons in [21] as a theory of
controlled differential equations

9xt “ Fpxtq 9ht (1.1)
with F P LpR`,Rdq, and a non-differentiable control h with values in R`. The path x
takes here its values in Rd. Variants of the Cauchy-Lipschitz theorem gives the well-
posed character of this equation for an absolutely continuous control, and L.C. Young
extended this analysis to controls that are α-Hölder, for α ą 1

2 ; the solution path is
then a continuous function of the control h P Cαpr0, 1s,R`q, under proper regularity and
boundedness conditions on F. Nothing better than that can be done in a deterministic
setting in the Hölder class, on account of the fact that since the solution path xt is expected
to be no better than α-Hölder, so is Fpxtq, so the equation involves making sense of the
product Fpxtq 9ht of an α-Hölder function with an pα´1q-Hölder distribution, either directly
or in its integral form. It is known that no such product can be defined as a continuous
function of its two arguments when the sum of the Hölder regularity exponents add up
to a non-positive real number – see e.g. [4]. Lyons’ deep insight was to realize that what
really controls the dynamics in (1.3) is not the path h, but rather the data of the path
together with a number of its iterated integrals
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for all possible indices 1 ď i, j, k, ¨ ¨ ¨ ď `. The rougher the control h is, the more iterated
integrals you need. This can be understood from the fact that these iterated integrals
are the coefficients that appear in a Taylor expansion of the solution to equation (1.3)
when the control is smooth, and this leads to the notion of solution adopted in [16, 2] by
Davie and Bailleul. There is no miracle though, and one cannot still make sense of these
iterated integrals when the control is not sufficiently regular. Lyons’ considerable feat was
to extract from these ’non-existing’ quantities the analytic and algebraic properties that
they should satisfy and to work directly with objects enjoying these properties as new
controls. These are the weak geometric Hölder p-rough paths that we encounter below.
We refer the reader to the gentle introductions [22, 17, 3] for different points of views on
rough differential equations; one can learn everything from scratch in the first 19 pages of
[2].

b) Weak geometric Hölder p-rough paths and rough differential equations – We refer the
reader to [21, 5, 2] for basics on rough paths and recall all we need in this section. Pick an
integer p ě 1. Denote by peiqi“1..` the canonical basis of R`, and by T rps` “

À`
i“1pR

`qbi the
truncated tensor algebra over R`; it is equipped with the Lie bracket operation ra, bs :“
ab´ ba, and endowed with a norm

}a} :“

rps
ÿ

i“1

|ai|1{i,

for a “: ‘
rps
i“1a

i; denote by paIqIPJ1,`Kk,0ďkďrps the coordinates of a generic element a of T rps`

in the canonical basis of T rps` . We sometimes write a “ paiqi“1..rps instead of a “ ‘rpsi“1ai.
Consider R` as a subset of T rps` . The Lie algebra g

rps
` generated by R` within T rps` is called

the p-step free nilpotent Lie algebra, and its exponential Grps` is called the p-step free
nilpotent Lie group. Recall that a weak geometric Hölder p-rough path X over R` is a
1
p -Hölder path with values in G

rps
` . Set Xts :“ X´1s Xt, so we have }Xts} ď O

`

|t ´ s|1{p
˘

;
this is equivalent to having

}Xi
ts} ď O

`

|t´ s|i{p
˘

.

The archetype of a weak geometric Hölder p-rough path is given by the canonical lift of a
smooth R`-valued path h under the form

Ht :“

˜

1, ht ´ h0,

ż t

0
phu1 ´ h0q du1, . . . ,

ż

0ďurpsď¨¨¨ďu1ďt
dhurps ¨ ¨ ¨ dhu1

¸

; (1.2)

it can be seen, after Chen [13], that H takes values in G
rps
` and that

Hts :“ H´1s Ht “

˜

1, ht ´ hs,

ż t

s
phu1 ´ h0q du1, . . . ,

ż

sďurpsď¨¨¨ďu1ďt
dhurps ¨ ¨ ¨ dhu1

¸

.

Denote by J1, `K the set of integers between 1 and `. Define inductively on the size of the
tuple J :“ ti1, Iu P J1, `Kk`1, the element

erJs “
“

ei1 , erIs
‰

of grps` . Given 0 ď s ď t ď T , set

Λts :“ log Xts “
ÿ

IPJ1,`Kk

0ďkďrps

ΛItserIs P g
rps
` .
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Let F “
`

V1, . . . , V`
˘

stand for a collection of ` smooth enough vector fields on Rd, and
X stand for a weak geometric Hölder p-rough path over R`. There are several definitions
of a solution to the rough differential equation

dzt “ Fpztq dXt. (1.3)

Besides Lyons’ original definition [21] and Gubinelli’s formulation in terms of controlled
paths [18], Davie gave in [16] a formulation of a solution in terms of Taylor expansion
for the time increment of a solution. We identify freely a vector field to a first order
differential operator via the expression

Vif “ pDfqpViq

for any C1 function f on Rd. For a tuple I “ pi1, . . . , ikq P J1, `Kk, we write |I| :“ k, and
define a kth order differential operator setting

VI “ Vi1 ¨ ¨ ¨Vik ,

that is to say VIf “ Vi1
`

¨ ¨ ¨ pVikfq
˘

. With a slight abuse of notation, we write VIpxq for
`

VIId
˘

pxq. An Rd-valued path pztq0ďtďT defined on some finite time interval r0, T s is a
solution to the rough differential equation (1.3) in the sense of Davie if one has

zt “ zs `
ÿ

I;|I|ďrps

XI
tspVIqpzsq `O

`

|t´ s|a
˘

, (1.4)

for any 0 ď s ď t ď T , for some exponent a ą 1. The function Op¨q is allowed to depend on
F. Two paths satisfying that condition with different exponents a, a1 ą 1 coincide if they
start from the same point. This definition is a priori not well suited to make sense of a
solution to a rough differential taking values in a manifold – an expression like m`V pmq,
for a point m of a manifold M and a vector V pmq P TmM , has for instance no intrinsic
meaning. Bailleul gave in [2] a more general notion of solution to a rough differential
equation by requiring from a potential solution that it satisfies the estimate

fpztq “ fpzsq `
ÿ

I;|I|ďrps

XI
tspVIfqpzsq `Of

`

|t´ s|a
˘

,

for any real-valued sufficiently regular function f defined on the state space. The function
Of p¨q is allowed to depend on f . The exponent a that appears here may be different from
the exponent that appears in equation (1.4); this makes no difference as long as a ą 1, as
noted above. This definition makes perfect sense in a manifold setting, and taking f to be
a coordinate function in the above equation makes it is clear that a solution in this sense
to an equation with values in Rd is also a solution in the sense of Davie.

c) Main result – Cass and Weidner proved in Theorem 5.3 of their recent work [10] that
the two notions are actually equivalent using some deep insights from algebra based on the
use of Grossman-Larson and Connes-Kreimer Hopf algebras. That point can be proved
by elementary means. We assume as usual that the vector fields Vi in (1.3) are Cγ , for
some γ ą p.

1. Theorem – An Rd-valued path z is a solution to the rough differential equation (1.3) in
the sense of Davie if and only if it is a solution of that equation in the sense of Bailleul.

Proof – We only need to provee that solutions to equation (1.3) in Davie’ sense are solu-
tions in Bailleul’ sense. Given a globally Lipschitz vector field V on Rd, we denote by
exppV q the time 1 map of the differential equation

9yu “ V pyuq,
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that associates to x the value at time 1 of the solution to the equation started from
x. Also, define inductively on the size of the tuple ti1, Iu P J1, `Kk`1, the vector fields

Vrti1,Ius :“
“

Vi1 , VrIs
‰

,

starting with Vris :“ Vi. Given 0 ď s ď t ď T , recall we write Λts for log Xts; this is
an element of grps` . It is proved in Proposition 9 of [2] that one has

›

›

›

›

›

›

exp

¨

˝

ÿ

I;|I|ďrps

ΛItsVrIs

˛

‚´

!

Id`
ÿ

I;|I|ďrps

XI
tspVIq

)

›

›

›

›

›

›

L8

ď O
´

|t´ s|
γ
p

¯

(1.5)

for a Op¨q depending only on the vector fields Vi. (See also [6] for a similar statement.)
A path z is thus a solution to the rough differential equation (1.3) in the sense of Davie
if and only if

zt “ exp

¨

˝

ÿ

I;|I|ďrps

ΛItsVrIs

˛

‚pzsq `O
`

|t´ s|a
1˘

,

for some exponent 1 ă a1 ď γ
p . Let y stand now for a solution path to the ordinary

differential equation
9yu “

ÿ

I;|I|ďrps

ΛItsVrIspyuq,

started from zs at time 0. We use in the computation below the notation O
`

|t´ s|a
1˘

for a function whose value may change from line to line. For a γ-Hölder real-valued
function f on Rd one has

fpztq “ fpy1q `O
`

|t´ s|a
1˘

“ fpzsq `

ż 1

0

d

du
fpyuq du`O

`

|t´ s|a
1˘

“ fpzsq `
ÿ

|I1|ďrps

ΛI1ts

ż 1

0
VI1pyu1q du1 `O

`

|t´ s|a
1˘

“ fpzsq `
ÿ

|I1|ďrps

ΛI1tsVI1pzsq `
ÿ

|I1|ďrps,|I2|ďrps

|I1|`|I2|ďrps

ż 1

0
VI2VI1pyu2q du2du1 `O

`

|t´ s|a
1˘

,

and, after repeating rps times the same computation giving a function as the integral
of its derivative, one eventually has

fpztq “ fpzsq `

rps
ÿ

k“1

1

k!
ΛI1ts ¨ ¨ ¨Λ

Ik
ts

`

VIk ¨ ¨ ¨VI1
˘

pzsq `O
`

|t´ s|a
1˘

“ fpzsq `
ÿ

I;|I|ďrps

XI
tspVIfqpzsq `Of

`

|t´ s|a
1˘

,

from the fact that Λts “ logXts. We repeat that computation in Section 2 in a more
general setting. B

The following remarks emphasize the robust character of the above proof.
‚ One can weaken the regularity assumptions on the vector fields Vi by only requiring

that they are Crγs in the usual sense and the rγs-derivative of Vi is pγ´rγsq-Hölder
continuous, without requiring that the Vi or their derivatives be bounded. Indeed,
given a solution z of (1.3) in the sense of Davie, and a time s, the classical Cauchy
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Lipschitz theory ensures that exp
´

ř

I;|I|ďrpsΛtsVrIs

¯

pzsq is well-defined for t close
enough to s, possibly depending on zs.

‚ For a non-necessarily Hölder weak geometric p-rough path X controlled by a general
control wps, tq rather than by |t ´ s|1{p, one replaces pt ´ sq1{p by wps, tq in the
definitions of a solution to a rough differential equation driven by X, and requires
in both definitions that the remainder is of order wps, tqap, for some exponent
a ą 1. The proof of Theorem 1 remains the same. The equivalence problem for the
different definitions of a solution to a rough differential equation is further explored
in the very recent work [7] of Brault and Lejay.

‚ Let E stand for a Banach space. For dynamics driven by an E-valued rough
paths, following [9] and [10], one needs to define T pnqpEq as the completion of the
truncated algebraic tensor algebra with respect to a system of cross (semi)norms.
One then defines the n-step free Lie algebra over E as the closure in T pnqpEq of the
algebraic free Lie algebra. The n-step free nilpotent Lie group is then indeed the
image by the exponential map of the closed Lie algebra. An appropriate formalism
where vector fields are indexed by the elements of E is required, as in [1, 6] or [10].
Identity (1.5) is proved in this setting in [1] by elementary means similar to their
finite dimensional analogues. (We erronously worked in the non-complete versions
of the Lie and truncated tensor algebras in [1]. The complete setting should be
adopted, and nothing is changed to the story told in [1] in this extended setting.
Thanks to T. Cass for pointing this out.)

‚ One of the nice points of Cass and Weidner’s work [10] is the fact that they can also
handle differential equations driven by a more general notion of rouhg path called
branched rough paths. In a finite dimensional setting, one can appeal to Hairer and
Kelly’s result [20] stating that a solution to a rough differential equation driven
by a branched rough path over R` is also the solution to a differential equation
driven by a weak geometric rough path over a larger space R`

1 , with driving vector
fields built from the initial Vi. The equivalence of the two notions of solution for
equations driven by weak geometric rough paths implies the equivalence of the
two notions of solution for the equation driven by a branched rough path, since
the Taylor expansion of fpytq from the branched rough path and from the weak
geometric rough path point of views coincide, by Theorem 5.8 in [20]. We give
a self-contained proof of the equivalence of a Davie-type and Bailleul-type notion
of a solution to a rough differential equation driven by a branched rough path in
Section 2.

2 – Branched rough paths and their associated flows in a nutshell

We prove in this section the following analogue of Theorem 1.
2. Theorem – An Rd-valued path z is a solution to a rough differential equation driven by

a branched rough path in the sense of Davie if and only if it is a solution of that equation
in the sense of Bailleul.

Theorem 2 gives an alternative proof of Theorem 5.3 of [10] in the setting of dynamics
driven by branched rough paths. We include in this section a short self-containted intro-
duction to finite dimensional branched rough paths before proving Theorem 2 in Section
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2.2. We refer to Gubinelli’s original paper [19] and Hairer and Kelly’s paper [20] for alter-
native accounts on branched rough paths in a finite dimensional setting, and to [10] for
an account of the theory in an infinite dimensional setting.

What are branched rough paths good for? Together with Equation (1.2) giving the lift
of a smooth R`-valued path to the rps-step free nilpotent Lie group, the definition of a
weak geometric rough path X makes it clear that the higher order levels of X play the
role of the non-existing integrals

ş

XidXj ,
ť

XidXjdXk, etc. The archetypal example of
a non-smooth weak geometric p-rough path is given by realizations of the Brownian rough
path B “ pB,Bq, for 2 ă p ă 3, defined by

Bjkts :“

ż t

s
pBu ´Bsq ˝dBu.

Note the use of Stratonovich integration. If one defines instead the iterated integral B
with an Itô integral, the corresponding object B no longer takes values in the rps-step
free nilpotent Lie group G

rps
` . This is related to the fact that Itô integration procedure

does not satisfy the usual chain rule. A different algebraic setting is needed to handle the
integration theory of such controls; this is precisely what branched rough paths provide
us with. The name ”branched rough paths” come from the fact that these objects are
indexed by trees.

2.1 – Branched rough paths

1. The starting point – Consider an ordinary controlled Rd-valued differential equation

9xr “
ÿ̀

i“1

Vipxrq 9hir

driven by some smooth R`-valued path h. Given any tuple I P J1, `Kk, write HI
ts for the

iterated integral
ş

sďs1ď¨¨¨ďskďt
dhi1s1 . . . dh

ik
sk

. Branched rough path appears naturally if one
expands in the Taylor formula

fpxtq “ fpxsq `
ÿ

|I|ďk0

HI
tspVIfqpxsq `O

`

|t´ s|k0`1
˘

(2.1)

all the iterated derivatives VIf in terms of the derivatives of its different terms. We have
for instance

V1
`

V2f
˘

pxq “ pDxfq
`

pV1V2qpxq
˘

` pD2
xfq

`

V1pxq, V2pxq
˘

. (2.2)
The best way to represent the resulting sum in (2.1) is to index it by labelled rooted trees.
Let T stand for the set of possibly empty rooted labelled trees, with labels in t1, . . . , `u.
Given some trees τ1, . . . , τk in T and a P t1, . . . , `u, denote by rτ1 . . . τksa the element of
T obtained by attaching the trees τ1, . . . , τk to a new root with label a. Any element of
T can be constructed in this way starting from the empty tree 1. We denote by |τ | the
number of vertices of a tree τ , and define its symmetry factor σpτq recursively

σ
`

rτn1
1 . . . τnkk sa

˘

“ n1! . . . nk!σpτ1q
n1 . . . σpτkq

nk ,

where τ1, . . . , τk are distinct trees with respective multiplicities n1, . . . , nk. This number
does not depend on the label a. Denote by xT y the real vector space spanned by T and
by xT y˚ its algebraic dual, identified with xT ˚y, for some copy T ˚ of T .

Set V p1˚q :“ 0. and define recursively, for a P J1, `K and τ1, . . . , τn in T , vector fields
on Rd indexed by dual trees

V p‚˚aq :“ Va, V
`

prτ1 . . . τnsaq
˚
˘

:“
1

σ
`

rτ1 . . . τnsa
˘pDnVaq

`

V pτ˚1 q, . . . , V pτ
˚
n q
˘

; (2.3)
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vector fields on Rd are seen as first order differential operators. We define differential
operators indexed by dual forests setting

V
`

τ˚1 ¨ ¨ ¨ τ
˚
n

˘

f “
1

σ
`

τ1 . . . τn
˘

`

Dnf
˘`

V pτ˚1 q, . . . , V pτ
˚
n q
˘

, (2.4)

with σ
`

τ1 . . . τn
˘

:“ σ
`

rτ1 . . . τnsa
˘

, for any 1 ď a ď `. Set |τ1 ¨ ¨ ¨ τn| “ |τ1| ` ¨ ¨ ¨ ` |τn|, and
denote by ϕ “ τ1 ¨ ¨ ¨ τn, a generic forest, and by F the set of these forests. In those terms,
Equation (2.1) rewrites

fpxtq “ fpxsq `
ÿ

ϕPF ;|ϕ|ďk0

Hϕ
ts

`

V pϕ˚qf
˘

pxsq `O
`

|t´ s|k0`1
˘

. (2.5)

The coefficients Hϕ
ts are linear combinations of the initial coefficients HI

ts. One has actually
the recursive definition

H‚ats :“ hat ´ h
a
s , H

rτ1...τnsa
ts “

ż t

s

n
ź

i“1

Hτi
us dh

a
u; (2.6)

formulas (2.5) and (2.6) go back to Cayley’ seminal work [11]. In the same way as the
family of iterated integrals of h lives in an algebraic structure, the free nilpotent Lie group,
the family of all Hτ also lives in some algebraic structure, the dual of a Hopf algebra. We
refer the reader to Sweedler’s little book [25] for the basics on Hopf algebras; all that we
need to know is elementary and recalled below.

2. Hopf algebraic structure – Let pF , ¨q stand for the set of commuting real-valued
polynomials with indeterminates the elements of T and polynomial multiplication opera-
tion; equip the algebraic tensor product F b F with the induced product pa b bqpc b dq
= pacq b pbdq. We define a coproduct ∆ on F as follows. Given a labelled rooted tree τ ,
denote by Subpτq the set of subtrees of τ with the same root as τ . Given such a subtree
s, we obtain a collection τ1, . . . , τn of labelled rooted trees by removing s and all the ad-
jacent edges to s from τ . Write τzs for the monomial τ1 . . . τn. One defines a linear map
∆ : T Ñ F b F by the formula

∆τ “
ÿ

sPSubpτq

pτzsq b s,

and extend it to F by linearity and by requiring that it is multiplicative
∆pτ1 . . . τnq :“ ∆pτ1q . . .∆pτnq.

This coproduct is coassociative, p∆ b Idq∆ “ pId b ∆q∆, as it should be in any Hopf
algebra. Given a real-valued map Y on T , we extend it into an element of the dual space
F˚ of F setting

Y τ1...τn :“ xY, τ1 ¨ ¨ ¨ τny :“
n
ź

i“1

Y τ
i ,

for a monomial τ1 ¨ ¨ ¨ τn, and by linearity. One defines a convolution product on F˚ setting
pY ‹Xqτ :“ pY bXqp∆τq “

ÿ

sPSubpτq

Y τzsXs, (2.7)

for a labelled rooted tree τ . The third ingredient needed to define the Hopf algebra
structure of F is an antipode S, that is a map S : F Ñ F inverting ∆ in the sense
that MpId b Sq∆ “ MpS b Idq∆ “ Id, where M stands for the multiplication map
Mpa b bq “ ab P F . An explicit formula for S was first obtained in [14]; see [12] for a
simple and enlighting proof. From its definition, the inverse a´1 of any element a of F˚
is given by the formula a´1 “ S˚a, where S˚ is the dual map in F˚ of the antipode map
in F , that is

`

a´1, τ
˘

“
`

a,Sτ
˘

.
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Denote by θ “ τ1 . . . τn, with τi P T , a generic element of the canonical basis B of F .
Write pθ˚qθPB for the dual canonical basis and use bold letters to denote generic elements
of F˚. For an element a of F˚ of the special form a “

ř

τ 1PT a
τ 1pτ 1q˚, with aτ

1

P R, we
have for instance

a ‹ a “
ÿ

θ

pab aqp∆θq θ˚ “
ÿ

τPT
pab aqp∆τq τ˚

“
ÿ

τPT

´

ÿ

aτ1aτ2
¯

τ˚,

where the inside sum is over the set of subtrees τ1 of τ with the same root as τ , and
such that τzτ1 is a subtree τ2 of τ . Note in particular that a ‹ a is again of the form
ř

τ 1PT b
τ 1pτ 1q˚. More generally, we have for such an a P F˚

a‹n “
ÿ

τPT

´

ÿ

aτ1 ¨ ¨ ¨ aτn
¯

τ˚, (2.8)

where the inside sum is over the set of disjoint rooted subtrees τ1, . . . , τn of τ , with respec-
tive roots α1, . . . , αn such that αi`1 is a descendant of αi in τ , for all 1 ď i ď n´ 1, and
any node of τ is in one of the subtrees τi. The convolution product (2.7) is closely related
to the identities (2.3) and (2.4) defining the differential operators V pτ˚q and V pτ˚1 ¨ ¨ ¨ τ˚n q.
The following statement is proved by induction on n` n1.

3. Lemma – For any dual forests τ˚1 ¨ ¨ ¨ τ˚n and σ˚1 ¨ ¨ ¨σ˚n1, one has

V
`

τ˚1 ¨ ¨ ¨ τ
˚
k

˘

V
`

σ˚1 ¨ ¨ ¨σ
˚
k1
˘

“ V
´

pτ˚1 ¨ ¨ ¨ τ
˚
k q ‹ pσ

˚
1 ¨ ¨ ¨σ

˚
k1q

¯

.

3. Hölder branched p-rough paths – We define a Lie bracket on F˚ setting

ra,bs‹ :“ a ‹ b´ b ‹ a,

for which the real vector space xT ˚y spanned by the dual trees is a Lie algebra. The
exponential map exp‹ : F˚ Ñ F˚ and the logarithm map log‹ : F˚ Ñ F˚ are defined by
the usual series

exp‹paq “
ÿ

ně0

a‹n

n!
, log‹pbq “

ÿ

ně1

p1˚ ´ bq‹n

n
,

with the convention a‹0 “ 1˚, where 1˚ denote the dual of the empty tree. It is clear from
the above formula for a‹n that we have

`

exp‹paq, τ
˘

“

|τ |
ÿ

n“0

1

n!

ÿ

aτ1 ¨ ¨ ¨ aτn , (2.9)

with the same inside sum as in (2.8). Formula (2.8) justifies the convergence of the
these sums, in the sense that

`

exp‹paq, θ
˘

and
`

log‹pbq, θ
˘

are actually finite sums for
any monomial θ, provided pa, 1q “ 0 – the pairing p¨, ¨q is a pairing between F˚ and F .
Setting F˚0 :“

 

a P F˚ ; pa, 1q “ 0
(

and F˚1 :“
 

a P F˚ ; pa, 1q “ 1
(

, one can see that
exp‹ : F˚0 Ñ F˚1 and log‹ : F˚1 Ñ F˚0 are reciprocal bijections; the following result can be
seen as a consequence. (See Sweedler’s above mentioned book, or Reutenauer’s book [24],
Theorem 3.2.)

4. Theorem – The pair
`

exp‹pxT ˚yq, ‹
˘

is a group.
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Pick an integer N ě 0. Write F˚
pkq for the vector space spanned by the monomials

pτ1 . . . τnq
˚, with

řn
i“1 |τi| “ k, and denote by πďN the natural projection from F˚ to the

quotient space F˚z
À

kěN`1F˚pkq. Set

πďN pF˚q “: F˚ďN .

The image of exp‹pgq by πN is then diffeomorphic to the real vector space xT ˚ďNy spanned
by πďNpT ˚q; it is a Lie group when equipped with the operation πďN ˝ ‹, which we still
denote by ‹. Write

GN` Ă F˚ďN
for that Lie group; it plays for branched rough paths the role that the rps-step free nilpotent
Lie group plays for weak geometric Hölder p-rough paths. In the same way as Chen’s lifting
formula (1.2) gives a geometric to the

Denote by ‚˚a the element of the dual canonical basis, dual to ‚a. It is elementary
to check that the F˚-valued function Hts “ pH

τ
tsqτPT , |τ |ďN associated with a smooth R`-

valued path h, as defined in (2.6), considered as a function of the time parameter t, satisfies
in πN pF˚q the ordinary differential equation

dHts “
ÿ̀

a“1

Hts ‹
`

‚˚a dh
a
t

˘

;

this implies that Hts is an element of GpNq` for all times t ě s, and that

Hts “ H´1
s Ht,

with Hr :“ Hr0, for all r ě 0.

Definition – Let 2 ă p. A Hölder branched p-rough path on r0, T s is a Grps` -valued path
X such that

sup
0ďsătďT

|Xϕ
ts|

|t´ s|
|ϕ|
p

ă 8,

for all forests ϕ “ τ1 . . . τk with |ϕ| :“
řk
i“1 |τi| ď rps, and Xts :“ X´1

s ‹Xt.

The norm of X is defined as

}X} :“ max
ϕPF ; |ϕ|ďrps

sup
0ďsătďT

|Xϕ
ts|

|t´ s|
|ϕ|
p

; (2.10)

we also define a distance dpX,Yq “ }X ´ Y} on the nonlinear set of Hölder branched
p-rough path. Given 0 ď s ď t ď T and a Hölder branched p-rough path X defined on the
time interval r0, T s, we define an element of xT ˚

ďrpsy setting

Λts :“ log‹Xts;

by definition
exp‹pΛtsq “ Xts P Grps` .

4. Rough differential equations driven by Hölder branched p-rough paths – Let X be
a Hölder branched p-rough path over R`, and F “ pV1, . . . , V`q be γ-Hölder vector fields
on Rd, for γ ą p. A path z in Rd is said to be a solution path to the rough differential
equation

dzt “ Fpztq dXt (2.11)
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in the sense of Davie if one has
xt “ xs `

ÿ

ϕPF ;|ϕ|ďrps

`

V pXtsqId
˘

pxsq `O
`

|t´ s|a
˘

.

for some constant a ą 1. (This is actually Gubinelli’s definition [19] rather than Davie’s
definition.) The path z is a solution to Equation (2.11) in the sense of Bailleul if one has

fpxtq “ fpxsq `
ÿ

ϕPF ;|ϕ|ďrps

`

V pXtsqf
˘

pxsq `O
`

|t´ s|a
˘

,

for some constant a ą 1, for every real-valued function γ-Hölder function f on Rd. (The
Op¨q term is allowed to depend on f .) Theorem 2 states the equivalence of these two notions
of definition. Conditions for the existence of a unique solution are given in Gubinelli’
seminal paper [19].

2.2 – Proof of Theorem 2

We only need to prove that a solution in Davie’ sense is a solution in Bailleul’ sense. We
proceed as in Section 1 and prove that the result comes from a Taylor expansion property
satisfied by the time 1 map of an approximate dynamics and the morphism property stated
in Lemma 3.

Recall we write Λts for log‹Xts. Given some times 0 ď s ď t ď T , let µts stand for the
well-defined time 1 map associated with the ordinary differential equation

9yu “ V
`

Λts

˘

pyuq. (2.12)
(The assumption that γ ą p and the vector fields Vi are γ-Lipschitz ensures that all the
vector field V pΛtsq is globally Lipscthiz continuous.)

5. Lemma – There is a constant a ą 1 with the following property. For any γ-Hölder
real-valued function f on Rd, one has

f ˝ µts “ f ` V
`

Xts

˘

f `Of
`

|t´ s|a
˘

,

for a remainder term Of
`

|t´s|a
˘

that may depend on f , and that has a C1-norm bounded
above by a constant multiple of |t´ s|a.
Proof – The Taylor expansion property follows from the morphism property of the V -map

from Lemma 3, writing

fpy1q “ fpy0q `

ż 1

0

 

V pΛtsqf
(

pys1q ds1

“ fpy0q `
 

V pΛtsqf
(

pxq `

ż 1

0

ż s1

0

!

V pΛtsqV
`

Λts

˘

f
)

pys2q ds2ds1

“ fpy0q `
 

V pΛtsqf
(

pxq `

ż 1

0

ż s1

0

!

V
`

Λ‹2ts
˘

f
)

pys2q ds2ds1

“ fpy0q `
 

V pΛtsqf
(

pxq `
1

2

!

V
`

Λ‹2ts
˘

f
)

pxq `

ż 1

0

ż s1

0

ż s2

0

!

V pΛ‹3ts qf
)

pys3q ds3ds2ds1

and, by induction,

fpy1q “ fpy0q `

rps
ÿ

k“1

1

k!

 

V
`

Λ‹kts
˘

f
(

pxq `

ż

!

V
`

Λ
‹prps`1q
ts

˘

f
)

pyrps`1q10ďs1ď¨¨¨ďsrps`1
ds

“
 

V pXtsqf
(

py0q `Θf

`

|t´ s|a
˘

`

ż

!

V
`

Λ
‹prps`1q
ts

˘

f
)

pyrps`1q10ďs1ď¨¨¨ďsrps`1
ds
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The Θf

`

|t´ s|a
˘

term comes from the fact that Λ P HN and X P HN are build from
one another using the restriction of the maps log‹ and exp‹, so Xts P HN coincides
with

řN
i“0

1
n! Λ‹nts up to some terms in HzHN of size O

`

|t´s|a
˘

. The conclusion follows
then from that explicit representation of the Taylor remainder. B

It follows from Lemma 5 that a path z is a solution in Davie’ sense iff

zt “ exp
`

V pΛtsq
˘

pzsq `O
`

|t´ s|a
1˘

,

for some exponent 1 ă a1 ď γ
p . The end of the proof of Theorem 2 is then identical to the

proof of Theorem 1.

Remarks – 1. Write εfts for the remainder f ˝ µts ´ V pXtsqf . One can see directly that
the µts form a C1-approximate flow from the identity

µtu ˝ µus “
 

V pXtuqId
(

˝ µus ` ε
Id
tu ˝ µus

“ V pXusqV pXtuqId` εV pXtuqId
us ` εIdtu ˝ µus

“ V pXtsqId` εV pXtuqId
us ` εId

tu ˝ µus

“ µts ` ε
Id
ts ` ε

V pXtuqId
us ` εId

tu ˝ µus.

One then knows from Theorem 1 in [2] that the rough differential equation (2.11) has a
unique solution flow, associated with the C1-approximate flow µ. This provides a direct
proof that the rough differential equation (2.11) has a unique solution flow.

2. Here as in Section 1, working with Hölder rough paths or rough paths controlled by
some more general control wps, tq does not make any difference. Working with branched
rough paths over an infinite dimensional space E does not make any difference either, as
long as one takes care of working with a symmetric system of cross seminorms generating
the topology of E, and complete accordingly the different algebraic tensor spaces Ebk,
such as emphasized in [10], Section 3.
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