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The aim

Let (Xi )i∈Z be a stationary sequence of real-valued r.v.’s. in L2.

The aim is to find a ”good” upper bound for the quantity

P
(

max
1≤k≤n

∣∣ k

∑
i=1

(Xi − E(Xi ))
∣∣∣ ≥ x

)
for any x > 0.

”Good” in the sense that this upper bound implies ”sharp” moment
inequalities or large deviation inequalities as : for some α > 0 and
any x > 0

nα P
(

max
1≤k≤n

∣∣ k

∑
i=1

(Xi − E(Xi ))
∣∣∣ ≥ nx

)
≤ C (x) .

Note that in the iid case and if P(|X1 − E(X1)| ≥ nx
)
∼ c

(nx)p
,

then
lim infn→∞ np−1 P

(
max1≤k≤n

∣∣∑k
i=1(Xi − E(Xi ))

∣∣∣ ≥ nx
)
> 0.
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The Fuk-Nagaev’s inequality (1971) in the independent
setting

Let (Xi )i≥1 be a sequence of independent real-valued r.v.’s. in L2.
Define S0 = 0 ,

Sk =
k

∑
i=1

(Xi − E(Xi )) and S∗n = max
0≤k≤n

Sk ,

Then, for any v2
n ≥ ∑n

i=1 E(X
2
k ) and any positive reals (x , y),

P(S∗n ≥ x) ≤ exp(−y−2v2
n h(xy/v2

n )) +
n

∑
i=1

P(Xi > y)

where h(u) = (1 + u) log(1 + u)− u ≥ u
2 log(1 + u).

We also have: for any ε > 0,

P(S∗n ≥ (1+ ε)x) ≤ exp(−y−2v2
n h(xy/v2

n ))+
1

xε

n

∑
i=1

E((Xi − y)+)
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Some applications (1)

To simplify, take the X ′i s identically distributed as X and such that

E(X ) = 0. Set Sk = ∑k
i=1 Xi . Take p ≥ 2.

Using the fact that

E( max
1≤i≤n

|Sk |p) = p
∫ ∞

0
xp−1P( max

1≤i≤n
|Sk | ≥ x)dx

we get

for any r > 0,

E( max
1≤i≤n

|Sk |p)�
∫ ∞

0
xp−1

(
1 +

x2

rv2
n

)−r/2
dx

+ n
∫ ∞

0
xp−2E((|X | − x/r)+)dx

Hence, taking r > p, the Rosenthal inequality follows:

E( max
1≤i≤n

|Sk |p)� vpn + nE(|X |p)
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Some applications (2)

Let p > 2. Still in the identically distributed case, assume now that
the r.v.’s have a weak moment of order p:

sup
t>0

tpP(|X | > t) < ∞ .

This condition is equivalent to:

sup
x>0

xp−1
∫ 1

0
Q(u)1Q(u)>xdu < ∞

where Q is the quantile function of |X |, that is the generalized
inverse of H(t) = P(|X | > t).

The Fuk-Nagaev inequality gives the following deviation bound: for
any x > 0 and any r > 0

P( max
1≤i≤n

|Sk | ≥ nx)� 1

x rnr/2
+

1

xpnp−1
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What about P(max1≤i≤n |Sk | ≥ nx) in the dependent
setting?

Let us consider the following Markov chain: Let a = p − 1 with
p > 2. Let λ denote the Lebesgue measure on [0, 1]. Define the
probability laws ν and π by

ν = (1 + a)xaλ and π = axa−1λ .

We define now a strictly stationary Markov chain by defining its
transition probabilities K (x ,A) as follows:

K (x ,A) = (1− x)δx (A) + xν(A) ,

Then π is the unique invariant probability measure of the chain with
transition probabilities K (x , ·). Let (Yi )i∈i∈Z

be the stationary
Markov chain on [0, 1] with transition probabilities K (x , ·) and law
π.

For any bounded function from [0, 1] to R, set

Xi = f (Yi )− π(f ) and Sn(f ) =
n−1

∑
i=0

Xi .
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A Markov chain example (1)

For this chain, we can use regeneration technique and
decomposition in iid cycles.

Define a sequence (Tk )k≥0 of stopping time as follows:

T0 = inf{i > 0 : Yi 6= Yi−1} and Tk = inf{i > Tk−1 : Yi 6= Yi−1}

Let τk = Tk+1 − Tk . The r.v.’s (YTk
, τk )k≥0 are i.i.d.

YTk
has law ν and the conditional distribution of τk given YTk

= y
is the geometric distribution G(1− y): for any ` ≥ 0

P(τk > `|YTk
= y) = (1− y)` .

Let Nn = sup{i ∈N : Ti ≤ n}. Write

Sn(f ) =
TNn−1

∑
k=0

Xk +
n−1

∑
k=TNn

Xk = T0X0 +
Nn−1

∑
k=0

τkXTk
+

n−1

∑
k=TNn

Xk
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A Markov chain example (2)

Recall that
Nn = sup{i ∈N : Ti ≤ n}

Setting c = 3/(2E(τ1)), we have

P
(∣∣ Nn−1

∑
k=0

τkXTk

∣∣ ≥ nx) ≤ P
(
Nn > [cn]+ 1)+P

(
max

0≤`≤[cn]

∣∣ `

∑
k=0

τkXTk

∣∣ ≥ nx)

= P
(
T[cn]+1 ≤ n) + P

(
max

0≤`≤[cn]

∣∣ `

∑
k=0

τkXTk

∣∣ ≥ nx)

≤ P
( [cn]

∑
k=0

(τk − E(τk )) ≤ −n/2) + P
(

max
0≤`≤[cn]

∣∣ `

∑
k=0

τkXTk

∣∣ ≥ nx)
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A Markov chain example (3)

We have

P(τk > `) = (a+ 1)
∫ 1

0
ya(1− y)`dy � `−(a+1) = `−p

So, using the Fuk-Nagaev inequality, we get that, for any r > 0,

P
(∣∣ Nn−1

∑
k=0

τkXTk

∣∣ ≥ nx)� 1

x rnr/2
+

1

xpnp−1
+

1

np−1

In addition P(T0 > `) =
∫ 1

0 (1− y)`dπy � `−a = `1−p

Moreover

P
(∣∣ n−1

∑
k=TNn

Xk

∣∣ ≥ nx) ≤ P
(
2‖f ‖∞τNn ≥ nx)

≤ P
(
Nn > [cn] + 1) + ([cn] + 1)P

(
2‖f ‖∞τ1 ≥ nx)
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A Markov chain example (4)

Finally, we get that for any r > 0,

P(|Sn(f )| ≥ nx)� 1

x rnr/2
+

1

xpnp−1
(∗)

In this example, the return times τk ’s have a weak moment of order
p:

P(τ1 > `)� `−p

They play the same role as the random variables Xk ’s in the iid case!

For this example,

β(n) := π
(

sup
‖f ‖∞≤1

∣∣Kn(f )− π(f )
∣∣)� n−a =

1

np−1
,

(see Doukhan, Massart and Rio (1994)) and the inequality can be
deduced from a more general inequality due to Rio (2000) for
α-mixing sequences.
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A Fuk-Nagaev inequality for α-mixing sequences: Rio
(2000)

Let (Xn)n∈Z be a strictly stationary sequence of centered
real-valued r.v.’s in L2. let Xn = (Xk , k ≥ n)

α(0) = 1/2 and α(n) = sup
‖f ‖∞≤1

‖E(f (Xn)|F0)−E(f (Xn))‖1

where F0 = σ(Xk , k ≤ 0).

For any u ∈ [0, 1], set

α−1(u) = min{q ∈N : α(q) ≤ u} = ∑
n≥0

1u<α(n)

Let Q is the quantile function of |X1|, that is the generalized
inverse of H(t) = P(|X1| > t). So for u ∈ [0, 1],

Q(u) = inf{t ≥ 0 : H(t) ≤ u} .

Note that

H(t)� t−p ⇐⇒ sup
x>0

xp−1
∫ 1

0
Q(u)1Q(u)>xdu < ∞
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Theorem (Rio (2000)). Setting Rn(u) = (α−1(u) ∧ n)Q(u), we
have for any x > 0 and any r ≥ 1,

P
(

max
1≤k≤n

|Sk |
)
≥ 4x) ≤ 4

(
1+

x2

v2
n

)−r/2
+ 4nx−1

∫ 1

0
Q(u)1Rn(u)>x/rdu ,

where v2
n ≥ n ∑n−1

k=0 |Cov(X0,Xk )|.

In the independent setting Rn(u) = Q(u) and

∫ 1

0
Q(u)1Q(u)>x/rdu =

∫ H(x/r )

0
Q(u)du

=
∫ +∞

x/r
H(t)dt = E(|X1| − x/r)+) .
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Some applications (1)

Using the fact that

E( max
1≤i≤n

|Sk |p) = p
∫ ∞

0
xp−1P( max

1≤i≤n
|Sk | ≥ x)dx

we get the following Rosenthal-type inequality: for any p ≥ 2

E( max
1≤i≤n

|Sk |p) ≤ apv
p
n + nbp

∫ 1

0
(α−1(u) ∧ n)p−1Qp(u)du

since, taking r = p + 1,

n
∫ ∞

0
xp−2

∫ 1

0
Q(u)1R(u)>x/rdudx

= n
(p + 1)p−1

p − 1

∫ 1

0
(α−1(u) ∧ n)p−1Qp(u)du
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Some applications (2)

Let R(u) = α−1(u)Q(u). Let p > 2. Assume that

sup
x>0

xp−1
∫ 1

0
Q(u)1R(u)>xdu < ∞ (∗)

then for any r > 0

P( max
1≤i≤n

|Sk | ≥ nx)� 1

x rnr/2
+

1

xpnp−1

If Q(u) ≤ C , then (∗) reads as α(n)� 1
np−1 . Hence the Rio’s

results can be applied with Xk = f (Yk )− π(f ) where f is bounded
and Yk is the strictly Markov chain previously defined.

Rio’s inequality is proved by using truncature, blocking arguments
and coupling. In the mixing coefficients, all the past and all the
future of the sequence are needed. The mixing coefficients can be
replaced by coefficients allowing coupling in L1 (see Dedecker and
Prieur (2005)).
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Examples of non strong mixing processes

In the Markov chain setting with invariant probability measure π,
the alpha-mixing coefficients read as

α(n) = sup
‖f ‖∞≤1

π
(∣∣Kn(f )− π(f )

∣∣)

A lot of Markov chains, even very simple, are known not to be
strong mixing.

Take for instance

Xn =
∞

∑
i=0

ξn−i
2i+1

.

where (ξi ) is an iid sequence of r.v.’s ∼ B(1/2).

This is a Markov chain with invariant measure λ the Lebesgue
measure on [0, 1] and transition Markov operator given by

K (f )(x) =
1

2

(
f
(x

2

)
+ f
(x + 1

2

))
This Markov chain is not strong mixing !
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Intermittent Maps and their associated Markov chains

Example Let us consider a LSV map (Liverani, Saussol et Vaienti, 1999):

for 0 < γ < 1, Tγ(x) =

{
x(1 + 2γxγ) if x ∈ [0, 1/2[

2x − 1 if x ∈ [1/2, 1]

Graph of Tγ
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Some facts

If γ ≥ 1, there is no abs. continuous invariant probability.

If γ ∈]0, 1[, there is only one absolutely continuous invariant
probability ν. Its density h satisfies

0 < c ≤ h(x)/x−γ ≤ C < ∞

We can associate a Markov chain X = (Xi )i∈Z with invariant
probability measure ν such that on the probability space
(Tγ,T 2

γ , . . . ,T n
γ ) is distributed as (Xn,Xn−1, . . . ,X1). Therefore

ν
(

max
1≤k≤n

∣∣ k

∑
i=1

(f ◦ T i
γ − ν(f ))

∣∣ ≥ x
)

≤ P
(
2 max

1≤k≤n

∣∣ k

∑
i=1

(f (Xi )− ν(f ))
∣∣ ≥ x

)
The Markov operator of the chain is the Perron-Frobenius operator
K defined as follows: for any positive measurable functions f and g ,

ν(f ◦ T · g) = ν(f ·K (g)) .
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Some facts

If γ ≥ 1, there is no abs. continuous invariant probability.

If γ ∈]0, 1[, there is only one absolutely continuous invariant
probability ν. Its density h satisfies

0 < c ≤ h(x)/x−γ ≤ C < ∞

We can associate a Markov chain X = (Xi )i∈Z with invariant
probability measure ν such that on the probability space
(Tγ,T 2

γ , . . . ,T n
γ ) is distributed as (Xn,Xn−1, . . . ,X1). Therefore

ν
(

max
1≤k≤n

∣∣ k

∑
i=1

(f ◦ T i
γ − ν(f ))

∣∣ ≥ x
)

≤ P
(
2 max

1≤k≤n

∣∣ k

∑
i=1

(f (Xi )− ν(f ))
∣∣ ≥ x

)
The Markov operator of the chain is the Perron-Frobenius operator
K defined as follows: for any positive measurable functions f and g ,

ν(f ◦ T · g) = ν(f ·K (g)) .
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Dependence coefficients for the chain.

The Markov chain X = (Xi )i∈Z with invariant probability measure
ν and transition operator K is not strong mixing.

However we have the following upper bounds: Let BV be the space
of bounded variation functions f from R to R with norm ‖ · ‖
defined as follows:

‖f ‖ = max(‖f ‖∞, |f |) ,

where |f | = ‖df ‖. Let B1 =
{
f ∈ B : |f | ≤ 1

}
. Then there exist

positive constants C1 and C2 not depending on n such that

H1 : sup
f ∈B1

ν
(∣∣Kn(f )− ν(f )

∣∣) ≤ C1

n(1−γ)/γ

and, for any function f in BV ,

H2 : |Kn(f )| ≤ C2|f | .

(See Dedecker, Gouëzel, Merlevède (2010) where GPM maps have
been considered).
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Having H1 and H2 implies that there exists a constant C such that
for any k ≥ 0 and any n ≥ 1,

sup
f ,g∈B1

ν
(∣∣Kn(f K k (g))− ν(f K k (g))

∣∣) ≤ C

n(1−γ)/γ
,

This is equivalent to say that

sup
s,t∈R

ν
(∣∣Kn(ft K

k (fs))− ν(ft K
k (fs))

∣∣) ≤ C

n(1−γ)/γ
,

where ft(x) = 1x≤t − ν(]−∞, t])
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The α-dependent coefficients for stationary sequences.

For any integrable random variable Z , let Z (0) = Z −E(Z ). For
any random variable V = (V1, · · · ,Vk ) with values in Rk and any
σ-algebra F , let

α(F ,V ) = sup
(x1,...,xk )∈Rk

∥∥∥∥∥E

(
k

∏
j=1

(1Vj≤xj )
(0)
∣∣∣F)−E

(
k

∏
j=1

(1Vj≤xj )
(0)

)∥∥∥∥∥
1

For a stationary sequence Y = (Yi )i∈Z, let

αk,Y(0) = 1/2 , αk,Y(n) = max
1≤l≤k

sup
n≤i1≤...≤il

α(F0, (Yi1 , . . . ,Yil )) , n > 0

Note that α1,Y(n) is then simply given by

α1,Y(n) = sup
x∈R

‖E (1Yn≤x |F0)− F (x)‖1 ,

where F is the distribution function of PY0
.
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Important remarks.

Contrary to the usual mixing case, any function of a stationary
α-dependent sequence Y = (Yi )i∈Z is not necessarily α-dependent
(meaning that its dependency coefficients do no necessarily tend to
zero). Hence, we need to impose some constraints on the
observables.

If f is monotonic on some open interval and 0 elsewhere, and if
X = (f (Yi ))i∈Z, then for any positive integer k,

αk,X(n) ≤ 2kαk,Y(n) .

As a consequence, if one can prove a deviation inequality for

∑n
k=1 Yi with an upper bound involving the coefficients

(αk,Y(n))n≥0 then it also holds for ∑n
k=1 f (Yi ), where f is

monotonic on a single interval.

The deviation inequality can be then extended by linearity to convex
combinations of such functions.
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The class of observables

Let H : R+ → [0, 1] be a tail function so it is non-increasing,
right-continuous and converges to zero at infinity.

Denote by Q = H−1 its generalized inverse.

For µ a probability measure on R and Q = H−1 an integrable
quantile function, we define 2 classes of functions: Mon(Q, µ) and
F (Q, µ).

Mon(Q, µ) is the set of functions g which are monotonic on some
open interval of R and null elsewhere and such that
µ(|g | > t) ≤ H(t) for any t ∈ R+.

F (Q, µ) is the closure in L1(µ) of the set of functions which can

be written as ∑L
`=1 a`f`, where ∑L

`=1 |a`| ≤ 1 and f` belongs to
Mon(Q, µ).

A function belonging to F (Q, µ) is allowed to blow up at an infinite
number of points.
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The class of observables

Let H : R+ → [0, 1] be a tail function so it is non-increasing,
right-continuous and converges to zero at infinity.

Denote by Q = H−1 its generalized inverse.

For µ a probability measure on R and Q = H−1 an integrable
quantile function, we define 2 classes of functions: Mon(Q, µ) and
F (Q, µ).

Mon(Q, µ) is the set of functions g which are monotonic on some
open interval of R and null elsewhere and such that
µ(|g | > t) ≤ H(t) for any t ∈ R+.

F (Q, µ) is the closure in L1(µ) of the set of functions which can

be written as ∑L
`=1 a`f`, where ∑L

`=1 |a`| ≤ 1 and f` belongs to
Mon(Q, µ).

A function belonging to F (Q, µ) is allowed to blow up at an infinite
number of points.
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A deviation inequality for α-dependent sequences:
notations

For u ∈ [0, 1] and k ∈N∗, let

α−1
k,Y(u) = min{q ∈N : αk,Y(q) ≤ u} =

∞

∑
n=0

1u<αk,Y(n)
.

Note that α1,Y(n) ≤ α2,Y(n), and consequently α−1
1,Y ≤ α−1

2,Y.

Let Y = (Yi )i∈Z be a stationary sequence. Let PY0
the distribution

of Y0 and Q be a quantile function in L1.

Let Xi = f (Yi )−E(f (Yi )), where f belongs to F (Q,PY0
). Let

Sn = ∑n
k=1 Xk .

Given a positive integer n, define

Rn(u) =
(

α−1
2,Y(u) ∧ n

)
Q(u) , for u ∈ [0, 1]
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A deviation inequality for α-dependent sequences: the
statement

Theorem (Dedecker & M. (2016)). For any x > 0, r > 2, β ∈]r − 2, r [
the following deviation bound holds

P

(
max

1≤k≤n
|Sk | ≥ x

)
� srn(x)

x r
+

n

x

∫ 1

0
Q(u)1Rn(u)>xdu

+
n

x1+β/2

∫ 1

0
R

β/2
n (u)Q(u)1Rn(u)>xdu

+
n

x1+r/2

∫ 1

0
R r/2
n (u)Q(u)1Rn(u)≤xdu .

where

s2
n (x) = n

∫ 1

0
(α−1

1,Y(u) ∧ n)Q2(u)1Rn(u)≤xdu ,
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Some insights for the proof

To simplify assume that f is monotonic on R and bounded by
M = 1.

As in the Rio’s proof, we make blocks of size q with
α2,Y(q) ≤ v = R−1

n (x) if 0 ≤ v < 1/2 and q ≤ n.

Setting where Ui = ∑iq
k=(i−1)q+1

Xi , we have

max
1≤k≤n

|Sk | ≤ 2qM + max
1≤2j≤[ nq ]

∣∣∣∣∣ j

∑
i=1

U2i

∣∣∣∣∣+ max
1≤2j−1≤[ nq ]

∣∣∣∣∣ j

∑
i=1

U2i−1

∣∣∣∣∣
Let Ũ2i = U2i −EF2(i−1)q

(U2i ), Ũ2i+1 = U2i+1 −EG(2i−1)q
(U2i+1)

max
1≤k≤n

|Sk | ≤ 2qM + max
2≤2j≤[ nq ]

∣∣∣∣∣ j

∑
i=1

Ũ2i

∣∣∣∣∣+ max
1≤2j−1≤[ nq ]

∣∣∣∣∣ j

∑
i=1

Ũ2i−1

∣∣∣∣∣
+

[n/q]

∑
i=1

|Ui − Ũi |
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(U2i ), Ũ2i+1 = U2i+1 −EG(2i−1)q
(U2i+1)

max
1≤k≤n

|Sk | ≤ 2qM + max
2≤2j≤[ nq ]

∣∣∣∣∣ j

∑
i=1
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A Rosenthal for stationary sequences

Theorem (M. & Peligrad (2013)). Let p > 2 and let (Xi )i∈Z be a strictly
stationary sequence of r.v.’s in Lp and adapted to a stationary filtration
(Fi )i∈Z. Then for any n ≥ 1,

‖ max
1≤j≤n

|Sj |‖p �n1/p
(
‖X1‖p +

n

∑
k=1

1

k1+1/p ‖E0(Sk )‖p

+
( n

∑
k=1

1

k1+2δ/p ‖E0(S
2
k )‖δ

p/2

)1/(2δ))
,

where δ = min(1, 1/(p − 2)) and E0(X ) = E(X |F0).

Remark If there exists β > 2/p such that n−βE(S2
n ) is increasing,

n
1
p

( n

∑
k=1

‖E0(S
2
k )‖δ

p/2

k1+2δ/p

) 1
2δ �

(
E(S2

n )
) 1

2 +n
1
p

( n

∑
k=1

‖E0(S
2
k )−E(S2

k )‖δ
p/2

k1+2δ/p

) 1
2δ
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Application 1: a Rosenthal-type inequality

Let p ≥ 2. Starting from

E( max
1≤i≤n

|Sk |p) = p
∫ ∞

0
xp−1P( max

1≤i≤n
|Sk | ≥ x)dx

and applying the deviation inequality with

r − 2 < β < 2p − 2 < r < 2p

we get the following Rosenthal-type inequality

E( max
1≤i≤n

|Sk |p)� np/2
(∫ 1

0
(α−1

1,Y(u) ∧ n)Q2(u)du

)p/2

+ n
∫ 1

0
(α−1

2,Y(u) ∧ n)p−1Qp(u)du
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Application 2: large deviation inequalities (3)

Let Y = (Yi )i∈Z be a stationary sequence. Let PY0
the distribution

of Y0 and Q be a quantile function in L1.

Let Xi = f (Yi )−E(f (Yi )), where f belongs to F (Q,PY0
).

Let R(u) = α−1
2,Y(u)Q(u). Let p ≥ 2 and assume that

sup
x>0

xp−1
∫ 1

0
Q(u)1R(u)>xdu < ∞ (∗)

Then, for p > 2, any a ∈ (p − 1, p) and any x > 0,

P

(
1

n
max

1≤k≤n
|Sk | ≥ x

)
� 1

nax2a
+

1

np−1xp
.

For p = 2, any a ∈ (1, 2), any c ∈ (0, 1) and any x > 0,

P

(
1

n
max

1≤k≤n
|Sk | ≥ x

)
� 1

nacxa(1+c)
+

1

nx2
.
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Application 3: large deviation inequalities (2)

If we reinforce the condition (∗) in the following: let p ≥ 2 and
assume ∫ 1

0
(α−1

2,Y(u))
p−1Qp(u)du < ∞ .

Then, for any a ∈ (p − 1, p) and any x > 0,

∑
n>0

np−2P

(
1

n
max

1≤k≤n
|Sk | ≥ x

)
� 1

x2a
+

1

xp
.
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Application to intermittent maps: the LSV map.

Recall that

for 0 < γ < 1, T (x) := Tγ(x) =

{
x(1 + 2γxγ) if x ∈ [0, 1/2[

2x − 1 if x ∈ [1/2, 1]

Consider the Markov chain (Yi )i∈Z with invariant measure ν and
transition operator K and recall that

ν
(

max
1≤k≤n

∣∣Sk (f )∣∣ ≥ x
)
≤ P

(
2 max

1≤k≤n

∣∣ k

∑
i=1

(f (Yi )− ν(f ))
∣∣ ≥ x

)
where Sk (f ) = ∑k

i=1(f ◦ T i − ν(f )).

For any k ≥ 1, there exist two positive constants C and D such
that, for any n > 0,

D

n(1−γ)/γ
≤ αk,Y(n) ≤

C

n(1−γ)/γ
.

Assume that f ∈ F (Q, ν) and Q(u)� u−b for b ∈ [0, 1).
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Moment bounds.

Let p > 2. Since, for any b ∈ [0, 1/p[∫ 1

0
(α−1

2,Y(u)∧n)
p−1Qp(u)du �

n

∑
k=0

(k+ 1)p−2
∫ α2,Y(k)

0
Qp(u)du

�
n

∑
k=1

kp−1−1/γkpb(1−γ/γ) ,

It follows that∥∥∥∥ max
1≤k≤n

|Sk (f )|
∥∥∥∥p
p,ν
�

np/2 if b ≤ 2−γ(p+2)
2p(1−γ)

n(pγ+(γ−1)(1−pb))/γ if b > 2−γ(p+2)
2p(1−γ)

.

For instance our result applies if f is positive and non increasing on
(0, 1), with

f (x) ≤ C

xs
near 0, for some C > 0 and s ∈ [0, 1− γ), and

f belongs to F (Q, ν) with Q(u)� u−s/(1−γ)
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Moment bounds.
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Large deviations.

Let f in F (Q, ν) with Q(u)� u−b for some b ∈ [0, 1). Let
p = 1/(γ + b(1− γ)).

Assume that γ + b(1− γ) < 1/2. Then for any a ∈ (p − 1, p) and
any x > 0,

ν

(
1

n
max

1≤k≤n
|Sk (f )| ≥ x

)
� 1

nax2a
+

1

np−1xp
.

Assume that γ + b(1− γ) = 1/2. Then, for any a ∈ (1, 2), any
c ∈ (0, 1) and any x > 0,

ν

(
1

n
max

1≤k≤n
|Sk (f )| ≥ x

)
� 1

nacxa(1+c)
+

1

nx2
.

With another deviation inequality, we have: Assume that
γ + b(1− γ) ∈ (1/2, 1). Then, for any x > 0,

ν

(
1

n
max

1≤k≤n
|Sk (f )| ≥ x

)
� 1

np−1xp
.
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To summarize the large deviations.

Let f in F (Q, ν) with Q(u)� u−b for some b ∈ [0, 1). Let
p = 1/(γ + b(1− γ)). Then

there exists a function fb,γ from R+ to R+ such that for any x > 0,

ν

(
1

n
max

1≤k≤n
|Sk (f )| ≥ x

)
�

fb,γ(x)

np−1
.

Moreover supx>ε x
pfb,γ(x) < ∞ for any ε > 0.

When f is a bounded variation function (then b = 0), for any x > 0,

ν

(
1

n
max

1≤k≤n
|Sk (f )| ≥ x

)
�

f0,γ(x)

n(1−γ)/γ
.

This upper bound (with Sn(f ) instead of the maximum) was
obtained by Melbourne (2009) when f is Hölder continuous who
also proved that it is optimal.
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Thank you for your attention!
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