On deviation and moment inequalities for dependent sequences and applications to intermittent maps

Florence Merlevède joint work with J. Dedecker Université Paris-Est-Marne-La-Vallée (UPEM)

Aber Wrac'h. 16-18 Mars 2016

- Let $\left(X_{i}\right)_{i \in \mathbb{Z}}$ be a stationary sequence of real-valued r.v.'s. in \mathbf{L}^{2}.
- The aim is to find a "good" upper bound for the quantity

$$
\mathbf{P}\left(\max _{1 \leq k \leq n}\left|\sum_{i=1}^{k}\left(X_{i}-\mathbf{E}\left(X_{i}\right)\right)\right| \geq x\right)
$$

for any $x>0$.

- Let $\left(X_{i}\right)_{i \in \mathbb{Z}}$ be a stationary sequence of real-valued r.v.'s. in \mathbf{L}^{2}.
- The aim is to find a "good" upper bound for the quantity

$$
\mathbf{P}\left(\max _{1 \leq k \leq n}\left|\sum_{i=1}^{k}\left(X_{i}-\mathbf{E}\left(X_{i}\right)\right)\right| \geq x\right)
$$

for any $x>0$.

- "Good" in the sense that this upper bound implies "sharp" moment inequalities or large deviation inequalities as: for some $\alpha>0$ and any $x>0$

$$
n^{\alpha} \mathbf{P}\left(\max _{1 \leq k \leq n}\left|\sum_{i=1}^{k}\left(X_{i}-\mathbf{E}\left(X_{i}\right)\right)\right| \geq n x\right) \leq C(x) .
$$

- Let $\left(X_{i}\right)_{i \in \mathbb{Z}}$ be a stationary sequence of real-valued r.v.'s. in \mathbf{L}^{2}.
- The aim is to find a "good" upper bound for the quantity

$$
\mathbf{P}\left(\max _{1 \leq k \leq n}\left|\sum_{i=1}^{k}\left(X_{i}-\mathbf{E}\left(X_{i}\right)\right)\right| \geq x\right)
$$

for any $x>0$.

- "Good" in the sense that this upper bound implies "sharp" moment inequalities or large deviation inequalities as: for some $\alpha>0$ and any $x>0$

$$
n^{\alpha} \mathbf{P}\left(\max _{1 \leq k \leq n}\left|\sum_{i=1}^{k}\left(X_{i}-\mathbf{E}\left(X_{i}\right)\right)\right| \geq n x\right) \leq C(x)
$$

- Note that in the iid case and if $\mathbf{P}\left(\left|X_{1}-\mathbf{E}\left(X_{1}\right)\right| \geq n x\right) \sim \frac{c}{(n x)^{p}}$, then
$\liminf _{n \rightarrow \infty} n^{p-1} \mathbf{P}\left(\max _{1 \leq k \leq n}\left|\sum_{i=1}^{k}\left(X_{i}-\mathbf{E}\left(X_{i}\right)\right)\right| \geq n x\right)>0$.

The Fuk-Nagaev's inequality (1971) in the independent setting

- Let $\left(X_{i}\right)_{i \geq 1}$ be a sequence of independent real-valued r.v.'s. in \mathbf{L}^{2}. Define $S_{0}=0$,

$$
S_{k}=\sum_{i=1}^{k}\left(X_{i}-\mathbf{E}\left(X_{i}\right)\right) \text { and } S_{n}^{*}=\max _{0 \leq k \leq n} S_{k}
$$

The Fuk-Nagaev's inequality (1971) in the independent setting

- Let $\left(X_{i}\right)_{i \geq 1}$ be a sequence of independent real-valued r.v.'s. in \mathbf{L}^{2}. Define $S_{0}=0$,

$$
S_{k}=\sum_{i=1}^{k}\left(X_{i}-\mathbf{E}\left(X_{i}\right)\right) \text { and } S_{n}^{*}=\max _{0 \leq k \leq n} S_{k},
$$

- Then, for any $v_{n}^{2} \geq \sum_{i=1}^{n} \mathbf{E}\left(X_{k}^{2}\right)$ and any positive reals (x, y),

$$
\mathbf{P}\left(S_{n}^{*} \geq x\right) \leq \exp \left(-y^{-2} v_{n}^{2} h\left(x y / v_{n}^{2}\right)\right)+\sum_{i=1}^{n} \mathbf{P}\left(X_{i}>y\right)
$$

where $h(u)=(1+u) \log (1+u)-u \geq \frac{u}{2} \log (1+u)$.

The Fuk-Nagaev's inequality (1971) in the independent setting

- Let $\left(X_{i}\right)_{i \geq 1}$ be a sequence of independent real-valued r.v.'s. in \mathbf{L}^{2}. Define $S_{0}=0$,

$$
S_{k}=\sum_{i=1}^{k}\left(X_{i}-\mathbf{E}\left(X_{i}\right)\right) \text { and } S_{n}^{*}=\max _{0 \leq k \leq n} S_{k}
$$

- Then, for any $v_{n}^{2} \geq \sum_{i=1}^{n} \mathbf{E}\left(X_{k}^{2}\right)$ and any positive reals (x, y),

$$
\mathbf{P}\left(S_{n}^{*} \geq x\right) \leq \exp \left(-y^{-2} v_{n}^{2} h\left(x y / v_{n}^{2}\right)\right)+\sum_{i=1}^{n} \mathbf{P}\left(X_{i}>y\right)
$$

where $h(u)=(1+u) \log (1+u)-u \geq \frac{u}{2} \log (1+u)$.

- We also have: for any $\varepsilon>0$,

$$
\mathbf{P}\left(S_{n}^{*} \geq(1+\varepsilon) x\right) \leq \exp \left(-y^{-2} v_{n}^{2} h\left(x y / v_{n}^{2}\right)\right)+\frac{1}{x \varepsilon} \sum_{i=1}^{n} \mathbf{E}\left(\left(X_{i}-y\right)_{+}\right)
$$

Some applications (1)

- To simplify, take the $X_{i}^{\prime} s$ identically distributed as X and such that $\mathbf{E}(X)=0$. Set $S_{k}=\sum_{i=1}^{k} X_{i}$. Take $p \geq 2$.
- Using the fact that

$$
\mathbf{E}\left(\max _{1 \leq i \leq n}\left|S_{k}\right|^{p}\right)=p \int_{0}^{\infty} x^{p-1} \mathbb{P}\left(\max _{1 \leq i \leq n}\left|S_{k}\right| \geq x\right) d x
$$

we get

Some applications (1)

- To simplify, take the $X_{i}^{\prime} s$ identically distributed as X and such that $\mathbf{E}(X)=0$. Set $S_{k}=\sum_{i=1}^{k} X_{i}$. Take $p \geq 2$.
- Using the fact that

$$
\mathbf{E}\left(\max _{1 \leq i \leq n}\left|S_{k}\right|^{p}\right)=p \int_{0}^{\infty} x^{p-1} \mathbb{P}\left(\max _{1 \leq i \leq n}\left|S_{k}\right| \geq x\right) d x
$$

we get

- for any $r>0$,

$$
\begin{aligned}
\mathbf{E}\left(\max _{1 \leq i \leq n}\left|S_{k}\right|^{p}\right) \ll \int_{0}^{\infty} x^{p-1}(1 & \left.+\frac{x^{2}}{r v_{n}^{2}}\right)^{-r / 2} d x \\
& +n \int_{0}^{\infty} x^{p-2} \mathbf{E}\left((|X|-x / r)_{+}\right) d x
\end{aligned}
$$

Some applications (1)

- To simplify, take the $X_{i}^{\prime} s$ identically distributed as X and such that $\mathbf{E}(X)=0$. Set $S_{k}=\sum_{i=1}^{k} X_{i}$. Take $p \geq 2$.
- Using the fact that

$$
\mathbf{E}\left(\max _{1 \leq i \leq n}\left|S_{k}\right|^{p}\right)=p \int_{0}^{\infty} x^{p-1} \mathbb{P}\left(\max _{1 \leq i \leq n}\left|S_{k}\right| \geq x\right) d x
$$

we get

- for any $r>0$,

$$
\begin{aligned}
\mathbf{E}\left(\max _{1 \leq i \leq n}\left|S_{k}\right|^{p}\right) \ll \int_{0}^{\infty} x^{p-1}(1 & \left.+\frac{x^{2}}{r v_{n}^{2}}\right)^{-r / 2} d x \\
& +n \int_{0}^{\infty} x^{p-2} \mathbf{E}\left((|X|-x / r)_{+}\right) d x
\end{aligned}
$$

- Hence, taking $r>p$, the Rosenthal inequality follows:

$$
\mathbf{E}\left(\max _{1 \leq i \leq n}\left|S_{k}\right|^{p}\right) \ll v_{n}^{p}+n \mathbf{E}\left(|X|^{p}\right)
$$

Some applications (2)

- Let $p>2$. Still in the identically distributed case, assume now that the r.v.'s have a weak moment of order p :

$$
\sup _{t>0} t^{p} \mathbb{P}(|X|>t)<\infty
$$

This condition is equivalent to:

$$
\sup _{x>0} x^{p-1} \int_{0}^{1} Q(u) \mathbf{1}_{Q(u)>x} d u<\infty
$$

where Q is the quantile function of $|X|$, that is the generalized inverse of $H(t)=\mathbb{P}(|X|>t)$.

- The Fuk-Nagaev inequality gives the following deviation bound: for any $x>0$ and any $r>0$

$$
\mathbb{P}\left(\max _{1 \leq i \leq n}\left|S_{k}\right| \geq n x\right) \ll \frac{1}{x^{r} n^{r / 2}}+\frac{1}{x^{p} n^{p-1}}
$$

What about $\mathbb{P}\left(\max _{1 \leq i \leq n}\left|S_{k}\right| \geq n x\right)$ in the dependent setting?

- Let us consider the following Markov chain: Let $a=p-1$ with $p>2$. Let λ denote the Lebesgue measure on $[0,1]$. Define the probability laws v and π by

$$
v=(1+a) x^{a} \lambda \text { and } \pi=a x^{a-1} \lambda .
$$

We define now a strictly stationary Markov chain by defining its transition probabilities $K(x, A)$ as follows:

$$
K(x, A)=(1-x) \delta_{x}(A)+x v(A),
$$

What about $\mathbb{P}\left(\max _{1 \leq i \leq n}\left|S_{k}\right| \geq n x\right)$ in the dependent setting?

- Let us consider the following Markov chain: Let $a=p-1$ with $p>2$. Let λ denote the Lebesgue measure on $[0,1]$. Define the probability laws v and π by

$$
v=(1+a) x^{a} \lambda \text { and } \pi=a x^{a-1} \lambda .
$$

We define now a strictly stationary Markov chain by defining its transition probabilities $K(x, A)$ as follows:

$$
K(x, A)=(1-x) \delta_{x}(A)+x v(A),
$$

- Then π is the unique invariant probability measure of the chain with transition probabilities $K(x, \cdot)$. Let $\left(Y_{i}\right)_{i \in_{i \in \mathbb{Z}}}$ be the stationary Markov chain on $[0,1]$ with transition probabilities $K(x, \cdot)$ and law π.

What about $\mathbb{P}\left(\max _{1 \leq i \leq n}\left|S_{k}\right| \geq n x\right)$ in the dependent setting?

- Let us consider the following Markov chain: Let $a=p-1$ with $p>2$. Let λ denote the Lebesgue measure on $[0,1]$. Define the probability laws v and π by

$$
v=(1+a) x^{a} \lambda \text { and } \pi=a x^{a-1} \lambda .
$$

We define now a strictly stationary Markov chain by defining its transition probabilities $K(x, A)$ as follows:

$$
K(x, A)=(1-x) \delta_{x}(A)+x v(A),
$$

- Then π is the unique invariant probability measure of the chain with transition probabilities $K(x, \cdot)$. Let $\left(Y_{i}\right)_{i \epsilon_{i \in \mathbb{Z}}}$ be the stationary Markov chain on $[0,1]$ with transition probabilities $K(x, \cdot)$ and law π.
- For any bounded function from $[0,1]$ to \mathbb{R}, set

$$
X_{i}=f\left(Y_{i}\right)-\pi(f) \text { and } S_{n}(f)=\sum_{i=0}^{n-1} X_{i}
$$

A Markov chain example (1)

- For this chain, we can use regeneration technique and decomposition in iid cycles.

A Markov chain example (1)

- For this chain, we can use regeneration technique and decomposition in iid cycles.
- Define a sequence $\left(T_{k}\right)_{k \geq 0}$ of stopping time as follows:

$$
T_{0}=\inf \left\{i>0: Y_{i} \neq Y_{i-1}\right\} \text { and } T_{k}=\inf \left\{i>T_{k-1}: Y_{i} \neq Y_{i-1}\right\}
$$

A Markov chain example (1)

- For this chain, we can use regeneration technique and decomposition in iid cycles.
- Define a sequence $\left(T_{k}\right)_{k \geq 0}$ of stopping time as follows:
$T_{0}=\inf \left\{i>0: Y_{i} \neq Y_{i-1}\right\}$ and $T_{k}=\inf \left\{i>T_{k-1}: Y_{i} \neq Y_{i-1}\right\}$
- Let $\tau_{k}=T_{k+1}-T_{k}$. The r.v.'s $\left(Y_{T_{k}}, \tau_{k}\right)_{k \geq 0}$ are i.i.d.

A Markov chain example (1)

- For this chain, we can use regeneration technique and decomposition in iid cycles.
- Define a sequence $\left(T_{k}\right)_{k \geq 0}$ of stopping time as follows:

$$
T_{0}=\inf \left\{i>0: Y_{i} \neq Y_{i-1}\right\} \text { and } T_{k}=\inf \left\{i>T_{k-1}: Y_{i} \neq Y_{i-1}\right\}
$$

- Let $\tau_{k}=T_{k+1}-T_{k}$. The r.v.'s $\left(Y_{T_{k}}, \tau_{k}\right)_{k \geq 0}$ are i.i.d.
- $Y_{T_{k}}$ has law v and the conditional distribution of τ_{k} given $Y_{T_{k}}=y$ is the geometric distribution $\mathcal{G}(1-y)$: for any $\ell \geq 0$

$$
\mathbb{P}\left(\tau_{k}>\ell \mid Y_{T_{k}}=y\right)=(1-y)^{\ell}
$$

A Markov chain example (1)

- For this chain, we can use regeneration technique and decomposition in iid cycles.
- Define a sequence $\left(T_{k}\right)_{k \geq 0}$ of stopping time as follows:

$$
T_{0}=\inf \left\{i>0: Y_{i} \neq Y_{i-1}\right\} \text { and } T_{k}=\inf \left\{i>T_{k-1}: Y_{i} \neq Y_{i-1}\right\}
$$

- Let $\tau_{k}=T_{k+1}-T_{k}$. The r.v.'s $\left(Y_{T_{k}}, \tau_{k}\right)_{k \geq 0}$ are i.i.d.
- $Y_{T_{k}}$ has law v and the conditional distribution of τ_{k} given $Y_{T_{k}}=y$ is the geometric distribution $\mathcal{G}(1-y)$: for any $\ell \geq 0$

$$
\mathbb{P}\left(\tau_{k}>\ell \mid Y_{T_{k}}=y\right)=(1-y)^{\ell}
$$

- Let $N_{n}=\sup \left\{i \in \mathbb{N}: T_{i} \leq n\right\}$. Write

$$
S_{n}(f)=\sum_{k=0}^{T_{N_{n}}-1} x_{k}+\sum_{k=T_{N_{n}}}^{n-1} x_{k}=T_{0} x_{0}+\sum_{k=0}^{N_{n}-1} \tau_{k} x_{T_{k}}+\sum_{k=T_{N_{n}}}^{n-1} x_{k}
$$

A Markov chain example (2)

Recall that

$$
N_{n}=\sup \left\{i \in \mathbb{N}: T_{i} \leq n\right\}
$$

Setting $c=3 /\left(2 \mathbf{E}\left(\tau_{1}\right)\right)$, we have

$$
\begin{aligned}
& \mathbb{P}\left(\left|\sum_{k=0}^{N_{n}-1} \tau_{k} X_{T_{k}}\right| \geq n x\right) \leq \mathbb{P}\left(N_{n}>[c n]+1\right)+\mathbb{P}\left(\max _{0 \leq \ell \leq[c n]}\left|\sum_{k=0}^{\ell} \tau_{k} X_{T_{k}}\right| \geq n x\right) \\
& \quad=\mathbb{P}\left(T_{[c n]+1} \leq n\right)+\mathbb{P}\left(\max _{0 \leq \ell \leq[c n]}\left|\sum_{k=0}^{\ell} \tau_{k} X_{T_{k}}\right| \geq n x\right) \\
& \leq \mathbb{P}\left(\sum_{k=0}^{[c n]}\left(\tau_{k}-\mathbf{E}\left(\tau_{k}\right)\right) \leq-n / 2\right)+\mathbb{P}\left(\max _{0 \leq \ell \leq[c n]}\left|\sum_{k=0}^{\ell} \tau_{k} X_{T_{k}}\right| \geq n x\right)
\end{aligned}
$$

A Markov chain example (3)

- We have

$$
\mathbb{P}\left(\tau_{k}>\ell\right)=(a+1) \int_{0}^{1} y^{a}(1-y)^{\ell} d y \ll \ell^{-(a+1)}=\ell^{-p}
$$

So, using the Fuk-Nagaev inequality, we get that, for any $r>0$,

$$
\mathbb{P}\left(\left|\sum_{k=0}^{N_{n}-1} \tau_{k} X_{T_{k}}\right| \geq n x\right) \ll \frac{1}{x^{r} n^{r / 2}}+\frac{1}{x^{p} n^{p-1}}+\frac{1}{n^{p-1}}
$$

- In addition $\mathbb{P}\left(T_{0}>\ell\right)=\int_{0}^{1}(1-y)^{\ell} d \pi y \ll \ell^{-a}=\ell^{1-p}$
- Moreover

$$
\begin{aligned}
\mathbb{P}\left(\mid \sum_{k=T_{N_{n}}}^{n-1}\right. & \left.x_{k} \mid \geq n x\right) \leq \mathbb{P}\left(2\|f\|_{\infty} \tau_{N_{n}} \geq n x\right) \\
& \leq \mathbb{P}\left(N_{n}>[c n]+1\right)+([c n]+1) \mathbb{P}\left(2\|f\|_{\infty} \tau_{1} \geq n x\right)
\end{aligned}
$$

A Markov chain example (4)

- Finally, we get that for any $r>0$,

$$
\mathbb{P}\left(\left|S_{n}(f)\right| \geq n x\right) \ll \frac{1}{x^{r} n^{r / 2}}+\frac{1}{x^{p} n^{p-1}} \quad(*)
$$

A Markov chain example (4)

- Finally, we get that for any $r>0$,

$$
\mathbb{P}\left(\left|S_{n}(f)\right| \geq n x\right) \ll \frac{1}{x^{r} n^{r / 2}}+\frac{1}{x^{p} n^{p-1}} \quad(*)
$$

- In this example, the return times τ_{k} 's have a weak moment of order p :

$$
\mathbb{P}\left(\tau_{1}>\ell\right) \ll \ell^{-p}
$$

They play the same role as the random variables X_{k} 's in the iid case!

A Markov chain example (4)

- Finally, we get that for any $r>0$,

$$
\mathbb{P}\left(\left|S_{n}(f)\right| \geq n x\right) \ll \frac{1}{x^{r} n^{r / 2}}+\frac{1}{x^{p} n^{p-1}} \quad(*)
$$

- In this example, the return times τ_{k} 's have a weak moment of order p :

$$
\mathbb{P}\left(\tau_{1}>\ell\right) \ll \ell^{-p}
$$

They play the same role as the random variables X_{k} 's in the iid case!

- For this example,

$$
\beta(n):=\pi\left(\sup _{\|f\|_{\infty} \leq 1}\left|K^{n}(f)-\pi(f)\right|\right) \ll n^{-a}=\frac{1}{n^{p-1}},
$$

(see Doukhan, Massart and Rio (1994)) and the inequality can be deduced from a more general inequality due to Rio (2000) for α-mixing sequences.

A Fuk-Nagaev inequality for α-mixing sequences: Rio (2000)

- Let $\left(X_{n}\right)_{n \in \mathbb{Z}}$ be a strictly stationary sequence of centered real-valued r.v.'s in \mathbb{L}^{2}. let $\mathbf{X}_{n}=\left(X_{k}, k \geq n\right)$

$$
\alpha(0)=1 / 2 \text { and } \alpha(n)=\sup _{\|f\|_{\infty} \leq 1}\left\|\mathbb{E}\left(f\left(\mathbf{X}_{n}\right) \mid \mathcal{F}_{0}\right)-\mathbb{E}\left(f\left(\mathbf{X}_{n}\right)\right)\right\|_{1}
$$

where $\mathcal{F}_{0}=\sigma\left(X_{k}, k \leq 0\right)$.

- For any $u \in[0,1]$, set

$$
\alpha^{-1}(u)=\min \{q \in \mathbb{N}: \alpha(q) \leq u\}=\sum_{n \geq 0} \mathbf{1}_{u<\alpha(n)}
$$

A Fuk-Nagaev inequality for α-mixing sequences: Rio (2000)

- Let $\left(X_{n}\right)_{n \in \mathbb{Z}}$ be a strictly stationary sequence of centered real-valued r.v.'s in \mathbb{L}^{2}. let $\mathbf{X}_{n}=\left(X_{k}, k \geq n\right)$

$$
\alpha(0)=1 / 2 \text { and } \alpha(n)=\sup _{\|f\|_{\infty} \leq 1}\left\|\mathbb{E}\left(f\left(\mathbf{X}_{n}\right) \mid \mathcal{F}_{0}\right)-\mathbb{E}\left(f\left(\mathbf{X}_{n}\right)\right)\right\|_{1}
$$

where $\mathcal{F}_{0}=\sigma\left(X_{k}, k \leq 0\right)$.

- For any $u \in[0,1]$, set

$$
\alpha^{-1}(u)=\min \{q \in \mathbb{N}: \alpha(q) \leq u\}=\sum_{n \geq 0} \mathbf{1}_{u<\alpha(n)}
$$

- Let Q is the quantile function of $\left|X_{1}\right|$, that is the generalized inverse of $H(t)=\mathbb{P}\left(\left|X_{1}\right|>t\right)$. So for $u \in[0,1]$,

$$
Q(u)=\inf \{t \geq 0: H(t) \leq u\} .
$$

A Fuk-Nagaev inequality for α-mixing sequences: Rio (2000)

- Let $\left(X_{n}\right)_{n \in \mathbb{Z}}$ be a strictly stationary sequence of centered real-valued r.v.'s in \mathbb{L}^{2}. let $\mathbf{X}_{n}=\left(X_{k}, k \geq n\right)$

$$
\alpha(0)=1 / 2 \text { and } \alpha(n)=\sup _{\|f\|_{\infty} \leq 1}\left\|\mathbb{E}\left(f\left(\mathbf{X}_{n}\right) \mid \mathcal{F}_{0}\right)-\mathbb{E}\left(f\left(\mathbf{X}_{n}\right)\right)\right\|_{1}
$$

where $\mathcal{F}_{0}=\sigma\left(X_{k}, k \leq 0\right)$.

- For any $u \in[0,1]$, set

$$
\alpha^{-1}(u)=\min \{q \in \mathbb{N}: \alpha(q) \leq u\}=\sum_{n \geq 0} \mathbf{1}_{u<\alpha(n)}
$$

- Let Q is the quantile function of $\left|X_{1}\right|$, that is the generalized inverse of $H(t)=\mathbb{P}\left(\left|X_{1}\right|>t\right)$. So for $u \in[0,1]$,

$$
Q(u)=\inf \{t \geq 0: H(t) \leq u\}
$$

- Note that

$$
H(t) \ll t^{-p} \Longleftrightarrow \sup _{x>0} x^{p-1} \int_{0}^{1} Q(u) \mathbf{1}_{Q(u)>x} d u<\infty
$$

- Theorem (Rio (2000)). Setting $R_{n}(u)=\left(\alpha^{-1}(u) \wedge n\right) Q(u)$, we have for any $x>0$ and any $r \geq 1$,
$\left.\mathbb{P}\left(\max _{1 \leq k \leq n}\left|S_{k}\right|\right) \geq 4 x\right) \leq 4\left(1+\frac{x^{2}}{v_{n}^{2}}\right)^{-r / 2}+4 n x^{-1} \int_{0}^{1} Q(u) \mathbf{1}_{R_{n}(u)>x / r} d u$,
where $v_{n}^{2} \geq n \sum_{k=0}^{n-1}\left|\operatorname{Cov}\left(X_{0}, X_{k}\right)\right|$.
- Theorem (Rio (2000)). Setting $R_{n}(u)=\left(\alpha^{-1}(u) \wedge n\right) Q(u)$, we have for any $x>0$ and any $r \geq 1$,
$\left.\mathbb{P}\left(\max _{1 \leq k \leq n}\left|S_{k}\right|\right) \geq 4 x\right) \leq 4\left(1+\frac{x^{2}}{v_{n}^{2}}\right)^{-r / 2}+4 n x^{-1} \int_{0}^{1} Q(u) \mathbf{1}_{R_{n}(u)>x / r} d u$, where $v_{n}^{2} \geq n \sum_{k=0}^{n-1}\left|\operatorname{Cov}\left(X_{0}, X_{k}\right)\right|$.
- In the independent setting $R_{n}(u)=Q(u)$ and

$$
\begin{aligned}
\int_{0}^{1} Q(u) 1_{Q(u)>x / r} d u= & \int_{0}^{H(x / r)} Q(u) d u \\
& \left.=\int_{x / r}^{+\infty} H(t) d t=\mathbb{E}\left(\left|X_{1}\right|-x / r\right)_{+}\right)
\end{aligned}
$$

Some applications (1)

Using the fact that

$$
\mathbf{E}\left(\max _{1 \leq i \leq n}\left|S_{k}\right|^{p}\right)=p \int_{0}^{\infty} x^{p-1} \mathbb{P}\left(\max _{1 \leq i \leq n}\left|S_{k}\right| \geq x\right) d x
$$

we get the following Rosenthal-type inequality: for any $p \geq 2$

$$
\mathbf{E}\left(\max _{1 \leq i \leq n}\left|S_{k}\right|^{p}\right) \leq a_{p} v_{n}^{p}+n b_{p} \int_{0}^{1}\left(\alpha^{-1}(u) \wedge n\right)^{p-1} Q^{p}(u) d u
$$

since, taking $r=p+1$,

$$
\begin{aligned}
& n \int_{0}^{\infty} x^{p-2} \int_{0}^{1} Q(u) \mathbf{1}_{R(u)>x / r} d u d x \\
&=n \frac{(p+1)^{p-1}}{p-1} \int_{0}^{1}\left(\alpha^{-1}(u) \wedge n\right)^{p-1} Q^{p}(u) d u
\end{aligned}
$$

Some applications (2)

- Let $R(u)=\alpha^{-1}(u) Q(u)$. Let $p>2$. Assume that

$$
\sup _{x>0} x^{p-1} \int_{0}^{1} Q(u) \mathbf{1}_{R(u)>x} d u<\infty \quad(*)
$$

then for any $r>0$

$$
\mathbb{P}\left(\max _{1 \leq i \leq n}\left|S_{k}\right| \geq n x\right) \ll \frac{1}{x^{r} n^{r / 2}}+\frac{1}{x^{p} n^{p-1}}
$$

Some applications (2)

- Let $R(u)=\alpha^{-1}(u) Q(u)$. Let $p>2$. Assume that

$$
\begin{equation*}
\sup _{x>0} x^{p-1} \int_{0}^{1} Q(u) \mathbf{1}_{R(u)>x} d u<\infty \tag{*}
\end{equation*}
$$

then for any $r>0$

$$
\mathbb{P}\left(\max _{1 \leq i \leq n}\left|S_{k}\right| \geq n x\right) \ll \frac{1}{x^{r} n^{r / 2}}+\frac{1}{x^{p} n^{p-1}}
$$

- If $Q(u) \leq C$, then $(*)$ reads as $\alpha(n) \ll \frac{1}{n^{p-1}}$. Hence the Rio's results can be applied with $X_{k}=f\left(Y_{k}\right)-\pi(f)$ where f is bounded and Y_{k} is the strictly Markov chain previously defined.

Some applications (2)

- Let $R(u)=\alpha^{-1}(u) Q(u)$. Let $p>2$. Assume that

$$
\begin{equation*}
\sup _{x>0} x^{p-1} \int_{0}^{1} Q(u) \mathbf{1}_{R(u)>x} d u<\infty \tag{*}
\end{equation*}
$$

then for any $r>0$

$$
\mathbb{P}\left(\max _{1 \leq i \leq n}\left|S_{k}\right| \geq n x\right) \ll \frac{1}{x^{r} n^{r / 2}}+\frac{1}{x^{p} n^{p-1}}
$$

- If $Q(u) \leq C$, then $(*)$ reads as $\alpha(n) \ll \frac{1}{n^{p-1}}$. Hence the Rio's results can be applied with $X_{k}=f\left(Y_{k}\right)-\pi(f)$ where f is bounded and Y_{k} is the strictly Markov chain previously defined.
- Rio's inequality is proved by using truncature, blocking arguments and coupling. In the mixing coefficients, all the past and all the future of the sequence are needed. The mixing coefficients can be replaced by coefficients allowing coupling in \mathbb{L}^{1} (see Dedecker and Prieur (2005)).

Examples of non strong mixing processes

- In the Markov chain setting with invariant probability measure π, the alpha-mixing coefficients read as

$$
\alpha(n)=\sup _{\|f\|_{\infty} \leq 1} \pi\left(\left|K^{n}(f)-\pi(f)\right|\right)
$$

Examples of non strong mixing processes

- In the Markov chain setting with invariant probability measure π, the alpha-mixing coefficients read as

$$
\alpha(n)=\sup _{\|f\|_{\infty} \leq 1} \pi\left(\left|K^{n}(f)-\pi(f)\right|\right)
$$

- A lot of Markov chains, even very simple, are known not to be strong mixing.

Examples of non strong mixing processes

- In the Markov chain setting with invariant probability measure π, the alpha-mixing coefficients read as

$$
\alpha(n)=\sup _{\|f\|_{\infty} \leq 1} \pi\left(\left|K^{n}(f)-\pi(f)\right|\right)
$$

- A lot of Markov chains, even very simple, are known not to be strong mixing.
- Take for instance

$$
x_{n}=\sum_{i=0}^{\infty} \frac{\xi_{n-i}}{2^{i+1}} .
$$

where $\left(\xi_{i}\right)$ is an iid sequence of r.v.'s $\sim \mathcal{B}(1 / 2)$.

Examples of non strong mixing processes

- In the Markov chain setting with invariant probability measure π, the alpha-mixing coefficients read as

$$
\alpha(n)=\sup _{\|f\|_{\infty} \leq 1} \pi\left(\left|K^{n}(f)-\pi(f)\right|\right)
$$

- A lot of Markov chains, even very simple, are known not to be strong mixing.
- Take for instance

$$
X_{n}=\sum_{i=0}^{\infty} \frac{\xi_{n-i}}{2^{i+1}}
$$

where $\left(\xi_{i}\right)$ is an iid sequence of r.v.'s $\sim \mathcal{B}(1 / 2)$.

- This is a Markov chain with invariant measure λ the Lebesgue measure on $[0,1]$ and transition Markov operator given by

$$
K(f)(x)=\frac{1}{2}\left(f\left(\frac{x}{2}\right)+f\left(\frac{x+1}{2}\right)\right)
$$

Examples of non strong mixing processes

- In the Markov chain setting with invariant probability measure π, the alpha-mixing coefficients read as

$$
\alpha(n)=\sup _{\|f\|_{\infty} \leq 1} \pi\left(\left|K^{n}(f)-\pi(f)\right|\right)
$$

- A lot of Markov chains, even very simple, are known not to be strong mixing.
- Take for instance

$$
X_{n}=\sum_{i=0}^{\infty} \frac{\xi_{n-i}}{2^{i+1}}
$$

where $\left(\xi_{i}\right)$ is an iid sequence of r.v.'s $\sim \mathcal{B}(1 / 2)$.

- This is a Markov chain with invariant measure λ the Lebesgue measure on $[0,1]$ and transition Markov operator given by

$$
K(f)(x)=\frac{1}{2}\left(f\left(\frac{x}{2}\right)+f\left(\frac{x+1}{2}\right)\right)
$$

- This Markov chain is not strong mixing !

Intermittent Maps and their associated Markov chains

Example Let us consider a LSV map (Liverani, Saussol et Vaienti, 1999):

$$
\text { for } 0<\gamma<1, \quad T_{\gamma}(x)= \begin{cases}x\left(1+2^{\gamma} x^{\gamma}\right) & \text { if } x \in[0,1 / 2[\\ 2 x-1 & \text { if } x \in[1 / 2,1]\end{cases}
$$

$$
\text { Graph of } T_{\gamma}
$$

Some facts

- If $\gamma \geq 1$, there is no abs. continuous invariant probability.

Some facts

- If $\gamma \geq 1$, there is no abs. continuous invariant probability.
- If $\gamma \in] 0,1[$, there is only one absolutely continuous invariant probability v. Its density h satisfies

$$
0<c \leq h(x) / x^{-\gamma} \leq C<\infty
$$

Some facts

- If $\gamma \geq 1$, there is no abs. continuous invariant probability.
- If $\gamma \in] 0,1[$, there is only one absolutely continuous invariant probability v. Its density h satisfies

$$
0<c \leq h(x) / x^{-\gamma} \leq c<\infty
$$

- We can associate a Markov chain $\mathbf{X}=\left(X_{i}\right)_{i \in Z}$ with invariant probability measure v such that on the probability space $\left(T_{\gamma}, T_{\gamma}^{2}, \ldots, T_{\gamma}^{n}\right)$ is distributed as $\left(X_{n}, X_{n-1}, \ldots, X_{1}\right)$. Therefore

$$
\begin{aligned}
& v\left(\max _{1 \leq k \leq n}\left|\sum_{i=1}^{k}\left(f \circ T_{\gamma}^{i}-v(f)\right)\right| \geq x\right) \\
& \leq \mathbb{P}\left(2 \max _{1 \leq k \leq n}\left|\sum_{i=1}^{k}\left(f\left(X_{i}\right)-v(f)\right)\right| \geq x\right)
\end{aligned}
$$

- If $\gamma \geq 1$, there is no abs. continuous invariant probability.
- If $\gamma \in] 0,1[$, there is only one absolutely continuous invariant probability v. Its density h satisfies

$$
0<c \leq h(x) / x^{-\gamma} \leq c<\infty
$$

- We can associate a Markov chain $\mathbf{X}=\left(X_{i}\right)_{i \in Z}$ with invariant probability measure v such that on the probability space $\left(T_{\gamma}, T_{\gamma}^{2}, \ldots, T_{\gamma}^{n}\right)$ is distributed as $\left(X_{n}, X_{n-1}, \ldots, X_{1}\right)$. Therefore

$$
\begin{aligned}
& v\left(\max _{1 \leq k \leq n}\left|\sum_{i=1}^{k}\left(f \circ T_{\gamma}^{i}-v(f)\right)\right| \geq x\right) \\
& \quad \leq \mathbb{P}\left(2 \max _{1 \leq k \leq n}\left|\sum_{i=1}^{k}\left(f\left(X_{i}\right)-v(f)\right)\right| \geq x\right)
\end{aligned}
$$

- The Markov operator of the chain is the Perron-Frobenius operator K defined as follows: for any positive measurable functions f and g,

$$
v(f \circ T \cdot g)=v(f \cdot K(g))
$$

Dependence coefficients for the chain.

- The Markov chain $\mathbf{X}=\left(X_{i}\right)_{i \in Z}$ with invariant probability measure v and transition operator K is not strong mixing.

Dependence coefficients for the chain.

- The Markov chain $\mathbf{X}=\left(X_{i}\right)_{i \in Z}$ with invariant probability measure v and transition operator K is not strong mixing.
- However we have the following upper bounds: Let $B V$ be the space of bounded variation functions f from \mathbb{R} to \mathbb{R} with norm $\|\cdot\|$ defined as follows:

$$
\|f\|=\max \left(\|f\|_{\infty},|f|\right)
$$

where $|f|=\|d f\|$. Let $B_{1}=\{f \in \mathcal{B}:|f| \leq 1\}$. Then there exist positive constants C_{1} and C_{2} not depending on n such that

$$
\mathbf{H}_{1}: \quad \sup _{f \in B_{1}} v\left(\left|K^{n}(f)-v(f)\right|\right) \leq \frac{C_{1}}{n^{(1-\gamma) / \gamma}}
$$

and, for any function f in $B V$,

$$
\mathbf{H}_{2}: \quad\left|K^{n}(f)\right| \leq C_{2}|f| .
$$

(See Dedecker, Gouëzel, Merlevède (2010) where GPM maps have been considered).

- Having \mathbf{H}_{1} and \mathbf{H}_{2} implies that there exists a constant C such that for any $k \geq 0$ and any $n \geq 1$,

$$
\sup _{f, g \in B_{1}} v\left(\left|K^{n}\left(f K^{k}(g)\right)-v\left(f K^{k}(g)\right)\right|\right) \leq \frac{C}{n^{(1-\gamma) / \gamma}}
$$

- Having \mathbf{H}_{1} and \mathbf{H}_{2} implies that there exists a constant C such that for any $k \geq 0$ and any $n \geq 1$,

$$
\sup _{f, g \in B_{1}} v\left(\left|K^{n}\left(f K^{k}(g)\right)-v\left(f K^{k}(g)\right)\right|\right) \leq \frac{C}{n^{(1-\gamma) / \gamma}},
$$

- This is equivalent to say that

$$
\sup _{s, t \in \mathbb{R}} v\left(\left|K^{n}\left(f_{t} K^{k}\left(f_{s}\right)\right)-v\left(f_{t} K^{k}\left(f_{s}\right)\right)\right|\right) \leq \frac{C}{n^{(1-\gamma) / \gamma}},
$$

where $\left.\left.f_{t}(x)=\mathbf{1}_{x \leq t}-v(]-\infty, t\right]\right)$

The α-dependent coefficients for stationary sequences.

- For any integrable random variable Z, let $Z^{(0)}=Z-\mathbb{E}(Z)$. For any random variable $V=\left(V_{1}, \cdots, V_{k}\right)$ with values in \mathbb{R}^{k} and any σ-algebra \mathcal{F}, let

$$
\alpha(\mathcal{F}, V)=\sup _{\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{R}^{k}}\left\|\mathbb{E}\left(\prod_{j=1}^{k}\left(\mathbf{1}_{V_{j} \leq x_{j}}\right)^{(0)} \mid \mathcal{F}\right)-\mathbb{E}\left(\prod_{j=1}^{k}\left(\mathbf{1}_{V_{j} \leq x_{j}}\right)^{(0)}\right)\right\|_{1}
$$

- For any integrable random variable Z, let $Z^{(0)}=Z-\mathbb{E}(Z)$. For any random variable $V=\left(V_{1}, \cdots, V_{k}\right)$ with values in \mathbb{R}^{k} and any σ-algebra \mathcal{F}, let

$$
\alpha(\mathcal{F}, V)=\sup _{\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{R}^{k}}\left\|\mathbb{E}\left(\prod_{j=1}^{k}\left(\mathbf{1}_{v_{j} \leq x_{j}}\right)^{(0)} \mid \mathcal{F}\right)-\mathbb{E}\left(\prod_{j=1}^{k}\left(\mathbf{1}_{V_{j} \leq x_{j}}\right)^{(0)}\right)\right\|
$$

- For a stationary sequence $\mathbf{Y}=\left(Y_{i}\right)_{i \in \mathbb{Z}}$, let

$$
\alpha_{k, \mathbf{Y}}(0)=1 / 2, \alpha_{k, \mathbf{Y}}(n)=\max _{1 \leq 1 \leq k} \sup _{n \leq i_{1} \leq \ldots \leq i_{l}} \alpha\left(\mathcal{F}_{0},\left(Y_{i_{1}}, \ldots, Y_{i_{l}}\right)\right), n>0
$$

Note that $\alpha_{1, \mathbf{Y}}(n)$ is then simply given by

$$
\alpha_{1, \mathbf{Y}}(n)=\sup _{x \in \mathbb{R}}\left\|\mathbb{E}\left(\mathbf{1}_{Y_{n} \leq x} \mid \mathcal{F}_{0}\right)-F(x)\right\|_{1},
$$

where F is the distribution function of $P_{Y_{0}}$.

Important remarks.

- Contrary to the usual mixing case, any function of a stationary α-dependent sequence $\mathbf{Y}=\left(Y_{i}\right)_{i \in \mathbb{Z}}$ is not necessarily α-dependent (meaning that its dependency coefficients do no necessarily tend to zero). Hence, we need to impose some constraints on the observables.

Important remarks.

- Contrary to the usual mixing case, any function of a stationary α-dependent sequence $\mathbf{Y}=\left(Y_{i}\right)_{i \in \mathbb{Z}}$ is not necessarily α-dependent (meaning that its dependency coefficients do no necessarily tend to zero). Hence, we need to impose some constraints on the observables.
- If f is monotonic on some open interval and 0 elsewhere, and if $\mathbf{X}=\left(f\left(Y_{i}\right)\right)_{i \in \mathbb{Z}}$, then for any positive integer k,

$$
\alpha_{k, \mathbf{X}}(n) \leq 2^{k} \alpha_{k, \mathbf{Y}}(n) .
$$

As a consequence, if one can prove a deviation inequality for $\sum_{k=1}^{n} Y_{i}$ with an upper bound involving the coefficients $\left(\alpha_{k, Y}(n)\right)_{n \geq 0}$ then it also holds for $\sum_{k=1}^{n} f\left(Y_{i}\right)$, where f is monotonic on a single interval.

Important remarks.

- Contrary to the usual mixing case, any function of a stationary α-dependent sequence $\mathbf{Y}=\left(Y_{i}\right)_{i \in \mathbb{Z}}$ is not necessarily α-dependent (meaning that its dependency coefficients do no necessarily tend to zero). Hence, we need to impose some constraints on the observables.
- If f is monotonic on some open interval and 0 elsewhere, and if $\mathbf{X}=\left(f\left(Y_{i}\right)\right)_{i \in \mathbb{Z}}$, then for any positive integer k,

$$
\alpha_{k,} \mathbf{X}(n) \leq 2^{k} \alpha_{k, \mathbf{Y}}(n)
$$

As a consequence, if one can prove a deviation inequality for $\sum_{k=1}^{n} Y_{i}$ with an upper bound involving the coefficients $\left(\alpha_{k}, \mathbf{Y}(n)\right)_{n \geq 0}$ then it also holds for $\sum_{k=1}^{n} f\left(Y_{i}\right)$, where f is monotonic on a single interval.

- The deviation inequality can be then extended by linearity to convex combinations of such functions.
- Let $H: \mathbb{R}^{+} \rightarrow[0,1]$ be a tail function so it is non-increasing, right-continuous and converges to zero at infinity.
- Denote by $Q=H^{-1}$ its generalized inverse.
- Let $H: \mathbb{R}^{+} \rightarrow[0,1]$ be a tail function so it is non-increasing, right-continuous and converges to zero at infinity.
- Denote by $Q=H^{-1}$ its generalized inverse.
- For μ a probability measure on \mathbb{R} and $Q=H^{-1}$ an integrable quantile function, we define 2 classes of functions: $\operatorname{Mon}(Q, \mu)$ and $\mathcal{F}(Q, \mu)$.
- Let $H: \mathbb{R}^{+} \rightarrow[0,1]$ be a tail function so it is non-increasing, right-continuous and converges to zero at infinity.
- Denote by $Q=H^{-1}$ its generalized inverse.
- For μ a probability measure on \mathbb{R} and $Q=H^{-1}$ an integrable quantile function, we define 2 classes of functions: $\operatorname{Mon}(Q, \mu)$ and $\mathcal{F}(Q, \mu)$.
- $\operatorname{Mon}(Q, \mu)$ is the set of functions g which are monotonic on some open interval of \mathbb{R} and null elsewhere and such that $\mu(|g|>t) \leq H(t)$ for any $t \in \mathbb{R}^{+}$.
- Let $H: \mathbb{R}^{+} \rightarrow[0,1]$ be a tail function so it is non-increasing, right-continuous and converges to zero at infinity.
- Denote by $Q=H^{-1}$ its generalized inverse.
- For μ a probability measure on \mathbb{R} and $Q=H^{-1}$ an integrable quantile function, we define 2 classes of functions: $\operatorname{Mon}(Q, \mu)$ and $\mathcal{F}(Q, \mu)$.
- $\operatorname{Mon}(Q, \mu)$ is the set of functions g which are monotonic on some open interval of \mathbb{R} and null elsewhere and such that $\mu(|g|>t) \leq H(t)$ for any $t \in \mathbb{R}^{+}$.
- $\mathcal{F}(Q, \mu)$ is the closure in $\mathbb{L}^{1}(\mu)$ of the set of functions which can be written as $\sum_{\ell=1}^{L} a_{\ell} f_{\ell}$, where $\sum_{\ell=1}^{L}\left|a_{\ell}\right| \leq 1$ and f_{ℓ} belongs to $\operatorname{Mon}(Q, \mu)$.
- Let $H: \mathbb{R}^{+} \rightarrow[0,1]$ be a tail function so it is non-increasing, right-continuous and converges to zero at infinity.
- Denote by $Q=H^{-1}$ its generalized inverse.
- For μ a probability measure on \mathbb{R} and $Q=H^{-1}$ an integrable quantile function, we define 2 classes of functions: $\operatorname{Mon}(Q, \mu)$ and $\mathcal{F}(Q, \mu)$.
- $\operatorname{Mon}(Q, \mu)$ is the set of functions g which are monotonic on some open interval of \mathbb{R} and null elsewhere and such that $\mu(|g|>t) \leq H(t)$ for any $t \in \mathbb{R}^{+}$.
- $\mathcal{F}(Q, \mu)$ is the closure in $\mathbb{L}^{1}(\mu)$ of the set of functions which can be written as $\sum_{\ell=1}^{L} a_{\ell} f_{\ell}$, where $\sum_{\ell=1}^{L}\left|a_{\ell}\right| \leq 1$ and f_{ℓ} belongs to $\operatorname{Mon}(Q, \mu)$.
- A function belonging to $\mathcal{F}(Q, \mu)$ is allowed to blow up at an infinite number of points.

A deviation inequality for α-dependent sequences: notations

- For $u \in[0,1]$ and $k \in \mathbb{N}^{*}$, let

$$
\alpha_{k, \mathbf{Y}}^{-1}(u)=\min \left\{q \in \mathbb{N}: \alpha_{k, \mathbf{Y}}(q) \leq u\right\}=\sum_{n=0}^{\infty} \mathbf{1}_{u<\alpha_{k, \mathbf{Y}}(n)} .
$$

Note that $\alpha_{1, \mathbf{Y}}(n) \leq \alpha_{2, \mathbf{Y}}(n)$, and consequently $\alpha_{1, \mathbf{Y}}^{-1} \leq \alpha_{2, \mathbf{Y}}^{-1}$.

A deviation inequality for α-dependent sequences: notations

- For $u \in[0,1]$ and $k \in \mathbb{N}^{*}$, let

$$
\alpha_{k, \mathbf{Y}}^{-1}(u)=\min \left\{q \in \mathbb{N}: \alpha_{k, \mathbf{Y}}(q) \leq u\right\}=\sum_{n=0}^{\infty} \mathbf{1}_{u<\alpha_{k, \mathbf{Y}}(n)} .
$$

Note that $\alpha_{1, \mathbf{Y}}(n) \leq \alpha_{2, \mathbf{Y}}(n)$, and consequently $\alpha_{1, \mathbf{Y}}^{-1} \leq \alpha_{2, \mathbf{Y}}^{-1}$.

- Let $\mathbf{Y}=\left(Y_{i}\right)_{i \in \mathbb{Z}}$ be a stationary sequence. Let $P_{Y_{0}}$ the distribution of Y_{0} and Q be a quantile function in \mathbb{L}^{1}.

A deviation inequality for α-dependent sequences: notations

- For $u \in[0,1]$ and $k \in \mathbb{N}^{*}$, let

$$
\alpha_{k, \mathbf{Y}}^{-1}(u)=\min \left\{q \in \mathbb{N}: \alpha_{k, \mathbf{Y}}(q) \leq u\right\}=\sum_{n=0}^{\infty} \mathbf{1}_{u<\alpha_{k, \mathbf{Y}}(n)} .
$$

Note that $\alpha_{1, \mathbf{Y}}(n) \leq \alpha_{2, \mathbf{Y}}(n)$, and consequently $\alpha_{1, \mathbf{Y}}^{-1} \leq \alpha_{2, \mathbf{Y}}^{-1}$.

- Let $\mathbf{Y}=\left(Y_{i}\right)_{i \in \mathbb{Z}}$ be a stationary sequence. Let $P_{Y_{0}}$ the distribution of Y_{0} and Q be a quantile function in \mathbb{L}^{1}.
- Let $X_{i}=f\left(Y_{i}\right)-\mathbb{E}\left(f\left(Y_{i}\right)\right)$, where f belongs to $\mathcal{F}\left(Q, P_{Y_{0}}\right)$. Let $S_{n}=\sum_{k=1}^{n} X_{k}$.

A deviation inequality for α-dependent sequences: notations

- For $u \in[0,1]$ and $k \in \mathbb{N}^{*}$, let

$$
\alpha_{k, \mathbf{Y}}^{-1}(u)=\min \left\{q \in \mathbb{N}: \alpha_{k, \mathbf{Y}}(q) \leq u\right\}=\sum_{n=0}^{\infty} \mathbf{1}_{u<\alpha_{k, \mathbf{Y}}(n)} .
$$

Note that $\alpha_{1, \mathbf{Y}}(n) \leq \alpha_{2, \mathbf{Y}}(n)$, and consequently $\alpha_{1, \mathbf{Y}}^{-1} \leq \alpha_{2, \mathbf{Y}}^{-1}$.

- Let $\mathbf{Y}=\left(Y_{i}\right)_{i \in \mathbb{Z}}$ be a stationary sequence. Let $P_{Y_{0}}$ the distribution of Y_{0} and Q be a quantile function in \mathbb{L}^{1}.
- Let $X_{i}=f\left(Y_{i}\right)-\mathbb{E}\left(f\left(Y_{i}\right)\right)$, where f belongs to $\mathcal{F}\left(Q, P_{Y_{0}}\right)$. Let $S_{n}=\sum_{k=1}^{n} X_{k}$.
- Given a positive integer n, define

$$
R_{n}(u)=\left(\alpha_{2, \mathbf{Y}}^{-1}(u) \wedge n\right) Q(u), \quad \text { for } u \in[0,1]
$$

A deviation inequality for α-dependent sequences: the statement

Theorem (Dedecker \& M. (2016)). For any $x>0, r>2, \beta \in] r-2, r[$ the following deviation bound holds

$$
\begin{aligned}
\mathbb{P}\left(\max _{1 \leq k \leq n}\left|S_{k}\right| \geq x\right) \ll & <s_{n}^{r}(x) \\
x^{r} & +\frac{n}{x} \int_{0}^{1} Q(u) \mathbf{1}_{R_{n}(u)>x} d u \\
& +\frac{n}{x^{1+\beta / 2}} \int_{0}^{1} R_{n}^{\beta / 2}(u) Q(u) \mathbf{1}_{R_{n}(u)>x} d u \\
& \quad+\frac{n}{x^{1+r / 2}} \int_{0}^{1} R_{n}^{r / 2}(u) Q(u) \mathbf{1}_{R_{n}(u) \leq x} d u
\end{aligned}
$$

where

$$
s_{n}^{2}(x)=n \int_{0}^{1}\left(\alpha_{1, \mathbf{Y}}^{-1}(u) \wedge n\right) Q^{2}(u) \mathbf{1}_{R_{n}(u) \leq x} d u
$$

Some insights for the proof

- To simplify assume that f is monotonic on \mathbb{R} and bounded by $M=1$.

Some insights for the proof

- To simplify assume that f is monotonic on \mathbb{R} and bounded by $M=1$.
- As in the Rio's proof, we make blocks of size q with $\alpha_{2, Y}(q) \leq v=R_{n}^{-1}(x)$ if $0 \leq v<1 / 2$ and $q \leq n$.

Some insights for the proof

- To simplify assume that f is monotonic on \mathbb{R} and bounded by $M=1$.
- As in the Rio's proof, we make blocks of size q with $\alpha_{2, Y}(q) \leq v=R_{n}^{-1}(x)$ if $0 \leq v<1 / 2$ and $q \leq n$.
- Setting where $U_{i}=\sum_{k=(i-1) q+1}^{i q} X_{i}$, we have

$$
\max _{1 \leq k \leq n}\left|S_{k}\right| \leq 2 q M+\max _{1 \leq 2 j \leq\left[\frac{n}{q}\right]}\left|\sum_{i=1}^{j} U_{2 i}\right|+\max _{1 \leq 2 j-1 \leq\left[\frac{n}{q}\right]}\left|\sum_{i=1}^{j} U_{2 i-1}\right|
$$

Some insights for the proof

- To simplify assume that f is monotonic on \mathbb{R} and bounded by $M=1$.
- As in the Rio's proof, we make blocks of size q with $\alpha_{2, Y}(q) \leq v=R_{n}^{-1}(x)$ if $0 \leq v<1 / 2$ and $q \leq n$.
- Setting where $U_{i}=\sum_{k=(i-1) q+1}^{i q} X_{i}$, we have

$$
\max _{1 \leq k \leq n}\left|S_{k}\right| \leq 2 q M+\max _{1 \leq 2 j \leq\left[\frac{n}{q}\right]}\left|\sum_{i=1}^{j} U_{2 i}\right|+\max _{1 \leq 2 j-1 \leq\left[\frac{n}{q}\right]}\left|\sum_{i=1}^{j} U_{2 i-1}\right|
$$

- Let $\tilde{U}_{2 i}=U_{2 i}-\mathbb{E}_{\mathcal{F}_{2(i-1) q}}\left(U_{2 i}\right), \tilde{U}_{2 i+1}=U_{2 i+1}-\mathbb{E}_{\mathcal{G}_{(2 i-1) q}}\left(U_{2 i+1}\right)$

$$
\begin{aligned}
& \max _{1 \leq k \leq n}\left|S_{k}\right| \leq 2 q M+\max _{2 \leq 2 j \leq\left[\frac{n}{q}\right]}\left|\sum_{i=1}^{j} \tilde{U}_{2 i}\right|+\max _{1 \leq 2 j-1 \leq\left[\frac{n}{q}\right]}\left|\sum_{i=1}^{j} \tilde{U}_{2 i-1}\right| \\
&+\sum_{i=1}^{[n / q]}\left|U_{i}-\tilde{U}_{i}\right|
\end{aligned}
$$

A Rosenthal for stationary sequences

Theorem (M. \& Peligrad (2013)). Let $p>2$ and let $\left(X_{i}\right)_{i \in \mathbb{Z}}$ be a strictly stationary sequence of r.v.'s in \mathbf{L}^{p} and adapted to a stationary filtration $\left(\mathcal{F}_{i}\right)_{i \in \mathbb{Z}}$. Then for any $n \geq 1$,

$$
\begin{aligned}
&\left\|\max _{1 \leq j \leq n}\left|S_{j}\right|\right\|_{p} \ll n^{1 / p}\left(\left\|X_{1}\right\|_{p}+\sum_{k=1}^{n} \frac{1}{k^{1+1 / p}}\left\|\mathbb{E}_{0}\left(S_{k}\right)\right\|_{p}\right. \\
&+\left(\sum_{k=1}^{n} \frac{1}{\left.k^{1+2 \delta / p}\left\|\mathbb{E}_{0}\left(S_{k}^{2}\right)\right\|_{p / 2}^{\delta}\right)^{1 /(2 \delta)}}\right),
\end{aligned}
$$

where $\delta=\min (1,1 /(p-2))$ and $\mathbb{E}_{0}(X)=\mathbb{E}\left(X \mid \mathcal{F}_{0}\right)$.
Remark If there exists $\beta>2 / p$ such that $n^{-\beta} \mathbb{E}\left(S_{n}^{2}\right)$ is increasing,

$$
n^{\frac{1}{p}}\left(\sum_{k=1}^{n} \frac{\left\|\mathbb{E}_{0}\left(S_{k}^{2}\right)\right\|_{p / 2}^{\delta}}{k^{1+2 \delta / p}}\right)^{\frac{1}{2 \delta}} \ll\left(\mathbb{E}\left(S_{n}^{2}\right)\right)^{\frac{1}{2}}+n^{\frac{1}{p}}\left(\sum_{k=1}^{n} \frac{\left\|\mathbb{E}_{0}\left(S_{k}^{2}\right)-\mathbb{E}\left(S_{k}^{2}\right)\right\|_{p / 2}^{\delta}}{k^{1+2 \delta / p}}\right)^{\frac{1}{2 \delta}}
$$

Application 1: a Rosenthal-type inequality

Let $p \geq 2$. Starting from

$$
\mathbf{E}\left(\max _{1 \leq i \leq n}\left|S_{k}\right|^{p}\right)=p \int_{0}^{\infty} x^{p-1} \mathbb{P}\left(\max _{1 \leq i \leq n}\left|S_{k}\right| \geq x\right) d x
$$

and applying the deviation inequality with

$$
r-2<\beta<2 p-2<r<2 p
$$

we get the following Rosenthal-type inequality

$$
\begin{aligned}
& \mathbf{E}\left(\max _{1 \leq i \leq n}\left|S_{k}\right|^{p}\right) \ll n^{p / 2}\left(\int_{0}^{1}\left(\alpha_{1, \mathbf{Y}}^{-1}(u) \wedge n\right) Q^{2}(u) d u\right)^{p / 2} \\
&+n \int_{0}^{1}\left(\alpha_{2, \mathbf{Y}}^{-1}(u) \wedge n\right)^{p-1} Q^{p}(u) d u
\end{aligned}
$$

Application 2: large deviation inequalities (3)

- Let $\mathbf{Y}=\left(Y_{i}\right)_{i \in \mathbb{Z}}$ be a stationary sequence. Let $P_{Y_{0}}$ the distribution of Y_{0} and Q be a quantile function in \mathbb{L}^{1}.
- Let $X_{i}=f\left(Y_{i}\right)-\mathbb{E}\left(f\left(Y_{i}\right)\right)$, where f belongs to $\mathcal{F}\left(Q, P_{Y_{0}}\right)$.

Application 2: large deviation inequalities (3)

- Let $\mathbf{Y}=\left(Y_{i}\right)_{i \in \mathbb{Z}}$ be a stationary sequence. Let $P_{Y_{0}}$ the distribution of Y_{0} and Q be a quantile function in \mathbb{L}^{1}.
- Let $X_{i}=f\left(Y_{i}\right)-\mathbb{E}\left(f\left(Y_{i}\right)\right)$, where f belongs to $\mathcal{F}\left(Q, P_{Y_{0}}\right)$.
- Let $R(u)=\alpha_{2, \boldsymbol{Y}}^{-1}(u) Q(u)$. Let $p \geq 2$ and assume that

$$
\begin{equation*}
\sup _{x>0} x^{p-1} \int_{0}^{1} Q(u) 1_{R(u)>x} d u<\infty \tag{*}
\end{equation*}
$$

Application 2: large deviation inequalities (3)

- Let $\mathbf{Y}=\left(Y_{i}\right)_{i \in \mathbb{Z}}$ be a stationary sequence. Let $P_{Y_{0}}$ the distribution of Y_{0} and Q be a quantile function in \mathbb{L}^{1}.
- Let $X_{i}=f\left(Y_{i}\right)-\mathbb{E}\left(f\left(Y_{i}\right)\right)$, where f belongs to $\mathcal{F}\left(Q, P_{Y_{0}}\right)$.
- Let $R(u)=\alpha_{2, \boldsymbol{Y}}^{-1}(u) Q(u)$. Let $p \geq 2$ and assume that

$$
\begin{equation*}
\sup _{x>0} x^{p-1} \int_{0}^{1} Q(u) \mathbf{1}_{R(u)>x} d u<\infty \tag{*}
\end{equation*}
$$

- Then, for $p>2$, any $a \in(p-1, p)$ and any $x>0$,

$$
\mathbb{P}\left(\frac{1}{n} \max _{1 \leq k \leq n}\left|S_{k}\right| \geq x\right) \ll \frac{1}{n^{a} x^{2 a}}+\frac{1}{n^{p-1} x^{p}} .
$$

Application 2: large deviation inequalities (3)

- Let $\mathbf{Y}=\left(Y_{i}\right)_{i \in \mathbb{Z}}$ be a stationary sequence. Let $P_{Y_{0}}$ the distribution of Y_{0} and Q be a quantile function in \mathbb{L}^{1}.
- Let $X_{i}=f\left(Y_{i}\right)-\mathbb{E}\left(f\left(Y_{i}\right)\right)$, where f belongs to $\mathcal{F}\left(Q, P_{Y_{0}}\right)$.
- Let $R(u)=\alpha_{2, \boldsymbol{Y}}^{-1}(u) Q(u)$. Let $p \geq 2$ and assume that

$$
\begin{equation*}
\sup _{x>0} x^{p-1} \int_{0}^{1} Q(u) \mathbf{1}_{R(u)>x} d u<\infty \tag{*}
\end{equation*}
$$

- Then, for $p>2$, any $a \in(p-1, p)$ and any $x>0$,

$$
\mathbb{P}\left(\frac{1}{n} \max _{1 \leq k \leq n}\left|S_{k}\right| \geq x\right) \ll \frac{1}{n^{a} x^{2 a}}+\frac{1}{n^{p-1} x^{p}} .
$$

- For $p=2$, any $a \in(1,2)$, any $c \in(0,1)$ and any $x>0$,

$$
\mathbb{P}\left(\frac{1}{n} \max _{1 \leq k \leq n}\left|S_{k}\right| \geq x\right) \ll \frac{1}{n^{a c} x^{a(1+c)}}+\frac{1}{n x^{2}} .
$$

Application 3: large deviation inequalities (2)

- If we reinforce the condition $(*)$ in the following: let $p \geq 2$ and assume

$$
\int_{0}^{1}\left(\alpha_{2, \boldsymbol{Y}}^{-1}(u)\right)^{p-1} Q^{p}(u) d u<\infty
$$

Application 3: Iarge deviation inequalities (2)

- If we reinforce the condition $(*)$ in the following: let $p \geq 2$ and assume

$$
\int_{0}^{1}\left(\alpha_{2, \mathbf{Y}}^{-1}(u)\right)^{p-1} Q^{p}(u) d u<\infty
$$

- Then, for any $a \in(p-1, p)$ and any $x>0$,

$$
\sum_{n>0} n^{p-2} \mathbb{P}\left(\frac{1}{n} \max _{1 \leq k \leq n}\left|S_{k}\right| \geq x\right) \ll \frac{1}{x^{2 a}}+\frac{1}{x^{p}}
$$

Application to intermittent maps: the LSV map.

- Recall that

$$
\text { for } 0<\gamma<1, \quad T(x):=T_{\gamma}(x)= \begin{cases}x\left(1+2^{\gamma} x^{\gamma}\right) & \text { if } x \in[0,1 / 2[\\ 2 x-1 & \text { if } x \in[1 / 2,1]\end{cases}
$$

Application to intermittent maps: the LSV map.

- Recall that

$$
\text { for } 0<\gamma<1, \quad T(x):=T_{\gamma}(x)= \begin{cases}x\left(1+2^{\gamma} x^{\gamma}\right) & \text { if } x \in[0,1 / 2[\\ 2 x-1 & \text { if } x \in[1 / 2,1]\end{cases}
$$

- Consider the Markov chain $\left(Y_{i}\right)_{i \in \mathbb{Z}}$ with invariant measure v and transition operator K and recall that

$$
v\left(\max _{1 \leq k \leq n}\left|S_{k}(f)\right| \geq x\right) \leq \mathbb{P}\left(2 \max _{1 \leq k \leq n}\left|\sum_{i=1}^{k}\left(f\left(Y_{i}\right)-v(f)\right)\right| \geq x\right)
$$

where $S_{k}(f)=\sum_{i=1}^{k}\left(f \circ T^{i}-v(f)\right)$.

Application to intermittent maps: the LSV map.

- Recall that

$$
\text { for } 0<\gamma<1, \quad T(x):=T_{\gamma}(x)= \begin{cases}x\left(1+2^{\gamma} x^{\gamma}\right) & \text { if } x \in[0,1 / 2[\\ 2 x-1 & \text { if } x \in[1 / 2,1]\end{cases}
$$

- Consider the Markov chain $\left(Y_{i}\right)_{i \in \mathbb{Z}}$ with invariant measure v and transition operator K and recall that

$$
v\left(\max _{1 \leq k \leq n}\left|S_{k}(f)\right| \geq x\right) \leq \mathbb{P}\left(2 \max _{1 \leq k \leq n}\left|\sum_{i=1}^{k}\left(f\left(Y_{i}\right)-v(f)\right)\right| \geq x\right)
$$

where $S_{k}(f)=\sum_{i=1}^{k}\left(f \circ T^{i}-v(f)\right)$.

- For any $k \geq 1$, there exist two positive constants C and D such that, for any $n>0$,

$$
\frac{D}{n^{(1-\gamma) / \gamma}} \leq \alpha_{k, \mathbf{Y}}(n) \leq \frac{C}{n^{(1-\gamma) / \gamma}}
$$

Application to intermittent maps: the LSV map.

- Recall that

$$
\text { for } 0<\gamma<1, \quad T(x):=T_{\gamma}(x)= \begin{cases}x\left(1+2^{\gamma} x^{\gamma}\right) & \text { if } x \in[0,1 / 2[\\ 2 x-1 & \text { if } x \in[1 / 2,1]\end{cases}
$$

- Consider the Markov chain $\left(Y_{i}\right)_{i \in \mathbb{Z}}$ with invariant measure v and transition operator K and recall that

$$
v\left(\max _{1 \leq k \leq n}\left|S_{k}(f)\right| \geq x\right) \leq \mathbb{P}\left(2 \max _{1 \leq k \leq n}\left|\sum_{i=1}^{k}\left(f\left(Y_{i}\right)-v(f)\right)\right| \geq x\right)
$$

where $S_{k}(f)=\sum_{i=1}^{k}\left(f \circ T^{i}-v(f)\right)$.

- For any $k \geq 1$, there exist two positive constants C and D such that, for any $n>0$,

$$
\frac{D}{n^{(1-\gamma) / \gamma}} \leq \alpha_{k, \mathbf{Y}}(n) \leq \frac{C}{n^{(1-\gamma) / \gamma}} .
$$

- Assume that $f \in \mathcal{F}(Q, v)$ and $Q(u) \ll u^{-b}$ for $b \in[0,1)$.

Moment bounds.

- Let $p>2$. Since, for any $b \in[0,1 / p[$

$$
\begin{aligned}
\int_{0}^{1}\left(\alpha_{2, \mathbf{Y}}^{-1}(u) \wedge n\right)^{p-1} Q^{p}(u) d u \ll & \sum_{k=0}^{n}(k+1)^{p-2} \int_{0}^{\alpha_{2, \mathbf{Y}}(k)} Q^{p}(u) d u \\
& \ll \sum_{k=1}^{n} k^{p-1-1 / \gamma} k^{p b(1-\gamma / \gamma)}
\end{aligned}
$$

Moment bounds.

- Let $p>2$. Since, for any $b \in[0,1 / p[$

$$
\begin{aligned}
\int_{0}^{1}\left(\alpha_{2, \mathbf{Y}}^{-1}(u) \wedge n\right)^{p-1} Q^{p}(u) d u \ll & \sum_{k=0}^{n}(k+1)^{p-2} \int_{0}^{\alpha_{2, Y}(k)} Q^{p}(u) d u \\
& \ll \sum_{k=1}^{n} k^{p-1-1 / \gamma} k^{p b(1-\gamma / \gamma)}
\end{aligned}
$$

- It follows that

$$
\left\|\max _{1 \leq k \leq n}\left|S_{k}(f)\right|\right\|_{p, v}^{p} \ll \begin{cases}n^{p / 2} & \text { if } b \leq \frac{2-\gamma(p+2)}{2 p(1-\gamma)} \\ n^{(p \gamma+(\gamma-1)(1-p b)) / \gamma} & \text { if } b>\frac{2-\gamma(p+2)}{2 p(1-\gamma)}\end{cases}
$$

- Let $p>2$. Since, for any $b \in[0,1 / p[$

$$
\begin{aligned}
\int_{0}^{1}\left(\alpha_{2, \mathbf{Y}}^{-1}(u) \wedge n\right)^{p-1} Q^{p}(u) d u \ll & \sum_{k=0}^{n}(k+1)^{p-2} \int_{0}^{\alpha_{2, \mathbf{Y}}(k)} Q^{p}(u) d u \\
& \ll \sum_{k=1}^{n} k^{p-1-1 / \gamma} k^{p b(1-\gamma / \gamma)}
\end{aligned}
$$

- It follows that

$$
\left\|\max _{1 \leq k \leq n}\left|S_{k}(f)\right|\right\|_{p, v}^{p} \ll \begin{cases}n^{p / 2} & \text { if } b \leq \frac{2-\gamma(p+2)}{2 p(1-\gamma)} \\ n^{(p \gamma+(\gamma-1)(1-p b)) / \gamma} & \text { if } b>\frac{2-\gamma(p+2)}{2 p(1-\gamma)}\end{cases}
$$

- For instance our result applies if f is positive and non increasing on $(0,1)$, with

$$
\begin{aligned}
f(x) \leq & \frac{C}{x^{s}} \text { near } 0, \text { for some } C>0 \text { and } s \in[0,1-\gamma) \text {, and } \\
& f \text { belongs to } \mathcal{F}(Q, v) \text { with } Q(u) \ll u^{-s /(1-\gamma)}
\end{aligned}
$$

Large deviations.

- Let f in $\mathcal{F}(Q, v)$ with $Q(u) \ll u^{-b}$ for some $b \in[0,1)$. Let $p=1 /(\gamma+b(1-\gamma))$.

Large deviations.

- Let f in $\mathcal{F}(Q, v)$ with $Q(u) \ll u^{-b}$ for some $b \in[0,1)$. Let $p=1 /(\gamma+b(1-\gamma))$.
- Assume that $\gamma+b(1-\gamma)<1 / 2$. Then for any $a \in(p-1, p)$ and any $x>0$,

$$
v\left(\frac{1}{n} \max _{1 \leq k \leq n}\left|S_{k}(f)\right| \geq x\right) \ll \frac{1}{n^{a} x^{2 a}}+\frac{1}{n^{p-1} x^{p}}
$$

Large deviations.

- Let f in $\mathcal{F}(Q, v)$ with $Q(u) \ll u^{-b}$ for some $b \in[0,1)$. Let $p=1 /(\gamma+b(1-\gamma))$.
- Assume that $\gamma+b(1-\gamma)<1 / 2$. Then for any $a \in(p-1, p)$ and any $x>0$,

$$
v\left(\frac{1}{n} \max _{1 \leq k \leq n}\left|S_{k}(f)\right| \geq x\right) \ll \frac{1}{n^{a} x^{2 a}}+\frac{1}{n^{p-1} x^{p}}
$$

- Assume that $\gamma+b(1-\gamma)=1 / 2$. Then, for any $a \in(1,2)$, any $c \in(0,1)$ and any $x>0$,

$$
v\left(\frac{1}{n} \max _{1 \leq k \leq n}\left|S_{k}(f)\right| \geq x\right) \ll \frac{1}{n^{a c} x^{a(1+c)}}+\frac{1}{n x^{2}} .
$$

Large deviations.

- Let f in $\mathcal{F}(Q, v)$ with $Q(u) \ll u^{-b}$ for some $b \in[0,1)$. Let $p=1 /(\gamma+b(1-\gamma))$.
- Assume that $\gamma+b(1-\gamma)<1 / 2$. Then for any $a \in(p-1, p)$ and any $x>0$,

$$
v\left(\frac{1}{n} \max _{1 \leq k \leq n}\left|S_{k}(f)\right| \geq x\right) \ll \frac{1}{n^{a} x^{2 a}}+\frac{1}{n^{p-1} x^{p}}
$$

- Assume that $\gamma+b(1-\gamma)=1 / 2$. Then, for any $a \in(1,2)$, any $c \in(0,1)$ and any $x>0$,

$$
v\left(\frac{1}{n} \max _{1 \leq k \leq n}\left|S_{k}(f)\right| \geq x\right) \ll \frac{1}{n^{a c} x^{a(1+c)}}+\frac{1}{n x^{2}} .
$$

- With another deviation inequality, we have: Assume that $\gamma+b(1-\gamma) \in(1 / 2,1)$. Then, for any $x>0$,

$$
v\left(\frac{1}{n} \max _{1 \leq k \leq n}\left|S_{k}(f)\right| \geq x\right) \ll \frac{1}{n^{p-1} x^{p}} .
$$

To summarize the large deviations.

- Let f in $\mathcal{F}(Q, v)$ with $Q(u) \ll u^{-b}$ for some $b \in[0,1)$. Let $p=1 /(\gamma+b(1-\gamma))$. Then

To summarize the large deviations.

- Let f in $\mathcal{F}(Q, v)$ with $Q(u) \ll u^{-b}$ for some $b \in[0,1)$. Let $p=1 /(\gamma+b(1-\gamma))$. Then
- there exists a function $f_{b, \gamma}$ from \mathbb{R}^{+}to \mathbb{R}^{+}such that for any $x>0$,

$$
v\left(\frac{1}{n} \max _{1 \leq k \leq n}\left|S_{k}(f)\right| \geq x\right) \ll \frac{f_{b, \gamma}(x)}{n^{p-1}} .
$$

Moreover $\sup _{x>\varepsilon} x^{p} f_{b, \gamma}(x)<\infty$ for any $\varepsilon>0$.

To summarize the large deviations.

- Let f in $\mathcal{F}(Q, v)$ with $Q(u) \ll u^{-b}$ for some $b \in[0,1)$. Let $p=1 /(\gamma+b(1-\gamma))$. Then
- there exists a function $f_{b, \gamma}$ from \mathbb{R}^{+}to \mathbb{R}^{+}such that for any $x>0$,

$$
v\left(\frac{1}{n} \max _{1 \leq k \leq n}\left|S_{k}(f)\right| \geq x\right) \ll \frac{f_{b, \gamma}(x)}{n^{p-1}}
$$

Moreover $\sup _{x>\varepsilon} x^{p} f_{b, \gamma}(x)<\infty$ for any $\varepsilon>0$.

- When f is a bounded variation function (then $b=0$), for any $x>0$,

$$
v\left(\frac{1}{n} \max _{1 \leq k \leq n}\left|S_{k}(f)\right| \geq x\right) \ll \frac{f_{0, \gamma}(x)}{n^{(1-\gamma) / \gamma}}
$$

This upper bound (with $S_{n}(f)$ instead of the maximum) was obtained by Melbourne (2009) when f is Hölder continuous who also proved that it is optimal.

Thank you for your attention!

