On the martingale-coboundary decomposition for random fields Joint work with Davide GIRAUDO

Mohamed El Machkouri
Université de Rouen

Rencontre "Martingales, Chaînes de Markov et Systèmes dynamiques"
Centre UCPA des Abers, Landeda

March, 17th 2016

Preliminary notations

- $(\Omega, \mathcal{F}, \mu)$ is a probability space;

Preliminary notations

- $(\Omega, \mathcal{F}, \mu)$ is a probability space;

■ $T: \Omega \rightarrow \Omega$ is a measurable function such that $\mu=T \mu$;

Preliminary notations

- $(\Omega, \mathcal{F}, \mu)$ is a probability space;

■ $T: \Omega \rightarrow \Omega$ is a measurable function such that $\mu=T \mu$;

■ $\mathcal{M} \subset \mathcal{F}$ is a σ-algebra such that $\mathcal{M} \subset T^{-1} \mathcal{M}$;

Preliminary notations

■ $(\Omega, \mathcal{F}, \mu)$ is a probability space;

■ $T: \Omega \rightarrow \Omega$ is a measurable function such that $\mu=T \mu$;

■ $\mathcal{M} \subset \mathcal{F}$ is a σ-algebra such that $\mathcal{M} \subset T^{-1} \mathcal{M}$;

■ for $p \in[1, \infty]$ and $\mathcal{B} \subset \mathcal{A}$ two sub- σ-algebras of \mathcal{F},

$$
\mathbb{L}^{p}(\Omega, \mathcal{A}, \mu) \ominus \mathbb{L}^{p}(\Omega, \mathcal{B}, \mu)=\left\{f \in \mathbb{L}^{p}, f \text { is } \mathcal{A} \text {-measurable and } \mathbb{E}(f \mid \mathcal{B})=0\right\}
$$

Martingale-coboundary decomposition for strictly stationary sequences

Theorem (Gordin (1969))
Let $f \in \mathbb{L}^{p}(\Omega, \mathcal{M}, \mu) \ominus \mathbb{L}^{p}\left(\Omega, \cap_{i \in \mathbb{Z}} T^{-i} \mathcal{M}, \mu\right)$ such that (PC)

$$
\sum_{k \geqslant 0}\left\|\mathbb{E}\left(f \mid T^{k} \mathcal{M}\right)\right\|_{p}<\infty
$$

Martingale-coboundary decomposition for strictly stationary sequences

Theorem (Gordin (1969))
Let $f \in \mathbb{L}^{p}(\Omega, \mathcal{M}, \mu) \ominus \mathbb{L}^{p}\left(\Omega, \cap_{i \in \mathbb{Z}} T^{-i} \mathcal{M}, \mu\right)$ such that

$$
\begin{equation*}
\sum_{k \geqslant 0}\left\|\mathbb{E}\left(f \mid T^{k} \mathcal{M}\right)\right\|_{p}<\infty \tag{PC}
\end{equation*}
$$

then there exists m in $\mathbb{L}^{p}(\Omega, \mathcal{M}, \mu) \ominus \mathbb{L}^{p}(\Omega, T \mathcal{M}, \mu)$ and g in $\mathbb{L}^{p}(\Omega, T \mathcal{M}, \mu)$ such that (MCD)

$$
f=m+g-g \circ T .
$$

Martingale-coboundary decomposition for strictly stationary sequences

Theorem (Gordin (1969))
Let $f \in \mathbb{L}^{p}(\Omega, \mathcal{M}, \mu) \ominus \mathbb{L}^{p}\left(\Omega, \cap_{i \in \mathbb{Z}} T^{-i} \mathcal{M}, \mu\right)$ such that

$$
\begin{equation*}
\sum_{k \geqslant 0}\left\|\mathbb{E}\left(f \mid T^{k} \mathcal{M}\right)\right\|_{p}<\infty \tag{PC}
\end{equation*}
$$

then there exists m in $\mathbb{L}^{p}(\Omega, \mathcal{M}, \mu) \ominus \mathbb{L}^{p}(\Omega, T \mathcal{M}, \mu)$ and g in $\mathbb{L}^{p}(\Omega, T \mathcal{M}, \mu)$ such that (MCD)

$$
f=m+g-g \circ T .
$$

The term $g-g \circ T$ is called a coboundary.

Martingale-coboundary decomposition for strictly stationary sequences

Theorem (Gordin (1969))
Let $f \in \mathbb{L}^{p}(\Omega, \mathcal{M}, \mu) \ominus \mathbb{L}^{p}\left(\Omega, \cap_{i \in \mathbb{Z}} T^{-i} \mathcal{M}, \mu\right)$ such that

$$
\begin{equation*}
\sum_{k \geqslant 0}\left\|\mathbb{E}\left(f \mid T^{k} \mathcal{M}\right)\right\|_{p}<\infty \tag{PC}
\end{equation*}
$$

then there exists m in $\mathbb{L}^{p}(\Omega, \mathcal{M}, \mu) \ominus \mathbb{L}^{p}(\Omega, T \mathcal{M}, \mu)$ and g in $\mathbb{L}^{p}(\Omega, T \mathcal{M}, \mu)$ such that (MCD)

$$
f=m+g-g \circ T .
$$

The term $g-g \circ T$ is called a coboundary.
The equation (MCD) is called the martingale-coboundary decomposition of f.

Martingale-coboundary decomposition for strictly stationary sequences

Theorem (Gordin (1969))
Let $f \in \mathbb{L}^{p}(\Omega, \mathcal{M}, \mu) \ominus \mathbb{L}^{p}\left(\Omega, \cap_{i \in \mathbb{Z}} T^{-i} \mathcal{M}, \mu\right)$ such that

$$
\begin{equation*}
\sum_{k \geqslant 0}\left\|\mathbb{E}\left(f \mid T^{k} \mathcal{M}\right)\right\|_{p}<\infty \tag{PC}
\end{equation*}
$$

then there exists m in $\mathbb{L}^{p}(\Omega, \mathcal{M}, \mu) \ominus \mathbb{L}^{p}(\Omega, T \mathcal{M}, \mu)$ and g in $\mathbb{L}^{p}(\Omega, T \mathcal{M}, \mu)$ such that (MCD)

$$
f=m+g-g \circ T .
$$

The term $g-g \circ T$ is called a coboundary.
The equation (MCD) is called the martingale-coboundary decomposition of f.
$\left(m \circ T^{i}\right)_{i \in \mathbb{Z}}$ is a martingale-difference sequence with respect to the filtration $\left(T^{-i} \mathcal{M}\right)_{i \in \mathbb{Z}}$.

Central Limit Theorem

For any $h: \Omega \rightarrow \mathbb{R}$ measurable, we denote $S_{n}(h):=\sum_{i=0}^{n-1} h \circ T^{i}$.

Central Limit Theorem

For any $h: \Omega \rightarrow \mathbb{R}$ measurable, we denote $S_{n}(h):=\sum_{i=0}^{n-1} h \circ T^{i}$.

- From the Billingsley-Ibragimov central limit theorem, we have

$$
\frac{1}{\sqrt{n}} S_{n}(m) \rightarrow \sqrt{\mathbb{E}\left[m^{2}\right]} \cdot \mathcal{N}(0,1) \text { in distribution; }
$$

Central Limit Theorem

For any $h: \Omega \rightarrow \mathbb{R}$ measurable, we denote $S_{n}(h):=\sum_{i=0}^{n-1} h \circ T^{i}$.

- From the Billingsley-Ibragimov central limit theorem, we have

$$
\frac{1}{\sqrt{n}} S_{n}(m) \rightarrow \sqrt{\mathbb{E}\left[m^{2}\right]} \cdot \mathcal{N}(0,1) \text { in distribution; }
$$

- If $f: \Omega \rightarrow \mathbb{R}$ satisfies (PC) then $S_{n}(f)=S_{n}(m)+g-g \circ T^{n}$

Central Limit Theorem

For any $h: \Omega \rightarrow \mathbb{R}$ measurable, we denote $S_{n}(h):=\sum_{i=0}^{n-1} h \circ T^{i}$.

- From the Billingsley-Ibragimov central limit theorem, we have

$$
\frac{1}{\sqrt{n}} S_{n}(m) \rightarrow \sqrt{\mathbb{E}\left[m^{2}\right]} \cdot \mathcal{N}(0,1) \text { in distribution; }
$$

- If $f: \Omega \rightarrow \mathbb{R}$ satisfies (PC) then $S_{n}(f)=S_{n}(m)+g-g \circ T^{n}$
- Since $\left(g-g \circ T^{n}\right) / \sqrt{n} \rightarrow 0$ in probability, it follows that

Central Limit Theorem

For any $h: \Omega \rightarrow \mathbb{R}$ measurable, we denote $S_{n}(h):=\sum_{i=0}^{n-1} h \circ T^{i}$.

- From the Billingsley-Ibragimov central limit theorem, we have

$$
\frac{1}{\sqrt{n}} S_{n}(m) \rightarrow \sqrt{\mathbb{E}\left[m^{2}\right]} \cdot \mathcal{N}(0,1) \text { in distribution; }
$$

- If $f: \Omega \rightarrow \mathbb{R}$ satisfies (PC) then $S_{n}(f)=S_{n}(m)+g-g \circ T^{n}$
- Since $\left(g-g \circ T^{n}\right) / \sqrt{n} \rightarrow 0$ in probability, it follows that

$$
\frac{1}{\sqrt{n}} S_{n}(f) \rightarrow \sqrt{\mathbb{E}\left[m^{2}\right]} \cdot \mathcal{N}(0,1) \text { in distribution. }
$$

Weak Invariance Principle

For any $h: \Omega \rightarrow \mathbb{R}$ measurable and any t in $[0,1]$, we define

Weak Invariance Principle

For any $h: \Omega \rightarrow \mathbb{R}$ measurable and any t in $[0,1]$, we define

$$
S_{n}(h, t):=\sum_{j=1}^{[n t]} h \circ T^{j}+(n t-[n t]) h \circ T^{[n t]+1}
$$

Weak Invariance Principle

For any $h: \Omega \rightarrow \mathbb{R}$ measurable and any t in $[0,1]$, we define

$$
S_{n}(h, t):=\sum_{j=1}^{[n t]} h \circ T^{j}+(n t-[n t]) h \circ T^{[n t]+1} .
$$

If $f: \Omega \rightarrow \mathbb{R}$ satisfies (PC) then

Weak Invariance Principle

For any $h: \Omega \rightarrow \mathbb{R}$ measurable and any t in $[0,1]$, we define

$$
S_{n}(h, t):=\sum_{j=1}^{[n t]} h \circ T^{j}+(n t-[n t]) h \circ T^{[n t]+1} .
$$

If $f: \Omega \rightarrow \mathbb{R}$ satisfies (PC) then

$$
n^{-1 / 2} S_{n}(f, .) \rightarrow \sqrt{\mathbb{E}\left[m^{2}\right]} \cdot W \text { in distribution in } C[0,1]
$$

Weak Invariance Principle

For any $h: \Omega \rightarrow \mathbb{R}$ measurable and any t in $[0,1]$, we define

$$
S_{n}(h, t):=\sum_{j=1}^{[n t]} h \circ T^{j}+(n t-[n t]) h \circ T^{[n t]+1} .
$$

If $f: \Omega \rightarrow \mathbb{R}$ satisfies (PC) then

$$
n^{-1 / 2} S_{n}(f, .) \rightarrow \sqrt{\mathbb{E}\left[m^{2}\right]} \cdot W \text { in distribution in } C[0,1]
$$

where W denotes a standard Brownian motion.

Weak Invariance Principle

For any $h: \Omega \rightarrow \mathbb{R}$ measurable and any t in $[0,1]$, we define

$$
S_{n}(h, t):=\sum_{j=1}^{[n t]} h \circ T^{j}+(n t-[n t]) h \circ T^{[n t]+1}
$$

If $f: \Omega \rightarrow \mathbb{R}$ satisfies (PC) then

$$
n^{-1 / 2} S_{n}(f, .) \rightarrow \sqrt{\mathbb{E}\left[m^{2}\right]} \cdot W \text { in distribution in } C[0,1]
$$

where W denotes a standard Brownian motion.

This result reduces to the classical Donsker WIP when $\left(f \circ T^{k}\right)_{k \in \mathbb{Z}}$ are iid.

Weak Invariance Principle

$\left(X_{k}\right)_{k \in \mathbb{Z}^{d}}$ a stationary real random field.

Weak Invariance Principle

$\left(X_{k}\right)_{k \in \mathbb{Z}^{d}}$ a stationary real random field.
\mathcal{A} a class of Borel subsets of $[0,1]^{d}$

Weak Invariance Principle

$\left(X_{k}\right)_{k \in \mathbb{Z}^{d}}$ a stationary real random field.
\mathcal{A} a class of Borel subsets of $[0,1]^{d}$
$\rho(A, B)=\sqrt{\lambda(A \Delta B)}$.

Weak Invariance Principle

$\left(X_{k}\right)_{k \in \mathbb{Z}^{d}}$ a stationary real random field.
\mathcal{A} a class of Borel subsets of $[0,1]^{d}$
$\rho(A, B)=\sqrt{\lambda(A \Delta B)}$.
For any $A \in \mathcal{A}$ and any $n \in \mathbb{N}^{*}$,

$$
S_{n}(A)=\sum_{i \in\{1, \ldots, n\}^{d}} \lambda\left(n A \cap R_{i}\right) X_{i}
$$

where $\left.\left.\left.\left.R_{i}=\right] i_{1}-1, i_{1}\right] \times \ldots \times\right] i_{d}-1, i_{d}\right]$ and λ is the Lebesgue measure on \mathbb{R}^{d}.

Weak Invariance Principle

Donsker line:

Weak Invariance Principle

Donsker line:

For any $t \in[0,1]$,

$$
S_{n}(t)=\sum_{i=1}^{[n t]} X_{i}+(n t-[n t]) X_{[n t]+1}=\sum_{i=1}^{n} \lambda(n[0, t] \cap[i-1, i]) X_{i}
$$

So,

$$
\left\{n^{-1 / 2} S_{n}(t) ; t \in[0,1]\right\}=\left\{n^{-1 / 2} S_{n}(A) ; A \in \mathcal{Q}_{1}\right\}
$$

where $\mathcal{Q}_{1}=\{[0, t] ; t \in[0,1]\}$.

Weak Invariance Principle

Definition (Metric entropy)

$H(\mathcal{A}, \rho, \epsilon)$ is the logarithm of the smallest number of open balls of radius ϵ with respect to ρ which form a covering of \mathcal{A}.

Weak Invariance Principle

Definition (Metric entropy)

$H(\mathcal{A}, \rho, \epsilon)$ is the logarithm of the smallest number of open balls of radius ϵ with respect to ρ which form a covering of \mathcal{A}.

Definition (Metric entropy)

$H(\mathcal{A}, \rho, \epsilon)$ is the logarithm of the smallest number of open balls of radius ϵ with respect to ρ which form a covering of \mathcal{A}.

Assume that \mathcal{A} is totally bounded with inclusion i.e. for each positive ϵ there exists a finite collection $\mathcal{A}(\epsilon)$ of Borel subsets of $[0,1]^{d}$ such that for any $A \in \mathcal{A}$, there exist A_{1} and A_{2} in $\mathcal{A}(\epsilon)$ with $A_{1} \subseteq A \subseteq A_{2}$ and $\rho\left(A_{1}, A_{2}\right) \leq \epsilon$.

Definition (Metric entropy)

$H(\mathcal{A}, \rho, \epsilon)$ is the logarithm of the smallest number of open balls of radius ϵ with respect to ρ which form a covering of \mathcal{A}.

Assume that \mathcal{A} is totally bounded with inclusion i.e. for each positive ϵ there exists a finite collection $\mathcal{A}(\epsilon)$ of Borel subsets of $[0,1]^{d}$ such that for any $A \in \mathcal{A}$, there exist A_{1} and A_{2} in $\mathcal{A}(\epsilon)$ with $A_{1} \subseteq A \subseteq A_{2}$ and $\rho\left(A_{1}, A_{2}\right) \leq \epsilon$.

Definition (Bracketing entropy)
$\mathbb{H}(\mathcal{A}, \rho, \epsilon)$ is the logarithm of the cardinality of the smallest collection $\mathcal{A}(\epsilon)$.

Definition (Brownian motion indexed by \mathcal{A})
A standard Brownian motion indexed by \mathcal{A} is a mean zero Gaussian process W with sample paths in $C(\mathcal{A})$ and $\operatorname{Cov}(\mathrm{W}(\mathrm{A}), \mathrm{W}(\mathrm{B}))=\lambda(A \cap B)$.

Weak Invariance Principle

Definition (Brownian motion indexed by \mathcal{A})
A standard Brownian motion indexed by \mathcal{A} is a mean zero Gaussian process W with sample paths in $C(\mathcal{A})$ and $\operatorname{Cov}(\mathrm{W}(\mathrm{A}), \mathrm{W}(\mathrm{B}))=\lambda(A \cap B)$.

From Dudley (1973), we know that such a process exists if

$$
\int_{0}^{1} \sqrt{H(\mathcal{A}, \rho, \epsilon)} d \epsilon<\infty .
$$

Weak Invariance Principle

Definition

We say that the weak invariance principle (WIP) holds if the sequence $\left\{n^{-d / 2} S_{n}(A) ; A \in \mathcal{A}\right\}$ converges in distribution to a mixture of \mathcal{A}-indexed Brownian motions in the space $C(\mathcal{A})$.

Weak Invariance Principle

Definition

We say that the weak invariance principle (WIP) holds if the sequence $\left\{n^{-d / 2} S_{n}(A) ; A \in \mathcal{A}\right\}$ converges in distribution to a mixture of \mathcal{A}-indexed Brownian motions in the space $C(\mathcal{A})$.

Theorem (Bass (1985), Alexander and Pyke (1986)) $\left(X_{k}\right)_{k \in \mathbb{Z}^{d}}$ centered i.i.d. random field such that $X_{0} \in L^{2}$ and

$$
\int_{0}^{1} \sqrt{\mathbb{H}(\mathcal{A}, \rho, \varepsilon)} d \varepsilon<\infty
$$

then the WIP holds.

Theorem (E.M., Ouchti (2006))

For any positive real number p, there exists a stationary field $\left(X_{k}\right)_{k \in \mathbb{Z}^{d}}$ of independent, symmetric and p-integrable real random variables and a collection \mathcal{A} of Borel subsets of $[0,1]^{d}$ which satisfies the condition

$$
\int_{0}^{1} \sqrt{H(\mathcal{A}, \rho, \varepsilon)} d \varepsilon<\infty
$$

such that $\left\{n^{-d / 2} S_{n}(A) ; A \in \mathcal{A}\right\}$ do not be tight in the space $C(\mathcal{A})$.

Weak Invariance Principle

Theorem (Dedecker (2001))
$\left(X_{k}\right)_{k \in \mathbb{Z}^{d}}$ a centered stationary random field such that $X_{0} \in L^{\infty}$ and

$$
\sum_{k<l e x}\left\|X_{k} E\left(X_{0} \mid \mathcal{F}_{k}\right)\right\|_{\infty}<\infty
$$

with $\mathcal{F}_{k}=\sigma\left(X_{j} ; j<_{\text {lex }} 0 ;|j| \geq|k|\right)$ and such that

$$
\int_{0}^{1} \sqrt{H(\mathcal{A}, \rho, \varepsilon)} d \varepsilon<\infty
$$

then the WIP holds.

Weak Invariance Principle

Theorem (Dedecker (2001))
$\left(X_{k}\right)_{k \in \mathbb{Z}^{d}}$ a centered stationary random field such that $X_{0} \in L^{p}$ for $p>2$ and

$$
\sum_{k<\operatorname{lex} 0}\left\|X_{k} E\left(X_{0} \mid \mathcal{F}_{k}\right)\right\|_{\frac{p}{2}}<\infty
$$

with $\mathcal{F}_{k}=\sigma\left(X_{j} ; j<_{\text {lex }} 0 ;|j| \geq|k|\right)$ then the WIP holds for $\mathcal{A}=\mathcal{Q}_{d}$.

Weak Invariance Principle

Let $\psi: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be a Young function.

Weak Invariance Principle

Let $\psi: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be a Young function.

We consider the Orlicz space \mathbb{L}_{ψ} defined by

$$
\mathbb{L}_{\psi}=\{Z \mid \exists c>0 \quad \mathbb{E}(\psi(|Z| / c))<\infty\}
$$

Weak Invariance Principle

Let $\psi: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be a Young function.

We consider the Orlicz space \mathbb{L}_{ψ} defined by

$$
\mathbb{L}_{\psi}=\{Z \mid \exists c>0 \quad \mathbb{E}(\psi(|Z| / c))<\infty\}
$$

and the Orlicz norm

$$
\|Z\|_{\psi}=\inf \{c>0 ; \mathbb{E}(\psi(|Z| / c)) \leq 1\}
$$

Weak Invariance Principle

Let $\psi: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be a Young function.

We consider the Orlicz space \mathbb{L}_{ψ} defined by

$$
\mathbb{I}_{\psi}=\{Z \mid \exists c>0 \quad \mathbb{E}(\psi(|Z| / c))<\infty\}
$$

and the Orlicz norm

$$
\|Z\|_{\psi}=\inf \{c>0 ; \mathbb{E}(\psi(|Z| / c)) \leq 1\} .
$$

If $\psi(x)=x^{p}$ then $\mathbb{L}_{\psi}=\mathbb{L}_{p}$ and $\|\cdot\|_{\psi}=\|\cdot\|_{p}$.

Weak Invariance Principle

For any $x \geq 0$,

$$
\psi_{2}(x)=\exp \left(x^{2}\right)-1
$$

Weak Invariance Principle

For any $x \geq 0$,

$$
\psi_{2}(x)=\exp \left(x^{2}\right)-1
$$

For any $\beta>0$ and any $x \geq 0$,

$$
\psi_{\beta}(x)=\exp \left(\left(x+h_{\beta}\right)^{\beta}\right)-\exp \left(h_{\beta}^{\beta}\right)
$$

where $h_{\beta}=((1-\beta) / \beta)^{1 / \beta} \mathbb{1}_{\{0<\beta<1\}}$.

Weak Invariance Principle

Theorem (E.M. (2002))
$\left(X_{k}\right)_{k \in \mathbb{Z}^{d}}$ a centered and stationary real random field. If there exist $0<q<2$ and $\theta>0$ such that $E\left[\exp \left(\theta\left|X_{0}\right|^{\beta(q)}\right)\right]<\infty$ and

$$
\sum_{k<\operatorname{lex} 0}\left\|\sqrt{\left|X_{k} E\left(X_{0} \mid \mathcal{F}_{k}\right)\right|}\right\|_{\psi_{\beta(q)}}^{2}<\infty
$$

where $\beta(q)=2 q /(2-q)$ and

$$
\int_{0}^{1}(H(\mathcal{A}, \rho, \varepsilon))^{1 / q} d \varepsilon<\infty
$$

then the WIP holds.

Theorem (E.M., Volný (2002))

For any nonnegative real p, there exist a p-integrable stationary real random field $\left(X_{k}\right)_{k \in \mathbb{Z}^{d}}$ and a collection \mathcal{A} of regular Borel subsets of $[0,1]^{d}$ such that

- For any k in $\mathbb{Z}^{d}, \mathbb{E}\left(X_{k} \mid \sigma\left(X_{i} ; i \neq k\right)\right)=0$. We say that the random field $\left(X_{k}\right)_{k \in \mathbb{Z}^{d}}$ is a strong martingale-difference random field.
- The collection \mathcal{A} satisfies the bracketing entropy condition

$$
\int_{0}^{1} \sqrt{\mathbb{H}(\mathcal{A}, \rho, \varepsilon)} d \varepsilon<\infty .
$$

- The partial sum process $\left\{n^{-d / 2} S_{n}(A) ; A \in \mathcal{A}\right\}$ is not tight in the space $C(\mathcal{A})$.

Weak Invariance Principle

Theorem (E.M., Ouchti (2006))
Let $\left(X_{k}\right)_{k \in \mathbb{Z}^{d}}$ be a stationary field of martingale-difference random variables with finite variance such that $\mathbb{E}\left(X_{0}^{2} \mid \sigma\left(X_{i} ; i<_{\text {lex }} 0\right)\right)$ is bounded almost surely and assume that

$$
\int_{0}^{1} \sqrt{\mathbb{H}(\mathcal{A}, \rho, \varepsilon)} d \varepsilon<\infty
$$

then the WIP holds.

Weak Invariance Principle

Let $\left(X_{i}\right)_{i \in \mathbb{Z}^{d}}$ be centered and defined by

$$
X_{i}=g\left(\varepsilon_{i-s} ; s \in \mathbb{Z}^{d}\right) .
$$

Weak Invariance Principle

Let $\left(X_{i}\right)_{i \in \mathbb{Z}^{d}}$ be centered and defined by

$$
X_{i}=g\left(\varepsilon_{i-s} ; s \in \mathbb{Z}^{d}\right) .
$$

where

- $\left(\varepsilon_{j}\right)_{j \in \mathbb{Z}^{d}}$ is an i.i.d. random field

Weak Invariance Principle

Let $\left(X_{i}\right)_{i \in \mathbb{Z}^{d}}$ be centered and defined by

$$
X_{i}=g\left(\varepsilon_{i-s} ; s \in \mathbb{Z}^{d}\right) .
$$

where

- $\left(\varepsilon_{j}\right)_{j \in \mathbb{Z}^{d}}$ is an i.i.d. random field
- g is a measurable function.

Weak Invariance Principle

Let $\left(\varepsilon_{j}^{\prime}\right)_{j \in \mathbb{Z}^{d}}$ be an i.i.d. copy of $\left(\varepsilon_{j}\right)_{j \in \mathbb{Z}^{d}}$.

Weak Invariance Principle

Let $\left(\varepsilon_{j}^{\prime}\right)_{j \in \mathbb{Z}^{d}}$ be an i.i.d. copy of $\left(\varepsilon_{j}\right)_{j \in \mathbb{Z}^{d}}$.

We define the coupled version X_{i}^{*} of X_{i} by

$$
X_{i}^{*}=g\left(\varepsilon_{i-s}^{*} ; s \in \mathbb{Z}^{d}\right)
$$

Weak Invariance Principle

Let $\left(\varepsilon_{j}^{\prime}\right)_{j \in \mathbb{Z}^{d}}$ be an i.i.d. copy of $\left(\varepsilon_{j}\right)_{j \in \mathbb{Z}^{d}}$.

We define the coupled version X_{i}^{*} of X_{i} by

$$
X_{i}^{*}=g\left(\varepsilon_{i-s}^{*} ; s \in \mathbb{Z}^{d}\right)
$$

where for any j in \mathbb{Z}^{d},

$$
\varepsilon_{j}^{*}= \begin{cases}\varepsilon_{0}^{\prime} & \text { if } j=0 \\ \varepsilon_{j} & \text { if } j \neq 0\end{cases}
$$

Weak Invariance Principle

Let $\psi: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be a Young function.

Weak Invariance Principle

Let $\psi: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be a Young function.

Following Wu (2005), we consider the physical dependence measure coefficients $\delta_{i, \psi}$ defined by

$$
\delta_{i, \psi}=\left\|X_{i}-X_{i}^{*}\right\|_{\psi} .
$$

Weak Invariance Principle

Let $\psi: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be a Young function.

Following Wu (2005), we consider the physical dependence measure coefficients $\delta_{i, \psi}$ defined by

$$
\delta_{i, \psi}=\left\|X_{i}-X_{i}^{*}\right\|_{\psi} .
$$

If $\psi(x)=x^{p}$, we denote $\delta_{i, p}$ in place of $\delta_{i, \psi}$.

Weak Invariance Principle

Let $\psi: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be a Young function.

Following Wu (2005), we consider the physical dependence measure coefficients $\delta_{i, \psi}$ defined by

$$
\delta_{i, \psi}=\left\|X_{i}-X_{i}^{*}\right\|_{\psi} .
$$

If $\psi(x)=x^{p}$, we denote $\delta_{i, p}$ in place of $\delta_{i, \psi}$.

The random field X defined by

$$
X_{i}=g\left(\varepsilon_{i-s} ; s \in \mathbb{Z}^{d}\right)
$$

is said to be ψ-stable if

$$
\Delta_{\psi}:=\sum_{i \in \mathbb{Z}^{d}} \delta_{i, \psi}<\infty
$$

Weak Invariance Principle

Example : $\left(\varepsilon_{i}\right)_{i \in \mathbb{Z}^{d}}$ i.i.d with $\varepsilon_{i} \in \mathbb{L}^{p}, p \geq 2$. The linear random field X defined for any i in \mathbb{Z}^{d} by

$$
X_{i}=\sum_{s \in \mathbb{Z}^{d}} a_{s} \varepsilon_{i-s}
$$

is of the form $X_{i}=g\left(\varepsilon_{i-s}, s \in \mathbb{Z}^{d}\right)$ with a linear function g.

Weak Invariance Principle

Example : $\left(\varepsilon_{i}\right)_{i \in \mathbb{Z}^{d}}$ i.i.d with $\varepsilon_{i} \in \mathbb{L}^{p}, p \geq 2$. The linear random field X defined for any i in \mathbb{Z}^{d} by

$$
X_{i}=\sum_{s \in \mathbb{Z}^{d}} a_{s} \varepsilon_{i-s}
$$

is of the form $X_{i}=g\left(\varepsilon_{i-s}, s \in \mathbb{Z}^{d}\right)$ with a linear function g.
For any i in \mathbb{Z}^{d},

$$
\delta_{i, p}=\left|a_{i}\right|\left\|\varepsilon_{0}-\varepsilon_{0}^{\prime}\right\|_{p}
$$

Weak Invariance Principle

Example : $\left(\varepsilon_{i}\right)_{i \in \mathbb{Z}^{d}}$ i.i.d with $\varepsilon_{i} \in \mathbb{L}^{p}, p \geq 2$. The linear random field X defined for any i in \mathbb{Z}^{d} by

$$
X_{i}=\sum_{s \in \mathbb{Z}^{d}} a_{s} \varepsilon_{i-s}
$$

is of the form $X_{i}=g\left(\varepsilon_{i-s}, s \in \mathbb{Z}^{d}\right)$ with a linear function g.
For any i in \mathbb{Z}^{d},

$$
\delta_{i, p}=\left|a_{i}\right|\left\|\varepsilon_{0}-\varepsilon_{0}^{\prime}\right\|_{p}
$$

So, X is p-stable as soon as

$$
\sum_{i \in \mathbb{Z}^{d}}\left|a_{i}\right|<\infty .
$$

Weak Invariance Principle

Example : $\left(\varepsilon_{i}\right)_{i \in \mathbb{Z}^{d}}$ i.i.d with $\varepsilon_{i} \in \mathbb{L}^{p}, p \geq 2$. The linear random field X defined for any i in \mathbb{Z}^{d} by

$$
X_{i}=\sum_{s \in \mathbb{Z}^{d}} a_{s} \varepsilon_{i-s}
$$

is of the form $X_{i}=g\left(\varepsilon_{i-s}, s \in \mathbb{Z}^{d}\right)$ with a linear function g.
For any i in \mathbb{Z}^{d},

$$
\delta_{i, p}=\left|a_{i}\right|\left\|\varepsilon_{0}-\varepsilon_{0}^{\prime}\right\|_{p}
$$

So, X is p-stable as soon as

$$
\sum_{i \in \mathbb{Z}^{d}}\left|a_{i}\right|<\infty
$$

If K is a Lipschitz function then $K\left(X_{i}\right)$ is also p-stable under the above condition.

Weak Invariance Principle

Proposition (E.M., Volný, Wu (2013))

Let Γ be a finite subset of \mathbb{Z}^{d} and let $\left(a_{i}\right)_{i \in \Gamma}$ be a family of real numbers. For any $p \geq 2$, we have

$$
\left\|\sum_{i \in \Gamma} a_{i} X_{i}\right\|_{p} \leq\left(2 p \sum_{i \in \Gamma} a_{i}^{2}\right)^{\frac{1}{2}} \Delta_{p}
$$

where $\Delta_{p}=\sum_{i \in \mathbb{Z}^{d}} \delta_{i, p}$.

Weak Invariance Principle

VC-classes of sets:

Weak Invariance Principle

VC-classes of sets:

Let $\mathcal{A} \subset \mathcal{P}\left([0,1]^{d}\right)$ and $E=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \subset[0,1]^{d}$.

Weak Invariance Principle

VC-classes of sets:

Let $\mathcal{A} \subset \mathcal{P}\left([0,1]^{d}\right)$ and $E=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \subset[0,1]^{d}$.

- \mathcal{A} picks out a subset F from E if $F=A \cap E$ with $A \in \mathcal{A}$.

Weak Invariance Principle

VC-classes of sets:

Let $\mathcal{A} \subset \mathcal{P}\left([0,1]^{d}\right)$ and $E=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \subset[0,1]^{d}$.

- \mathcal{A} picks out a subset F from E if $F=A \cap E$ with $A \in \mathcal{A}$.
- \mathcal{A} shatters E if each of its subsets can be picked out in this manner.

Weak Invariance Principle

VC-classes of sets:

Let $\mathcal{A} \subset \mathcal{P}\left([0,1]^{d}\right)$ and $E=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \subset[0,1]^{d}$.

- \mathcal{A} picks out a subset F from E if $F=A \cap E$ with $A \in \mathcal{A}$.
- \mathcal{A} shatters E if each of its subsets can be picked out in this manner.
- The $V C$-index $V(\mathcal{A})$ of \mathcal{A} is the smallest n for which no set of size n is shattered by \mathcal{A}.

Weak Invariance Principle

VC-classes of sets:

Let $\mathcal{A} \subset \mathcal{P}\left([0,1]^{d}\right)$ and $E=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \subset[0,1]^{d}$.

- \mathcal{A} picks out a subset F from E if $F=A \cap E$ with $A \in \mathcal{A}$.
- \mathcal{A} shatters E if each of its subsets can be picked out in this manner.
- The $V C$-index $V(\mathcal{A})$ of \mathcal{A} is the smallest n for which no set of size n is shattered by \mathcal{A}.
- \mathcal{A} is called a $V C$-class if its index is finite.

Weak Invariance Principle

VC-classes of sets:

Let $\mathcal{A} \subset \mathcal{P}\left([0,1]^{d}\right)$ and $E=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \subset[0,1]^{d}$.

- \mathcal{A} picks out a subset F from E if $F=A \cap E$ with $A \in \mathcal{A}$.
- \mathcal{A} shatters E if each of its subsets can be picked out in this manner.
- The $V C$-index $V(\mathcal{A})$ of \mathcal{A} is the smallest n for which no set of size n is shattered by \mathcal{A}.
- \mathcal{A} is called a $V C$-class if its index is finite.
- If \mathcal{A} is a $V C$-class then for any $\varepsilon>0$,

$$
N(\mathcal{A}, \rho, \varepsilon) \leq K V(\mathcal{A})(4 e)^{V(\mathcal{A})}\left(\frac{1}{\varepsilon}\right)^{2(V(\mathcal{A})-1)}
$$

Weak Invariance Principle

Let $\mathcal{A} \subset \mathcal{B}\left([0,1]^{d}\right)$ such that one of the following holds:

Weak Invariance Principle

Let $\mathcal{A} \subset \mathcal{B}\left([0,1]^{d}\right)$ such that one of the following holds:
(A1) \mathcal{A} is a $V C$-class of index $V, X_{0} \in \mathbb{L}^{p}$ and $\Delta_{p}:=\sum_{i \in \mathbb{Z}^{d}} \delta_{i, p}<\infty$ with $p>2(V-1)$.

Weak Invariance Principle

Let $\mathcal{A} \subset \mathcal{B}\left([0,1]^{d}\right)$ such that one of the following holds:
(A1) \mathcal{A} is a $V C$-class of index $V, X_{0} \in \mathbb{L}^{p}$ and $\Delta_{p}:=\sum_{i \in \mathbb{Z}^{d}} \delta_{i, p}<\infty$ with $p>2(V-1)$.
(A2) There exists $\theta>0$ and $0<q<2$ such that $\mathbb{E}\left(\exp \left(\theta\left|X_{0}\right|^{\beta(q)}\right)\right)<\infty$ where $\beta(q)=2 q /(2-q), \Delta_{\psi_{\beta(q)}}:=\sum_{i \in \mathbb{Z}^{d}} \delta_{i, \psi_{\beta(q)}}<\infty$ and

$$
\int_{0}^{1}(H(\mathcal{A}, \rho, \varepsilon))^{1 / q} d \varepsilon<\infty
$$

Weak Invariance Principle

Let $\mathcal{A} \subset \mathcal{B}\left([0,1]^{d}\right)$ such that one of the following holds:
(A1) \mathcal{A} is a $V C$-class of index $V, X_{0} \in \mathbb{L}^{p}$ and $\Delta_{p}:=\sum_{i \in \mathbb{Z}^{d}} \delta_{i, p}<\infty$ with $p>2(V-1)$.
(A2) There exists $\theta>0$ and $0<q<2$ such that $\mathbb{E}\left(\exp \left(\theta\left|X_{0}\right|^{\beta(q)}\right)\right)<\infty$ where $\beta(q)=2 q /(2-q), \Delta_{\psi_{\beta(q)}}:=\sum_{i \in \mathbb{Z}^{d}} \delta_{i, \psi_{\beta(q)}}<\infty$ and

$$
\int_{0}^{1}(H(\mathcal{A}, \rho, \varepsilon))^{1 / q} d \varepsilon<\infty
$$

(A3) $X_{0} \in \mathbb{L}^{\infty}, \Delta_{\infty}:=\sum_{i \in \mathbb{Z}^{d}} \delta_{i, \infty}<\infty$ and

$$
\int_{0}^{1} \sqrt{H(\mathcal{A}, \rho, \varepsilon)} d \varepsilon<\infty
$$

Weak Invariance Principle

Theorem (E.M., Volný, Wu (2013))
Let $\mathcal{A} \subset \mathcal{B}\left([0,1]^{d}\right)$ and assume that (A1), (A2) or (A3) holds. Let $\left(X_{i}\right)_{i \in \mathbb{Z}^{d}}$ be a centered random field of the form

$$
X_{i}=g\left(\varepsilon_{i-s} ; s \in \mathbb{Z}^{d}\right)
$$

Then $\left\{n^{-d / 2} S_{n}(A) ; A \in \mathcal{A}\right\}$ converge in distribution in $\mathcal{C}(\mathcal{A})$ to σW where W is an \mathcal{A}-indexed standard Brownian motion and $\sigma^{2}=\sum_{k \in \mathbb{Z}^{d}} \mathbb{E}\left(X_{0} X_{k}\right)$.

Weak Invariance Principle

Theorem (E.M., Volný, Wu (2013))
Let $\mathcal{A} \subset \mathcal{B}\left([0,1]^{d}\right)$ and assume that (A1), (A2) or (A3) holds. Let $\left(X_{i}\right)_{i \in \mathbb{Z}^{d}}$ be a centered random field of the form

$$
X_{i}=g\left(\varepsilon_{i-s} ; s \in \mathbb{Z}^{d}\right)
$$

Then $\left\{n^{-d / 2} S_{n}(A) ; A \in \mathcal{A}\right\}$ converge in distribution in $\mathcal{C}(\mathcal{A})$ to σW where W is an \mathcal{A}-indexed standard Brownian motion and $\sigma^{2}=\sum_{k \in \mathbb{Z}^{d}} \mathbb{E}\left(X_{0} X_{k}\right)$.

Biermé and Durieu (2015) extended this result by considering

$$
S_{n}(A)=\sum_{i \in\{1, \ldots, n\}^{d}} \mu\left(n A \cap R_{i}\right) X_{i}
$$

where μ is a σ-finite measure on \mathbb{R}^{d} absolutely continuous with respect to the Lebesgue measure and such that $\mu(n A)=n^{\beta} \mu(A)$ for some $\beta>0$. In this case, the limit process is a centered Gaussian process $(W(A))_{A \in \mathcal{A}}$ such that $\operatorname{Cov}(W(A), W(B))=\mu(A \cap B)$.

Weak Invariance Principle

$$
\text { If } \mathcal{A}=\mathcal{Q}_{d} \text { then } p>2(V-1) \text { becomes } p>2 d \text {. }
$$

Weak Invariance Principle

If $\mathcal{A}=\mathcal{Q}_{d}$ then $p>2(V-1)$ becomes $p>2 d$.
Question : Is it possible to obtain a WIP for $\mathcal{A}=\mathcal{Q}_{d}$ when $p=2$?

Commuting filtration

Let d be a positive integer.

Commuting filtration

Let d be a positive integer.
■ We denote by $\langle d\rangle$ the set $\{1, \ldots, d\}$.

Commuting filtration

Let d be a positive integer.
■ We denote by $\langle d\rangle$ the set $\{1, \ldots, d\}$.
$■$ For any $s=\left(s_{1}, \ldots, s_{d}\right)$ and any $t=\left(t_{1}, \ldots, t_{d}\right)$ in \mathbb{Z}^{d}, we write $s \preceq t$ (resp. $s \prec t$, $s \succeq t$ and $s \succ t$) if and only if $s_{k} \leqslant t_{k}$ (resp. $s_{k}<t_{k}, s_{k} \geqslant t_{k}$ and $s_{k}>t_{k}$) for any k in $\langle d\rangle$.

Commuting filtration

Let d be a positive integer.
■ We denote by $\langle d\rangle$ the set $\{1, \ldots, d\}$.
■ For any $s=\left(s_{1}, \ldots, s_{d}\right)$ and any $t=\left(t_{1}, \ldots, t_{d}\right)$ in \mathbb{Z}^{d}, we write $s \preceq t$ (resp. $s \prec t$, $s \succeq t$ and $s \succ t$) if and only if $s_{k} \leqslant t_{k}$ (resp. $s_{k}<t_{k}, s_{k} \geqslant t_{k}$ and $s_{k}>t_{k}$) for any k in $\langle d\rangle$.

- We denote also $s \wedge t=\left(s_{1} \wedge t_{1}, \ldots, s_{d} \wedge t_{d}\right)$.

Commuting filtration

Let d be a positive integer.

- We denote by $\langle d\rangle$ the set $\{1, \ldots, d\}$.

■ For any $s=\left(s_{1}, \ldots, s_{d}\right)$ and any $t=\left(t_{1}, \ldots, t_{d}\right)$ in \mathbb{Z}^{d}, we write $s \preceq t$ (resp. $s \prec t$, $s \succeq t$ and $s \succ t$) if and only if $s_{k} \leqslant t_{k}$ (resp. $s_{k}<t_{k}, s_{k} \geqslant t_{k}$ and $s_{k}>t_{k}$) for any k in $\langle d\rangle$.
\square We denote also $s \wedge t=\left(s_{1} \wedge t_{1}, \ldots, s_{d} \wedge t_{d}\right)$.
Definition (Cairoli (1969))
Let $(\Omega, \mathcal{F}, \mu)$ be a probability space. A family $\left(\mathcal{G}_{i}\right)_{i \in \mathbb{Z}^{d}}$ of σ-algebras is a commuting filtration if $\mathcal{G}_{i} \subset \mathcal{G}_{j} \subset \mathcal{F}$ for any i and j in \mathbb{Z}^{d} such that $i \preceq j$ and

$$
\mathbb{E}\left(\mathbb{E}\left(Z \mid \mathcal{G}_{s}\right) \mid \mathcal{G}_{t}\right)=\mathbb{E}\left(Z \mid \mathcal{G}_{s \wedge t}\right) \quad \text { a.s. }
$$

for any s and t in \mathbb{Z}^{d} and any bounded random variable Z.

Commuting filtration

Let d be a positive integer.

- We denote by $\langle d\rangle$ the set $\{1, \ldots, d\}$.

■ For any $s=\left(s_{1}, \ldots, s_{d}\right)$ and any $t=\left(t_{1}, \ldots, t_{d}\right)$ in \mathbb{Z}^{d}, we write $s \preceq t$ (resp. $s \prec t$, $s \succeq t$ and $s \succ t$) if and only if $s_{k} \leqslant t_{k}$ (resp. $s_{k}<t_{k}, s_{k} \geqslant t_{k}$ and $s_{k}>t_{k}$) for any k in $\langle d\rangle$.
\square We denote also $s \wedge t=\left(s_{1} \wedge t_{1}, \ldots, s_{d} \wedge t_{d}\right)$.
Definition (Cairoli (1969))
Let $(\Omega, \mathcal{F}, \mu)$ be a probability space. A family $\left(\mathcal{G}_{i}\right)_{i \in \mathbb{Z}^{d}}$ of σ-algebras is a commuting filtration if $\mathcal{G}_{i} \subset \mathcal{G}_{j} \subset \mathcal{F}$ for any i and j in \mathbb{Z}^{d} such that $i \preceq j$ and

$$
\mathbb{E}\left(\mathbb{E}\left(Z \mid \mathcal{G}_{s}\right) \mid \mathcal{G}_{t}\right)=\mathbb{E}\left(Z \mid \mathcal{G}_{s \wedge t}\right) \quad \text { a.s. }
$$

for any s and t in \mathbb{Z}^{d} and any bounded random variable Z.
This is also known as the F4 condition.

Commuting filtration

Let d be a positive integer.

- We denote by $\langle d\rangle$ the set $\{1, \ldots, d\}$.

■ For any $s=\left(s_{1}, \ldots, s_{d}\right)$ and any $t=\left(t_{1}, \ldots, t_{d}\right)$ in \mathbb{Z}^{d}, we write $s \preceq t$ (resp. $s \prec t$, $s \succeq t$ and $s \succ t$) if and only if $s_{k} \leqslant t_{k}$ (resp. $s_{k}<t_{k}, s_{k} \geqslant t_{k}$ and $s_{k}>t_{k}$) for any k in $\langle d\rangle$.
\square We denote also $s \wedge t=\left(s_{1} \wedge t_{1}, \ldots, s_{d} \wedge t_{d}\right)$.
Definition (Cairoli (1969))
Let $(\Omega, \mathcal{F}, \mu)$ be a probability space. A family $\left(\mathcal{G}_{i}\right)_{i \in \mathbb{Z}^{d}}$ of σ-algebras is a commuting filtration if $\mathcal{G}_{i} \subset \mathcal{G}_{j} \subset \mathcal{F}$ for any i and j in \mathbb{Z}^{d} such that $i \preceq j$ and

$$
\mathbb{E}\left(\mathbb{E}\left(Z \mid \mathcal{G}_{s}\right) \mid \mathcal{G}_{t}\right)=\mathbb{E}\left(Z \mid \mathcal{G}_{s \wedge t}\right) \quad \text { a.s. }
$$

for any s and t in \mathbb{Z}^{d} and any bounded random variable Z.
This is also known as the F4 condition.

Example: if $\left(\varepsilon_{j}\right)_{j \in \mathbb{Z}^{d}}$ is an independent random field and $\mathcal{F}_{i}:=\sigma\left(\varepsilon_{j}, j \prec i\right)$, then $\left(\mathcal{F}_{i}\right)_{i \in \mathbb{Z}^{d}}$ is a commuting filtration.

Orthomartingale-difference random fields

Definition (Cairoli (1969))
Let $(\Omega, \mathcal{F}, \mu)$ be a probability space. A random field $\left(X_{k}\right)_{k \in \mathbb{Z}^{d}}$ is an orthomartingale-difference (OMD) random field if there exists a commuting filtration $\left(\mathcal{G}_{i}\right)_{i \in \mathbb{Z}^{d}}$ such that X_{k} belongs to $\mathbb{L}^{1}\left(\Omega, \mathcal{G}_{k}, \mu\right) \ominus \mathbb{L}^{1}\left(\Omega, \mathcal{G}_{l}, \mu\right)$ a.s. for any $I \nsucceq k$ and k in \mathbb{Z}^{d}.

Orthomartingale-difference random fields

Definition (Cairoli (1969))

Let $(\Omega, \mathcal{F}, \mu)$ be a probability space. A random field $\left(X_{k}\right)_{k \in \mathbb{Z}^{d}}$ is an orthomartingale-difference (OMD) random field if there exists a commuting filtration $\left(\mathcal{G}_{i}\right)_{i \in \mathbb{Z}^{d}}$ such that X_{k} belongs to $\mathbb{L}^{1}\left(\Omega, \mathcal{G}_{k}, \mu\right) \ominus \mathbb{L}^{1}\left(\Omega, \mathcal{G}_{l}, \mu\right)$ a.s. for any $I \nsucceq k$ and k in \mathbb{Z}^{d}.

- For any k in $\mathbb{Z}^{d}, T^{k}: \Omega \rightarrow \Omega$ is a measure-preserving operator satisfying $T^{i} \circ T^{j}=T^{i+j}$ for any i and j in \mathbb{Z}^{d};

Orthomartingale-difference random fields

Definition (Cairoli (1969))

Let $(\Omega, \mathcal{F}, \mu)$ be a probability space. A random field $\left(X_{k}\right)_{k \in \mathbb{Z}^{d}}$ is an orthomartingale-difference (OMD) random field if there exists a commuting filtration $\left(\mathcal{G}_{i}\right)_{i \in \mathbb{Z}^{d}}$ such that X_{k} belongs to $\mathbb{L}^{1}\left(\Omega, \mathcal{G}_{k}, \mu\right) \ominus \mathbb{L}^{1}\left(\Omega, \mathcal{G}_{l}, \mu\right)$ a.s. for any $I \nsucceq k$ and k in \mathbb{Z}^{d}.

■ For any k in $\mathbb{Z}^{d}, T^{k}: \Omega \rightarrow \Omega$ is a measure-preserving operator satisfying $T^{i} \circ T^{j}=T^{i+j}$ for any i and j in \mathbb{Z}^{d};
■ for any s in $\langle d\rangle$, we denote $T_{s}=T^{e_{s}}$ where $e_{s}=\left(e_{s}^{(1)}, \ldots, e_{s}^{(d)}\right)$ is the unique element of \mathbb{Z}^{d} such that $e_{s}^{(s)}=1$ and $e_{s}^{(i)}=0$ for any i in $\langle d\rangle \backslash\{s\}$;

Orthomartingale-difference random fields

Definition (Cairoli (1969))

Let $(\Omega, \mathcal{F}, \mu)$ be a probability space. A random field $\left(X_{k}\right)_{k \in \mathbb{Z}^{d}}$ is an orthomartingale-difference (OMD) random field if there exists a commuting filtration $\left(\mathcal{G}_{i}\right)_{i \in \mathbb{Z}^{d}}$ such that X_{k} belongs to $\mathbb{L}^{1}\left(\Omega, \mathcal{G}_{k}, \mu\right) \ominus \mathbb{L}^{1}\left(\Omega, \mathcal{G}_{l}, \mu\right)$ a.s. for any $I \nsucceq k$ and k in \mathbb{Z}^{d}.

■ For any k in $\mathbb{Z}^{d}, T^{k}: \Omega \rightarrow \Omega$ is a measure-preserving operator satisfying $T^{i} \circ T^{j}=T^{i+j}$ for any i and j in \mathbb{Z}^{d};
■ for any s in $\langle d\rangle$, we denote $T_{s}=T^{e_{s}}$ where $e_{s}=\left(e_{s}^{(1)}, \ldots, e_{s}^{(d)}\right)$ is the unique element of \mathbb{Z}^{d} such that $e_{s}^{(s)}=1$ and $e_{s}^{(i)}=0$ for any i in $\langle d\rangle \backslash\{s\}$;

■ U_{s} is the operator defined by $U_{s} h=h \circ T_{s}$ for any function $h: \Omega \rightarrow \mathbb{R}$;

Orthomartingale-difference random fields

Definition (Cairoli (1969))

Let $(\Omega, \mathcal{F}, \mu)$ be a probability space. A random field $\left(X_{k}\right)_{k \in \mathbb{Z}^{d}}$ is an orthomartingale-difference (OMD) random field if there exists a commuting filtration $\left(\mathcal{G}_{i}\right)_{i \in \mathbb{Z}^{d}}$ such that X_{k} belongs to $\mathbb{L}^{1}\left(\Omega, \mathcal{G}_{k}, \mu\right) \ominus \mathbb{L}^{1}\left(\Omega, \mathcal{G}_{l}, \mu\right)$ a.s. for any $I \nsucceq k$ and k in \mathbb{Z}^{d}.

■ For any k in $\mathbb{Z}^{d}, T^{k}: \Omega \rightarrow \Omega$ is a measure-preserving operator satisfying $T^{i} \circ T^{j}=T^{i+j}$ for any i and j in \mathbb{Z}^{d};
■ for any s in $\langle d\rangle$, we denote $T_{s}=T^{e_{s}}$ where $e_{s}=\left(e_{s}^{(1)}, \ldots, e_{s}^{(d)}\right)$ is the unique element of \mathbb{Z}^{d} such that $e_{s}^{(s)}=1$ and $e_{s}^{(i)}=0$ for any i in $\langle d\rangle \backslash\{s\}$;

- U_{s} is the operator defined by $U_{s} h=h \circ T_{s}$ for any function $h: \Omega \rightarrow \mathbb{R}$;

■ U_{J} is the product operator $\Pi_{s \in J} U_{s}$ for any $\emptyset \subsetneq J \subset\langle d\rangle$.

Main result

Theorem (EM, Giraudo (2015))
Let $p \geqslant 1$ and let $\mathcal{M} \subset \mathcal{F}$ be a σ-algebra such that $\left(T^{-i} \mathcal{M}\right)_{i \in \mathbb{Z}^{d}}$ is a commuting filtration. If f belongs to $\mathbb{L}^{p}(\Omega, \mathcal{M}, \mu) \ominus \mathbb{L}^{p}\left(\Omega, \cap_{k \in \mathbb{N}^{d}} T^{k} \mathcal{M}, \mu\right)$ and

Main result

Theorem (EM, Giraudo (2015))
Let $p \geqslant 1$ and let $\mathcal{M} \subset \mathcal{F}$ be a σ-algebra such that $\left(T^{-i} \mathcal{M}\right)_{i \in \mathbb{Z}^{d}}$ is a commuting filtration. If f belongs to $\mathbb{L}^{p}(\Omega, \mathcal{M}, \mu) \ominus \mathbb{L}^{p}\left(\Omega, \cap_{k \in \mathbb{N}^{d}} T^{k} \mathcal{M}, \mu\right)$ and
(OMPC)

$$
\sum_{k \in \mathbb{N}^{d}}\left\|\mathbb{E}\left(f \mid T^{k} \mathcal{M}\right)\right\|_{p}<\infty
$$

then f admits the decomposition

Main result

Theorem (EM, Giraudo (2015))
Let $p \geqslant 1$ and let $\mathcal{M} \subset \mathcal{F}$ be a σ-algebra such that $\left(T^{-i} \mathcal{M}\right)_{i \in \mathbb{Z}^{d}}$ is a commuting filtration. If f belongs to $\mathbb{L}^{p}(\Omega, \mathcal{M}, \mu) \ominus \mathbb{L}^{p}\left(\Omega, \cap_{k \in \mathbb{N}^{d}} T^{k} \mathcal{M}, \mu\right)$ and
(OMPC)

$$
\sum_{k \in \mathbb{N}^{d}}\left\|\mathbb{E}\left(f \mid T^{k} \mathcal{M}\right)\right\|_{p}<\infty
$$

then f admits the decomposition
(OMCD)

$$
f=m+\sum_{\emptyset \subseteq J \subseteq\{d\rangle} \prod_{s \in J}\left(I-U_{s}\right) m_{J}+\prod_{s=1}^{d}\left(I-U_{s}\right) g \text {, }
$$

where

Main result

Theorem (EM, Giraudo (2015))
Let $p \geqslant 1$ and let $\mathcal{M} \subset \mathcal{F}$ be a σ-algebra such that $\left(T^{-i} \mathcal{M}\right)_{i \in \mathbb{Z}^{d}}$ is a commuting filtration. If f belongs to $\mathbb{L}^{p}(\Omega, \mathcal{M}, \mu) \ominus \mathbb{L}^{p}\left(\Omega, \cap_{k \in \mathbb{N}^{d}} T^{k} \mathcal{M}, \mu\right)$ and
(OMPC)

$$
\sum_{k \in \mathbb{N}^{d}}\left\|\mathbb{E}\left(f \mid T^{k} \mathcal{M}\right)\right\|_{p}<\infty
$$

then f admits the decomposition
(OMCD)

$$
f=m+\sum_{\text {Øऽ }} J_{\subseteq \subseteq}\{d\rangle \prod_{s \in J}\left(I-U_{s}\right) m_{J}+\prod_{s=1}^{d}\left(I-U_{s}\right) g,
$$

where
■ m belongs to $\mathbb{L}^{p}(\Omega, \mathcal{M}, \mu)$,

Main result

Theorem (EM, Giraudo (2015))
Let $p \geqslant 1$ and let $\mathcal{M} \subset \mathcal{F}$ be a σ-algebra such that $\left(T^{-i} \mathcal{M}\right)_{i \in \mathbb{Z}^{d}}$ is a commuting filtration. If f belongs to $\mathbb{L}^{p}(\Omega, \mathcal{M}, \mu) \ominus \mathbb{L}^{p}\left(\Omega, \cap_{k \in \mathbb{N}^{d}} T^{k} \mathcal{M}, \mu\right)$ and
(OMPC)

$$
\sum_{k \in \mathbb{N}^{d}}\left\|\mathbb{E}\left(f \mid T^{k} \mathcal{M}\right)\right\|_{p}<\infty
$$

then f admits the decomposition
(OMCD)

$$
f=m+\sum_{\text {冋¢J〕¢ }\langle d\rangle} \prod_{s \in J}\left(I-U_{s}\right) m_{J}+\prod_{s=1}^{d}\left(I-U_{s}\right) g,
$$

where

- m belongs to $\mathbb{L}^{p}(\Omega, \mathcal{M}, \mu)$,
- g belongs to $\mathbb{L}^{p}\left(\Omega, \prod_{s=1}^{d} T_{s} \mathcal{M}, \mu\right)$,

Main result

Theorem (EM, Giraudo (2015))
Let $p \geqslant 1$ and let $\mathcal{M} \subset \mathcal{F}$ be a σ-algebra such that $\left(T^{-i} \mathcal{M}\right)_{i \in \mathbb{Z}^{d}}$ is a commuting filtration. If f belongs to $\mathbb{L}^{p}(\Omega, \mathcal{M}, \mu) \ominus \mathbb{L}^{p}\left(\Omega, \cap_{k \in \mathbb{N}^{d}} T^{k} \mathcal{M}, \mu\right)$ and
(OMPC)

$$
\sum_{k \in \mathbb{N}^{d}}\left\|\mathbb{E}\left(f \mid T^{k} \mathcal{M}\right)\right\|_{p}<\infty
$$

then f admits the decomposition
(OMCD)

$$
f=m+\sum_{\text {Q¢ }} \int_{£ \subseteq}\{d\rangle \prod_{s \in J}\left(I-U_{s}\right) m_{J}+\prod_{s=1}^{d}\left(I-U_{s}\right) g,
$$

where

- m belongs to $\mathbb{L}^{p}(\Omega, \mathcal{M}, \mu)$,
- g belongs to $\mathbb{L}^{p}\left(\Omega, \prod_{s=1}^{d} T_{s} \mathcal{M}, \mu\right)$,
- m_{J} belongs to $\mathbb{L}^{p}\left(\Omega, \prod_{s \in J} T_{s} \mathcal{M}, \mu\right)$,

Main result

Theorem (EM, Giraudo (2015))
Let $p \geqslant 1$ and let $\mathcal{M} \subset \mathcal{F}$ be a σ-algebra such that $\left(T^{-i} \mathcal{M}\right)_{i \in \mathbb{Z}^{d}}$ is a commuting filtration. If f belongs to $\mathbb{L}^{p}(\Omega, \mathcal{M}, \mu) \ominus \mathbb{L}^{p}\left(\Omega, \cap_{k \in \mathbb{N}^{d}} T^{k} \mathcal{M}, \mu\right)$ and
(OMPC)

$$
\sum_{k \in \mathbb{N}^{d}}\left\|\mathbb{E}\left(f \mid T^{k} \mathcal{M}\right)\right\|_{p}<\infty
$$

then f admits the decomposition
(OMCD)

$$
f=m+\sum_{\text {Q¢ }} \int_{£ \subseteq}\{d\rangle \prod_{s \in J}\left(I-U_{s}\right) m_{J}+\prod_{s=1}^{d}\left(I-U_{s}\right) g,
$$

where

- m belongs to $\mathbb{L}^{p}(\Omega, \mathcal{M}, \mu)$,
- g belongs to $\mathbb{L}^{p}\left(\Omega, \prod_{s=1}^{d} T_{s} \mathcal{M}, \mu\right)$,
- m_{J} belongs to $\mathbb{L}^{p}\left(\Omega, \prod_{s \in J} T_{s} \mathcal{M}, \mu\right)$,

■ $\left(U^{i} m\right)_{i \in \mathbb{Z}^{d}}$ and $\left(U_{j c}^{i} m_{J}\right)_{i \in \mathbb{Z}^{d-|J|}}$ are $O M D$ random fields.

Main result

If $d=1$, our result reduces to Gordin's result.

Main result

If $d=1$, our result reduces to Gordin's result.

If $d=2$ then (OMCD) reduces to

$$
f=m+\left(I-U_{1}\right) m_{1}+\left(I-U_{2}\right) m_{2}+\left(I-U_{1}\right)\left(I-U_{2}\right) g,
$$

where $\left(U^{i} m\right)_{i \in \mathbb{Z}^{2}}$ is an OMD random field and $\left(U_{2}^{k} m_{1}\right)_{k \in \mathbb{Z}}$ and $\left(U_{1}^{k} m_{2}\right)_{k \in \mathbb{Z}}$ are MD sequences.

Main result

If $d=1$, our result reduces to Gordin's result.

If $d=2$ then (OMCD) reduces to

$$
f=m+\left(I-U_{1}\right) m_{1}+\left(I-U_{2}\right) m_{2}+\left(I-U_{1}\right)\left(I-U_{2}\right) g,
$$

where $\left(U^{i} m\right)_{i \in \mathbb{Z}^{2}}$ is an OMD random field and $\left(U_{2}^{k} m_{1}\right)_{k \in \mathbb{Z}}$ and $\left(U_{1}^{k} m_{2}\right)_{k \in \mathbb{Z}}$ are MD sequences.

If $d=3$ then (OMCD) becomes

$$
\begin{aligned}
f=m & +\left(I-U_{1}\right) m_{1}+\left(I-U_{2}\right) m_{2}+\left(I-U_{3}\right) m_{3} \\
& +\left(I-U_{1}\right)\left(I-U_{2}\right) m_{\{1,2\}}+\left(I-U_{1}\right)\left(I-U_{3}\right) m_{\{1,3\}}+\left(I-U_{2}\right)\left(I-U_{3}\right) m_{\{2,3\}} \\
& +\left(I-U_{1}\right)\left(I-U_{2}\right)\left(I-U_{3}\right) g
\end{aligned}
$$

where $\left(U^{i} m\right)_{i \in \mathbb{Z}^{3}},\left(U_{\{2,3\}}^{i} m_{1}\right)_{i \in \mathbb{Z}^{2}},\left(U_{\{1,3\}}^{i} m_{2}\right)_{i \in \mathbb{Z}^{2}}$ and $\left(U_{\{1,2\}}^{i} m_{3}\right)_{i \in \mathbb{Z}^{2}}$ are OMD random fields and $\left(U_{1}^{k} m_{\{2,3\}}\right)_{k \in \mathbb{Z}},\left(U_{2}^{k} m_{\{1,3\}}\right)_{k \in \mathbb{Z}}$ and $\left(U_{3}^{k} m_{\{1,2\}}\right)_{k \in \mathbb{Z}}$ are MD sequences.

Linear Random Fields

Proposition

Let $\left(\varepsilon_{i}\right)_{i \in \mathbb{Z}^{d}}$ be an iid real random field defined on $(\Omega, \mathcal{F}, \mu)$ such that ε_{0} has zero mean and belongs to $\mathbb{L}^{p}(\Omega, \mathcal{F}, \mu)$ for some $p \geqslant 2$. Consider the linear random field $\left(X_{k}\right)_{k \in \mathbb{Z}^{d}}$ defined for any k in \mathbb{Z}^{d} by $X_{k}=\sum_{j \in \mathbb{N}^{d}} a_{j} \varepsilon_{k-j}$ where $\left(a_{j}\right)_{j \in \mathbb{N}^{d}}$ is a family of real numbers satisfying $\sum_{j \in \mathbb{N}^{d}} a_{j}^{2}<\infty$. Then the condition (OMPC) holds if and only if

$$
\sum_{k \in \mathbb{N}^{d}} \sqrt{\sum_{j \succcurlyeq k} a_{j}^{2}}<\infty .
$$

Proof of the main result

The proof is done by induction on d.

Proof of the main result

The proof is done by induction on d.

Proposition

Let d be a positive integer. Let $p \geqslant 1$ and $\mathcal{M} \subset \mathcal{F}$ such that $\left(T^{-i} \mathcal{M}\right)_{i \in \mathbb{Z}^{d+1}}$ is a commuting filtration. Assume that f belongs to $\mathbb{L}^{p}(\Omega, \mathcal{M}, \mu) \ominus \mathbb{L}^{p}\left(\Omega, \cap_{k \in \mathbb{N}^{d+1}} T^{k} \mathcal{M}, \mu\right)$ and

$$
\sum_{k \in \mathbb{N}^{d+1}}\left\|\mathbb{E}\left(f \mid T^{k} \mathcal{M}\right)\right\|_{p}<\infty
$$

Then there exist $M \in \mathbb{L}^{p}(\Omega, \mathcal{M}, \mu) \ominus \mathbb{L}^{p}\left(\Omega, T_{d+1} \mathcal{M}, \mu\right)$ and $G \in \mathbb{L}^{p}\left(\Omega, T_{d+1} \mathcal{M}, \mu\right)$ such that

$$
f=M+G-G \circ T_{d+1}
$$

and

$$
\sum_{k \in \mathbb{N}^{d}}\left\|\mathbb{E}\left(M \mid T^{(k, 0)} \mathcal{M}\right)\right\|_{p}+\left\|\mathbb{E}\left(G \mid T^{(k, 0)} \mathcal{M}\right)\right\|_{p}<\infty
$$

Proof of the proposition. From Gordin's result, we know that $f=M+\left(I-U_{d+1}\right) G$ with

Proof of the proposition. From Gordin's result, we know that $f=M+\left(I-U_{d+1}\right) G$ with

$$
M=\sum_{j \geqslant 0} \mathbb{E}\left(U_{d+1}^{j} f \mid \mathcal{M}\right)-\mathbb{E}\left(U_{d+1}^{j} f \mid T_{d+1} \mathcal{M}\right) \quad \text { and } \quad G=\sum_{j \geqslant 0} \mathbb{E}\left(U_{d+1}^{j} f \mid T_{d+1} \mathcal{M}\right)
$$

Proof of the proposition. From Gordin's result, we know that $f=M+\left(I-U_{d+1}\right) G$ with

$$
M=\sum_{j \geqslant 0} \mathbb{E}\left(U_{d+1}^{j} f \mid \mathcal{M}\right)-\mathbb{E}\left(U_{d+1}^{j} f \mid T_{d+1} \mathcal{M}\right) \quad \text { and } \quad G=\sum_{j \geqslant 0} \mathbb{E}\left(U_{d+1}^{j} f \mid T_{d+1} \mathcal{M}\right)
$$

Let $k=\left(k_{1}, \ldots, k_{d}\right)$ be fixed in \mathbb{N}^{d}. Since $\left(T^{-i} \mathcal{M}\right)_{i \in \mathbb{Z}^{d+1}}$ is a commuting filtration

Proof of the proposition. From Gordin's result, we know that $f=M+\left(I-U_{d+1}\right) G$ with

$$
M=\sum_{j \geqslant 0} \mathbb{E}\left(U_{d+1}^{j} f \mid \mathcal{M}\right)-\mathbb{E}\left(U_{d+1}^{j} f \mid T_{d+1} \mathcal{M}\right) \quad \text { and } \quad G=\sum_{j \geqslant 0} \mathbb{E}\left(U_{d+1}^{j} f \mid T_{d+1} \mathcal{M}\right) .
$$

Let $k=\left(k_{1}, \ldots, k_{d}\right)$ be fixed in \mathbb{N}^{d}. Since $\left(T^{-i} \mathcal{M}\right)_{i \in \mathbb{Z}^{d+1}}$ is a commuting filtration

$$
\mathbb{E}\left(M \mid T^{(k, 0)} \mathcal{M}\right)=\sum_{j \geqslant 0} \mathbb{E}\left[U_{d+1}^{j} f \mid T^{(k, 0)} \mathcal{M}\right]-\sum_{j \geqslant 0} \mathbb{E}\left[U_{d+1}^{j} f \mid T^{(k, 1)} \mathcal{M}\right]
$$

Proof of the proposition. From Gordin's result, we know that $f=M+\left(I-U_{d+1}\right) G$ with

$$
M=\sum_{j \geqslant 0} \mathbb{E}\left(U_{d+1}^{j} f \mid \mathcal{M}\right)-\mathbb{E}\left(U_{d+1}^{j} f \mid T_{d+1} \mathcal{M}\right) \quad \text { and } \quad G=\sum_{j \geqslant 0} \mathbb{E}\left(U_{d+1}^{j} f \mid T_{d+1} \mathcal{M}\right)
$$

Let $k=\left(k_{1}, \ldots, k_{d}\right)$ be fixed in \mathbb{N}^{d}. Since $\left(T^{-i} \mathcal{M}\right)_{i \in \mathbb{Z}^{d+1}}$ is a commuting filtration

$$
\mathbb{E}\left(M \mid T^{(k, 0)} \mathcal{M}\right)=\sum_{j \geqslant 0} \mathbb{E}\left[U_{d+1}^{j} f \mid T^{(k, 0)} \mathcal{M}\right]-\sum_{j \geqslant 0} \mathbb{E}\left[U_{d+1}^{j} f \mid T^{(k, 1)} \mathcal{M}\right]
$$

we derive

Proof of the proposition. From Gordin's result, we know that $f=M+\left(I-U_{d+1}\right) G$ with

$$
M=\sum_{j \geqslant 0} \mathbb{E}\left(U_{d+1}^{j} f \mid \mathcal{M}\right)-\mathbb{E}\left(U_{d+1}^{j} f \mid T_{d+1} \mathcal{M}\right) \quad \text { and } \quad G=\sum_{j \geqslant 0} \mathbb{E}\left(U_{d+1}^{j} f \mid T_{d+1} \mathcal{M}\right)
$$

Let $k=\left(k_{1}, \ldots, k_{d}\right)$ be fixed in \mathbb{N}^{d}. Since $\left(T^{-i} \mathcal{M}\right)_{i \in \mathbb{Z}^{d+1}}$ is a commuting filtration

$$
\mathbb{E}\left(M \mid T^{(k, 0)} \mathcal{M}\right)=\sum_{j \geqslant 0} \mathbb{E}\left[U_{d+1}^{j} f \mid T^{(k, 0)} \mathcal{M}\right]-\sum_{j \geqslant 0} \mathbb{E}\left[U_{d+1}^{j} f \mid T^{(k, 1)} \mathcal{M}\right]
$$

we derive

$$
\left\|\mathbb{E}\left(M \mid T^{(k, 0)} \mathcal{M}\right)\right\|_{p} \leqslant 2 \sum_{j \geqslant 0}\left\|\mathbb{E}\left[U_{d+1}^{j} f \mid T^{(k, 0)} \mathcal{M}\right]\right\|_{p}=2 \sum_{j \geqslant 0}\left\|\mathbb{E}\left[f \mid T^{(k, j)} \mathcal{M}\right]\right\|_{p}
$$

Proof of the proposition. From Gordin's result, we know that $f=M+\left(I-U_{d+1}\right) G$ with

$$
M=\sum_{j \geqslant 0} \mathbb{E}\left(U_{d+1}^{j} f \mid \mathcal{M}\right)-\mathbb{E}\left(U_{d+1}^{j} f \mid T_{d+1} \mathcal{M}\right) \quad \text { and } \quad G=\sum_{j \geqslant 0} \mathbb{E}\left(U_{d+1}^{j} f \mid T_{d+1} \mathcal{M}\right)
$$

Let $k=\left(k_{1}, \ldots, k_{d}\right)$ be fixed in \mathbb{N}^{d}. Since $\left(T^{-i} \mathcal{M}\right)_{i \in \mathbb{Z}^{d+1}}$ is a commuting filtration

$$
\mathbb{E}\left(M \mid T^{(k, 0)} \mathcal{M}\right)=\sum_{j \geqslant 0} \mathbb{E}\left[U_{d+1}^{j} f \mid T^{(k, 0)} \mathcal{M}\right]-\sum_{j \geqslant 0} \mathbb{E}\left[U_{d+1}^{j} f \mid T^{(k, 1)} \mathcal{M}\right]
$$

we derive

$$
\left\|\mathbb{E}\left(M \mid T^{(k, 0)} \mathcal{M}\right)\right\|_{p} \leqslant 2 \sum_{j \geqslant 0}\left\|\mathbb{E}\left[U_{d+1}^{j} f \mid T^{(k, 0)} \mathcal{M}\right]\right\|_{p}=2 \sum_{j \geqslant 0}\left\|\mathbb{E}\left[f \mid T^{(k, j)} \mathcal{M}\right]\right\|_{p} .
$$

Finally,

Proof of the proposition. From Gordin's result, we know that $f=M+\left(I-U_{d+1}\right) G$ with

$$
M=\sum_{j \geqslant 0} \mathbb{E}\left(U_{d+1}^{j} f \mid \mathcal{M}\right)-\mathbb{E}\left(U_{d+1}^{j} f \mid T_{d+1} \mathcal{M}\right) \quad \text { and } \quad G=\sum_{j \geqslant 0} \mathbb{E}\left(U_{d+1}^{j} f \mid T_{d+1} \mathcal{M}\right)
$$

Let $k=\left(k_{1}, \ldots, k_{d}\right)$ be fixed in \mathbb{N}^{d}. Since $\left(T^{-i} \mathcal{M}\right)_{i \in \mathbb{Z}^{d+1}}$ is a commuting filtration

$$
\mathbb{E}\left(M \mid T^{(k, 0)} \mathcal{M}\right)=\sum_{j \geqslant 0} \mathbb{E}\left[U_{d+1}^{j} f \mid T^{(k, 0)} \mathcal{M}\right]-\sum_{j \geqslant 0} \mathbb{E}\left[U_{d+1}^{j} f \mid T^{(k, 1)} \mathcal{M}\right]
$$

we derive

$$
\left\|\mathbb{E}\left(M \mid T^{(k, 0)} \mathcal{M}\right)\right\|_{p} \leqslant 2 \sum_{j \geqslant 0}\left\|\mathbb{E}\left[U_{d+1}^{j} f \mid T^{(k, 0)} \mathcal{M}\right]\right\|_{p}=2 \sum_{j \geqslant 0}\left\|\mathbb{E}\left[f \mid T^{(k, j)} \mathcal{M}\right]\right\|_{p} .
$$

Finally,

$$
\sum_{k \in \mathbb{N}^{d}}\left\|\mathbb{E}\left(M \mid T^{(k, 0)} \mathcal{M}\right)\right\|_{p} \leqslant 2 \sum_{k \in \mathbb{N}^{d}} \sum_{j \geqslant 0}\left\|\mathbb{E}\left[f \mid T^{(k, j)} \mathcal{M}\right]\right\|_{p}<\infty
$$

Proof of the proposition. From Gordin's result, we know that $f=M+\left(I-U_{d+1}\right) G$ with

$$
M=\sum_{j \geqslant 0} \mathbb{E}\left(U_{d+1}^{j} f \mid \mathcal{M}\right)-\mathbb{E}\left(U_{d+1}^{j} f \mid T_{d+1} \mathcal{M}\right) \quad \text { and } \quad G=\sum_{j \geqslant 0} \mathbb{E}\left(U_{d+1}^{j} f \mid T_{d+1} \mathcal{M}\right)
$$

Let $k=\left(k_{1}, \ldots, k_{d}\right)$ be fixed in \mathbb{N}^{d}. Since $\left(T^{-i} \mathcal{M}\right)_{i \in \mathbb{Z}^{d+1}}$ is a commuting filtration

$$
\mathbb{E}\left(M \mid T^{(k, 0)} \mathcal{M}\right)=\sum_{j \geqslant 0} \mathbb{E}\left[U_{d+1}^{j} f \mid T^{(k, 0)} \mathcal{M}\right]-\sum_{j \geqslant 0} \mathbb{E}\left[U_{d+1}^{j} f \mid T^{(k, 1)} \mathcal{M}\right]
$$

we derive

$$
\left\|\mathbb{E}\left(M \mid T^{(k, 0)} \mathcal{M}\right)\right\|_{p} \leqslant 2 \sum_{j \geqslant 0}\left\|\mathbb{E}\left[U_{d+1}^{j} f \mid T^{(k, 0)} \mathcal{M}\right]\right\|_{p}=2 \sum_{j \geqslant 0}\left\|\mathbb{E}\left[f \mid T^{(k, j)} \mathcal{M}\right]\right\|_{p} .
$$

Finally,

$$
\sum_{k \in \mathbb{N}^{d}}\left\|\mathbb{E}\left(M \mid T^{(k, 0)} \mathcal{M}\right)\right\|_{p} \leqslant 2 \sum_{k \in \mathbb{N}^{d}} \sum_{j \geqslant 0}\left\|\mathbb{E}\left[f \mid T^{(k, j)} \mathcal{M}\right]\right\|_{p}<\infty
$$

Similarly, we have also $\sum_{k \in \mathbb{N}^{d}}\left\|\mathbb{E}\left(G \mid T^{(k, 0)} \mathcal{M}\right)\right\|_{p}<\infty$.

Proof of the main result. For $d=1$, the result reduces to Gordin's theorem.

Proof of the main result. For $d=1$, the result reduces to Gordin's theorem.
Let d be a positive integer and assume the result is true for d.

Proof of the main result. For $d=1$, the result reduces to Gordin's theorem.
Let d be a positive integer and assume the result is true for d.
Let $p \geqslant 1$ and let $\mathcal{M} \subset \mathcal{F}$ such that $\left(T^{-i} \mathcal{M}\right)_{i \in \mathbb{Z}^{d+1}}$ is a commuting filtration.

Proof of the main result. For $d=1$, the result reduces to Gordin's theorem.
Let d be a positive integer and assume the result is true for d.
Let $p \geqslant 1$ and let $\mathcal{M} \subset \mathcal{F}$ such that $\left(T^{-i} \mathcal{M}\right)_{i \in \mathbb{Z}^{d+1}}$ is a commuting filtration.
Let f in $\mathbb{L}^{p}(\Omega, \mathcal{M}, \mu)$ such that

$$
\sum_{k \in \mathbb{N}^{d+1}}\left\|\mathbb{E}\left(f \mid T^{k} \mathcal{M}\right)\right\|_{p}<\infty
$$

Proof of the main result. For $d=1$, the result reduces to Gordin's theorem.
Let d be a positive integer and assume the result is true for d.
Let $p \geqslant 1$ and let $\mathcal{M} \subset \mathcal{F}$ such that $\left(T^{-i} \mathcal{M}\right)_{i \in \mathbb{Z}^{d+1}}$ is a commuting filtration.
Let f in $\mathbb{L}^{p}(\Omega, \mathcal{M}, \mu)$ such that

$$
\sum_{k \in \mathbb{N}^{d+1}}\left\|\mathbb{E}\left(f \mid T^{k} \mathcal{M}\right)\right\|_{p}<\infty
$$

By the previous proposition, there exist $M \in \mathbb{L}^{p}(\Omega, \mathcal{M}, \mu) \ominus \mathbb{L}^{p}\left(\Omega, T_{d+1} \mathcal{M}, \mu\right)$ and $G \in \mathbb{L}^{p}\left(\Omega, T_{d+1} \mathcal{M}, \mu\right)$ such that

Proof of the main result. For $d=1$, the result reduces to Gordin's theorem.
Let d be a positive integer and assume the result is true for d.
Let $p \geqslant 1$ and let $\mathcal{M} \subset \mathcal{F}$ such that $\left(T^{-i} \mathcal{M}\right)_{i \in \mathbb{Z}^{d+1}}$ is a commuting filtration.
Let f in $\mathbb{L}^{p}(\Omega, \mathcal{M}, \mu)$ such that

$$
\sum_{k \in \mathbb{N}^{d+1}}\left\|\mathbb{E}\left(f \mid T^{k} \mathcal{M}\right)\right\|_{p}<\infty
$$

By the previous proposition, there exist $M \in \mathbb{L}^{p}(\Omega, \mathcal{M}, \mu) \ominus \mathbb{L}^{p}\left(\Omega, T_{d+1} \mathcal{M}, \mu\right)$ and $G \in \mathbb{L}^{p}\left(\Omega, T_{d+1} \mathcal{M}, \mu\right)$ such that

$$
f=M+G-G \circ T_{d+1}
$$

and

Proof of the main result. For $d=1$, the result reduces to Gordin's theorem.
Let d be a positive integer and assume the result is true for d.
Let $p \geqslant 1$ and let $\mathcal{M} \subset \mathcal{F}$ such that $\left(T^{-i} \mathcal{M}\right)_{i \in \mathbb{Z}^{d+1}}$ is a commuting filtration.
Let f in $\mathbb{L}^{p}(\Omega, \mathcal{M}, \mu)$ such that

$$
\sum_{k \in \mathbb{N}^{d+1}}\left\|\mathbb{E}\left(f \mid T^{k} \mathcal{M}\right)\right\|_{p}<\infty
$$

By the previous proposition, there exist $M \in \mathbb{L}^{p}(\Omega, \mathcal{M}, \mu) \ominus \mathbb{L}^{p}\left(\Omega, T_{d+1} \mathcal{M}, \mu\right)$ and $G \in \mathbb{L}^{p}\left(\Omega, T_{d+1} \mathcal{M}, \mu\right)$ such that

$$
f=M+G-G \circ T_{d+1}
$$

and

$$
\sum_{k \in \mathbb{N}^{d}}\left\|\mathbb{E}\left(M \mid T^{(k, 0)} \mathcal{M}\right)\right\|_{p}+\left\|\mathbb{E}\left(G \mid T^{(k, 0)} \mathcal{M}\right)\right\|_{p}<\infty
$$

So, by the induction hypothesis, we have

So, by the induction hypothesis, we have

$$
M=m^{\prime}+\sum_{\emptyset \subsetneq 工 \subsetneq \subset\langle \rangle\rangle} \prod_{s \in J}\left(I-U_{s}\right) m_{J}^{\prime}+\prod_{s=1}^{d}\left(I-U_{s}\right) g^{\prime}
$$

So, by the induction hypothesis, we have

$$
\begin{aligned}
& M=m^{\prime}+\sum_{\emptyset \subsetneq J \subsetneq \subset\langle d\rangle} \prod_{s \in J}\left(I-U_{s}\right) m_{J}^{\prime}+\prod_{s=1}^{d}\left(I-U_{s}\right) g^{\prime}, \\
& G=m^{\prime \prime}+\sum_{\emptyset \subsetneq J \subsetneq \subset\langle d\rangle} \prod_{s \in J}\left(I-U_{s}\right) m_{J}^{\prime \prime}+\prod_{s=1}^{d}\left(I-U_{s}\right) g^{\prime \prime}
\end{aligned}
$$

with

- m^{\prime} and $m^{\prime \prime}$ in $\mathbb{L}^{p}(\Omega, \mathcal{M}, \mu) \ominus \mathbb{L}^{p}\left(\Omega, T_{i} \mathcal{M}, \mu\right)$ for each i in $\langle d\rangle$.

■ m_{J}^{\prime} and $m_{J}^{\prime \prime}$ in $\mathbb{L}^{p}\left(\Omega, \prod_{s \in J} T_{s} \mathcal{M}, \mu\right) \ominus \mathbb{L}^{p}\left(\Omega, T_{i} \prod_{s \in J} T_{s} \mathcal{M}, \mu\right)$ for each i in $\langle d\rangle \backslash J$.

- g^{\prime} and $g^{\prime \prime}$ belong to $\mathbb{L}^{p}\left(\Omega, \prod_{s=1}^{d} T_{s} \mathcal{M}, \mu\right)$;

Since $\mathbb{E}\left[M \mid T_{d+1} \mathcal{M}\right]=0$ and

$$
M=m^{\prime}+\sum_{\emptyset \subsetneq J \subsetneq \subset\langle d\rangle} \prod_{s \in J}\left(I-U_{s}\right) m_{J}^{\prime}+\prod_{s=1}^{d}\left(I-U_{s}\right) g^{\prime}
$$

Since $\mathbb{E}\left[M \mid T_{d+1} \mathcal{M}\right]=0$ and

$$
M=m^{\prime}+\sum_{\emptyset \subsetneq J \subsetneq\langle d\rangle} \prod_{s \in J}\left(I-U_{s}\right) m_{J}^{\prime}+\prod_{s=1}^{d}\left(I-U_{s}\right) g^{\prime}
$$

we derive
$\mathbb{E}\left[m^{\prime} \mid T_{d+1} \mathcal{M}\right]=-\sum_{\emptyset \subsetneq J \subsetneq \subset\langle d\rangle} \mathbb{E}\left[\prod_{s \in J}\left(I-U_{s}\right) m_{J}^{\prime} \mid T_{d+1} \mathcal{M}\right]-\mathbb{E}\left[\prod_{s=1}^{d}\left(I-U_{s}\right) g^{\prime} \mid T_{d+1} \mathcal{M}\right]$.

Since $\mathbb{E}\left[M \mid T_{d+1} \mathcal{M}\right]=0$ and

$$
M=m^{\prime}+\sum_{\emptyset \subsetneq J \subsetneq\langle d\rangle} \prod_{s \in J}\left(I-U_{s}\right) m_{J}^{\prime}+\prod_{s=1}^{d}\left(I-U_{s}\right) g^{\prime}
$$

we derive

$$
\mathbb{E}\left[m^{\prime} \mid T_{d+1} \mathcal{M}\right]=-\sum_{\emptyset \subsetneq J \subsetneq\langle d\rangle} \mathbb{E}\left[\prod_{s \in J}\left(I-U_{s}\right) m_{J}^{\prime} \mid T_{d+1} \mathcal{M}\right]-\mathbb{E}\left[\prod_{s=1}^{d}\left(I-U_{s}\right) g^{\prime} \mid T_{d+1} \mathcal{M}\right]
$$

Moreover,

$$
\begin{aligned}
\mathbb{E}\left[\prod_{s \in J}\left(I-U_{s}\right) m_{J}^{\prime} \mid T_{d+1} \mathcal{M}\right] & =\mathbb{E}\left[\sum_{A \subset J}(-1)^{|A|} \prod_{s \in A} U_{s} m_{J}^{\prime} \mid T_{d+1} \mathcal{M}\right] \\
& =\sum_{A \subset J}(-1)^{|A|} \mathbb{E}\left[\prod_{s \in A} U_{s} m_{J}^{\prime} \mid T_{d+1} \mathcal{M}\right] \\
& =\sum_{A \subset J}(-1)^{|A|} \prod_{s \in A} U_{s} \mathbb{E}\left[m_{J}^{\prime} \mid \prod_{s \in A} T_{s} T_{d+1} \mathcal{M}\right]
\end{aligned}
$$

So, we have

$$
\mathbb{E}\left[\prod_{s \in J}\left(I-U_{s}\right) m_{J}^{\prime} \mid T_{d+1} \mathcal{M}\right]=\sum_{A \subset J}(-1)^{|A|} \prod_{s \in A} U_{s} \mathbb{E}\left[m_{J}^{\prime} \mid \prod_{s \in A} T_{s} T_{d+1} \mathcal{M}\right]
$$

So, we have

$$
\mathbb{E}\left[\prod_{s \in J}\left(I-U_{s}\right) m_{J}^{\prime} \mid T_{d+1} \mathcal{M}\right]=\sum_{A \subset J}(-1)^{|A|} \prod_{s \in A} U_{s} \mathbb{E}\left[m_{J}^{\prime} \mid \prod_{s \in A} T_{s} T_{d+1} \mathcal{M}\right]
$$

Let $A \subset J$ be fixed. Since $\left(T^{-k} \mathcal{M}\right)_{k \in \mathbb{Z}^{d+1}}$ is a commuting filtration, we have

So, we have

$$
\mathbb{E}\left[\prod_{s \in J}\left(I-U_{s}\right) m_{J}^{\prime} \mid T_{d+1} \mathcal{M}\right]=\sum_{A \subset J}(-1)^{|A|} \prod_{s \in A} U_{s} \mathbb{E}\left[m_{J}^{\prime} \mid \prod_{s \in A} T_{s} T_{d+1} \mathcal{M}\right]
$$

Let $A \subset J$ be fixed. Since $\left(T^{-k} \mathcal{M}\right)_{k \in \mathbb{Z}^{d+1}}$ is a commuting filtration, we have

$$
\mathbb{E}\left[m_{J}^{\prime} \mid \prod_{s \in A} T_{s} T_{d+1} \mathcal{M}\right]=\mathbb{E}\left[\mathbb{E}\left[m_{J}^{\prime} \mid \prod_{s \in A} T_{s} \mathcal{M}\right] \mid T_{d+1} \mathcal{M}\right]
$$

So, we have

$$
\mathbb{E}\left[\prod_{s \in J}\left(I-U_{s}\right) m_{J}^{\prime} \mid T_{d+1} \mathcal{M}\right]=\sum_{A \subset J}(-1)^{|A|} \prod_{s \in A} U_{s} \mathbb{E}\left[m_{J}^{\prime} \mid \prod_{s \in A} T_{s} T_{d+1} \mathcal{M}\right]
$$

Let $A \subset J$ be fixed. Since $\left(T^{-k} \mathcal{M}\right)_{k \in \mathbb{Z}^{d+1}}$ is a commuting filtration, we have

$$
\mathbb{E}\left[m_{J}^{\prime} \mid \prod_{s \in A} T_{s} T_{d+1} \mathcal{M}\right]=\mathbb{E}\left[\mathbb{E}\left[m_{J}^{\prime} \mid \prod_{s \in A} T_{s} \mathcal{M}\right] \mid T_{d+1} \mathcal{M}\right]
$$

Using the measurability of m_{J}^{\prime} with respect to $\prod_{s \in A} T_{s} \mathcal{M}$, we obtain

$$
\mathbb{E}\left[m_{\jmath}^{\prime} \mid \prod_{s \in A} T_{s} T_{d+1} \mathcal{M}\right]=\mathbb{E}\left[m_{\jmath}^{\prime} \mid T_{d+1} \mathcal{M}\right]
$$

So, we have

$$
\mathbb{E}\left[\prod_{s \in J}\left(I-U_{s}\right) m_{J}^{\prime} \mid T_{d+1} \mathcal{M}\right]=\sum_{A \subset J}(-1)^{|A|} \prod_{s \in A} U_{s} \mathbb{E}\left[m_{J}^{\prime} \mid \prod_{s \in A} T_{s} T_{d+1} \mathcal{M}\right]
$$

Let $A \subset J$ be fixed. Since $\left(T^{-k} \mathcal{M}\right)_{k \in \mathbb{Z}^{d+1}}$ is a commuting filtration, we have

$$
\mathbb{E}\left[m_{J}^{\prime} \mid \prod_{s \in A} T_{s} T_{d+1} \mathcal{M}\right]=\mathbb{E}\left[\mathbb{E}\left[m_{J}^{\prime} \mid \prod_{s \in A} T_{s} \mathcal{M}\right] \mid T_{d+1} \mathcal{M}\right]
$$

Using the measurability of m_{J}^{\prime} with respect to $\prod_{s \in A} T_{s} \mathcal{M}$, we obtain

$$
\mathbb{E}\left[m_{\jmath}^{\prime} \mid \prod_{s \in A} T_{s} T_{d+1} \mathcal{M}\right]=\mathbb{E}\left[m_{\jmath}^{\prime} \mid T_{d+1} \mathcal{M}\right]
$$

Consequently,

So, we have

$$
\mathbb{E}\left[\prod_{s \in J}\left(I-U_{s}\right) m_{J}^{\prime} \mid T_{d+1} \mathcal{M}\right]=\sum_{A \subset J}(-1)^{|A|} \prod_{s \in A} U_{s} \mathbb{E}\left[m_{J}^{\prime} \mid \prod_{s \in A} T_{s} T_{d+1} \mathcal{M}\right]
$$

Let $A \subset J$ be fixed. Since $\left(T^{-k} \mathcal{M}\right)_{k \in \mathbb{Z}^{d+1}}$ is a commuting filtration, we have

$$
\mathbb{E}\left[m_{J}^{\prime} \mid \prod_{s \in A} T_{s} T_{d+1} \mathcal{M}\right]=\mathbb{E}\left[\mathbb{E}\left[m_{J}^{\prime} \mid \prod_{s \in A} T_{s} \mathcal{M}\right] \mid T_{d+1} \mathcal{M}\right]
$$

Using the measurability of m_{J}^{\prime} with respect to $\prod_{s \in A} T_{s} \mathcal{M}$, we obtain

$$
\mathbb{E}\left[m_{\jmath}^{\prime} \mid \prod_{s \in A} T_{s} T_{d+1} \mathcal{M}\right]=\mathbb{E}\left[m_{\jmath}^{\prime} \mid T_{d+1} \mathcal{M}\right]
$$

Consequently,

$$
\mathbb{E}\left[\prod_{s \in J}\left(I-U_{s}\right) m_{J}^{\prime} \mid T_{d+1} \mathcal{M}\right]=\prod_{s \in J}\left(I-U_{s}\right) \mathbb{E}\left[m_{J}^{\prime} \mid T_{d+1} \mathcal{M}\right]
$$

So, we have

$$
\mathbb{E}\left[\prod_{s \in J}\left(I-U_{s}\right) m_{J}^{\prime} \mid T_{d+1} \mathcal{M}\right]=\sum_{A \subset J}(-1)^{|A|} \prod_{s \in A} U_{s} \mathbb{E}\left[m_{J}^{\prime} \mid \prod_{s \in A} T_{s} T_{d+1} \mathcal{M}\right]
$$

Let $A \subset J$ be fixed. Since $\left(T^{-k} \mathcal{M}\right)_{k \in \mathbb{Z}^{d+1}}$ is a commuting filtration, we have

$$
\mathbb{E}\left[m_{J}^{\prime} \mid \prod_{s \in A} T_{s} T_{d+1} \mathcal{M}\right]=\mathbb{E}\left[\mathbb{E}\left[m_{J}^{\prime} \mid \prod_{s \in A} T_{s} \mathcal{M}\right] \mid T_{d+1} \mathcal{M}\right] .
$$

Using the measurability of m_{J}^{\prime} with respect to $\prod_{s \in A} T_{s} \mathcal{M}$, we obtain

$$
\mathbb{E}\left[m_{\jmath}^{\prime} \mid \prod_{s \in A} T_{s} T_{d+1} \mathcal{M}\right]=\mathbb{E}\left[m_{\jmath}^{\prime} \mid T_{d+1} \mathcal{M}\right]
$$

Consequently,

$$
\mathbb{E}\left[\prod_{s \in J}\left(I-U_{s}\right) m_{J}^{\prime} \mid T_{d+1} \mathcal{M}\right]=\prod_{s \in J}\left(I-U_{s}\right) \mathbb{E}\left[m_{J}^{\prime} \mid T_{d+1} \mathcal{M}\right]
$$

Similarly, since g^{\prime} is $\prod_{s=1}^{d} T_{s} \mathcal{M}$-measurable, we have also

$$
\mathbb{E}\left[\prod_{s=1}^{d}\left(I-U_{s}\right) g^{\prime} \mid T_{d+1} \mathcal{M}\right]=\prod_{s=1}^{d}\left(I-U_{s}\right) \mathbb{E}\left[g^{\prime} \mid T_{d+1} \mathcal{M}\right]
$$

Consequently,

Consequently,

$$
\mathbb{E}\left[m^{\prime} \mid T_{d+1} \mathcal{M}\right]=-\sum_{\emptyset \subsetneq J \subsetneq\langle d\rangle} \prod_{s \in J}\left(I-U_{s}\right) \mathbb{E}\left[m_{\jmath}^{\prime} \mid T_{d+1} \mathcal{M}\right]-\prod_{s=1}^{d}\left(I-U_{s}\right) \mathbb{E}\left[g^{\prime} \mid T_{d+1} \mathcal{M}\right]
$$

Consequently,

$$
\mathbb{E}\left[m^{\prime} \mid T_{d+1} \mathcal{M}\right]=-\sum_{\emptyset \subsetneq J \subsetneq\langle d\rangle} \prod_{s \in J}\left(I-U_{s}\right) \mathbb{E}\left[m_{J}^{\prime} \mid T_{d+1} \mathcal{M}\right]-\prod_{s=1}^{d}\left(I-U_{s}\right) \mathbb{E}\left[g^{\prime} \mid T_{d+1} \mathcal{M}\right]
$$

So, denoting $m:=m^{\prime}-\mathbb{E}\left[m^{\prime} \mid T_{d+1} \mathcal{M}\right]$ and keeping in mind that

$$
M=m^{\prime}+\sum_{\emptyset \subsetneq J \subsetneq\langle d\rangle} \prod_{s \in J}\left(I-U_{s}\right) m_{J}^{\prime}+\prod_{s=1}^{d}\left(I-U_{s}\right) g^{\prime}
$$

Consequently,

$$
\mathbb{E}\left[m^{\prime} \mid T_{d+1} \mathcal{M}\right]=-\sum_{\emptyset \subsetneq J \subsetneq\langle d\rangle} \prod_{s \in J}\left(I-U_{s}\right) \mathbb{E}\left[m_{J}^{\prime} \mid T_{d+1} \mathcal{M}\right]-\prod_{s=1}^{d}\left(I-U_{s}\right) \mathbb{E}\left[g^{\prime} \mid T_{d+1} \mathcal{M}\right]
$$

So, denoting $m:=m^{\prime}-\mathbb{E}\left[m^{\prime} \mid T_{d+1} \mathcal{M}\right]$ and keeping in mind that

$$
M=m^{\prime}+\sum_{\emptyset \subsetneq J \subsetneq\langle d\rangle} \prod_{s \in J}\left(I-U_{s}\right) m_{J}^{\prime}+\prod_{s=1}^{d}\left(I-U_{s}\right) g^{\prime}
$$

we obtain
$M=m+\sum_{\emptyset \subsetneq J \subsetneq\langle d\rangle} \prod_{s \in J}\left(I-U_{s}\right)\left(m_{J}^{\prime}-\mathbb{E}\left[m_{\jmath}^{\prime} \mid T_{d+1} \mathcal{M}\right]\right)+\prod_{s=1}^{d}\left(I-U_{s}\right)\left(g^{\prime}-\mathbb{E}\left[g^{\prime} \mid T_{d+1} \mathcal{M}\right]\right)$
where m is \mathcal{M}-measurable and $\mathbb{E}\left[m \mid T_{s} \mathcal{M}\right]=0$ for each s in $\langle d+1\rangle$.

So, we have $f=M+G-G \circ T_{d+1}$,

So, we have $f=M+G-G \circ T_{d+1}$,

$$
M=m+\sum_{\emptyset \subsetneq J \subsetneq\langle d\rangle} \prod_{s \in J}\left(I-U_{s}\right)\left(m_{J}^{\prime}-\mathbb{E}\left[m_{J}^{\prime} \mid T_{d+1} \mathcal{M}\right]\right)+\prod_{s=1}^{d}\left(I-U_{s}\right)\left(g^{\prime}-\mathbb{E}\left[g^{\prime} \mid T_{d+1} \mathcal{M}\right]\right)
$$

So, we have $f=M+G-G \circ T_{d+1}$,
$M=m+\sum_{\emptyset \subsetneq J \subsetneq\langle d\rangle} \prod_{s \in J}\left(I-U_{s}\right)\left(m_{\jmath}^{\prime}-\mathbb{E}\left[m_{\jmath}^{\prime} \mid T_{d+1} \mathcal{M}\right]\right)+\prod_{s=1}^{d}\left(I-U_{s}\right)\left(g^{\prime}-\mathbb{E}\left[g^{\prime} \mid T_{d+1} \mathcal{M}\right]\right)$
and

$$
G=m^{\prime \prime}+\sum_{\emptyset \subsetneq J \subsetneq\langle d\rangle} \prod_{s \in J}\left(I-U_{s}\right) m_{J}^{\prime \prime}+\prod_{s=1}^{d}\left(I-U_{s}\right) g^{\prime \prime}
$$

So, we have $f=M+G-G \circ T_{d+1}$,

$$
M=m+\sum_{\emptyset \subsetneq J \subsetneq\langle d\rangle} \prod_{s \in J}\left(I-U_{s}\right)\left(m_{J}^{\prime}-\mathbb{E}\left[m_{J}^{\prime} \mid T_{d+1} \mathcal{M}\right]\right)+\prod_{s=1}^{d}\left(I-U_{s}\right)\left(g^{\prime}-\mathbb{E}\left[g^{\prime} \mid T_{d+1} \mathcal{M}\right]\right)
$$

and

$$
G=m^{\prime \prime}+\sum_{\emptyset \subsetneq J \subsetneq\langle d\rangle} \prod_{s \in J}\left(I-U_{s}\right) m_{J}^{\prime \prime}+\prod_{s=1}^{d}\left(I-U_{s}\right) g^{\prime \prime}
$$

That is,

$$
\begin{aligned}
f=m & +\sum_{\emptyset \subsetneq J \subsetneq\langle d\rangle} \prod_{s \in J}\left(I-U_{s}\right)\left(m_{J}^{\prime}-\mathbb{E}\left[m_{J}^{\prime} \mid T_{d+1} \mathcal{M}\right]\right)+\prod_{s=1}^{d}\left(I-U_{s}\right)\left(g^{\prime}-\mathbb{E}\left[g^{\prime} \mid T_{d+1} \mathcal{M}\right]\right) \\
& +\left(I-U_{d+1}\right)\left(m^{\prime \prime}+\sum_{\emptyset \subsetneq J \subsetneq\langle d\rangle} \prod_{s \in J}\left(I-U_{s}\right) m_{J}^{\prime \prime}+\prod_{s=1}^{d}\left(I-U_{s}\right) g^{\prime \prime}\right)
\end{aligned}
$$

Indeed, let $\emptyset \subsetneq J \subsetneq\langle d+1\rangle$ be fixed.

Indeed, let $\emptyset \subsetneq J \subsetneq\langle d+1\rangle$ be fixed.If $d+1 \in J$, we denote

Indeed, let $\emptyset \subsetneq J \subsetneq\langle d+1\rangle$ be fixed.If $d+1 \in J$, we denote

$$
m_{J}= \begin{cases}m^{\prime \prime} & \text { if } J=\{d+1\} \\ m_{J \backslash\{d+1\}}^{\prime \prime} & \text { if } J \backslash\{d+1\} \neq \emptyset\end{cases}
$$

Indeed, let $\emptyset \subsetneq J \subsetneq\langle d+1\rangle$ be fixed.If $d+1 \in J$, we denote

$$
m_{J}= \begin{cases}m^{\prime \prime} & \text { if } J=\{d+1\} \\ m_{J \backslash\{d+1\}}^{\prime \prime} & \text { if } J \backslash\{d+1\} \neq \emptyset\end{cases}
$$

and if $d+1 \notin J$, we denote

$$
m_{J}= \begin{cases}m_{J}^{\prime}-\mathbb{E}\left[m_{J}^{\prime} \mid T_{d+1} \mathcal{M}\right] & \text { if } J \neq\langle d\rangle \\ g^{\prime}-\mathbb{E}\left[g^{\prime} \mid T_{d+1} \mathcal{M}\right] & \text { if } J=\langle d\rangle\end{cases}
$$

Indeed, let $\emptyset \subsetneq J \subsetneq\langle d+1\rangle$ be fixed.If $d+1 \in J$, we denote

$$
m_{J}= \begin{cases}m^{\prime \prime} & \text { if } J=\{d+1\} \\ m_{J \backslash\{d+1\}}^{\prime \prime} & \text { if } J \backslash\{d+1\} \neq \emptyset\end{cases}
$$

and if $d+1 \notin J$, we denote

$$
m_{J}= \begin{cases}m_{J}^{\prime}-\mathbb{E}\left[m_{J}^{\prime} \mid T_{d+1} \mathcal{M}\right] & \text { if } J \neq\langle d\rangle \\ g^{\prime}-\mathbb{E}\left[g^{\prime} \mid T_{d+1} \mathcal{M}\right] & \text { if } J=\langle d\rangle\end{cases}
$$

Finally, denoting $g=g^{\prime \prime}$, we obtain

$$
f=m+\sum_{\emptyset \subsetneq J \subsetneq\langle d+1\rangle} \prod_{s \in J}\left(I-U_{s}\right) m_{J}+\prod_{s=1}^{d+1}\left(I-U_{s}\right) g .
$$

Moment inequalities

Proposition

Let $\left(X_{i}\right)_{i \in \mathbb{Z}^{d}}$ be an OMD random field. There exists a positive constant κ such that for any $p \geqslant 2$ and any n in \mathbb{N}^{d},

Moment inequalities

Proposition

Let $\left(X_{i}\right)_{i \in \mathbb{Z}^{d}}$ be an OMD random field. There exists a positive constant κ such that for any $p \geqslant 2$ and any n in \mathbb{N}^{d},
(MI)

$$
\left\|\sum_{0 \preccurlyeq k \leqslant n} X_{k}\right\|_{p} \leqslant \kappa p^{d / 2}\left(\sum_{0 \preccurlyeq k \leqslant n}\left\|X_{k}\right\|_{p}^{2}\right)^{1 / 2}
$$

Moment inequalities

Proposition

Let $\left(X_{i}\right)_{i \in \mathbb{Z}^{d}}$ be an OMD random field. There exists a positive constant κ such that for any $p \geqslant 2$ and any n in \mathbb{N}^{d},
(MI)

$$
\left\|\sum_{0 \preccurlyeq k \leqslant n} X_{k}\right\|_{p} \leqslant \kappa p^{d / 2}\left(\sum_{0 \preccurlyeq k \leqslant n}\left\|X_{k}\right\|_{p}^{2}\right)^{1 / 2}
$$

and the constant $p^{d / 2}$ in (MI) is optimal in the following sense:

Moment inequalities

Proposition

Let $\left(X_{i}\right)_{i \in \mathbb{Z}^{d}}$ be an OMD random field. There exists a positive constant κ such that for any $p \geqslant 2$ and any n in \mathbb{N}^{d},

$$
\begin{equation*}
\left\|\sum_{0 \preccurlyeq k \preccurlyeq n} X_{k}\right\|_{p} \leqslant \kappa p^{d / 2}\left(\sum_{0 \preccurlyeq k \preccurlyeq n}\left\|X_{k}\right\|_{p}^{2}\right)^{1 / 2} \tag{MI}
\end{equation*}
$$

and the constant $p^{d / 2}$ in (MI) is optimal in the following sense: there exists a stationary OMD random field $\left(Z_{k}\right)_{k \in \mathbb{Z}^{d}}$ with $\left\|Z_{0}\right\|_{\infty}=1$ and a positive constant κ such that for any $p \geqslant 2$

Moment inequalities

Proposition

Let $\left(X_{i}\right)_{i \in \mathbb{Z}^{d}}$ be an OMD random field. There exists a positive constant κ such that for any $p \geqslant 2$ and any n in \mathbb{N}^{d},

$$
\begin{equation*}
\left\|\sum_{0 \preccurlyeq k \preccurlyeq n} X_{k}\right\|_{p} \leqslant \kappa p^{d / 2}\left(\sum_{0 \preccurlyeq k \preccurlyeq n}\left\|X_{k}\right\|_{p}^{2}\right)^{1 / 2} \tag{MI}
\end{equation*}
$$

and the constant $p^{d / 2}$ in (MI) is optimal in the following sense: there exists a stationary OMD random field $\left(Z_{k}\right)_{k \in \mathbb{Z}^{d}}$ with $\left\|Z_{0}\right\|_{\infty}=1$ and a positive constant κ such that for any $p \geqslant 2$

$$
\inf \left\{C>0 ;\left\|\sum_{0 \preccurlyeq k \preccurlyeq n} Z_{k}\right\|_{p} \leqslant C\left(\sum_{0 \preccurlyeq k \preccurlyeq n}\left\|Z_{k}\right\|_{p}^{2}\right)^{1 / 2} \forall n \in \mathbb{N}^{d}\right\} \geqslant \kappa p^{d / 2}
$$

Moment inequalities

Proposition

Let $\left(X_{i}\right)_{i \in \mathbb{Z}^{d}}$ be a stationary real random field defined on a probability space $(\Omega, \mathcal{F}, \mu)$ and $\left(\mathcal{F}_{i}\right)_{i \in \mathbb{Z}^{d}}$ be a commuting filtration such that X_{i} is \mathcal{F}_{i}-measurable for each i in \mathbb{Z}^{d}.

Moment inequalities

Proposition

Let $\left(X_{i}\right)_{i \in \mathbb{Z}^{d}}$ be a stationary real random field defined on a probability space $(\Omega, \mathcal{F}, \mu)$ and $\left(\mathcal{F}_{i}\right)_{i \in \mathbb{Z}^{d}}$ be a commuting filtration such that X_{i} is \mathcal{F}_{i}-measurable for each i in \mathbb{Z}^{d}. If there exists $p \geqslant 2$ such that X_{0} belongs to $\mathbb{L}^{p}\left(\Omega, \mathcal{F}_{0}, \mu\right) \ominus \mathbb{L}^{p}\left(\Omega, \cap_{k \in \mathbb{N}^{d}} \mathcal{F}_{-k}, \mu\right)$ and

$$
\sum_{k \in \mathbb{N}^{d}}\left\|\mathbb{E}\left(X_{0} \mid \mathcal{F}_{-k}\right)\right\|_{p}<\infty
$$

Moment inequalities

Proposition

Let $\left(X_{i}\right)_{i \in \mathbb{Z}^{d}}$ be a stationary real random field defined on a probability space $(\Omega, \mathcal{F}, \mu)$ and $\left(\mathcal{F}_{i}\right)_{i \in \mathbb{Z}^{d}}$ be a commuting filtration such that X_{i} is \mathcal{F}_{i}-measurable for each i in \mathbb{Z}^{d}. If there exists $p \geqslant 2$ such that X_{0} belongs to $\mathbb{L}^{p}\left(\Omega, \mathcal{F}_{0}, \mu\right) \ominus \mathbb{L}^{p}\left(\Omega, \cap_{k \in \mathbb{N}^{d}} \mathcal{F}_{-k}, \mu\right)$ and

$$
\sum_{k \in \mathbb{N}^{d}}\left\|\mathbb{E}\left(X_{0} \mid \mathcal{F}_{-k}\right)\right\|_{p}<\infty
$$

then for any $n=\left(n_{1}, \ldots, n_{d}\right)$ in \mathbb{N}^{d},

Moment inequalities

Proposition

Let $\left(X_{i}\right)_{i \in \mathbb{Z}^{d}}$ be a stationary real random field defined on a probability space $(\Omega, \mathcal{F}, \mu)$ and $\left(\mathcal{F}_{i}\right)_{i \in \mathbb{Z}^{d}}$ be a commuting filtration such that X_{i} is \mathcal{F}_{i}-measurable for each i in \mathbb{Z}^{d}. If there exists $p \geqslant 2$ such that X_{0} belongs to $\mathbb{L}^{p}\left(\Omega, \mathcal{F}_{0}, \mu\right) \ominus \mathbb{L}^{p}\left(\Omega, \cap_{k \in \mathbb{N}^{d}} \mathcal{F}_{-k}, \mu\right)$ and

$$
\sum_{k \in \mathbb{N}^{d}}\left\|\mathbb{E}\left(X_{0} \mid \mathcal{F}_{-k}\right)\right\|_{p}<\infty
$$

then for any $n=\left(n_{1}, \ldots, n_{d}\right)$ in \mathbb{N}^{d},

$$
\left\|\sum_{0 \preccurlyeq k \preccurlyeq n} X_{k}\right\|_{p} \leqslant C_{d} p^{d / 2}|n|^{d / 2} \sum_{k \in \mathbb{N}^{d}}\left\|\mathbb{E}\left(X_{0} \mid \mathcal{F}_{-k}\right)\right\|_{p}
$$

Moment inequalities

Proposition

Let $\left(X_{i}\right)_{i \in \mathbb{Z}^{d}}$ be a stationary real random field defined on a probability space $(\Omega, \mathcal{F}, \mu)$ and $\left(\mathcal{F}_{i}\right)_{i \in \mathbb{Z}^{d}}$ be a commuting filtration such that X_{i} is \mathcal{F}_{i}-measurable for each i in \mathbb{Z}^{d}. If there exists $p \geqslant 2$ such that X_{0} belongs to $\mathbb{L}^{p}\left(\Omega, \mathcal{F}_{0}, \mu\right) \ominus \mathbb{L}^{p}\left(\Omega, \cap_{k \in \mathbb{N}^{d}} \mathcal{F}_{-k}, \mu\right)$ and

$$
\sum_{k \in \mathbb{N}^{d}}\left\|\mathbb{E}\left(X_{0} \mid \mathcal{F}_{-k}\right)\right\|_{p}<\infty
$$

then for any $n=\left(n_{1}, \ldots, n_{d}\right)$ in \mathbb{N}^{d},

$$
\left\|\sum_{0 \preccurlyeq k \preccurlyeq n} X_{k}\right\|_{p} \leqslant C_{d} p^{d / 2}|n|^{d / 2} \sum_{k \in \mathbb{N}^{d}}\left\|\mathbb{E}\left(X_{0} \mid \mathcal{F}_{-k}\right)\right\|_{p}
$$

where $|n|=\prod_{i=1}^{d} n_{i}$ and C_{d} is a positive constant depending only on d.

Weak Invariance Principle

- For any positive integer n and any t in $[0,1]^{d}$, we denote

$$
S_{n}(t)=\sum_{i \in\langle n\rangle d} \lambda\left([0, n t] \cap R_{i}\right) X_{i}
$$

Weak Invariance Principle

- For any positive integer n and any t in $[0,1]^{d}$, we denote

$$
S_{n}(t)=\sum_{i \in\langle n\rangle^{d}} \lambda\left([0, n t] \cap R_{i}\right) X_{i}
$$

where λ is the Lebesgue measure on \mathbb{R}^{d} and $R_{i}=\left(i_{1}-1, i_{1}\right] \times \cdots \times\left(i_{d}-1, i_{d}\right]$.

Weak Invariance Principle

- For any positive integer n and any t in $[0,1]^{d}$, we denote

$$
S_{n}(t)=\sum_{i \in\langle n\rangle d} \lambda\left([0, n t] \cap R_{i}\right) X_{i}
$$

where λ is the Lebesgue measure on \mathbb{R}^{d} and $R_{i}=\left(i_{1}-1, i_{1}\right] \times \cdots \times\left(i_{d}-1, i_{d}\right]$.

- W is a standard Brownian sheet and $\mathcal{C}\left([0,1]^{d}\right)$ equipped with the uniform norm $\|\cdot\|_{\infty}$ is the space of continuous real functions defined on $[0,1]^{d}$.

Weak Invariance Principle

- For any positive integer n and any t in $[0,1]^{d}$, we denote

$$
S_{n}(t)=\sum_{i \in\langle n\rangle d} \lambda\left([0, n t] \cap R_{i}\right) X_{i}
$$

where λ is the Lebesgue measure on \mathbb{R}^{d} and $R_{i}=\left(i_{1}-1, i_{1}\right] \times \cdots \times\left(i_{d}-1, i_{d}\right]$.

- W is a standard Brownian sheet and $\mathcal{C}\left([0,1]^{d}\right)$ equipped with the uniform norm $\|\cdot\|_{\infty}$ is the space of continuous real functions defined on $[0,1]^{d}$.

Weak Invariance Principle

- For any positive integer n and any t in $[0,1]^{d}$, we denote

$$
S_{n}(t)=\sum_{i \in\langle n\rangle^{d}} \lambda\left([0, n t] \cap R_{i}\right) X_{i}
$$

where λ is the Lebesgue measure on \mathbb{R}^{d} and $R_{i}=\left(i_{1}-1, i_{1}\right] \times \cdots \times\left(i_{d}-1, i_{d}\right]$.

- W is a standard Brownian sheet and $\mathcal{C}\left([0,1]^{d}\right)$ equipped with the uniform norm $\|\cdot\|_{\infty}$ is the space of continuous real functions defined on $[0,1]^{d}$.

Theorem (EM, Giraudo (2015))
Let $\left(\varepsilon_{j}\right)_{j \in \mathbb{Z}^{d}}$ be an iid real random field defined on a probability space $(\Omega, \mathcal{F}, \mu)$. Consider the commuting filtration $\left(\mathcal{F}_{i}\right)_{i \in \mathbb{Z}^{d}}$ where \mathcal{F}_{i} is the σ-algebra generated by ε_{j} for $j \preceq i$. Let $\left(X_{i}\right)_{i \in \mathbb{Z}^{d}}$ be a stationary real random field such that X_{i} is \mathcal{F}_{i}-measurable for each i in \mathbb{Z}^{d} and

Weak Invariance Principle

- For any positive integer n and any t in $[0,1]^{d}$, we denote

$$
S_{n}(t)=\sum_{i \in\langle n\rangle^{d}} \lambda\left([0, n t] \cap R_{i}\right) X_{i}
$$

where λ is the Lebesgue measure on \mathbb{R}^{d} and $R_{i}=\left(i_{1}-1, i_{1}\right] \times \cdots \times\left(i_{d}-1, i_{d}\right]$.

- W is a standard Brownian sheet and $\mathcal{C}\left([0,1]^{d}\right)$ equipped with the uniform norm $\|\cdot\|_{\infty}$ is the space of continuous real functions defined on $[0,1]^{d}$.

Theorem (EM, Giraudo (2015))
Let $\left(\varepsilon_{j}\right)_{j \in \mathbb{Z}^{d}}$ be an iid real random field defined on a probability space $(\Omega, \mathcal{F}, \mu)$. Consider the commuting filtration $\left(\mathcal{F}_{i}\right)_{i \in \mathbb{Z}^{d}}$ where \mathcal{F}_{i} is the σ-algebra generated by ε_{j} for $j \preceq i$. Let $\left(X_{i}\right)_{i \in \mathbb{Z}^{d}}$ be a stationary real random field such that X_{i} is \mathcal{F}_{i}-measurable for each i in \mathbb{Z}^{d} and

$$
\sum_{k \in \mathbb{N}^{d}}\left\|\mathbb{E}\left(X_{0} \mid \mathcal{F}_{-k}\right)\right\|_{2}<\infty
$$

Weak Invariance Principle

- For any positive integer n and any t in $[0,1]^{d}$, we denote

$$
S_{n}(t)=\sum_{i \in\langle n\rangle^{d}} \lambda\left([0, n t] \cap R_{i}\right) X_{i}
$$

where λ is the Lebesgue measure on \mathbb{R}^{d} and $R_{i}=\left(i_{1}-1, i_{1}\right] \times \cdots \times\left(i_{d}-1, i_{d}\right]$.

- W is a standard Brownian sheet and $\mathcal{C}\left([0,1]^{d}\right)$ equipped with the uniform norm $\|\cdot\|_{\infty}$ is the space of continuous real functions defined on $[0,1]^{d}$.

Theorem (EM, Giraudo (2015))
Let $\left(\varepsilon_{j}\right)_{j \in \mathbb{Z}^{d}}$ be an iid real random field defined on a probability space $(\Omega, \mathcal{F}, \mu)$. Consider the commuting filtration $\left(\mathcal{F}_{i}\right)_{i \in \mathbb{Z}^{d}}$ where \mathcal{F}_{i} is the σ-algebra generated by ε_{j} for $j \preceq i$. Let $\left(X_{i}\right)_{i \in \mathbb{Z}^{d}}$ be a stationary real random field such that X_{i} is \mathcal{F}_{i}-measurable for each i in \mathbb{Z}^{d} and

$$
\sum_{k \in \mathbb{N}^{d}}\left\|\mathbb{E}\left(X_{0} \mid \mathcal{F}_{-k}\right)\right\|_{2}<\infty
$$

Then, $\left\{n^{-d / 2} S_{n}(t) ; t \in[0,1]^{d}\right\}$ converges in distribution in $\mathcal{C}\left([0,1]^{d}\right)$ to $\sqrt{\mathbb{E}\left(X_{0}^{2}\right)} W$.

Related results

- Under the condition

$$
\sum_{k \in \mathbb{N}^{d}} \frac{\left\|\mathbb{E}\left(X_{k} \mid \mathcal{F}_{0}\right)\right\|_{p}}{|k|^{1 / 2}}<\infty
$$

Wang and Woodroofe (2013) obtained the CLT for $p=2$ and the WIP for $p>2$.

Related results

- Under the condition

$$
\sum_{k \in \mathbb{N}^{d}} \frac{\left\|\mathbb{E}\left(X_{k} \mid \mathcal{F}_{0}\right)\right\|_{p}}{|k|^{1 / 2}}<\infty
$$

Wang and Woodroofe (2013) obtained the CLT for $p=2$ and the WIP for $p>2$.

- For a filtration $\left(\mathcal{F}_{j}\right)_{j \in \mathbb{Z}^{d}}$ and $q \in\langle d\rangle$, define

$$
\mathcal{F}_{l}^{(q)}:=\bigvee_{i \in \mathbb{Z}^{d}, i_{q} \leqslant 1} \mathcal{F}_{i}, \quad P_{l}^{(q)}(f):=\mathbb{E}\left(f \mid \mathcal{F}_{l}^{(q)}\right) \quad \text { and } \quad P_{j}:=\prod_{q=1}^{d} P_{j_{q}}^{(q)}
$$

Related results

- Under the condition

$$
\sum_{k \in \mathbb{N}^{d}} \frac{\left\|\mathbb{E}\left(X_{k} \mid \mathcal{F}_{0}\right)\right\|_{p}}{|k|^{1 / 2}}<\infty
$$

Wang and Woodroofe (2013) obtained the CLT for $p=2$ and the WIP for $p>2$.
■ For a filtration $\left(\mathcal{F}_{j}\right)_{j \in \mathbb{Z}^{d}}$ and $q \in\langle d\rangle$, define

$$
\mathcal{F}_{l}^{(q)}:=\bigvee_{i \in \mathbb{Z}^{d}, i_{q} \leqslant 1} \mathcal{F}_{i}, \quad P_{l}^{(q)}(f):=\mathbb{E}\left(f \mid \mathcal{F}_{l}^{(q)}\right) \quad \text { and } \quad P_{j}:=\prod_{q=1}^{d} P_{j_{q}}^{(q)}
$$

Volný and Wang (2014) obtained the WIP under the weaker condition

$$
\sum_{j \in \mathbb{Z}^{d}}\left\|P_{j}(f)\right\|_{2}<\infty
$$

Related results

■ Cuny, Dedecker and Volný (2016) obtained recently a WIP for fields of commuting transformations via martingale approximation under a condition in the spirit of Hannan.

Related results

- Cuny, Dedecker and Volný (2016) obtained recently a WIP for fields of commuting transformations via martingale approximation under a condition in the spirit of Hannan.
- Volný (2016) obtained recently the orthomartingale-coboundary decomposition of a regular and square integrable function f under the condition

$$
\sum_{j \in \mathbb{Z}^{d}} j_{1}^{2} j_{2}^{2} \ldots j_{d}^{2}\left\|P_{j}(f)\right\|_{2}^{2}<\infty
$$

Thank you!

