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1 Introduction

This paper is devoted to a class of two-player zero-sum stochastic differential game in which
the players have different information on the payoff. In this basic model, the terminal cost
is chosen (at the initial time) randomly among a finite set of costs {gi;, ¢ € {1,...,I}, j €
{1,...,J}}. More precisely, the indexes ¢ and j are chosen independently according to a
probability p ® ¢ on {1,...,1} x {1,...,J}. Then the index i is announced to the first
player and the index j to the second player. The players control the stochastic differential
equation

dXs = b(s, X, us,vs)ds + o(s, Xs, us,vs)dBs, s € [t,T],

Xt =z,
through their respective controls (us) and (vs) in order, for the first player, to minimize
Elg;j(X7)] and, for the second player, to maximize this quantity. Note that the players

do not really know which payoff they are actually optimizing because the first player, for



instance, ignores which index j has been chosen. The key assumption in our model is that
the players observe the evolving state (X;). So they can deduce from this observation the
behavior of their opponent and try to derive from it some knowledge on their missing data.

The formalization of such a game is quite involved: we refer to the second section of
the paper where the notations are properly defined. In order to describe our results, let us
introduce the upper and lower value functions V™ and V'~ of the game:

V+(t,x,p, q) = inf sup Jp’q(t,x,d,ﬁ),
a€(Ar(t))! BB (1))

V7 (t,z,p,q) = sup inf  JPU(t, x, &, B).
Be(B, (1)) GE(A(D)!
where JPU(t, x, &, B) is the expectation under the probability p ® ¢ of the payoff associated
with the strategies & = (i)ieq1,... 1y and B = (Bi)jequ,..,.gy of the players. The strategy &
takes into account the knowledge by the first player of the index ¢ while B takes into account
the knowledge of j by the second player. Our main result is that, under Isaacs’condition,
the two value functions coincide: V*+* = V~. Moreover, V := V* = V™~ is the unique
viscosity solution in the dual sense of some second order Hamilton-Jacobi equation. This

means that
(i) V is convex with respect to p and concave with respect to g,

(ii) the convex conjugate of V with respect to p is a subsolution of some Hamilton-Jacobi-

Isaacs (HJI) equation in the viscosity sense,

(iii) the concave conjugate of V with respect to ¢ is a supersolution of a symmetric HJI

equation,

(iv) V(T,2,p,q) = >, ; piqj9ij(x) where p = (pi)icq1,...1y and ¢ = (q;)jeq1,....}-

We strongly underline that in general the value functions are not solution of the standard
HJI equation: indeed V does not satisfy a dynamic programming principle in a classical
sense.

An important current in Mathematical Finance is the modeling of insider trading (see for
example Amendinger, Becherer, Schweizer [2] or Corcuera, Imkeller, Kohatsu-Higa, Nualart
[7] and references therein). The basic question studied in these works is to evaluate how
the addition of knowledge for a trader—i.e., mathematically, the addition to the original
filtration of a variable depending on the future—shows up in his investing strategies, and

an important tool is the theory of enlargement of filtrations. Our approach is completely



different. Indeed, what is important in our game is not that the players have “more”
information than what is contained in the filtration of the Brownian motion, but that their
information differs from that of their opponent. In some sense we try to understand the

strategic role of information in the game.

The model described above is strongly inspired by a similar one studied by Aumann
and Maschler in the framework of repeated games. Since their seminal papers (reproduced
in [3]), this model has attracted a lot of attention in game theory (see [11], [13], [15], [16]).
However it is only recently that the first author has adapted the model to deterministic

differential games (see [5], [6]).

The aim of this paper is to generalize the results of [5] to stochastic differential games
and to game with integral payoffs. There are several difficulties towards this aim. First the
notion of strategies for stochastic differential games is quite intricated (see [12], [14]). For
our game it is all the more difficult that the players have to introduce additional noise in
their strategies in order to confuse their oponent. One of the achievements of this paper is
an important simplification of the notion of strategy which allows the introduction of the
notion of random strategies. This also simplifies several proofs of [5]. Second the existence of
a value for “classical” stochastic differential games relies on a comparison principle for some
second order Hamilton-Jacobi equations. Here we have to be able to compare functions
satisfying the condition (i,ii,iv) defined above with functions satisfying (i,iii,iv). While for
deterministic differential games (i.e., first order HJI equations) we could do this without too
much trouble (see [5]), for stochastic differential games (i.e., second order HJI equations)
the proof is much more involved. In particular it requires a new maximum principle for

lower semicontinuous functions (see the appendix) which is the most technical part of the

paper.

The paper is organized in the following way: in section 2, we introduce the main nota-
tions and the notion of random strategies and we define the value functions of our game.
In section 3 we prove that the value functions (and more precisely the convex and concave
conjugates) are sub- and supersolutions of some HJ equation. Section 4 is devoted to the
comparison principle and to the existence of the value. In Section 5 we investigate stochas-
tic differential games with a running cost. The appendix is devoted to a new maximum

principle.



2 Definitions.

2.1 The dynamics.

Let T' > 0 be a fixed finite time horizon. For (¢,x) € [0,7] x IR", we consider the following
doubly controlled stochastic system :

dXs = b(s, Xs, us,vs)ds + o (s, X, us,vs)dBs, s € [t,T], 2.1)

Xt =, '
where B is a d-dimensional standard Brownian motion on a given probability space (2, F, P).
For s € [t,T], we set

Fis =0{B, — By,r € [t,s]} VP,
where P is the set of all null-sets of P.
The processes u and v are assumed to take their values in some compact metric spaces

U and V respectively. We suppose that the functions b : [0,7] x R" x U x V' — IR" and

0:]0,T] x R" x U x V — IR™ are continuous and satisfy the assumption (H):

(H) b and o are bounded and Lipschitz continuous with respect to (¢, z), uniformly in
(u,v) €U x V.

We also assume Isaacs’ condition : for all (t,z) € [0,7] x R", p € R", and all A € S,

(where S, is the set of symmetric n x n matrices) holds:

inf,, sup,{< b(t, z,u,v),p > +%T7“(Aa(t,:):, u,v)o*(t, x,u,v))} = (2.2)
sup,, inf, {< b(t, z,u,v),p > +3Tr(Ao(t, z,u,v)o*(t, 2, u,v))} '

We set H(t,z,p, A) = inf, sup,{< b(t,z,u,v),p > +%Tr(Aa(t,a:, u,v)o*(t, x,u,v))}.
For t € [0,T"), we denote by C([t,T],IR") the set of continuous maps from [t,T] to IR".

2.2 Admissible controls.

Definition 2.1 An admissible control w for player I (resp. II) on [t,T] is a process taking
values in U (resp. V'), progressively measurable with respect to the filtration (Fis,s > t).
The set of admissible controls for player I (resp. II) on [t,T| is denoted by U(t) (resp. V(t)).

We identify two processes u and @ in U(t) if P{u = a.e. in [t,T]} = 1.

Under assumption (H), for all (¢,z) € [0,7] x R™ and (u,v) € U(t) x V(t), there exists

a unique solution to (2.1) that we denote by X&%wv,



2.3 Strategies.

Definition 2.2 A strategy for player I starting at time t is a Borel-measurable map « :
[t,T] x C([t,T],IR") — U for which there exists 6 > 0 such that, Vs € [t,T],f,f €
C([t, T],R"™), if f = f" on [t,s], then a(-, f) = a(-, f") on [t,s + §].

We define strategies for player II in a symmetric way and denote by A(t) (resp. B(t)) the
set of strategies for player I (resp. player II).

We have the following existence result :

Lemma 2.1 For all (t,x) in [0,T] x R"™, for all (o, 5) € A(t) x B(t), there exists a unique
couple of controls (u,v) € U(t) x V(t) that satisfies P—a.s.

(u,v) = (af-, XE5wY), B(-, XEZUYYY on [t, T). (2.3)

Proof: The controls v and v will be built step by step. Let § > 0 be a common delay for «
and 3. We can choose § such that T =t + NJ for some N € IN*,

By definition, on [¢,t + 9), for all f € C([t,T],R"), a(s, f) = a(s, f(t)). Since, for all
(u,v) € U(t) x V(t), X™™" = z, the control u is uniquely defined on [t,t + &) by

Vs € [t,t+0),u(s) = a(s, z).

The same holds for v, what permits us to define the process X **** on [t,t+3) as a solution

of the system (2.1) restricted on the interval [¢,t + ).

t,x,u,v

Now suppose that u, v and X
ke {l,...,N —1}. This allows us to set,

are P—a.s. defined uniquely on some interval [t, ¢+ kd),

k k

Vs € [t+ kot + (k +1)9), us = als, X2, v, = B(s, X2,

where
(uk vk) _ (u,v) on [t,t + ko)
’ (ug,vg) else,

for some arbitrary (ug,vo) € U(t) x V(1).

t,z,uk,vk . . . n oy o
. as a random variable with values in the set of paths C([t,T"),IR"), it is

Considering X
clear that the map (s,w) — us(w) (defined on [t+kd, t+ (k+1)d) x ) as the composition of
the Borel measurable application a with the map (s,w) — (s, xboutet (w)), is a process on
[t+ kd,t+ (k+1)0) with measurable paths. Further, the non anticipativity of « guaranties
that, for all s € [t + kd,t + (k +1)d), us is Fy 14 gs-measurable and the process uly 14 (r+1)s)

is (Fi,s)-progressively measurable. The same holds of course for v|( s (x+1)s)-
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With (u,v) defined on [t,t + (k + 1)d), we can now define the process X" up to time
t + (k+1)d. This completes the proof by induction. O

We denote by X"®®? the process X"®"?, with (u,v) associated to («, 3) by relation
(2.3).

In the frame of incomplete information it is necessary to introduce random strategies.
In contrast with [5] and [6], where the random probabilities are supposed to be absolutely
continuous with respect to the Lebesgue measure, play a random strategy will consist here
to choose some strategy in a finite set of possibilities, i.e. the involved probabilities are
finite. It is not clear if this assumption is more realistic nor if the notation will be lighter,
nevertheless this alternative allows us to avoid some technical steps of measure theory, in a

paper that is already technical enough.

Notation: For R € IN*  let A(R) be the set of all (rq,...,7g) € [0,1]% that satisfy
Y1 = 1.

We define a random strategy @ for player I by @ = (a!,...af; 7!, ... r®), with R € IN*,
(', ...afty e (A)E, (rL,...,rF) € A(R).

The heuristic interpretation of & is that player I's strategy amounts to choose the pure
strategy of with probability .

We define in a similar way the random strategies for player II, and denote by A,(¢) (resp.
B, (t)) the set of all random strategies for player I (resp. player II).

Finally, identifying o € A(t) with (a;1) € A,(t), we can write A(t) C A,(t), and the same
holds for B(t) and B, (t).

2.4 The payoff.
Fix I,J € IN*.
For1<i¢<I,1<j<J,let g;:IR" — IR be the terminal payoffs. We assume that

For 1 <i<1I,1<j<J, g are Lipschitz continuous and bounded. (2.4)

For (p,q) € A(I) x A(J), with p = (p1,...,p1), ¢ = (q1,-..qs), we denote with a hat the
elements of (A,(t))! (resp. (B.(t))): & = (ay,...,ar), 6= By,...,0,).

We adopt following notations :



For fixed (i,5) € {1,...,1} x{1,...,J} and strategies (o, 3) € A(t) x B(t), the payoff of

the game with only one possible terminal payoff function g;; will be denoted by
J’ij(tvm)avlg) = [ng(tha7B)]

Now let (@, 3) € A,(t) x B.(t) be two random strategies, with @ = (a!,...,af;r!, ... rf)
and B = (B,...,5%s',...,5%). The payoff associated with the pair (@, 3) € A,(t) x B,(t)),
is the average of the payoffs with respect to the probability distributions associated to the
strategies:

R S

Tolty 0 35) = 35 Bl (),

k=1

Further, for p € A(I), j € {1,...,J}, & € (A-(t))! and 8 € B,(t) we will use the notation

I
A - _ t ,
Tt w,a, ) =Y pidij(t, 2,0, B) = szzr s Blgi; (x50,
=1

i=1

~
—_

A symmetric notation holds for @ € A,(t) and § € (B.(t))’. Finally, the payoff of the
game is, for (&, 8) € (A:(t)" x (B:(t)”, p € A(I), g € A(J),

JpthCOéﬁ ZZP@QJ zytxauﬂ)

=1 j5=1

The reference to (¢, x) in the notations is dropped when there is no possible confusion : we
will write Jij(oz, ﬁ), Jij(a, ﬁ), e

We define the value functions for the game by
V*t(t,z,p,q) = infae(a, 1) SUD3ep, (1)) JPA(t, 6, ),
V=(t,x,p,q) = SUD 3¢ (5, (1)) infae(a, () JPA(t, x, &, F).

Again we will write V' (p,q) and V™~ (p, q) if there is no possible confusion on (¢, z).

The following lemma follows easily from classical estimations for stochastic differential

equations :

Lemma 2.2 V™ and V~ are bounded, Lipschitz continuous with respect to x,p,q and

Holder continuous with respect to t.

Following [3] we now state one of the basic properties of the value functions. The
technique of proof of this statement is known as the splitting method in repeated game
theory (see [3], [16]).



Proposition 2.1 For all (t,z) € [0,T] x R", the maps (p,q) — VT (t,z,p,q) and (p,q) —

V=(t,z,p,q) are convex in p and concave in q.

Proof: We only prove the result for VT, the proof for V~ is the same. First VT can be

rewritten as
J

Vip.g)= inf > g sup JP(6,8
(.4) ae(AT(t))’jZ:; B (v o

It follows that VT is concave in g.

Now fix ¢ € A(J) and let p,p’ € A(I) and a € (0,1). Without loss of generality we can
assume that, for all ¢ € {1,...,I}, p; and p) are not simultaneously equal to zero.
We get a new element of A(I ) if we set p? = ap + (1 —a)p’. For € > 0, let & € (A.(t))! be
e-optimal for VF(p, q) (resp. &' € (A,.(t))! e-optimal for V*(p', q)).

We define a new strategy &* = (@f,...,af) by
@ =(a},..alt b o )Y e R e (1, T
with
‘gzlf for k € {1,..., R},
(1) =

1—a)p! _
%rgk B forke{R+1,...,R+R'}

(it is easy to check that & € (A,(t))!).
This means that, for all 3 € (B,(t))”,

Rl
JP( Z {ap; Z rE T4k B) + (1 — a)p), Z'rngiq(a;k
k=1
Thus
sup  JPI(G%B) <a sup  JPUa, B+ (L—a) sup  JPUE, D).
Be(Br(t))? ,Be(Br(t))J Be(B(t))7

It follows by the choice of & and &' that

VEp®q) <aVT(p,q) + (1 —a)VF (Y, q).



3 Subdynamic programming and Hamilton-Jacobi-Bellman
equations for the Fenchel conjugates.

Since V* and V'~ are convex with respect to p and concave with respect to g, it is natural to

introduce the Fenchel conjugates of these functions. For this we use the following notations.

For any w : [0,T] x R" x A(I) x A(J) — R, we define the Fenchel conjugate w* of w with
respect to p by

w*(t,z,p,q) = SXI()I){@,M —w(t,z,p,q)}, (t,z,p,q) €[0,T] x R" x R x A(J).
pe

For w defined on the dual space [0, 7] x IR™ x IR x A(J), we also set

w*(t,z,p,q) = supj{(ﬁ,p) —w(t,z,p,q)}, (t,z,p,q) € [0,T] x R" x A(I) x A(J).
peER

It is well known that, if w is convex, we have (w*)* = w.

We also have to introduce the concave conjugate with respect to ¢ of a map w : [0,7] x
R" x A(I) x A(J) — R:

w(t,x,p, q) = iIAlfJ){@, q) —w(t,z,p,q)}, (t,z,p,4) € [0,T] x R" x A(]) x R,
qe

We use the following notations for the sub- and superdifferentials with respect to p and ¢
respectively: if w : [0,7] x R™ x R! x A(J) — IR, we set

a5 w(t, @, p,q) = {p € RY, w(t,z,p,q) + (p,p —p) <w(t,z,p,q) Vp' € R’}
and if w: [0,T] x R" x A(I) x R — R
Ofw(t,x,p,q) ={qg € R, w(t,z,p,q) + (¢4 — @) > w(t,z,p,¢) v§ € R'}.

In this chapter, we will show that V*# and V—* satisfy a subdynamic programming

property. This part follows several ideas of [10], [11].

Lemma 3.1 (Reformulation of V—*)
For all (t,z,p,q) € [0,T] x R" x R x A(J), we have

Ve pg) = inf sup  max {@—Jf(t,x,a,ﬁ)}- (3.5)
BE(B- (1)) acA(t) i€{L,-1}

Proof. We begin to establish a first expression for V' =*:

VB = Bl e ey (e e o
Be(Br(t))! e A (t) i€{L,-.. I}

9



(the difference with (3.5) is that player I here can use random strategies.)

Let’s denote by e = e(p, q) the right hand term of (3.6). First we prove that e is convex
with respect to p :

Fix g € A(J), p,p € R and a € (0,1).

For € > 0, let 3 (resp. B’)e (B.(t))” be some e-optimal strategy for e(p,q) (resp. e(f', q)).
Set p* =ap+ (1 —a)p'.

We define a new strategy 4% € (B,(t))” by

By = (Bl BB B P (55, e {1 T,

with
asé‘? for ke {1,...,5},
()5 =
(1-a)sf™% ke{S+1,....,5+ 5}
Let @ € A,(t). Since the application (z1,...,27) — max{z;,i = 1,...,1} is convex, we
have

!

max; {5 — JI(@ 53 } = max; {a(p — J(@ 8) + (1 - @)@ - I (@ 8)) }
< a SUDge A, (t) max; (p; — Jf(a, Ba))
+(1 = a) supge 4, (5 max; (p; — Ji (@, 3))

< ae(p, Q) + (1 - a)e(ﬁ,a Q) +e

Since € is arbitrary, we can deduce that e is convex with respect to p.
The next step is to prove that e* = V~. By the convexity of e, this will imply that V=" = e.

We can reorganize e*(p, q) as follows :

e*(p,q) = SUPjeR! {Zle pipi + SUPGe (B,(1))/ infaeAr(t) mini/e{L.,.,z}{Jﬁ (a, B) - ﬁz’}}

= Sup,@e(Br(t))J SUPjeRr! Z{:l bi mini’e{l,...,]} {infaeAr(t) Jg (aa B) + (ﬁz - ﬁz’)}

The supremum over p € IR’ is attained for py = infme, (1) Jf/ (@, B) and we get the claimed

result.

Finally, to get (3.5), it remains to show that player I can use non random strategies.
Indeed, writing V~* as in (3.6) and since A(t) C A, (t), it is obvious that the left hand side

10



of (3.5) is not smaller than the right hand side.

Concerning the reverse inequality, we can write

SUDge A, (1) Max; {]ﬁi — Ji(a, B)}
< Sy max i — S (o, )
= SUPReIN* SUP(al,....aR)e(A(t)E,(rl,...rR)eA(R) 2uk=1T" MaX; P — Jy(ar,

< SUPReN+ SUD(1 . rR)eA(R) Dok T SUDqe A(r) TNAX; {ﬁi — J{(a, ﬂ)}-

The result follows after one recalls that Z,If:l rk=1.

Proposition 3.1 (Subdynamic programming for V=)
For all0 <ty <t <T,zo € R",p R, qe A(J), it holds that

V™ (to, w0,y q) < inf  sup B[V (ty, X070 p,q)].
BEB(to) ae Alty)

to) SUPae A(to) E[Vi*(tb Xf?r()’aﬂa j22 Q)]
For € > 0, let B¢ € B(tg) be e-optimal for Vi *(to,t1,x0,p,q), and, for all x € IR", let

M : Set Vl_*(tO; t17 x07ﬁ7 Q) = lnfﬁEB(

(% € (B(t1))? be e-optimal for V=*(t1,z,p, q). By the uniformly Lipschitz assumptions for
the parameters of the dynamics, there exists R > 0 such that, for all « € A(ty),

PIX0"*% € B(xg, R)] > 1 —e,

where B(xg, R) denotes the ball in IR" of center xy and radius R.

Remark that J! and V* are uniformly Lipschitz continuous in z. This implies that we can
find r > 0 such that, for any x € R" and y € B(x, r), 3% is 2e-optimal for V= (t1,9,p,q).
Now let z1,..., 2y € IR™ such that UM_, B(2, 5) D B(xo, R).

Set 3™ = 3%m for m = 1,..., M and choose some arbitrary 3° € (B, (t1))”.

Each Bm is detailed in the following way:

—-m

Bm:(ﬁqlna"'a/@])?

with

-m

1
/8] :(6;n s My ’

mSjt, m.l m, S
j

T ).

11



Let 6 be a common delay for BO, e ,BM that we can choose as small as we need :

0<d< % A (t1 — to), where C' > 0 is defined through the parameters of the dynamics by
Va € A(t), B € B(t),t,t' € [to, T, E[|X[or0®f — xloroh 2] < o — ).
We then have in particular, for all « € A(t) and § € B(t),

PHX:S’QEO’O"B _ Xﬁ)fou ﬂ‘ >

2] <e. (3.7)

Let (Ew)m=1,.,m be a Borel measurable partition of B(zg, R), such that, for all m €
{1,...,M}, E,, C B(xp, 5). Set Ey = B(xg, R)".

We are now able to define a new strategy for player 11, 3¢ € (B,(to))”:

Fix j € {1,....J}. For I = (lo,...,In) € L = TIM_{1,... 8™}, set st = IIM_ 57"
Remark that {sé,l € L} € A(Card(L)).

Then, for [ € L, = (ly,...,lpn), we define (ﬁj)l € B(top) by
Vf e C([to, T],R™),Vt € [to, T],
ﬂg(taf) ift € [tO,tl)’
(¢, =
(51) ( f) { ﬂ;n’lm(t,f‘[thfp]) ifte [tl,T] and f(tl — 5) S Em.

We set ﬁ; = ((ﬁ;) ,sj,l € L) € B,(to), and finally 3¢ = (5, ...,55).
For some fixed o € A(tp) and f € C([to,t1],IR"), we define a new strategy ay € A(t1) by:
for all t € [0,T] and f" € C([t1,T],IR"),

f(t) for t € [to,tl],
F'@t)— f'(t1) + f(tr), for t € (t1,T].

Set X¢ = X'0"%% and, for m € {0,...,M}, Ay = {X{_; € En}. Set further
A= {|Xf, — X{ _s| < 5} By (3.7), it holds that P[A°] < e. Remark also that, on each
AN Ay, X belongs to B(xy,,r) and consequently, still on AN Ay, Bm is 2e-optimal for
V_*(tletepf)? Q)

Forallie {1,...,1},je{l,...,J} and [ € L, we have

ap(t, f') = o(t, f), with f(t) = {

t0,20,0,( tl,yﬂfﬁ
E[gij (XT ’jrh Z 1a,, E gz] ”sz,fl,szF\[tO’tl] :
It follows that

to,0,0,(65)"

qu(to, Lo, &, BG) = Z] 195 ZZGL SJE[QZJ (X )]

= E[Z 1A J (t17Xt17aX€|[t ot ]7/8m)]

12



And

maX;ef1, .1} {pz‘— J{(to, o, 04,36)}
v X R
E[Y o 1a, max;eqr . n{pi — Ji (t1, Xiaxey 0 B3]

IA

IN

B[ 1, (SUDge 4ty MaXie 1, iy D — Ji(t1, X5, a0, 5™)})]

IN

E[(V™*(t1, X{,,D,q) + 26)1Am{xg1e3(mo,R)}]
+max;eqy,.. i + KHP[A] + P[X{, & B(zo, R))),

by the choice of (Bm,m € {1,...,M}) and where K is an upper bound of |g]|.
By the choice of R and with the notation K (p) = 4max;c(1 . n{[pi| + K} + ¢, we get

maxe(1,.. 1} {ﬁz‘ — J{(to, zo, 04,36)} < B[V (ty, X5, D, q) + 2€] + K (p)e

< SUPaeA(ty) E[V—*(ty, Xff’zo’a’ﬁe,ﬁ, q)] +2e(14+ K(p))

< Vi (o, t1, w0, B, q) + €(3 + 2K (p))

(for the last inequality, recall that 3¢ was chosen e-optimal for V" *(to, t1, z0, D, q)).
We can deduce the result. O

A classical consequence of the subdynamic programming principle for V~* is that this
function is a subsolution of some associated Hamilton-Jacobi equation. We give a proof of

that result for sake of completeness.

Corollary 3.1 For any (p,q) € R x A(J), V=*(-,-,p,q) is a subsolution in the viscosity
sense of
wy + H*(t, z, Dw, D*w) = 0, (t,z) € (0,T) x R"™,
with
H_*(tavav A) = _H_(tv T, —Dp, _A) =

3.8
infvEV SupuEU{<b(tax7u7v)ap> + %Tr(Aa(t,a:,u, U)U*(t7x7u7v))}‘ ( )

Proof : For (tg,z0) € [0,T] x R",p € R, q € A(J) fixed, let ¢ € C? such that ¢(to, ) =
V~=*(to, zo, P, q) and, for all (s,y) € [0,T] x R", ¢(s,y) > V*(s,y,D, q).
We have to prove that

di(to, zo) + H *(to, w0, Dé(to, 20), D*(to, 20)) > 0.
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Suppose that this is false and consider 8 > 0 such that
¢t(t0; .II()) + Hf*(to, xo, D(Z)(t(), $0), Dz(t(), JZQ)) <-6<0. (39)

Set A(t,z,u,v) = ¢(t,x) + (b(t,x,u,v), Do(t,z)) + Tr(D2¢(t, z)o(t, z,u,v)o*(t, x,u,v)).
Since, for fixed p, V~* is bounded, we can choose ¢ such that ¢; and D?¢ are also bounded.
It follows that, for some K > 0, we have |A(t, z,u,v)| < K.

Now the relation (3.9) is equivalent to

inf sup A(tg, zo, u,v) < —0 .
veV yeU

This implies the existence of a control vg € V' such that, for all uw € U,

20
A(t()vx()vua UU) S _g

Moreover, since A is continuous in (¢, x), uniformly in u, v, we can find R > 0 such that,
n 0
V(t,z) € [to, T] x R™, |t —to] V ||l — xo|| < R,Vu € U, A(t,z,u,vp) < —3 (3.10)

Now define a strategy for player II by (Gy(¢, f) = vo for all (¢, f) € [to,T] x C([to, T],IR™).
Fix e > 0 and t € (to, R). Because of the subdynamical programming (Proposition 3.1),
there exists a.; € A(tg) such that

B[V (t1, X070 % 5 )] — V=¥ (to, 20, B, q) > —e(t — to). (3.11)

Let (us,vs) € U(to) x V(to) the controls associated to (aet, Fo) by the relation (2.3) and
set X, = x/oroaenfo _ xto.2ouv (Remark that, by the choice of By, (vs) is constant and
equal to vg.)

Now we write It6’s formula for ¢(t, Xy):

(t, X1) — dlto, wo) = [y Als, X, us, v5)ds

, (3.12)
+ Ji, (Do(s, Xs), b(s, X, us, vs))dBs.
By (3.11), (3.12) and the definition of ¢, we have
t
E[ | A(s,Xs,us,vs)ds] > —e(t — tp). (3.13)

to

In the other hand, there exists a constant C > 0 depending only on the parameters of X,

such that
C(t —to)?

PlIX. — ol > Bl < =500,
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with the notation || f|l; = supsep, 4 [I.f(s)]-
Following (3.10), this implies that, for all ¢t € [to, T A (to + R)],

t
0
E {[{XAQ;OHKR}/t A(s, X, us,vs)ds| < —=(t — to). (3.14)
0

[\

By (3.13) and (3.14), we now have

—e(t —tg) < E[ftz A(s, X, us, vs)ds g x. —ao |, >R} + E[ftto A(s, Xs, s, vs)ds I x. — 20|, <R}]

< Rt —t0) = §(t —to),

or, equivalently,

0 < KC (t— o) +
< —(t- €.
2 = Rf 0
Since t — tg and € can be chosen arbitrarily small, we get a contradiction. O

For VT we have:

Proposition 3.2 (Superdynamic programming and HJI equation for V)
Forall0 <ty <t <T,zo € R",p e A(I),G € IR’, it holds that
V*¥(to,20,p,4) > inf  sup B[V, X070 p,g).
BEB(to) aeAlto)

As a consequence, for any (p,q) € A(I) x RY, V(.- p,q) is a supersolution in viscosity

sense of

wy + H(t, z, Dw, D*w)) = 0, (t,x) € (0,T) x R",
where

HY(t,z,p,A) = —H"(t,x,—p,—A) =

3.15
supyey infoev {(b(t, 2, u,v),p) + 5 Tr(Ao(t, 2, u,v)o* (t, 2, u, v))}. 19

Proof : We note that VT is equal to the opposite of the lower value of the game
in which we replace g;; by —g;;, Player I is the maximizer and in which the respective
roles of p and g are exchanged. Using Proposition 3.1 in this framework gives the superdy-
namic programming principle. Now Corollary 3.1 shows that, for any (p,§) € A(I) x IR”,
(=VE)*(-,-,p,4) = =VTE(-,-,p, —q) is a subsolution of

w; + HY(t, 2, Dw, D*w)) = 0, (t,z) € (0,T) x R"™.
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Hence V*E(-, -, p, —q) is a supersolution of
wy + H™(t, z, Dw, D*w)) = 0, (t,x) € (0,7) x R"™.

Since this holds true for any (p, §), this proves our claim. O

4 Comparison principle and existence of a value

In this section we first state a new comparison principle and apply it to get the existence

and the characterization of the value. Then we give a proof for the comparison principle.
4.1 Statement of the comparison principle and existence of a value

Let H:[0,T] x R" x R" x S, x A(I) x A(J) — IR be continuous and satisfy

H(57y7£27X2ap7Q) - H(tax7£1aX17pa Q) >
—w (&1 = &l +al(t,2) = (s,9)? + b+ [(t,2) = (s,9)|(1 + [&] + [&2]))

where w is continuous and non decreasing with w(0) = 0, for any a,b > 0, (p,q) € A(I) x
A(J), s,t €[0,T], z,y,&1,22 € R™ and X1, Xo € S, such that

-X1 0 I I
<a + bl
0 X5 —I I

Definition 4.1 We say that a map w : (0,7) x R"™ x A(I) x A(J) — R is a supersolution

(4.16)

in the dual sense of equation
wi + H(t,z, Dw, D*w,p,q) =0 (4.17)

if w = w(t,z,p,q) is lower semicontinuous, concave with respect to q and if, for any
C2((0,T) x R™) function ¢ such that (t,x) — w*(t,z,p,q) — ¢(t,z) has a mazimum at
some point (,Z) for some (p,q) € R x A(J), we have

d)t(t:j) - H(ﬂfa —DQﬁ(E, j)? _D2¢(7> j)7p, (7) Z 0 Vp € 8ﬁ_w*( 7E7ﬁ7 Q) :

We say that w is a subsolution of (4.17) in the dual sense if w is upper semicontinuous,
convex with respect to p and if, for any C*((0,T) x R™) function ¢ such that (t,x) —
wh(t, z, B, §) — ¢(t,z) has a minimum at some point (t, %) for some (p,§) € A(I) x R7, we

have
¢t(£ 'f) - H( 7'i'7 _D¢(Eaj)7 _D2¢(£7 E)vﬁa Q) S 0 VQ € 83_’140’:1(1,?,:?,]5, qA) .
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A solution of (4.17) in the dual sense is a map which is sub- and supersolution in the dual

sense.

Remarks :

1. We have proved in Corollary 3.1 that V'~ is a dual supersolution of the HJ equation
w; + H™ (t,z, Dw, D*w) =0,

where H ™ is defined by (3.8), while Proposition 3.2 shows that V' is a dual subsolution
of the HJ equation
w; + HY (t,z, Dw, D*w) =0,

where H™ is defined by (3.15).

2. The necessity to deal with a Hamiltonian H with a (p,q) dependence will become

clear in the next section where we study differential games with running costs.

3. An equivalent definition of the notion of dual super- or subsolution in given in Lemma

5.3 below.

The main result of this section is the following:

Theorem 4.1 (Comparison principle) Let us assume that H satisfies the structure con-
dition (4.16). Let wy be a bounded, Hélder continuous subsolution of (4.17) in the dual sense
which is uniformly Lipschitz continuous w.r. to q and we be a bounded, Holder continuous
supersolution of (4.17) in the dual sense which is uniformly Lipschitz continuous w.r. to p.

Assume that
w1 (T, z,p,q) < w(T,z,p,q) V(z,p,q) € R" x A(I) x A(J) . (4.18)
Then
wi(t,z,p,q) Swa(t,z,p,q)  V(t,x,p,q) € [0,T] x R™ x A(I) x A(J) .

Remark : For simplicity we are assuming here that w; and wy are Holder continuous
and bounded. These assumptions could be relaxed by standard (but painfull) techniques.
We do not know if the uniform Lipschitz continuity assumption on w; with respect to ¢ and

on wy with respect to p can be relaxed.

As a consequence we have
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Theorem 4.2 (Existence of a value) Under assumptions (H), (2.4) and (2.2), the game

has a value:
VTt x,p,q) =V (tx,p,q)  Y(t,xz,p,q) € (0,T) x R" x A(I) x A(J) .

Furthermore V* = V'~ is the unique solution in the dual sense of HJI equation (4.17) with

terminal condition

I J
VH(T,z,p,q) =V (T, 2,p,q) = ZZpiqjgij(:n) V(z,p,q) € R" x A(I) x A(J) .
i=1 j=1
Proof of Theorem 4.2 : The Hamiltonian H defined by (2.2) is known to satisfy
(4.16) (see [9] for instance). From the definition of V* and V'~ we have V— < V. We have
proved in Lemma, 2.2 and Proposition 2.1 that VT and V'~ are Holder continuous, Lipschitz
continuous with respect to p and ¢, convex w.r. to p and concave w.r. to q. From Corollary
3.1 we know that V'~ is a supersolution of (4.17) in the dual sense while Proposition 3.2
states that VT is a supersolution of that same equation in the dual sense. The comparison
principle then states that V' < V', whence the existence and the characterization of the

value: VT =V~ is the unique solution in the dual sense of HJI equation (4.17). O

4.2 Proof of the comparison principle

The proof of Theorem 4.1 relies on two arguments: first on a reformulation of the notions of
sub- and supersolutions by using sub- and superjets; second on a new maximum principle

described in the appendix.

Let us recall the notions of sub- and superjets of a function w : (0,7) x R™ — IR: the
subjet D%~ w(t, %) is the set of (&,&,, X) € R™™ x S, such that

_ 1 _
w(t,z) > w(t,z) + &t —1t) + &.(x — T) + EX(JL‘ —z).(x — )+ o(|t — | + |z — Z|*)}
and the superjet D?>%w is given by
D2’+’U)(_,.T) - _D27_(_w)(£7 'fz')

When w depends on other variables ((p, q) or (p, §) for instance), D%~ w and D*%w always

denote the sub- and superjets with respect to the (¢, ) variables only. For w = w(t, z,p, §),
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we set

(gtagmaX) e Rﬂ-ﬁ-l X Sn I El(tnyxnapna(jn) - (Ea'f7p7 qA)a
D>~w(t,z,p,§) = A& &2 X™) € D> w(tn, Tn, P, Gn)
with (¢, €%, X™) — (&, &, X)

We use a symmetric notation for D2+ w(¢, Z, p, q).
The following equivalent formulation of the notion of sub- and supersolution is standard

in viscosity solution theory, so we omit the proof:

Proposition 4.3 A map w: (0,7)xIR" x A(I) x A(J) — R is a supersolution of equation

(4.17) in the dual sense if and only if w = w(t,x,p,q) is lower semicontinuous, concave

with respect to q and if, for any (t,%,p,q) and any (&,&, X) € D>Tw*(t, T, p,q) we have
gt_H(t_7j,_§a:,_X,p,g)ZO vpeaﬁ_w*(fvjuﬁa(j)

Symmetrically w is a subsolution of (4.17) in the dual sense if and only if w is upper
semicontinuous, convexr with respect to p and if, for any (t,Z,p,q) and any (&,&., X) €

D2-wt(t,z,p,q) we have
ft_H(Ev'i'a_gwa_Xaﬁ7Q) SO quﬁgwﬁ(ﬂj,ﬁ,(j) .
Proof of Theorem 4.1 : Let us assume that

sup (wy —wsz) > 0.
t,x,p,q

Since wy and wy are Holder continuous and bounded, classical arguments show that

|(t,2) — (s, 9)
2¢

Me,n,oc ‘= Ssup {wl(taxvpa q) - w2(87y7p7 Q) - (

(6%
+ Gl + ) + e
t,2,8,Y,,4

is finite and achieved at a point (¢, Z, 5, ¥, Po, o). One can also show that
lim Mc,q= sup (w1 —ws) (4.19)
67777Oé_>0+ t,$,p7q

and that

, alz?, alg)* < 2My (4.20)

where My, = |wi|oo + |w2|oo. Using (4.18) and the Holder continuity of w; and wy shows

that £ < T and § < T as soon as €, n and « are small enough.
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From the maximum principle (Theorem 6.1 stated in the Appendix), there are (p, q),
(»,q) and X1, X5 € S, such that

€0y w3(5,5,5,9). 7€ 0y wh(,7,5,4) ,

(t—5) (z—79)

(_ c +n’_ c _ajaXl) €D2v*w§(§,i,ﬁ,(j) y
5—1) (j—= o
(( - 3, w-2) _ ay, Xo) € D>V ws (5,4, p,q)
and
~X; 0 3 I —I
! < (5 +2a) +(a+a2e)] (4.21)
0 X € I I

Since w; is a subsolution of (4.17) in the dual sense and g € %_wg(f,f,ﬁ, ), Proposition

4.3 states that

t—3

n— - H <t,:7:, 7Y 4 ag, — X1, P, q) <0. (4.22)
€

€

In the same way, since ws is a supersolution of (4.17) in the dual sense and p € 8}; w3(5,9,D,q),

we have

s i _
Q - H <‘§7g,(y x) +O‘g) X?)ﬁ)é) > 0 ) (423)
€ €

Using the structure condition (4.16) on H, and plugging estimates (4.19), (4.20) and
(4.21) into (4.22) and (4.23) yields to a contradiction for €, @ and 7 sufficiently small as in

[9]. O

5 Games with running cost

We now investigate differential games with asymmetric information on the running cost and
on the terminal cost. The framework is basically the same as before. At the initial time,
the cost (now consisting in a running cost and a terminal one) is chosen at random among
I x J possible costs. The index ¢ is announced to Player I while the index j is announced
to Player II. Then the players play the game in order, for Player I to minimize the payoff
and for Player II to maximize it.

In this section we keep the same terminology and the same notations as in the previous
part. There is however a main difference: as we shall see later, in a game with a running
cost, each player needs the knowledge of this running cost to build his strategy. Since

we assume that the running cost depends on the control of both players, this means that
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the players have to observe the control of their opponent. This was not the case of the
game before where the players only observed the state of the system. For this reason we
have to change the notion of strategy: in this section the notion of strategies introduced in

Definition 2.2 is replaced by the following one:

Definition 5.1 A strategy for player I starting at time t is a Borel-measurable map « :
[t,T] x C([t, T]),IR™) x L2([t,T),V) — U for which there exists § > 0 such that, for all
se[t,T], f,f € C([t,T),IR") and g,¢' € L*>([t,T),V), if f = ' and g = ¢’ a.e. on [t,s],
then a(-, f,9) = a(-, f',g") on [t,s + 4].

We define strategies for player II in a symmetric way and denote by A(t) (resp. B(t)) the
set of strategies for player I (resp. player II).

We define random strategies as before (but with the modified notion of strategies) and still
denote by A, (t) (resp. B,(t)) the set of random strategies for player I (resp. player II).

We have an analogue of Lemma 2.1 :

Lemma 5.1 For all (t,x) in [0,T] x R"™, for all (o, 5) € A(t) x B(t), there exists a unique
couple of controls (u,v) € U(t) x V(t) that satisfies P—a.s.

(u,v) = (a(-, X5 0.), B(-, XE5Y ) a.e. on [t,T). (5.24)

One can easily check that the results of the previous parts (i.e., 2.2, Proposition 2.1,
Corollary 3.1 and Proposition 3.2) still hold true with the modified notion of strategy. In
particular, the game with terminal payoff studied before has a value.

Letusfix I,J € IN. For1 <7 < I and 1 < j < J we consider the terminal cost g;; : IR" — IR

and the running cost 4;; : [0, T]xIR" xU xV — IR on which we do the following assumptions:

Forany 1 <i<TITand 1< j<J,/{;and g;; are continuous in all variables, (5.25)
uniformly Lipschitz continuous with respect to x and bounded. .

For fixed (i,j) € {1,...,1} x{1,...,J} and strategies (a, 3) € A(t) x B(t), we set

T
Jij(t, @, @, B) = E[/ lij (s, X070 g, B5)ds + g1y (X" )]
t

where as before («, 3) denotes the unique pair of controls such that (5.24) holds.
The payoff of two random strategies (@, 3) € A,(t) xB,(t), with@ = (a!,...,af;rl, ... rF)
and B = (B,...,B%s',...,5%), is the average of the payoffs with respect to the probability

distributions associated to the strategies:

R S T
— 5 k gl k gl
it @ B) = > r’“le[/ Cig(s, Xom00 L, B)ds + i (Xp™ 7).
k=1 1=1 t
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Finally, the payoff of the game is, for (&, 3) = ((&)1<i<r, (B))1<j<s) € (A-(t) x (B. ()7,
I

Jpq(t x Oé,ﬁ ZZPZQJ z] t x auﬁ )

=1 j=1

We define the value functions for the game with running cost as before by

VH(t,2,p,q) = infac(a, 1)) SUP e, (1y)s 7t 5 B),
V=(t,z,p,q) = SUD e (5, (1)) infae(a, i P, ac,ol,@).
In our game with running cost, Isaacs’ assumption takes the following form: for all
(t,z) € [0,T] x R™, (p,q) € A(I) x A(J), £ € IR", and all A € S;;:
inf,, sup,{< b(t, z,u,v),& > —l—%Tr(Aa(t, z,u,v)o*(t, x,u,v)) — ZZ] lij(t, x,u,v)pig;} =
sup, inf, {< b(t, z,u,v), & > —l-%T’I”(AO'(t, x,u,v)o*(t,x,u,v)) — Zi,j lii(t, z,u,v)pig; }
(5.26)
We set
H(t,z,¢,A,p,q) = inf,sup,{< b(t,x,u,v),& >
—|—%T7"(Aa(t, x,u,v)o*(t,x,u,v)) — Z” lij(t, x,u,v)pig;} -
Theorem 5.2 Assume that (H), (5.25) and (5.26) hold. Then the game has a value:

V+ =V, which is the unique solution in the dual sense of

w; + H(t,z, Dw, D*w,p,q) =0 (5.27)
with terminal condition
VT, 2,p,q) =V (T, 2,p,q Zszqng V(z,p,q) € R" x A(I) x A(J) .
=1 j=1

In order to prove Theorem 5.2 it will be convenient to have the following equivalent

definition of dual solutions of the Hamilton-Jacobi equation (5.27):

Lemma 5.3 Let w: [0,T] x RY x A(I) x A(J) — R be lower-semicontinuous, uniformly
Lipschitz continuous with respect to p and concave with respect to q. Then the following

statements are equivalent:
(i) w is a dual supersolution of (5.27).
(ii) for any (p,q) € RE x A(J), for any C? test function ¢ = ¢(t, ) such that
(t,2,p) — w(t,z,p,q) — 6(t, z) — (p,p)
has a global minimum at some point (t,z,p) € [0,T) x RY x A(I), we have

¢u(t,7) + H(t, 7, Dé(t, 7, p), D*¢(,7,p),p,q) < 0. (5.28)
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Remark : A symmetric statement holds for dual subsolutions.

Proof of Lemma 5.3 : Let us assume that w is a supersolution and let ¢ € C?,
(p,q) € R" x A(J) such that

(ta :L‘,p) = UJ(t,SL',p, (j) - ¢(t7x) - <]57p> (529)

has a global minimum at some point (£, Z, p) € [0,T) xIRY x A(I). We note that this implies
that p € 8ﬁ_w*(t_,£,ﬁ, d). Moreover, taking the supremum over p in (5.29), we have that
(t,x) — —¢(t,z) — w*(t,x,p,q) has a global minimum at (¢,Z). Since w* is a subsolution

of the dual equation, we get
_d)t + H*(ﬂi’> _D¢a _D2¢7ﬁ7 (7) 2 0

at (t,7), because p € 813_11)*({,:%,13, q). Whence inequality (5.28).

Conversely let us assume that w satisfies (ii). Let ¢ be a C? test function such that
(t,x) — w*(t,x,p,q) — H(t,r) has a maximum at some point (£,z) € (0,7) x RV for
some (p,q) € RI x A(J). Without loss of generality we can assume that this maximum
is a global one. Let p € d5w*(t,2,p,q). From the definition of w*, we also have that
(t,x,p) — (p,p) — w(t,z,p,q) — ¢(t,z) has a global maximum at (¢,z,p), i.e., (t,z,p) —
w(t,z,p,q) + ¢(t,x) — (P, p) has a global minimum at (¢, z,p). From (5.28) we get

_¢t +H(t_7'i7 _Déa _D2¢7ﬁ7Q) S 0 )

the desired inequality. O

Proof of Theorem 5.2 : Following standard arguments, one first checks that V*
and V'~ are globally Holder continuous, and uniformly Lipschitz continuous with respect
to p and ¢g. In order to prove other properties of the value functions, let us introduce an
extended differential game in IR"*?/. This game with asymmetric information and terminal

payoff is defined by the dynamics

dXs = b(s, X, us,vs)ds + o(s, Xs, us,vs)dBs, s € [t,T],
dZij,s - gij(‘g’XS:uS?Us)dsy (530)
X =z, Zijt = zij,

where (t,,2) € [0,T] x R" x R/, with 2 = (z;;), and the terminal §;;(z, z) = 2 + g;;(z).

We denote by V't and V'~ the upper and lower value of this game. We note that

VE(t 2, 2,p,9) = VE(L2,0,0) + D 2ijpic - (5.31)
]
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Following the proofs of Proposition 2.1, one can check that V+ and V~ are convex in p
and concave in ¢. Hence so are V™ and V~. As in Corollary 3.1 and Proposition 3.2, one

can also show that V™ is a dual supersolution of the HJ equation
Wy + H™ (t,x, 2, Dy w, D2w) =0

where, for (t,z,2z) € R"7 ¢, ¢ R", ¢, e R and A € S,,,

H™(t,x,2,6:,&, A) = sup,ey infuep{< b(t,z,u,v),& >
+3Tr(Ao(t, z, u,v)o*(t, x, u,v)) + > bt u,v)E 5t

while V' is a dual subsolution of the HJ equation
Wy + I:I+(t, z,2, Dy w, D2w) =0

where

HY(t,x,2,8,82, A) = infyey supyep{< b(t, z,u,v), & >
+3Tr(Ao(t, z, u,v)o*(t, x, u,v)) + > lig(tw,u,0)E 5}
Note that this is precisely at this point that the players have to use the new definition of
strategies. Indeed, in order to build their strategies in the sub- and superdynamic program-
ming, they have to compute the running costs Z;; (see the proof of Proposition 3.1). This
is possible since, at time s, they know the controls u. and v. and the trajectory X. up to
time s — d, and therefore can compute Z;; s = 2;; + fts lij (1, X7, Uz, v7)dT.

Using Lemma 5.3 one can then show that V'~ is a dual supersolution of the HJ equation
wy + H™ (t,z, Dw, D*w, p,q) = 0

where

H_(tal‘agaAvp) q) = SUPuev inquU{< b(tamvu)v)agz >
+%T7“(Aa(t, x,u,v)o*(t, z,u,v)) + Z” Cij(t, x,u,v)pig; }

while VT is a dual subsolution of the HJ equation
w; + HY(t, 2, Dw, D*w,p,q) =0

where
Ht(t,2,6,A,p,q) = infyey sup,ey{< b(t, =, u,v),& >
—l—%Tr(Aa(t, x,u,v)o*(t, z,u,v)) + ZM Cij(t, x,u,v)pig; }
Finally combining Isaacs’ assumption, which states that H := HT = H~, the fact that H

satisfies assumption (4.16) and the comparison principle shows that V' = V= is the unique
dual solution of (5.27). O
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6 Appendix : A maximum principle

The following result—used in a crucial way in the proof of the comparison principle—is an
adaptation to our framework of the maximum principle for semicontinuous functions (see

Theorem 3.2 of [9]):

Theorem 6.1 (Maximum principle) For k = 1,2, let Oy be open subsets of R™ and
wg : O x A(I) x A(J) — R be such that

(i) wi = wi(x,p,q) is upper semicontinuous in all variables, convex with respect to p and

uniformly Lipschitz continuous with respect to q,

(ii) wo = wa(y,p,q) is lower semicontinuous in all its variables, concave with respect to q

and uniformly Lipschitz continuous with respect to p,

(iii) there is some C? map ¢ : O1 x Oy — IR and some point (z,7) € O1 x O such that
the map

(z,y) — max {wi(z,p,q) —wa(y, p,q) — d(x,9)}

has a mazimum at (Z,7).

Then, for any € > 0, there are (p,q) € A(I) x A(J), (p,4) € Rf x R7 and (X1, X3) €
Sny, X Sp, such that the map

(x7y7p> Q) - wl(xvpa q) - UJQ(y,p, Q) - d)(xay)

has a mazimum at (Z,y,p,q),

p € 0y w3(y,,q), q € Iy wi(z,p.4), (6.32)
(—D26(z,9), X1) € D>~ wi(2,p,4), (Dyo(z,7), X2) € D>Fw3(y,p,q) (6.33)
and
1 ~X; 0
Copan)rs( %00 Vcaren 630
€ 0 X

with A = D?¢(z, 7).

Remark : Compared with the classical maximum principle, the additional difficulty
here is the fact that we need elements of D27_w§ and of D%+ wj while we have only infor-

mation on the behavior of the difference wi; — wo — ¢.
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Proof of Theorem 6.1 : We follow closely the proof of Theorem 3.2 of [9]. Let us
start by some reductions:
Reductions :  As in [9], we can assume without loss of generality that Op = R™,
Z=9y=0and ¢(z,y) = A(z,y).(z,y) and

z%?jiiq{wl(x7p’ Q) - ’UJQ(y,p, Q) - (b(.’l?, y)} =0. (635)

We can also assume that, for any (p',7') € A(I) x A(J),

if (Z,5,p,7) is a maximum point of w; — wy — ¢,

6.36
then (p', 7’) belongs to the interior of A(I) x A(J). (6.36)

Indeed, let us assume that Theorem 6.1 holds true under this additionnal assumption and

let us prove that it holds true without. Let

Z(:E?y)pv Q) = wl(mapv Q) - w?(yapv Q) - gb(x,y) .

Among the (p, q) for which z(z, 9, p, ¢) has a maximum, let us choose (pg, o) such that the
total number of indices ¢ and j for which (pg); = 0 or (go); = 0 is maximal. Let us denote
by I' and J’ the set of indices ¢ and j for which (pg); > 0 and (gp); > 0. We then define
wh, wh, 2, Py and g as the natural restriction of wy, wa, z, po and go to A(I') and A(J’).
We note that (z, 7, py, @) is a maximum point of z on R™ ™2 x A(I') x A(J’) and that
assumption (6.36) holds, since otherwise one would have a contradiction with the particular
choice of (po, qo)-

Using now Theorem 6.1 with assumption (6.36), we can build (7,7) € A(I') x A(J'),
¢ € ofwi(z,7,q), P’ € 0, wa(y,7,q) and (X1, Xs) € Spy X Sp, such that (6.32), (6.33)
and (6.34) hold. Then we extend (7',¢) to (p,q) € A(L) x A(J) by setting p; = p| for
i € I' and p; = 0 otherwise, and g; = g; for j € J' and ¢; = 0 otherwise. We also extend
¢ to ¢ € 9fwi(Z,p,q) and ¢’ to ¢ € Ofwi(%,p,q) by setting §; = M for j € J\J' and
pi = —M for i € I\I', where M is a Lipschitz constant of wy and wy with respect to ¢ and
p respectively. This defines p, g, ¢, p and (X1, X3) for which (6.32), (6.33) and (6.34) hold.

So it remains to prove that Theorem 6.1 holds true under the additional assumption
(6.36).

Step 1 : introduction of the inf- and supconvolutions. As in [9], we have

/

2y~ y?) < (At eA?) (). (2,9))

= z]?) — (w2 (v, p, q) — 5

(wl (l‘,’pv Q) - 9
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for any (z,2',y,9,p,q), where A = 1 + || A||. Let us set for X' € (0, \),

)\ /
w1 (x,p,q) = max w:z:',,/—fa:/—a:2——/— 2
1(@,p,q) m,emqu@m( 1@, p,q) = 5 "= 5 ld —dl)
and
bolgipa) = min(wnyspa) + 21—y + S — o)
y'eR"2, p'eA(I) 2 2

With these definition we have that 7 is semiconvex in all its variables with a modulus ),
semiconvex in  with a modulus A\ and convex in p (because wy is convex in p by assumption).
In the same way, w5 is semiconcave in all its variables with a modulus ), semiconvex in y

with a modulus A and concave in ¢ (because wy is concave in ¢ by assumption). Moreover

i1 (x,p, q) — W2y, p,q) — (A+€eA?)(z,y), (z,9)) <O V(z,4,p,9) . (6.37)

Since wy < w; and we > w9, there are some (p,q) such that equality holds in (6.37) at
(0,0,p,q). Furthermore, if equality holds at (0,0, p, q), then (0,0, p,q) is a maximum point
in (6.35) and assumption (6.36) states that (p, q) belongs to the interior of A(I) x A(J).

Step 2 : use of Jensen maximum principle. Let us now introduce some small pertu-

bation of the equation: for & > 0 and ¢ = ((z, Gy, (ps (g) € R+ e set

ze(z,y,p,q) = W1(x,p,q) — W2y, p,q) — (A+ eA?)(2,y).(z,y)
—a(|z)? + [y* + [p]* = 1q*) — (¢, (=,9,p,q)) -

Note that, because of the penalisation term a(|z|? + |y|?), for any n > 0, we can choose
7 small enough such that, for any ¢ such that |¢| < v, any maximum of z¢ is of the form
(x,y,p, q) for some (z,y) € B,.

Let 7 as above. Since zg is semiconvex, has a maximum at (0,0, p, ¢), Jensen maximum

principle (see Lemma A.3 of [9] for instance) states that the set

(2.5,p.q) € By x A(I) x A(J), 3¢, |¢] <, such that
E, = (i) 2z has a maximum at (x,y,p,q) and

(7i) 1w and wy have a derivative at (x,y,p, q)

has a positive measure. We note that in the quoted Lemma A.3, the maximum is required
to be strict ; this assumption is only used in [9] to localize the maximum points, which is

not needed here.
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We also note for later use that, if (z,y,p,q) € E, there is some ¢ = (g, {y, (p, () With
|| <~ such that z; has a maximum at (x,y,p,q). In particular, this implies that

ql - ?j)l((l),p, q/) - UAJQ(y,p, q/) + Oé|ql|2 - <C(I7q/>

has a maximum at ¢. Since Wy is concave in ¢, w; coincides with its concave hull with

respect to g at (z,p,q). Hence, if we set § = %ﬂ;pg)) then

iy (2, p, q) + 0} (2, p, ) = ¢.G and q € I (z,p, q) . (6.38)
In the same way, if we set p = %‘Z’p’q), then we have
wa(w,p, q) + W3y, p,q) = p-p and p € 95 w3 (x, . q) - (6.39)

Step 3 : measure estimate of a subset of E,. Let E’7 be the set of points (z,y, p, q) € E,
such that u?% has a second order Taylor expansion at (z, p, %—1’?(1‘, p,q)) and wj has a second
order Taylor expansion at (y, 8(9—12’)2(56, p,q),q)- Our aim is to show that £, has a full measure

in E,.

For this we note that E’7 = E% N Eg where

gl { (z,y,p,q9) € Ey , uﬁﬁ has a second order Taylor expansion }

by .
at (z,p, G2 (z,,9))
and
B2 { (,y,p,q) € E , w3 has a second order Taylor expansion }
c =

at (y, %2 (z,p,q), q)
It is therefore enough to show that E% and E% have a full measure in F,. We only do the
proof for E}/, the proof for Eg being symmetric.

Let us set, for any (z,y,p),

E\(z,y,p) ={q € A(J), (z,y,p,q) € By}

and
Ei(x,y,p) ={a € A(J), (z,y,p,9) € B}

Since E, has a positive measure, from Fubini Theorem we have to show that, for any (z,y, p)

such that the set E,(x,y,p) has a positive measure, the set E%(a:, y,p) has a full measure

iIl E’Y(‘T’y7p)‘
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For this, let us introduce the map ® : ¢ — %@’p’q) defined on E(z,y,p). We are going
to show that

1
V1,92 € By (2,y,p), |¢1 — 2| < %"I’((h) — @(q2)|, (6.40)
which will imply that

1

VE C E,(z,y,p) measurable, LY(E) < 2a)

LY(®(E)), (6.41)

where £7 denotes the Lebesgue measure in IR7. Then we will prove that (6.41) implies our

claim.

Proof of (6.40) : Let qi,q2 € Ey(z,y,p). There are (; and (» such that z;, has a
maximum at (z,y,p, qx) for k = 1,2. The first order optimality conditions imply that

8 0 ) )
D(qr) = U)Q(gqm — 2aqy + Cr g for k =1,2.

Using again the optimality of z¢, at ¢; and the fact that ¢ — w2(y,p, q) is concave, we have

w1 (z,p,q2) < Wi(z,p,q1) + ((%f’%) —20q1 + Cl,q> (2 —q) —alee —q1

‘ 2

2
< wz,p,q1) +(2(q1), (2 — 1)) —algz — ¢
Reversing the role of ¢; and g2 gives
@1 (z,p,q1) < 012, p, ¢2) + (@(a2), (01 — ¢2)) — g2 — @]

Adding the two previous inequalities then leads to

0 < (®(q2) — ®(q1))-(@1 — @2) — 2atlga — @1 |* .

Whence (6.40).

Proof of (6.41) : Let E be a measurable subset of E,(z,y,p). We note that (6.40)
states that ® is a bijection between E and its image, with a i—Lipschitz continuous inverse.

Hence
1

(2a)]

LI(B) = L1271 ((E))) < £l(e(E)),

i.e., (6.41) holds.

We finally show that E%(x, y,p) has a full measure in E,(z,y,p) for any (x,y,p) such
that E,(x,y,p) has a positive measure. Let F' be the set of (x,p,q) such that 121% has
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a second order Taylor expansion at (x,p,q). Since F has a full measure, for almost all
(x,p) € R™ x A(I), the set F(z,p) = {§ € R’ , (x,p,§) € F} has a full measure in
IR7. Let (z,p) be such a pair and such that E.(z,y,p) has a positive measure. Then
®(E,(x,y,p)) also has a positive measure from (6.41). Since ®(E,(x,y,p))\F(x,p) has a

zero measure and since

o~ (D(B,(z,y,p))\F(z,p)) = Ey(x,y,p)\E,(z,y,p) ,

using again (6.41) shows that Ew(a;,y,p)\E%(:v,y,p) has a zero measure. This completes

our claim.

Step 4 : (further) magic properties of sup-convolution. We now explain that one
can use second order Taylor expansions of ﬁ)ﬁ and w5 to get elements of DQ’_wg, DTy,
D*%w} and D% 1y

From our assumption (6.36), we know that, for € small enough, if (0,0, p, q) realizes the
equality in (6.37), then (p,q) belongs to the interior of A(I) x A(J). Hence we can find
a,y > 0 so small that, for any ¢ with |¢| < v, if (x,y, p, ¢) realizes the maximum of z, then
(p, q) belongs to the interior of A(I) x A(J).

Let us now fix v > 0 small enough and let us compute wii at (z,p, q) for (z,y,p,q) € E,’y
and ¢ = %ﬁ’p’q). We have

!/

A
+ *|CJ” - q/|2) - wl(:l:/apv q”)) (642)

I .2
n (¢.q+ = Iw x| 5

Wt (z,p, ) =

//77

From (6.38), we have that w;(x, p, q) —Hbg(x,p, jg) =gq.Ggand q € 8+w1(x p,q). In particular,
¢’ = ¢ is a minimum point in (6.42). Since ¢ belongs to the interior of A(J), the optimality
conditions imply that, if (z/,¢,¢”) is a minimum of (6.42), then ¢ = ¢” — %cj Therefore

D@, p.d) = — gl + ming g (g7 — w2’ p.g") + 3|
= — Lg% + ming (wh (2, p, §) + 22’ — 2f?)

o~ af?)

In particular, ¢” € 3;11}1( ,D,q), which shows that

q+ Nq € 9w Y@+ E/N D, Q) (6.43)

Moreover, x — uﬁﬁ (a: p,q) is equal, up to a constant, to the inf-convolution of w’i with
respect to x. Since wl has a second order Taylor expansion in z at such a point (z,p, ¢), the
classical “magic properties” of inf-convolution (see Lemma A .4 of [9]) state that 2’ = z+&/\
and

(D} (x, p, §), D*i} (x,p, ) € D> wh(x + /A, p,q) - (6.44)
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where £ = Dﬁ)g(x,p, q).

Following [1] we also note that for any 2’ close to z, we have

wl(xlvpv q) g q(j - wl(xlvpa (j) = wl(x7p7 (j) + wg('xapa (j) - wﬁl(xlvpa (j)

because w1 (x, p,q) + wg(x,p, 4) = q.4. Since w§ has a second order Taylor expansion at x,

this gives
— (D} (x,p, §), D*w} (2, p, 4)) € D>y (x,p,q) - (6.45)
In a symmetric way, if (z,y,p,q) € £, and p = %@’p’q), then
(D@3 (y, b, q), D*W3(y. . q)) € D> Twi(y +&/X By q) , (6.46)
where £ = Dw3(y, p, q),
b P € O wily + €/A b0 (6.47)
and
— (D@3 (y. b, q), D*w3(y, p,q)) € D>~ a(y.p,q) - (6.48)

Step 5 : conclusion. From the previous steps, we know that the set E; defined in step
3 has a positive measure for any «, « > 0 sufficiently small. Hence we can find sequences
N — 400, Qn, Yo — 07, ¢ = (C2CysCpr ) — 0, (Tn, Yn, Pn, gn) converging to some
(0,0,p,q) such that (zn,Yn,pn,qn) € E. and such that the map 2z, has a maximum at
(Zn, Yns P, Gn)-

Let us set ( ) ( )
. OW2(Y,pns dn . 01 (Z P, qn
— NS P~ = - 7 649
DPn ap 5 Adn aq s ( )
(€0, XT) = (D@ (20, Py Gn) s D20} (20, Py Gn))
and

(ggan) = (Dw;(ymﬁmQn)aDQw;(ymﬁan)) .

From (6.43) and (6.47) we have

1 7) ~
n € (%J_wji(x” + 5711/)‘717117 Qn) . (6.50)

1 . R
Pn + 37 Pn € 813 wQ(yn + gg/kapm QTL) and qn + /\T
n

An
From (6.45) and (6.48) we have
(&, XT) € D27+w1(xmpn7Qn) and — (&, X5) € DZ_wQ(xmpnaQn) )

Since furthermore (z,y) — 2¢, (¢, Y, Pn, ¢n) has a maximum at (2, Yn, Pn, ¢n), the first and

second order optimality conditions imply that
(€1 €5) = (A + eA?) (@, yn) + 20m (0, ym) + (¢ C) (6.51)
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and

-X7 0
<1 + ||A||) I< ! < A+ eA? + 20,1 (6.52)
€ 0 Xy

The left-hand side inequality is due to the fact that w; and ws are semiconvex and semi-
concave w.r. to z and y respectively with a modulus A = 1 +[|4||. Using (6.44) and (6.46)

gives
(€, XT) € D" wh(wn + E1/N ny ) and (€5, X3) € D> Fwi(y + €5 /N bnyqn)  (6.53)

We now note that (X7'), (X%), (pn) and (G,) are bounded. For (X7, (X¥) this is an
obvious consequence of (6.52). For (p,) and () this comes from (6.49), from the Lipschitz
continuity assumption of we and w; with respect to p and ¢ respectively and from the
definition of w; and ws.

We now let n — +o00. From (6.51), we have &7, &5 — 0. We can assume that (P, Gn) —

(»,q), X" — X7 and XJ — Xo. Then we have from (6.50), (6.53) and (6.52) that:

p € 05 w3(0,5,g) and 7 € 9 wi(0,5,9) ,

(OaXl) € D2’7wg(07p7 (?) and (OaXQ) € DQHFU}T(Ovpa 6.7)

-X1 0
<1+||A|])I§ ! <A+eA?,
€ 0 Xy

and
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