Université de Brest Licence 3: PMRC Analyse Année 2019-2020

Devoir Maison

Partie 1 à rendre pour le mercredi 04 Mars, partie 2 à rendre pour le 25 Mars.

Sur l'optimisation dans les espaces de Hilbert

Soit $(H, \langle \cdot, \cdot \rangle)$ un espace de Hilbert sur \mathbb{R} , de norme associée $||\cdot||$. On considère sur H une fonctionnelle quadratique:

$$\begin{array}{cccc} J: & H & \to & \mathbb{R} \\ & x & \mapsto & \frac{1}{2}a(x,x) - f(x) \end{array}$$

c'est à dire où

$$a: H \times H \to \mathbb{R}$$

est une forme bilinéraire symétrique continue et

$$f: H \to \mathbb{R}$$

est une forme linéaire continue. On supposera de plus que J est elliptique, c'est à dire il existe $\alpha>0$ tel que

$$\forall x \in H, \ a(x,x) \ge \alpha ||x||^2.$$

Le but de cet exercice est de démontrer le théorème d'optimisation suivant:

Théorème 1. Soit C une partie convexe, fermée et non vide de H et $J \in \mathcal{L}(H,\mathbb{R})$ une fonctionnelle quadratique elliptique. Alors il existe un unique $x_0 \in H$ vérifiant

$$x_0 \in C$$
 et $J(x_0) = \inf_{x \in C} J(x)$.

Ce théorème est un outil fondamental en optimisation, et prouve l'existence et l'unicité d'une solution au problème de *minimisation avec contrainte convexe*:

$$(\mathcal{P})$$
 trouver $x_0 \in C$ tel que $J(x_0) = \inf_{x \in C} J(x)$.

On commencera par établir un résultat de projection dans les Hilbert.

1. Projection sur un convexe fermé

Soit $C \subset H$ non-vide, convexe et fermée, et soit $x \in H$. On rappel que la distance de x à C est définie par

$$d(x,C) = \inf_{y \in C} ||x - y||.$$

On va montrer:

Théorème 2. Il existe un unique $P_C(x) \in C$ tel que

$$d(x,C) = ||x - P_C(x)||.$$

On commence par montrer l'unicité. Supposons trouvé $p \in C$ tel que d(x,C) = ||x-p||.

Q 1) Montrer que pour tout $y \in C$, pour tout $t \in]0,1[$, on a

$$||x-p||^2 \le ||x-(ty+(1-t)p)||^2.$$

Q 2) En déduire que pour tout $y \in C$,

$$(1) \langle x - p, y - p \rangle \leq 0.$$

Q 3) Supposons trouvé un deuxième élément $p' \in C$ tel que d(x,C) = ||x-p'||. Montrer que

$$||p - p'||^2 = \langle p - x, p - p' \rangle + \langle x - p', p - p' \rangle.$$

- Q 4) À l'aide de (1), en déduire que p=p'. Conclure l'unicité dans le Théorème 2. On démontre maintenant l'existence. Soit $\gamma=d(x,C)$.
 - Q 5) Montrer l'existence de $P_C(x) \in C$ réalisant la distance de x à C dans le cas $\gamma = 0$.
 - Q 6) On suppose $\gamma > 0$. Montrer qu'il existe une suite $(y_n)_{n \in \mathbb{N}}$ d'éléments de C telle que

$$\forall n \in \mathbb{N}^*, \ \gamma^2 \le ||x - y_n||^2 < \gamma^2 + \frac{1}{n}.$$

- Q 7) Montrer que $(y_n)_{n\in\mathbb{N}}$ est de Cauchy.
- Q 8) Montrer que $(y_n)_{n\in\mathbb{N}}$ admet une limite l dans C qui vérifie d(x,C)=||x-l||. Conclure.

2. Preuve du théorème 1

On reprend les notations et les hypothèses du théorème 1. On va démontrer le Théorème 1. On pourra utiliser les résultats de la section précédente.

- Q 9) Montrer que a défini un produit scalaire sur H.
- Q 10) Montrer qu'il existe $\beta > 0$ tel que pour tout $x \in H$,

$$|a(x,x)| \le \beta ||x||^2.$$

- Q 11) Montrer que la norme associée à a et la norme $||\cdot||$ sont équivalentes.
- Q 12) En déduire qu'il existe un unique $c \in H$ tel que pour tout $x \in H$,

$$f(x) = a(c, x).$$

 \mathbf{Q} 13) Conclure la preuve du Théorème 1.