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Abstract. We study for the first time linear response for random com-
positions of maps, chosen independently according to a distribution P.
We are interested in the following question: how does an absolutely
continuous stationary measure (acsm) of a random system change when
P changes smoothly to Pε? For a wide class of one dimensional ran-
dom maps, we prove differentiability of acsm with respect to ε; more-
over, we obtain a linear response formula. We apply our results to iid
compositions, with respect to various distributions Pε, of uniformly ex-
panding circle maps, Gauss-Rényi maps (random continued fractions)
and Pomeau-Manneville maps. Our results yield an exact formula for
the invariant density of random continued fractions; while for Pomeau-
Manneville maps our results provide a precise relation between their
linear response under certain random perturbations and their linear re-
sponse under deterministic perturbations.
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1. Introduction

Existence and stability of absolutely continuous invariant measures1 are
main ingredients to study statistical properties of chaotic dynamical sys-
tems. In particular, a question that is interesting from both theoretical and
applied point of views is how does an absolutely continuous invariant mea-
sure change, and consequently the statistical properties of the system, if the
original system changes slightly?

It is known that for certain perturbations of deterministic dynamical sys-
tems one can prove that the measure changes smoothly and obtain a formula
for the derivative, called the linear response formula. Linear response for
deterministic dynamical systems has been pioneered2 by Ruelle [32] followed
by Dolgopyat [16] and Baladi [5] among others [4, 7, 9, 10, 11, 12, 16, 20, 25].
For numerical results on linear response see [3, 30]. Negative results, where
linear response does not hold are also known [5, 6, 9]. For progress in this
direction of research see the survey article [6] and the recent articles [8, 22].

However, to the best of our knowledge there are no results in the litera-
ture on linear response for random compositions of maps. Our goal in this
paper is to pioneer this direction and to provide a new point of view for
perturbations in the random setting. Indeed, in this work we study linear
response for random compositions of maps, chosen independently according
to a distribution P. We are interested in the following question: how does
an absolutely continuous stationary measure (acsm) of a random system

1In this paper we focus on absolutely continuous invariant measures since they naturally
fit with the systems we consider. In particular, for the systems we consider, absolutely
continuous invariant measures are the so-called physical measures, the ones that provide
information for a large set of initial conditions.

2See [24] for earlier related work.
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change when P changes smoothly to Pε? For a wide class of one dimen-
sional random maps, we prove differentiability of acsm with respect to ε;
moreover, we obtain a linear response formula. We apply our results to
iid compositions of uniformly expanding circle maps, to iid compositions of
the Gauss-Rényi maps and to iid compositions of Pomeau-Manneville maps.
The latter family models intermittent transition to turbulence and is of cen-
tral interest for both mathematicians [15, 17, 19, 21, 26, 27, 28, 33, 35] and
physicists [31], while the former family provides fundamental links between
ergodic theory and number theoretic questions [13, 14, 23]. Indeed, for the
Gauss-Rényi maps we use our results to approximate the invariant density
governing the statistics of random continued fractions by the well known
invariant density of the Gauss map, 1

log 2
1

1+x , and its linear response with

respect to a Bernoulli distribution (see subsection 5.3 for more details; in
particular (31)). In the case of Pomeau-Manneville maps we show that the
linear response with respect to a family of uniform distributions converg-
ing to a Dirac δα0-distribution, α0 ∈ (0, 1), amounts to half of the linear
response with respect to deterministic perturbations (see subsection 5.5).

The paper is organised as follows. In Section 2 we study iid compositions
of piecewise uniformly expanding, piecewise C3 and onto interval maps.
Under suitable assumptions on Pε we prove differentiability of the stationary
density as an element of C1. Our main result in this section is Theorem 2.3.
In Section 3 we study random dynamical systems whose constituent maps
are non-uniformly expanding. For this purpose we introduce an inducing
scheme and obtain an induced random dynamical system which satisfies
the assumptions of Section 2. We relate the stationary densities of the
induced random system to the original one and prove differentiability of the
stationary density of the original random system as an element of a weighted
C0-norm. Our main result in this section is Theorem 3.4. In Section 4
we obtain linear response formulae for the systems studied in Sections 2
and 3 when the map ε 7→ Pε is a distribution of order one. Moreover, we
provide several examples of natural families where ε 7→ Pε is a distribution
of order one. Section 5 contains several examples of families of maps and
distributions that satisfy the conditions of Sections 2 and 3 respectively. In
particular, it contains examples that studies iid compositions of the Gauss-
Rényi maps, an approximation of the invariant density of random Gauss-
Rényi maps (see equation (31)), random compositions of Pomeau-Manneville
maps chosen in an iid fashion according to a family of smooth distributions
Pε, and random compositions of Pomeau-Manneville maps chosen in an iid
fashion according to a family of uniform distributions Pε converging to a
Dirac δ-distribution. Section 6 is an appendix which contains facts about
distributions of order one, a proof of linear response for Markov operators
with a uniform spectral gap, and a proof of a uniform spectral gap on Ci,
i = 1, 2, for the transfer operators associated with the systems studied in
Section 2.
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2. Piecewise uniformly expanding random dynamical systems

In this section we introduce a class of (family of) random dynamical
systems whose constituent maps are uniformly expanding, with a finite or
countable number of branches, for which we will be able to prove a linear
response formula.

2.1. A class of uniformly expanding maps. Let X be a compact in-
terval, and m be the normalized Lebesgue measure on X. Let (Ω,P) be a
probability space. Let Tω : X → X, ω ∈ Ω be a family of maps such that for
each ω ∈ Ω, there exists a finite or countable set Zω and a partition (mod 0)
of X into open intervals Xz,ω, z ∈ Zω such that the restriction of Tω to Xz,ω

is C3 and onto. We denote by gz,ω the inverse branches of Tω on Xz,ω. For
convenience we take the same labelling set Z for all the ω’s. Since all the
maps have finite or countable number of branches this is always possible by
introducing empty branches gz,ω whenever z and ω are not compatible. In
all the sums over z that will appear we will not count these empty branches.

2.2. Stationary measure of the Markov process. We study the random
dynamical system defined by the i.i.d. composition of maps Tω, with ω
distributed according to P. The random dynamical system induces a Markov
process with transition kernel

p(x,A) =

∫
Ω

1A(Tω(x))dP(ω).

We say that a measure µ on X is stationary if for any measurable A ⊂ X∫
X
p(x,A)dµ(x) = µ(A),

or equivalently, for any φ : X → R measurable and bounded,∫
X

∫
Ω
φ ◦ Tω(x)dP(ω)dµ(x) =

∫
φ(x)dµ(x).

For φ ∈ L∞(X) and Φ ∈ L1(X) we have∫
X

∫
Ω
φ ◦ TωΦdP(ω)dm =

∫
Ω

∫
X
φ ◦ TωΦdmdP(ω)

=

∫
Ω

∫
X
φLTωΦdmdP(ω)

=

∫
X
φ

∫
Ω
LTωΦdP(ω)dm,

where LTω is the transfer operator associated with the map Tω, defined by

LTωΦ =
∑
z∈Z

Φ ◦ gz,ω · |g′z,ω|.

We set

LPΦ :=

∫
Ω
LTωΦdP(ω).

In particular, any stationary measure µ absolutely continuous with respect
to m, with density h, satisfies

LPh = h.
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LP is called the transfer operator of this random dynamical system.

2.3. The perturbed random system. Let Pε be a family of probability
measures on Ω. We are interested in studying the change in the statistical
behaviour of the random system3 (Ω, {Tω},Pε) as ε changes in a neighbor-
hood V of 0. The transfer operator of the perturbed system is denoted by
LPε . We assume:

(A1) there exists D̃ > 0 such that∣∣∣∣g′z,ω(x)

g′z,ω(y)
− 1

∣∣∣∣ ≤ D̃|x− y| (1)

for any x, y ∈ X, z ∈ Z and ω ∈ Ω. Moreover, there exists M > 0
independent of ε such that for i = 2, 3 we have

sup
ε∈V

∑
z∈Z

sup
x∈X

∫
Ω
|g(i)
z,ω|dPε(ω) ≤M. (2)

(A2) There exists β ∈ (0, 1) such that sup
ω∈Ω

sup
z∈Z

sup
x∈X
|g′z,ω(x)| ≤ β.

Proposition 2.1. Under assumptions (A1)-(A2), for each ε ∈ V the op-
erators LPε has a uniform spectral gap on C1 and C2. In particular, the
random dynamical system (Ω, {Tω},Pε) admits a unique stationary density
hε ∈ C2.

We postpone the proof of Proposition 2.1 to the appendix.

Remark 2.2. Assumptions (A1) and (A2) are only needed to insure a uni-
form spectral gap of Lε on C1 and the uniqueness of the stationary density
hε ∈ C2. It may be possible to prove such properties under a different set
of conditions. Thus, to keep the exposition about linear response as gen-
eral as possible, we do not assume conditions (A1)- (A2) below. Instead, in
condition B, we assume that LPε has a uniform spectral gap on C1 and the
existence of a unique of the stationary density hε ∈ C2.

Assumption B Assume that LPε admits a uniform spectral gap on C1.
Moreover, assume that the random dynamical system (Ω, {Tω},Pε) admits
a unique stationary density hε ∈ C2.

For each z ∈ Z, and Φ ∈ L1(X), let

ψz(ε, x) =

∫
Ω

[Φ ◦ gz,ω|g′z,ω|](x)dPε(ω). (3)

• For Φ = h0 ∈ C2 we assume that the partial derivatives ∂εψz(ε, x),
∂xψz(ε, x), ∂x∂εψz(ε, x), ∂ε∂xψz(ε, x) exist and jointly continuous in

3 A common way to have a parameter dependent random system is also when the
system consists of a fixed probability space (Ω,P) and a parametrized family of maps
Tω,ε, ω ∈ Ω, ε ∈ V .

This situation can be represented in our framework, with the new probability space
Ω× V and the probability measure Pε = P⊗ δε.
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(ε, x) on X × V . Hence, ∂ε∂xψz(ε, x) = ∂x∂εψz(ε, x). Moreover we
assume that for i = 0, 1 we have∑

z∈Z
sup
ε∈V

sup
x∈X
|∂εψ(i)

z (ε, x)| <∞, (4)

where ψ
(0)
z = ψz and ψ

(1)
z = ∂xψz.

• In addition, we assume that for any Φ ∈ C1, ψz(ε, x) and ∂xψz(ε, x)
exists and are jointly continuous. Moreover, for i = 0, 1 we assume
that ∑

z∈Z
sup
ε∈V

sup
x∈X
|ψ(i)
z (ε, x)| <∞. (5)

Theorem 2.3. Let (Ω, {Tω},Pε) be a family of random dynamical systems
as described above. Under assumption B, the density hε of the stationary
measure is differentiable as a C1 element at ε = 0, that is there exists
h∗ ∈ C1 such that

‖hε − h0

ε
− h∗‖C1 → 0. (6)

In addition, the following linear response formula holds4:

h∗ := (I − LP0)−1∂εLPεh0|ε=0, (7)

where

∂εLPεh0|ε=0 = ∂ε
∑
z∈Z

∫
Ω

[h0 ◦ gz,ω|g′z,ω|]dPε(ω).

Proof. Under assumption B, we verify in a series of lemmas below that the
operators LPε satisfy the assumptions5 of Proposition 6.2. �

Lemma 2.4. The map ε 7→ LPεh0 is differentiable at ε = 0 as a C1 element.

Proof. We consider the maps ψz defined in Assumption B with Φ = h0 ∈ C2

(by Lemma 2.1). Since LPεh0 =
∑

z ψz(ε) it suffices to show that
(i) for each z ∈ Z, the map ε ∈ V 7→ ψz(ε) ∈ C1(X) is differentiable;
(ii) the series

∑
z∈Z supε∈V ‖∂εψz‖C1(X) <∞.

We only prove (i) since (ii) follows from (4).
By the commutation relations given by the first item of assumption B we

have

∂εψz(ε)
(i) = (∂εψz(ε))

(i), i = 0, 1 (8)

and these are continuous functions on X × V .

Let v ∈ V and ε be small. We have

‖ψz(ε+ v)− ψz(v)− ε(∂ζψz(ζ)|ζ=v)‖C1(X) =

1∑
i=0

‖ψ(i)
z (ε+ v)− ψ(i)

z (v)− ε(∂ζψ(i)
z (ζ)|ζ=v)‖∞.

(9)

4Explicit linear response formulae will be derived in Section 4.
5Proposition 6.2 provides general conditions to obtain linear response for systems whose

Markov operators admit a uniform spectral gap on some Banach space.
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For each x, by the mean value theorem, there exists tix,ε such that ψ
(i)
z (ε+ v, x)−

ψ
(i)
z (v, x) = ε∂ζψ

(i)
z (ζ, x)|ζ=tix,ε , with |tix,ε − v| < ε. Therefore, by the joint

continuity,

(9) ≤ |ε|
1∑
i=0

sup
x∈X
|∂ζψ(i)

z (ζ, x)|ζ=tix,ε − ∂ζψ
(i)
z (ζ, x)|ζ=v| = o(ε).

�

Lemma 2.5. For any φ ∈ C1, the map ε 7→ LPεφ is continuous at ε = 0 as
a C1 element.

Proof. We consider the maps ψz defined by (3) with a general Φ ∈ C1. Since
LPεΦ =

∑
z ψz(ε) it suffices to show that

(i) for each z ∈ Z, the map ε ∈ V 7→ ψz(ε) ∈ C1(X) is continuous;
(ii) the series

∑
z∈Z supε∈V ‖ψz‖C1(X) <∞.

We only prove (i) since (ii) follows from (5).
Let v ∈ V and ε be small. We have

‖ψz(ε+ v)− ψz(v)‖C1(X) =

1∑
i=0

‖ψ(i)
z (ε+ v)− ψ(i)

z (v)‖∞ = o(ε) (10)

by joint continuity. �

3. Random dynamical systems with an inducing scheme

3.1. Family of maps. Let X = [0, 1] and ∆ a closed subinterval of X.
We consider a finite number ` ≥ 1 of one-parameter families of maps. The
parameter of the kth family is defined on a compact interval Ik ⊂ R (we
allow the possibility of Ik to be reduced to a single point) k = 1, ..., `. For
each k and u ∈ Ik the map Tk,u : X → X is piecewise C1 with a finite or
countable number of monotonic full branches. Let Pk,u be the partition of
monotonicity intervals of Tk,u. We assume that ∆ is a union of elements of
Pk,u for all k, and u ∈ Ik. Let N in and Nout be two disjoint copies of N.
We enumerate the branches of Tk,u starting from ∆ with N in and the others
with Nout.

Let LTk,u denote the transfer operator associated with Tk,u, which is de-
fined by

LTk,u(φ)(x) =
∑

Tk,u(y)=x

φ(y)
1

|T ′k,u(y)|
.

For convenience and the purpose of inducing, to keep track of the family
k we add it into the label of the branch. Let Sin = {1, . . . , `} × N in,
Sout = {1, . . . , `} ×Nout, and let S = Sin ∪ Sout be the new labelling set.

When s and k are compatible, that is the first coordinate of s is k, we
denote by gs,k,u the inverse of the sth branch of Ts,k,u. Then LTk,u reads

LTk,u(φ) =
∑
s∈S

φ ◦ gs,k,u · |g′s,k,u|, (11)

where we ignore, here and in the rest of the paper, terms that correspond
to non compatible s and k.
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3.2. Stationary measure of the Markov process. Let Ω = {1, . . . , `}×
R. Let P be a probability measure on Ω, supported on ∪`k=1{k} × Ik. Let
π be the marginal measure of P on {1, . . . , `} and ηk be the conditional
measure of P on {k}× Ik. We study the random dynamical systems defined
by the i.i.d. composition of maps Tω, with ω distributed according to P. The
random dynamical system induces a Markov process with transition kernel

p(x,A) =

∫
Ω

1A(Tω(x))dP(ω).

We say that a measure µ on X is stationary if for any measurable A ⊂ X∫
X
p(x,A)dµ(x) = µ(A),

or equivalently, for any φ : X → R measurable and bounded,∫
X

∫
Ω
φ ◦ Tω(x)dP(ω)dµ(x) =

∫
φ(x)dµ(x).

For φ ∈ L∞(X) and ψ ∈ L1(X) we have∫
X

∫
Ω
φ ◦ TωψdP(ω)dm =

∫
Ω

∫
X
φ ◦ TωψdmdP(ω)

=

∫
Ω

∫
X
φLTωψdmdP(ω)

=

∫
X
φ

∫
Ω
LTωψdP(ω)dm

We set

LPψ :=

∫
Ω
LTωψdP(ω).

In particular, any stationary measure µ absolutely continuous with respect
to m, with density h, satisfies

LPh = h.

LP is called the transfer operator of this random dynamical system.

3.3. Examples of random systems. To illustrate the construction in
Subsection 3.1, we provide the following two examples6:

Example 3.1 (Gauss-Rényi). Let G and R be respectively the Gauss and
Rényi transformations on the unit interval. Recall that G(x) = 1/x mod 1
and R(x) = 1/(1 − x) mod 1. The random system consists of choosing
randomly the Gauss and the Rényi map, with respective probabilities p and
1 − p, with p ∈ [0, 1]. We model this example with ` = 2, I1 = I2 = {0},
T1,0 = G, T2,0 = R, π1 = p, π2 = 1 − p which determines P. This random
dynamical system is used to study random continued fractions [23].

Example 3.2 (Pommeau-Manneville). Let [α0, α1] ⊂ (0, 1). For α ∈ [α0, α1]
a map Tα is defined by:

Tα(x) =

{
x(1 + 2αxα) x ∈ [0, 1

2 ]

2x− 1 x ∈ (1
2 , 1]

.

6Later in Section 5 we will show that the random systems in both examples admit
linear response for suitable perturbations of P.
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The random system consists of choosing randomly the parameter α with
probability η, supported on [α0, α1]. We model this example with ` = 1,
I1 = [α0, α1], T1,α = Tα, π1 = 1, η1 = η which determines P.

3.4. An inducing scheme and assumptions. Given ω̂ ∈ ΩN, we write
Tnω̂ := Tωn−1 ◦ · · · ◦ Tω1 ◦ Tω0 : X → X. For ω̂ ∈ ΩN we define T̂ω̂ as the first
return map under the orbit of Tnω̂ to ∆; i.e., for x ∈ ∆

T̂ω̂(x) = T
Rω̂(x)
ω̂ (x),

where
Rω̂(x) = inf{n ≥ 1 : Tnω̂ (x) ∈ ∆}.

Let Z be the set of finite sequences of the form z = z0z1 . . . zn, where z0 ∈ Sin
and zi ∈ Sout for i = 1, . . . , n and n ∈ N. We denote by |z| = n + 1
the length of the word z ∈ Z. We set gz,ω = gz0,ω0 ◦ gz1,ω1 ◦ · · · ◦ gzn,ωn .

Then for x ∈ X we have Tn+1
ω̂ ◦ gz,ω̂(x) = x. For each ω̂, the cylinder

sets gz,ω̂(∆), form a partition of ∆ (mod 0). Note that on gz,ω̂(∆) we
have Rω̂(·) = n + 1. We assume that the maps (∆, {Tω̂}ω̂∈ΩN) satisfy the
assumptions in Subsection 2.1: piecewise C3 and piecewise onto.

3.5. An induced random dynamical system. Let Ω̂ = ΩN and P̂ = PN.
We study the random dynamical system defined by the i.i.d. composition
of maps T̂ω̂, with ω̂ distributed according to P̂. Following the framework of
Subsection 2.2, for Φ ∈ L1(∆), the transfer operator of this induced random
system is given by

L̂P̂Φ =

∫
Ω̂
L̂ω̂ΦdP̂(ω̂) =

∑
z∈Z

∫
Ω̂

Φ ◦ gz,ω̂|g′z,ω̂|dP̂(ω̂), (12)

where L̂Tω̂ is the transfer operator associated with T̂ω̂. Notice that L̂P̂
reduces to

L̂P̂Φ =
∑
z∈Z

∫
Ω

Φ ◦ gz,ω|g′z,ω|dP(ω).

The density ĥ of any absolutely continuous stationary measure µ̂ of the
induced random system satisfies

L̂P̂ĥ = ĥ.

3.6. Unfolding the density of the induced random dynamical sys-
tem. For Φ ∈ L1(∆), let FP(Φ): X → R be defined by

FP(Φ) := 1∆Φ + (1− 1∆)
∑
z∈Z

∫
Ω̂

Φ ◦ gz,ω̂|g′z,ω̂|dP̂(ω̂). (13)

Note that FP is a linear operator. In the next lemma we show that if ĥ is a
stationary density for the induced random system then FPĥ is a stationary
density (up to normalization7) for the original one discussed in Subsection
3.2.

Proposition 3.3. Let ĥ ∈ L1(∆) be such that L̂P̂ĥ = ĥ. Then LP(FPĥ) =

FPĥ.

7Working with un-normalized densities keeps the operator FP linear.
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Proof. Using the expression (11) for LP we get

LPFPĥ =

∫
Ω
LTωFĥdP(ω)

=
∑
s∈Sin

∫
Ω

(Fĥ) ◦ gs,ω · |g′s,ω|dP(ω) +
∑
s∈Sout

∫
Ω

(Fĥ) ◦ gs,ω · |g′s,ω|dP(ω)

=
∑
s∈Sin

∫
Ω
ĥ ◦ gs,ω · |g′s,ω|dP(ω)

+
∑
s∈Sout

∫
Ω

∑
z∈Z

(∫
Ω̂
ĥ ◦ gz,ω̂ · |g′z,ω̂|dP̂(ω̂)

)
◦ gs,ω · |g′s,ω|dP(ω)

= (I) + (II).

The expression (II) can be rewritten,∑
z∈Z

∑
s∈Sout

∫
Ω|z|+1

(
ĥ ◦ gz,ω0...ω|z|−1

· |g′z,ω0...ω|z|−1
|
)
◦gs,ω|z| ·|g

′
s,ω|z|
|dP|z|+1(ω0 . . . ω|z|)

Therefore, by using the fact that for any n ∈ N, (ω0, . . . , ωn, ω) (under P̂×P)

has the same distribution as ω0 · · ·ωn+1 under P̂,

(II) =
∑

z∈Z,|z|≥2

∫
Ω̂
ĥ ◦ gz,ω̂ · |g′z,ω̂|dP̂(ω̂).

Finally,

(I) + (II) =
∑
z∈Z

∫
Ω̂
ĥ ◦ gz,ω̂ · |g′z,ω̂|dP̂(ω̂).

Therefore, on ∆, LPFPĥ is equal, by (12), to L̂P̂ĥ = ĥ = FPĥ, and outside

∆ it is equal to FPĥ by definition. �

3.7. The perturbed random system. Let Pε be a family of probability
measures on Ω, supported on ∪`k=1{k}× Ik. Let V be a neighbourhood of 0.
Let πε be the marginal measure of Pε on {1, . . . , `} and ηk,ε be the conditional
measure of Pε on Ik×{k}. As in Subsection 2.3, we are interested in studying
the change in the statistical behaviour of the random system (Ω, {Tω},Pε)
as ε changes. We assume that L̂P̂ε admits a uniform spectral gap on C1.

Moreover, assume that the random dynamical system (Ω̂, {T̂ω̂}, P̂ε) admits

a unique stationary density ĥε ∈ C2. By Proposition 3.3, the stationary
densities of the original random system (Ω, {Tω̂},Pε) and the induced one

(Ω̂, {T̂ω̂}, P̂ε) are related by8

hε = FPε(ĥε). (14)

Let H denote the set of continuous functions on (0, 1] with the norm

‖ f ‖H= sup
x∈(0,1]

|xγf(x)|,

8Note that hε is un-normalized. When hε is integrable; i.e., when the random system
preserves a probabilistic acsm, once the derivative of hε is obtained, the derivative of
the normalized density can be easily computed. Indeed, if hε = h + εh∗ + o(ε), then∫
hε =

∫
h+ ε

∫
h∗ + o(ε). Thus, ∂ε(

hε∫
hε

)|ε=0 = h∗ − h
∫
h∗.
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for a fixed γ ≥ 0. When equipped with the norm ‖ · ‖H, H is a Banach
space. For each z ∈ Z, and Φ ∈ L1(X), let

ψ̂z(ε, x) =

∫
Ω̂

[Φ ◦ gz,ω̂|g′z,ω̂|](x)dP̂ε(ω̂). (15)

In Theorem 3.4 below we prove the differentiability, at ε = 0, of ε 7→ hε as
an element of H under the following set of conditions:

• For Φ = ĥ0 ∈ C2 we assume that the partial derivatives ∂εψ̂z(ε, x),

∂xψ̂z(ε, x), ∂x∂εψ̂z(ε, x), ∂ε∂xψ̂z(ε, x) exist and are jointly continu-

ous on ∆×V , whence, satisfy the commutation relation ∂ε∂xψ̂z(ε, x)

= ∂x∂εψ̂z(ε, x). For any Φ ∈ C1, ψ̂z(ε, x) and ∂εψ̂z(ε, x) exist and
are jointly continuous on (0, 1] × V . Moreover we assume that for
i = 0, 1 we have∑

z∈Z
sup
ε∈V

sup
x∈∆
|∂εψ̂(i)

z (ε, x)| <∞, (16)

where ψ̂
(0)
z = ψ̂z and ψ̂

(1)
z = ∂xψ̂z.

• For Φ ∈ C1, ψz(ε, x) and ∂xψz(ε, x) exists and are jointly continuous.
Moreover, for i = 0, 1 we assume that∑

z∈Z
sup
ε∈V

sup
x∈∆
|ψ̂(i)
z (ε, x)| <∞. (17)

• For any Φ ∈ C0, we assume that∑
z∈Z

sup
ε∈V
‖ψ̂z(ε, ·)‖H <∞. (18)

• For Φ = ĥ0 ∈ C2 we assume that∑
z∈Z

sup
ε∈V
‖∂εψ̂z(ε, ·)‖H <∞. (19)

Theorem 3.4. Let (Ω, {Tω},Pε) be a family of random dynamical systems
defined as in Subsection 3.7. Then

(1) there exists h∗ ∈ H such that

lim
ε→0
||hε − h0

ε
− h∗||H = 0;

i.e., hε is differentiable as an element of H with respect to ε at ε = 0.
(2) In particular, if the conditions (18) and (19) hold for γ < 1 in the

definition of H, then

lim
ε→0
||hε − h0

ε
− h∗||1 = 0.

Remark 3.5. An explicit formula of the derivative h∗ is given in Section 4.

Proof. (of Theorem 3.4) Assumptions (16) and (17) state that the induced

system satisfies the assumptions of Section 2. Let ĥ∗ = ∂εĥε|ε=0 be given
by Theorem 2.3 applied to the induced system (with hat). The argument

starts from the first order expansion of ĥε in C1

ĥε = ĥ+ εĥ∗ + o(ε).
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Using this, we then obtain, by the second statement of Lemma 3.6 below
and relation (14) the following expansion in H

hε = FPε(ĥε) = FPε(ĥ) + εFPε(ĥ
∗) + o(ε).

Finally, we obtain by Lemma 3.7 below and the first statement of Lemma 3.6
below the first order expansion of hε in H

hε = h+ ε(Qĥ+ FP(ĥ∗)) + o(ε),

which finishes the proof of the theorem. �

Lemma 3.6. FPε(ĥ
∗) → FP(ĥ∗) in H and FPε is uniformly bounded in

L(C0,H).

Proof. To prove uniform boundedness we use assumption (18) to get, for
Φ ∈ C0,

||FPε(Φ)||H = ||1∆Φ + (1− 1∆)
∑
z∈Z

ψ̂z(ε, ·)||H

≤ ||Φ||C0 +
∑
z∈Z

sup
ε∈V
‖ψ̂z(ε, ·)‖H <∞.

Next, to show FPε(ĥ
∗)→ FP(ĥ∗) in H, it is sufficient to prove

(i) for each z ∈ Z, the map ε ∈ V 7→ ψ̂z(ε, ·) ∈ H, defined with Φ = ĥ∗,
is continuous;

(ii) the series
∑

z∈Z supε∈V ‖ψ̂z(ε, ·)‖H <∞.
Notice that (ii) is implied by condition (18). Moreover, condition (18) im-

plies that ψ̂z(ε, ·) ∈ H. Finally, For Φ = ĥ∗ ∈ C1, the map ψ̂z(ε, ·) is jointly
continuous on (0, 1]× V by assumption. This implies (i). �

Lemma 3.7. The map ε 7→ FPε ĥ is differentiable as an element in H and

∂εFPε ĥ|ε=0 = Qĥ, where Q is defined by

QΦ = (1− 1∆)
∑
z∈Z

∂εψ̂z(ε, ·)|ε=0. (20)

for any differentiable function Φ.

Proof. It suffices to show that
(i) for each z ∈ Z, the map ε ∈ V 7→ ψ̂z(ε, ·) ∈ H, defined with Φ = ĥ∗ is

differentiable;
(ii) the series

∑
z∈Z supε∈V ‖∂εψ̂z(ε, ·)‖H <∞.

We only prove (i) since (ii) holds under assumption (19). For (i) let v ∈ V
and ε be small. For each x, by the mean value theorem, there exists tx,ε
such that ψz(ε+ v, x) − ψz(v, x) = ε∂ζψz(ζ, x)|ζ=tx,ε , with |tx,ε − v| < ε.
Therefore,

sup
x∈(0,1]

|xγ [ψz(ε+ v)− ψz(v)− ε(∂ζψz(ζ)|ζ=v)]|

≤ |ε| sup
x∈(0,1]

|xγ [∂ζψz(ζ, x)|ζ=tx,ε − ∂ζψz(ζ, x)|ζ=v]| = o(ε),
(21)

where we have used joint continuity of ∂ζψz on (0, 1]× V . �
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4. Explicit computation of the linear response formula

To obtain an explicit linear response formula we assume that for all k,
(i) the maps ε 7→ πε(k) are C1.
(ii) the map ε 7→ ηk,ε is C1 as distribution of order one. That is, for any

C1 function ϕ : Ik → R

∂ε

∫
Ik

ϕdηk,ε(u) =

∫
Ik

dϕ

du
dνk,ε(u), (22)

where νk,ε, ε ∈ V , is a continuous family of signed measures with bounded
total variation.

4.1. Natural families of distributions. Before obtaining an explicit for-
mula of the linear response under assumption (22), we first present families
of distributions on an interval I satisfying assumption (22).

(1) The first and easiest class is the translations of Dirac measures. Let
a ∈ I be an interior point and let V be such that a + ε ∈ I for any
ε ∈ V . Then ηε = δε+a is a smooth family of measures. Indeed, for
any ε, ε0 ∈ V and ϕ ∈ C1(I) we have

〈ϕ, δε+a〉 = ϕ(a+ ε) = ϕ(a+ ε0) + (ε− ε0)
dϕ

du
|u=(a+ε0) + o(|ε− ε0|)

= 〈ηε0 , ϕ〉+ (ε− ε0)〈ηε0 ,
dϕ

du
〉+ o(|ε− ε0|).

(2) The second class of examples is the convex combinations of Dirac

measures: ηε =
∑N

i=1 ρi(ε)δai+ε, where ρi, i = 1, . . . , N is a family of

non-negative, smooth functions with
∑N

i=1 ρi = 1, and ai, ai + ε ∈ I
for every i = 1, . . . , N and ε ∈ V . By linearity and Example (1) for
every ε, ε0 ∈ V and ϕ ∈ C1(I) we have

〈ϕ, δε+a〉 =
N∑
i=1

ρiϕ(ai + ε)

=
N∑
i=1

ρiϕ(ai + ε0) + (ε− ε0)
N∑
i=1

ρi
dϕ

du
|u=a+ε0 + o(|ε− ε0|)

= 〈ηε0 , ϕ〉+ (ε− ε0)〈ηε0 ,
dϕ

du
〉+ o(|ε− ε0|).

(3) Let µ be a finite Borel measure on I and ρε : I → R be a family of
densities which is C1 in ε. The family dηε = ρεdµ is a smooth family
of measures. As above for any ϕ ∈ C1(I) we have

〈ηε, ϕ〉 =

∫
ϕρεdµ =

∫
ϕ(ρε0 + (ε− ε0)∂ερε|ε=ε0 + o(|ε− ε0|))dµ

= 〈ηε0 , ϕ〉+ (ε− ε0)〈ϕ, ν̃ε0〉+ o(|ε− ε0|),

where dν̃ε0 = ∂ερε|ε=ε0dµ. This shows differentiability of ηε and the
derivative is ν̃ε. However, to show that ηε satisfies (22), letting a
be the left endpoint of I, we assume without lost of generality that
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ϕ(a) = 0 (Indeed, one can define ϕ̃(x) = ϕ(x)−ϕ(a) and notice that
〈ηε, ϕ〉 = 〈ηε, ϕ̃〉+ ϕ(a)). Then we have

〈ηε, ϕ〉 = 〈ηε0 , ϕ〉+ (ε− ε0)

∫
I

∫ u

a
ϕ′(s)dsdν̃ε0(u) + o(|ε− ε0|)

= 〈ηε0 , ϕ〉+ (ε− ε0)

∫
I

∫
I∩]s,+∞[

ϕ′(s)dν̃ε0ds+ o(|ε− ε0|)

= 〈ηε0 , ϕ〉+ (ε− ε0)〈ϕ′, νε0〉+ o(|ε− ε0|),

where νε0 is the measure with density ν̃ε0(I∩]s,+∞[) with respect
to Lebesgue on I.

(4) The final class of examples we consider is a family of uniformly dis-
tributed measures which converges to a dirac measure. Let a ∈ I be
an interior point. For ε > 0, let ηε = ρεdu be a family of probability
measures on I with

ρε(u) =

{
1
ε if u ∈ (a, a+ ε),

0 otherwise,

and let η0 = δa. By direct computation we have, at ε 6= 0, for any
ϕ ∈ C1

∂ε
1

ε

∫ a+ε

a
ϕ(u)du =

−1

ε2

∫ a+ε

a
ϕ(u)du+

1

ε
ϕ(a+ ε).

We suppose without loss of generality that ϕ(a) = 0 and proceed as
in the previous example to get

∂ε〈ηε, ϕ〉 =
−1

ε2

∫ a+ε

a
ϕ′(u)(a+ ε− u)du+

1

ε

∫ a+ε

a
ϕ′(u)du = 〈νε, ϕ′〉,

where νε is the measure with density u−a
ε2

1(a,a+ε). This shows dif-
ferentiability at ε 6= 0. Furthermore, since νε converges weakly to
1
2δa as ε→ 0, this implies the differentiability at ε = 0 as well, with

ν0 = 1
2δa.

4.2. Explicit formulae. Throughout this subsection we use the following
notation:

ak,ε :=

|z|−1∏
j=0

πkj ,ε

Bk,ε(Φ) :=

∫
Ik0×···×Ik|z|−1

Φ ◦ gz,u0,...,u|z|−1
|g′z,u0,...,u|z|−1

|dηk0,ε · · · dηk|z|−1,ε.

We have

ψ̂z(ε, ·) =

∫
Ω̂

Φ ◦ gz,ω̂ · |g′z,ω̂|dP̂ε(ω̂) := ak,εBk,ε(Φ)(·).

Remark 4.1. Note that when the random dynamical system is in the setting
of Section 2; i.e., when inducing is not required, |z| = 1 in the definitions of
ak,ε and Bk,ε. Consequently, the linear response formulae derived below can
be also adapted to the case of Section 2 with the appropriate simplification.
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Lemma 4.2. Let z ∈ Z and set n+1 = |z|. For k = (k0, . . . , kn) compatible
with z, let Pz,j,ε = ηk0,ε × · · · × ηkj−1,ε × νkj ,ε × ηkj+1,ε × · · · × ηkn,ε, where

νkj ,0 = ∂εηkj ,ε in the sense of (22). The functions ak,ε and Bk,ε(ĥ) are
differentiable in ε and

∂εak,ε =

n∑
j=0

∂επkj ,ε
∏
i 6=j

πki,ε

∂εBk,ε =
n∑
j=0

∫
Ik0×···×Ikn

[
ĥ′ ◦ gz,u0,...,un∂ujgz,u0,...,un |g′z,u0,...,un |+

+ĥ ◦ gz,u0,...,un∂uj |g′z,u0,...,un |
]
dPz,j,ε(u0, . . . , un)

∂εψ̂z(ε, ·) = ∂εak,ε ·Bk,ε(ĥ)(·) + ak,ε · ∂εBk,ε(ĥ)(·).

(23)

Proof. The fact that ∂ak,ε is differentiable is obvious from the definition.

The differentiability in ε of Bk,ε(ĥ) follows from Lemma 6.1 and the rest is
a direct calculation. �

Corollary 4.3. Let (Ω̂, {T̂ω}, P̂ε) be a family of random dynamical systems
defined on the interval ∆ that satisfies the conditions of Section 2.3. Then
the density ĥε of the stationary measure is differentiable as a C1 element.
Moreover, under condition (22) we have the following explicit linear response
formula

ĥ∗ := (I − L̂P̂)−1∂εL̂P̂ε ĥ|ε=0, (24)

where

∂εL̂P̂ε ĥ|ε=0 =
∑
z

[
∂εak,ε ·Bk,ε(ĥ) + ak,ε · ∂εBk,ε(ĥ)

]
|ε=0. (25)

Proof. The differentiability of ĥε and formula (24) follow from Theorem 2.3.
The formula (25) follows from Lemma 4.2. �

Remark 4.4. Notice that when ` = 1 and ηε := δu+ε, the explicit represen-
tation of formula (24) is given by

ĥ∗ := (I − L̂u)−1L̂u[A1
uĥ
′
u +A2

uĥu],

where ĥ′u is the spatial derivative of ĥu, the invariant density of T̂u, and

A1
u = −

(
∂εT̂u+ε

T̂ ′u+ε

)∣∣∣
ε=0

, A2
u =

(
∂εT̂u+ε · T̂ ′′u+ε

T̂ ′2u+ε

−
∂εT̂

′
u+ε

T̂ ′u+ε

)∣∣∣
ε=0

,

which is the classical linear response formula for deterministic piecewise C3,
piecewise onto and uniformly expanding interval maps (See for instance [6, 4]
for the deterministic case).

Corollary 4.5. If (Ω, {Tω},Pε) satisfies the assumptions of Section 3.7,
then the density hε of the stationary measure is differentiable as an H ele-
ment. Moreover, under condition (22) we have the following explicit linear
response formula

h∗ = FP(ĥ∗) +Qĥ. (26)
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where ĥ∗ is the response of the induced random system (Ω̂, {T̂ω̂}, P̂ε) and

Qĥ =
∑
z

[
∂εak,ε ·Bk,ε(ĥ) + ak,ε · ∂εBk,ε(ĥ)

]
|ε=0, (27)

where ∂εak,ε and ∂εBk,ε(ĥ) are given by the formulae in Lemma 4.2.

Proof. The proof follows from Theorems 3.4 and Lemma 4.2. �

5. Applications

5.1. Random uniformly expanding circle maps.

Example 5.1. (expanding circle maps) Let

T1(x) = 2x+ λ sin(2πx) mod 1 and T2(x) = 2x mod 1,

where λ ∈ (− 1
2π ,

1
2π ) is a fixed number. The random system consists of

choosing randomly T1 with probability ε and T2 with probability 1− ε, which
determine the Pε on Ω = {1, 2}.

Notice that T1, T2 are smooth and uniformly expanding circle maps. Thus,
inducing is not required and we can directly apply the results of Section 2
to see that the random system admits a stationary density hε and that this
density is differentiable as a C1 element at ε = 0. To obtain such a conclu-
sion we check that assumptions (A1), (A2) and (B) are satisfied.

Verifying (A1) and (A2)
For i = 2, 3 we have∑

z∈Z

∫
Ω
|g(i)
z,ω|dPε(ω) = ε

(
|g(i)

1,1|+ |g
(i)
2,1|
)

+ (1− ε)
(
|g(i)

1,2|+ |g
(i)
2,2|
)

(28)

Notice that |g(i)
1,2| + |g(i)

2,2| ≤ 1 for i = 1, 2, 3. Moreover, T ′1(x) = 2 +

2πλ cos(2πx), T ′′1 (x) = −4π2λ sin(2πx), T ′′′1 (x) = −8π3λ cos(2πx). In par-

ticular, T ′1(x) ≥ 2 − 2πλ > 1. Thus, supx
|T ′′x|
(T ′x)2

≤ D < ∞. Consequently,

(A1) is satisfied. Condition (A2) is satisfied with β = (2− 2πλ)−1 < 1.

Verifying assumption B
We have

ψj(ε, x) = ε(Φ ◦ gj,1|g′j,1|)(x) + (1− ε)(Φ ◦ gj,2|g′j,2|)(x), for j = 1, 2.

Now, existence and continuity of partial derivatives of ψj(ε, x) is obvious.

Since sums in (4) and (5) reduces to a finite sum and the elements ψ
(i)
j (ε, x)

are |∂εψ(i)
j (ε, x)| are uniformly bounded in ε and x, conditions (4) and (5)

are satisfied.

Remark 5.2. Using the above family, one can also verify that the follow-
ing random dynamical system satisfies our conditions and admits linear
response: (Ω, {Tω},Pε), where Ω := (− 1

2π ,
1

2π ), Tω(x) := 2x + ω sin(2πx)

mod 1 and Pε := π + εω3. We leave this for the reader to verify.
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5.2. Random continued fractions: Gauss-Rényi maps.

Example 5.3. Let G and R be respectively the Gauss and Rényi transfor-
mations on the unit interval. Recall that G(x) = 1/x mod 1 and R(x) =
1/(1 − x) mod 1. The random system consists of choosing randomly the
Gauss and the Rényi map, with respective probabilities pε and 1 − pε, with
lim|ε|→0 pε = p ∈ (0, 1). We assume ε 7→ pε is C1. Moreover, we assume

∃β̃ ∈ (0, 1) such that max{pε, 1− pε} ≤ β̃.

Notice that G,R are smooth and piecewise onto. It is worth noting that
the individual maps are not uniformly expanding. However, the random sys-

tem is expanding on average: supx

(
pε
G′(x) + 1−pε

R′(x)

)
≤ max{pε, 1−pε}. Thus,

inducing is not required. Indeed, one can use the assumption max{pε, 1 −
pε} ≤ β̃ together with differentiating, in x, the transfer operator

LεΦ(x) =
∞∑
n=1

pε
(n+ x)2

Φ

(
1

n+ x

)
+

1− pε
(n+ x)2

Φ

(
1− 1

n+ x

)
(29)

to obtain a uniform Lasota-Yorke inequality on Ci, i = 1, 2. The uniform
spectral gap on both spaces will then follow from the fact that the system
is random covering [23]. Consequently, for each ε ∈ V , the random system
admits a unique stationary density hε ∈ C2. We now show that this density
is differentiable as a C1 element at ε = 0. To obtain such a conclusion we
check that assumption (B) is satisfied.

Verifying assumption (B)
Notice that

ψz(ε, x) =
pε

(n+ x)2
Φ

(
1

n+ x

)
+

1− pε
(n+ x)2

Φ

(
1− 1

n+ x

)
.

Note that ε 7→ pε is C1. Thus, assumption B is satisfied since, for i = 1, 2,∑
z∈Z

∫
Ω
|g(i)
z,ω|dPε(ω) =

∞∑
n=1

∣∣∣∣ ( 1

n+ x

)(i) ∣∣∣∣ <∞. (30)

5.3. Approximating the invariant density of random continued frac-
tions.

Example 5.4. In this example, we revisit the Gauss and Rényi maps G(x) =
1/x mod 1 and R(x) = 1/(1 − x) mod 1. The random system consists of
choosing randomly the Gauss and the Rényi map with probabilities 1−ε and
ε, respectively.

Notice in this example 1−ε is the weight on the Gauss map. The invariant
density of this random map is not known explicitly [23]. Using Theorem 2.3
we obtain that the invariant density, hε, of this random map is approximated
by the invariant density of the Gauss map and its linear response; i.e.,

hε = hG + ε(I − LG)−1∂εLεhG |ε=0 + o(ε), (31)

where

∂εLεhG |ε=0 = −hG + LRhG ,
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hG = 1
log 2

1
1+x is the invariant density of the Gauss map, LG , LR, Lε are the

transfer operators associated with G, R and the random map respectively.
Moreover, the error term, o, is in the C1-topology.

To verify the assumptions of Theorem 2.3 for this example, we show below
that the second iterate of the random map is (uniformly in ε) expanding on
average and consequently have a uniform spectral gap on Ci, i = 1, 2 and
there is no need to induce in this case (see subsection 6.4 in the appendix
for a proof). Moreover, the verification of assumption (B) follows verbatim
as in the previous example.

5.4. Random Pomeau-Manneville maps and a family of smooth
measures.

Example 5.5. Let [α0, α1] ⊂ (0, 1). For u ∈ [α0, α1] a map Tu is defined
by:

Tu(x) =

{
x(1 + 2uxu) x ∈ [0, 1

2 ],

2x− 1 x ∈ (1
2 , 1].

The above family of maps was popularized by the work of Liverani-
Saussol-Vaineti [27] which is a version of the famous Pomeau-Manneville
family [31]. Throughout this section we assume α1 < 2α0 < γ ≤ 1 + α0,
where γ is the constant in the definition of the H norm. Note that this is
only a constraint on the distance between α1 and α0 but not on their range;
i.e., α0 can still be any value in (0, 1). We now verify assumptions (A1),
(A2), (16), (17), (18) and (19) for the family of maps in Example 5.5, with
the family of probability measures ηε on [α0, α1] defined by dηε = ρεdu,
where

ρε =
2

(α1 − α0)(α1 + 2ε)
(u− α0

2
+ ε), (32)

with

|ε| ≤ α0

4
. (33)

The family of densities ρε has the following property:

Lemma 5.6.
∂ερε
ρε
≤ C for some C independent of ε.

Proof. Direct computation shows that ∂ερε
ρε

= 2(α1+α0−2u)
(α1+2ε)(2u−α0+2ε) . Since |ε| ≤

α0/4 and u ∈ [α0, α1] we have (α1 + 2ε)(2u−α0 + 2ε) ≥ (α1−α0/2)α0/2 >
α2

0/4 and |2(α1 +α0−2u)| ≤ 2(α1−α0). Letting C = 8(α1−α0)/α2
0 finishes

the proof. �

Define the random system (Ω, {Tω},Pε). Set Ω = [α0, α1]N and Pε = ηNε .
In this example gz,ω := gz,u0,u1,...,un = g0 ◦ gu1 ◦ · · · ◦ gun , with g0(x) := x+1

2

and gui := T−1
ui,1

, where Tui,1 := Tui |[0,1/2], and n = |z| − 1. For each ω we

define a sequence of pre-images of 1
2 as follows. Let x′0(ω) = 1, x′1(ω) = 3

4 ,
and

x′n(ω) = gz,ω(
1

2
) for n ≥ 2. (34)

The sequences {x′n(ω)} will allow us to define the inducing procedure for
each Tω. Notice that the sequence {x′n(ω)}n≥0 generates a partition Pω =
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{(x′n(ω), x′n−1(ω)] | n ≥ 0} on
(

1
2 , 1
]
. We define T̂ω as the first return map

under the orbit of Tnω to ∆; i.e., for x ∈ ∆

T̂ω(x) = TRω(x)
ω (x),

where

Rω|(x′n(ω),x′n−1(ω)] = n. (35)

The random dynamical system (Ω̂, {T̂ω̂}, P̂ε) is then defined with T̂ω̂ := T̂ω,

where [ω̂]0 = ω. Note that in this example T̂ ′ω(x) ≥ 2. Thus, (A2) is
satisfied. To verify the (A1) we first introduce some notation. Related to
the random sequence {x′n(ω)}, we define another random sequence {xn(ω)}
which takes values in [0, 1/2]. Let x1 = 1

2 and xn(ω) = g̃z,ω(1
2), where

g̃z,ω := gu1 ◦ · · · ◦ gun . Let α0, α1 ∈ Ω be two constant sequences whose
entries are α0 and α1 respectively. For all n ≥ 1 and ω ∈ Ω the following
inequality holds

xn(α0) ≤ xn(ω) ≤ xn(α1). (36)

The proof of the inequality is analogous to that of Lemma 4.4 in [1]. More-

over, it is well known that xn(α0) ∼ 1
2α
−1/α0

0 n−1/α0 so if we define cn(α0) :=

xn(α0)n1/α0 then limn cn(α0) = 1
2α
−1/α0

0 := c(α0). We define cn(α1) and
cn(α1) analogously. Therefore, (36) implies that

cn(α0)n−1/α0 ≤ xn(ω) ≤ cn(α1)n−1/α1 . (37)

Note that xn(σω)+1
2 = x′n(ω), where σ : Ω→ Ω is the one sided shift map.

Verifying (A1)
A key step to verify (A1) is the estimation of Eηε [x

′
n−1(ω) − x′n(ω)]. This

will be achieved by using the other random sequence {xn(ω)}. We first start
with an auxiliary lemma and a corollary.

Lemma 5.7. Let c ≥ 1 and c̃(ηε) = α0+2ε
(α1−α0)(α1+2ε) . Then, as t→∞

Eηε

[
e−(cu−α0)t

]
∼ c̃(ηε) ·

1

ct
· e−(c−1)α0t. (38)

Proof. We have

Eηε

[
e−(cu−α0)t

]
=

2eα0t

(α1 − α0)(α1 + 2ε)

∫ α1

α0

e−cut(u− α0

2
+ ε)du

2e−(c−1)α0t

(α1 − α0)(α1 + 2ε)
· 1

ct

(
(
α0

2
+ ε+

1

ct
)− e−c(α1−α0)t(α1 −

α0

2
+ ε+

1

ct
)

)
∼ 1

ct
· α0 + 2ε

(α1 − α0)(α1 + 2ε)
e−(c−1)α0t.

�
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Lemma 5.7 shows that assumption (5.11) of [2] is satisfied9. Consequently,
we obtain an upper bound on the xn(ω).

Corollary 5.8. There exists c > 0 independent of ε such that xn(ω) ≤
2c−1/α0n

− 1
α0 (log n)

1
α0 . In addition one can find constants C > 0, u > 0,

v ∈ (0, 1) independent10 of ε such that Pε{n1 > n} ≤ Ce−unv .

Lemma 5.9. There exists a Ĉ > 0, independent of ε, such that

2Eηε [x
′
n−1(ω)− x′n(ω)] = Eηε [xn−1(σω)− xn(σω)] ≤ Ĉ [log n]

α0+1
α0

n
1
α0

+1
.

Proof. By definition Eηε [x
′
n−1(ω) − x′n(ω)] = 1

2Eηε [xn−1(σω) − xn(σω)].
Thus, it is enough to deal with Eηε [xn−1(σω)− xn(σω)]. We have

Eηε [xn−1(σω)− xn(σω)] = Eηε [xn−1(σω)− xn(ω)]

= Eηε [2
ω0(xn(ω))ω0+1],

(40)

where we have used stationarity to write Eηε [xn(ω)] = Eηε [xn(σω)] and that
Tω0(xn(ω)) = xn−1(σω) and Tω0(xn(ω)) = xn(ω) + 2ω0(xn(ω))ω0+1. Using
(40), Corollary 5.8 and the fact that 0 ≤ 2xn(ω) ≤ 1, we obtain

Eηε [xn−1(σω)− xn(σω)] ≤ Eηε [2α0(xn(ω))α0+1]

≤ 2α0
(
Eηε [χ{n1(ω)≤n} · xn(ω)α0+1] + Eηε [χ{n1(ω)>n} · xn(ω)α0+1]

)
= 22α0+1c

−1− 1
α0

[log n]
α0+1
α0

n
1
α0

+1
+ Ce−un

v ≤ Ĉ [log n]
α0+1
α0

n
1
α0

+1
.

(41)

�

The following lemma is proved in [1] (see Lemma 4.8 in [1]) using the
Koebe principle [29].

Lemma 5.10. There exists D̃ > 0 such that∣∣∣∣g′z,ω(x)

g′z,ω(y)
− 1

∣∣∣∣ ≤ D̃|x− y| (42)

for any x, y ∈ X and z ∈ Z and any ω ∈ Ω. In particular, there exists a
D > 0 independent of ω (hence independent, of ε), such that

g′z,ω(x)

g′z,ω(y)
≤ D for any z ∈ Z and x, y ∈ ∆. (43)

9Indeed, we have

logn

n[xn(ω)]α0
≥ α02α0

(logn)

n

{ n∑
k=2

[
2ck(α0)

k
1
α0

]ωn−k−α0

− 1 + α0

2

[
2ck(α1)

k
1
α1

]2ωn−k−α0
}

:=
logn

n

n∑
k=1

Xk(ω).

(39)

Lemma 5.7 shows that logn
n

∑n
k=1Eηε(Xk(ω)) → α02α0 c̃(ηε). Corollary 5.8 will then

follow using large deviation estimates for independent random variables, see [2] for details.
10By (33) both c and C can be chosen independent of ε.
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For y ∈ ∆ let y0 = y, and

yn(ω) = gu1 ◦ · · · ◦ gun(y) for n ≥ 1. (44)

Then xn(ω) ≤ yn(ω) ≤ xn−1(ω). Moreover, g′z,ω(y) = y′n(ω)
2 and y′0 = 1,

y′′0 = 0. For ω ∈ Ω letting wk, k ≥ 0 be the elements of ω we have the
following

Lemma 5.11. For any n ≥ 1

|y′′n(ω)| ≤ α1(α1 + 1)2α1y′n(ω)
n∑
j=1

yj(σ
n−jω)ωn−j−1|y′j(σn−jω)|

and

|y′′′n (ω)| ≤ 3α1(α1 + 1)2α1y′n(ω)
n∑
j=1

yj(σ
n−jω)ωn−j−1|y′′j (σn−jω)|

+(1− α2
0)α12α1y′n(ω)

n∑
j=1

yj(σ
n−jω)ωn−j−2(y′j(σ

n−jω))2.

Proof. Since yn−1(σω) = yn(ω)(1+(2yn(ω))ω0) by taking consequent deriva-
tives of both sides we have

y′n−1(σω) = y′n(ω) [1 + (1 + ω0)(2yn(ω))ω0 ] ,

y′′n−1(σω) = y′′n(ω) [1 + (1 + ω0)(2yn(ω))ω0 ]

+(y′n(ω))2ω0(1 + ω0)2ω0yn(ω)ω0−1,

y′′′n−1(σω) = y′′′n (ω) (1 + (1 + ω0(2yn(ω))ω0)

+3y′′n(ω)y′n(ω)ω0(1 + ω0)2ω0yn(ω)ω0−1

−(y′n(ω))3ω0(ω2
0 − 1)2ω0yn(ω)ω0−2,

which imply

y′′n−1(σω)

y′n−1(σω)
=
y′′n(ω)

y′n(ω)
+ y′n(ω)

ω0(1 + ω0)2ω0yn(ω)ω0−1

1 + (1 + ω0)(2yn(ω))ω0
(45)

and

y′′′n−1(σω)

y′n(σω)
=
y′′′n (ω)

y′n(ω)
+ 3y′′n(ω)yn(ω)ω0−1 ω0(1 + ω0)2ω0

(1 + (1 + ω0)(2yn(ω))ω0)

−(y′n(ω))2yn(ω)ω0−2 +
ω0(ω2

0 − 1)2ω0

(1 + (1 + ω0)(2yn(ω))ω0)
.

(46)

Using (45) and (46), for i = 2, 3 we obtain:

− y
(i)
n (ω)

y′n(ω)
=

n∑
j=1

y
(i)
j−1(σn−j+1ω)

y′j−1(σn−j+1ω)
−
y

(i)
j (σn−jω)

y′j(σ
n−jω)

. (47)

Using (47) and the fact that for any j we have α0 ≤ ωj ≤ α1 finishes the
proof. �

Lemma 5.12.
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(1) There exists C > 0 such that∫
Ω
|g′z,ω|dPε(ω) ≤ Cn−1− 1

α0 [log n]
α0+1
α0 ;

∫
Ω
|g′′z,ω|dPε(ω) ≤ Cn−1− 1

α1 [log n]
α0+1
α0 .

(2) Moreover, there exists M > 0 such that

sup
ε∈V

∑
z∈Z

sup
x∈X

∫
Ω
|g(i)
z,ω|dPε(ω) ≤M, for i = 1, 2, 3.

Proof. By the Mean Value Theorem, there exists ξ ∈ ∆ such that 1
2g
′
z,ω(ξ) =

x′n−1(ω)− x′n(ω). Therefore, by Lemma 5.10 for x ∈ ∆ we have

g′z,ω(x) ≤ 2D(x′n−1(ω)− x′n(ω)). (48)

Thus, by Lemma 5.9∫
Ω
|g′z,ω|dPε ≤ 2DEηε [x

′
n−1(ω)− x′n(ω)] ≤ C[log n]

α0+1
α0 n

− 1
α0
−1
. (49)

Again by the Mean Value Theorem and Lemma 5.10 and (37) y′j(σ
n−jω) ≤

Dxj(σ
n−jω) ≤ Cj−1/α1 . Also by (37) we have yj(σ

n−jω)ωn−j−1 ≤ Cj
1−α0
α0 .

Substituting this into the first item of Lemma 5.11 implies

|y′′n(ω)| ≤ Cy′n(ω)
n∑
j=1

j
− 1
α1

+ 1
α0
−1 ≤ Cy′n(ω)n

1
α0
− 1
α1 .

Therefore, by Corollary 5.8 and (49), we have∫
Ω
|y′′n(ω)|dPε(ω) ≤ C

∫
Ω
y′n(ω)n

1
α0
− 1
α1 dPε(ω) = Cn

1
α0
− 1
α1

∫
Ω
y′n(ω)dPε(ω)

≤ Cn
1
α0
− 1
α1 [log n]

α0+1
α0 n

− 1
α0
−1

= Cn
−1− 1

α1 [log n]
α0+1
α0 .

Similarly, using the second item of Lemma 5.10 and (37) we have

|y′′′n (ω)| ≤ C1y
′
n(ω)

n∑
j=1

j
1
α0
−1|y′′n(σn−jω)|

+ C2y
′
n(ω)

n∑
j=1

j
2
α0
−1 · j−

2
α1

≤ C1n
− 1
α1

n∑
j=1

j
1
α0
−1|y′′j (σn−jω)|+ C2y

′
n(ω)

n∑
j=1

j
2
α0
− 2
α1
−1

≤ C1n
− 1
α1

n∑
j=1

j
1
α0
−1|y′′j (σn−jω)|+ C2y

′
n(ω)n

2
α0
− 2
α1 .
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Finally,∫
Ω
|y′′′n (ω)|dPε(ω)

≤ C1n
− 1
α1

n∑
j=1

j
1
α0
−1
∫

Ω
|y′′n(σn−jω)|dPε(ω) + C2n

2
α0
− 2
α1

∫
Ω
y′n(ω)dPε(ω)

≤ C1n
− 1
α1

n∑
j=1

j
1
α0
−1 · j−1− 1

α1 [log n]
α0+1
α0 + C2n

−1+ 1
α0
− 2
α1 [log n]

α0+1
α0 .

This finishes the proof since 2α0 > α1. �

Verifying assumptions (16) and (17). Note that the smoothness of

Φ and P̂ε together with Lebesgue differentiation theorem imply the exis-
tence and continuity of the derivatives ∂εψ̂z(ε, x), ∂xψ̂z(ε, x), ∂x∂εψ̂z(ε, x),

∂ε∂xψ̂z(ε, x).

Lemma 5.13. For any Φ ∈ C2(∆) and i = 0, 1∑
z∈Z

sup
ε∈V

sup
x∈∆
|∂εψ̂(i)

z (ε, x)| <∞.

Proof. For any ε ∈ V by the definition of ψ̂z(ε,Φ), the regularity of Pε and
Lebesgue differentiation theorem we have11

∂εψ̂z(ε,Φ)(x) =

n∑
j=1

∫
In

[Φ ◦ gz,ω̂|g′z,ω̂|](x)Πn
i 6=jρε(ωi)∂ερε(ωj)d(ω̄n).

Thus, by Lemma 5.6 for any x ∈ ∆

|∂εψ̂z(ε,Φ)(x)| ≤nC‖Φ‖∞ sup
x∈(1/2,1]

∫
Ω̂
|g′z,ω̂(x)|dP̂ε(ω̂)

≤ Cn−
1
α0 [log n]

α0+1
α0 ,

(50)

where in the last inequality we have used the first item of Lemma 5.12. Since
|z| = n+ 1, summing over n in (50) completes the proof for i = 0. For i = 1

again by definition of ψ̂z(ε,Φ) and Lebesgue differentiation theorem we have

|∂εψ̂′z(ε,Φ)(x)|

≤
n∑
j=1

‖Φ‖C1

∫
In

(|g′z,ω̂|2 + |g′′z,ω̂|)(x)

n∏
i 6=j

ρε(ωi)∂ερε(ωj)d(ω̄n).

Hence, by Lemma 5.6, we have

|∂εψ̂′z(ε,Φ)(x)| ≤ n‖Φ‖C1 sup
x∈(1/2,1]

∫
Ω

(|g′z,ω̂|2 + |g′′z,ω̂|)(x)dPε(ω)

≤ Cn−
1
α1 [log n]

α0+1
α0 ,

where in the final estimate we have used the first item of Lemma 5.12. Since
|z| = n+ 1 summing over n finishes the proof. �

11Note that the family of measures ηε in this example belongs to family (3) of Subsec-
tion 4.1.
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Lemma 5.14. For any Φ ∈ C1(∆) and i = 0, 1∑
z∈Z

sup
ε∈V

sup
x∈∆
|ψ̂(i)
z (ε, x)| <∞.

Proof. For i = 0 the proof follows by direct application of the second item of
5.12. For i = 1 by definition of ψ̂z(ε, x), Lebesgue differentiation theorem,
the first and the second items of 5.12 we have

|ψ̂′z(ε, x)| ≤ ‖Φ‖C1

∫
Ω

(|g′z,ω̂|2 + |g′′z,ω̂|)(x)dPε(ω) ≤ Cn−1− 1
α1 [log n]

α0+1
α0

Summing over n finishes the proof. �

Verifying assumptions (18) and (19). Below without lost of generality
suppose that gz,ω has range (x′n(ω), x′n−1(ω)]. This in particular implies that
|z| = n. We first start with two technical lemmas

Lemma 5.15. For any α ∈ (0, 1), γ ∈ (0, 1 + α0] and x > 0 the following
holds

(1 + (2x)α)γ ≤ 1 + γ(2x)α +
γ2

2
(2x)2α

Proof. We let φ1(x) = (1 + (2x)α)γ and φ2(x) = 1 + γ(2x)α + γ2

2 (2x)2α.
Since φ1(0) = φ2(0) = 1, it suffices to prove that φ′1(x) < φ′2(x) for x > 0.
Direct computation implies

φ′1(x) = γα2αxα−1(1 + (2x)α)γ−1,

φ2(x)′ = αγ2αxα−1(1 + γ2αxα).

For γ ∈ (0, 1] we have (1 + (2x)α)γ−1 ≤ 1 < 1 + γ2αxα. In the case
γ ∈ (1, 1 + α0] by standard argument we have (1 + (2x)α)γ−1 < 1 + (γ −
1)(2x)α < 1 + γ2αxα which finishes the proof. �

Let bω0 :=
(T1,ω(x)/x)γ

T ′1,ω(x)
:= (1+(2x)ω0 )γ

1+(ω0+1)(2x)ω0 . Then by Lemma 5.15 we have

bω0 ≤
1 + γ(2x)ω0 + γ2

2 (2x)2ω0

1 + (ω0 + 1)(2x)ω0
≤ 1 +

γ2

2
(2x)2ω0 . (51)

Lemma 5.16. There exists a constant D > 0 such that for any y ∈ [0, 1
2 ]

yγg′n,ω(y) ≤ D[xn−1(ω)]γ .

Proof. Letting T−n+1
1,σω y = T−1

1,ω1
◦ · · · ◦ T−1

1,ωn−1
y by definition of gn,ω we have

yγg′n,ω(y) =
yγ

(T1,ωn−1 ◦ . . . T1,ω1 ◦ T2,ω0)′(T−1
2,ω0
◦ T−n+1

1,σω y)

=
yγ

T ′1,ωn−1
(T−1

1,ωn−1
y) ◦ T ′1,ωn−2

(T−2
1,σn−2ω

y) . . . T ′1,ω1
(T−n+1

1,σω y)T2,ω0(T−1
2,ω0
◦ T−n+1

1,σω y)

=
(T−n+1

1,ω (y))γ

2
·
n−1∏
j=1

(T 1−j
1,ω (y)/T−j1,ωy)γ

T1,ωn−j (T
−j
1,ωy)

by Lemma 5.15 ≤
(T−n+1

1,ω (x))γ

2
·
n−1∏
j=1

(
1 +

γ2

2
(2T−j1,ωy)2ω0

)
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by inequality (44) =
(T−n+1

1,ω (y))γ

2
· exp

n−1∑
j=1

log(1 +
γ2

2
(2xj(ω))2ω0


≤ xn−1(ω)γ exp

n−1∑
j=1

γ2

2
2α1j−2ω0/α1

 ≤ D[xn−1(ω)]γ .

�

Lemma 5.17. For any Φ ∈ C0, we have∑
z∈Z

sup
ε∈V
‖ψ̂z(ε, ·)‖H <∞.

Proof. Recall that

ψ̂z(ε, x) =

∫
Ω̂

[Φ ◦ gz,ω̂|g′z,ω̂|](x)dP̂ε(ω̂).

Therefore, by Lemma 5.16, Corollary 5.8 and Lemma 5.9, we have

||ψ̂z(ε,Φ)‖H ≤ ||Φ||∞

[
sup

x∈(0, 1
2

]

∫
Ω̂
xγg′z,ω̂(x)dP̂ε(ω̂) + sup

x∈( 1
2
,1]

∫
Ω̂
g′z,ω̂(x)dP̂ε(ω̂)

]

≤ C||Φ||∞

 sup
x∈(0, 1

2
]

∫
Ω̂

[xn−1(ω)]γPε(ω̂) +
[log n]

α0+1
α0

n
1
α0

+1


≤ C||Φ||∞ sup

x∈(0, 1
2

]

[
EPε [χ{n1(ω)≤n} · xn(ω)γ ] + EPε [χ{n1(ω)>n} · xn(ω)γ ]

]
+ C||Φ||∞ +

[log n]
α0+1
α0

n
1
α0

+1

≤ C||Φ||∞
(
EPε [χ{n1(ω)≤n} · (n−1 log n)γ/α0 ] + Pε{n1(ω) ≥ n}

)
+ C||Φ||∞

[log n]
α0+1
α0

n
1
α0

+1

≤ C||Φ||∞Ĉn
− γ
α0 (log n)

γ
α0 + C||Φ||∞

[log n]
α0+1
α0

n
1
α0

+1
.

(52)

Since |z| = n+ 1 and γ > 2α0, summing over n in (52) completes the proof
of the lemma. �

Lemma 5.18. We have∑
z∈Z

sup
ε∈V
‖∂εψ̂z(ε, ĥ0)‖H <∞.

Proof. We first notice that

∂εψ̂z(ε, ĥ0)(x) =

n∑
j=1

∫
In

[ĥ0 ◦ gz,ω̂|g′z,ω̂|](x)Πn
i 6=jρε(ωi)∂ερε(ωj)d(ω̄n). (53)
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Since ∂ρε
ρε
≤ C (independent of ε, see Lemma 5.6), using (53) and an argu-

ment similar to that in the proof of Lemma 5.17, we have

‖∂εψ̂z(ε, ĥ0)‖H ≤ C
n∑
j=1

||
∫
In

[ĥ0 ◦ gz,ω̂|g′z,ω̂|]dηnε ||H

≤ nC||ĥ0||∞

 sup
x∈(0, 1

2
]

∫
In

[xn−1(ω)]γdηnε +
[log n]

α0+1
α0

n
1
α0

+1


≤ C||ĥ0||∞

n− γ
α0

+1
+

[log n]
α0+1
α0

n
1
α0

 .
(54)

Since |z| = n+ 1 and γ > 2α0, summing over n in (54) completes the proof
of the lemma. �

5.5. Random Pomeau-Manneville maps and a family of a uniformly
distributed measures converging to a Dirac. Throughout this section
we let u ∈ (α0, α0 + ε), where [α0, α0 + ε] ⊂ (0, 1). We consider again
the Pomeau-Manneville family defined in Example 5.5 but this time with u
distributed according to ηε = ρεdu where, for ε > 0,

ρε(u) =

{
1
ε if u ∈ (α0, α0 + ε),

0 otherwise;
(55)

and η0 = δα0 . Let P = ηN0 . The random dynamical system (Ω̂, {T̂ω̂}, P̂ε) is
defined in the same way as in the previous example of subsection 5.4, with
the only difference is that P̂ε is defined using the density in (55). Assump-
tions (A1) and (A2) are verified following a similar approach to the proofs
in Lemmas 5.10, 5.11 and 5.12. Verifying (16), (17), (18) and (19) for this
type of distribution is done by using duality; i.e., for i = 0, 1:

∂εψ̂
(i)
z (ε,Φ)(x) =

n∑
j=1

∫
[α0,α0+ε]n

∂

∂ωj
[Φ ◦ gz,ω|g′z,ω|](i)(x)dηε(ω1) · · · dνε(ωj) · · · dηε(ωn),

with dνε
du = u−α0

ε2
1(α0,α0+ε). Note that as ε→ 0∫

[α0,α0+ε]n

∂

∂ωj
[Φ ◦ gz,ω|g′z,ω|](x)dηε(ω1) · · · dνε(ωj) · · · dηε(ωn)

converges to

1

2

∂

∂ωj
[Φ ◦ gz,ω|g′z,ω|](x)|ωi=α0 ; i = 1, . . . , n.

Therefore, the linear response formula in this example is given by:

1

2

[
FP(ĥ∗α0

) +Qĥα0

]
,

which is 1
2 of the response under deterministic perturbations of Tα0 (see

Corollary 4.5 and Remark 4.4). This might be an interesting observation in
relation to controlling the statistical properties of chaotic dynamical systems
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[18]. Here hα0 is the invariant density of Tα0 and the explicit formula of ĥ∗α0

is the same as in Remark 4.4 with α0 replacing u.

6. Appendix

6.1. Elementary facts about convergence of measures. We collect
some elementary facts relative to convergence of measures.

Let µε be a family of finite measures on a compact rectangle K of Rd. We
say that µε is differentiable as a distribution of order one, if there exists a
finite vector valued measure νε of bounded total variation such that for any
test function φ : K → R,

∂ε

∫
K
φ(u)dµε(u) =

∫
K
∇uφ · dνε(u). (56)

We set ∂εµε = νε.

Lemma 6.1. Let Ki be a compact rectangles in Rdi, i = 1, 2.
(i) Let µε be a family of measures on K1, differentiable as distributions

of order one. Then µε is a continuous family of measures on K1.
(ii) The product of two families of measures on K1, K2 respectively, dif-

ferentiable as distributions of order one, is a distribution of order one on
K1 ×K2, and

∂ε(µ
1
ε ⊗ µ2

ε) = ∂εµ
1
ε ⊗ µ2

ε + µ1
ε ⊗ ∂εµ2

ε.

Proof. (i) Let µε be a family of measures satisfying 56. Therefore, by defi-
nition, ∫

φdµε =

∫
φdµ0 + ε

∫
∇uφ · dν0(u) + o(ε).

Consequently,

|
∫
φdµε −

∫
φdµ0| ≤ ε||φ||C1 ||ν0||+ o(ε).

(ii)∫
K1

φ(u1, u2)dµ1
ε =

∫
K1

φ(u1, u2)dµ1
0 + ε

∫
K1

∇u1φ(u1, u2) · dν1
0 + o(ε).

Now,∫
K2

∫
K1

φ(u1, u2)dµ1
εdµ

2
ε =

∫
K2

∫
K1

φ(u1, u2)dµ1
0dµ

2
ε

+ ε

∫
K2

∫
K1

∇u1φ(u1, u2) · dν1
0dµ

2
ε + o(ε)

=

∫
K2

∫
K1

φ(u1, u2)dµ1
0dµ

2
0 + ε

∫
K2

∇u2
∫
K1

φ(u1, u2)dµ1
0 · dν2

0 + o(ε)

+ε

∫
K2

∫
K1

∇u1φ(u1, u2) · dν1
0dµ

2
ε + o(ε).

(57)
Using Lebesgue differentiation for the second term in (57), and (i) for the
third term in (57), (ii) follows. �
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6.2. Linear response for operators with a spectral gap. Let (X,A,m)
be a probability space and B a Banach space continuously embedded in
L1(X,m). We assume that the constants belong to B. Let Lε be a family of
Markov operators on B, for ε in a neighbourhood V of 0. We assume that
for each ε, 1 is a simple eigenvalue of Lε with an associated eigenfunction
hε, that we normalize so that

∫
hεdm = 1.

Proposition 6.2. We suppose that the operators satisfy

• ε 7→ Lεh0 ∈ B is differentiable at ε = 0
• ε 7→ Lεφ ∈ B is continuous at ε = 0 for any φ ∈ B.
• Lε has a uniform spectral gap on B; i.e., ∃θ ∈ (0, 1) and a C > 0,

independent of ε, such that for any φ ∈ B0 and n ≥ 1 we have

||Lnεφ||B ≤ Cθn||φ||B.

Under these assumptions, the eigenfunction hε is differentiable at ε = 0 as
an element of B. In addition we have the linear response formula

∂εhε|ε=0 = (I − L0)−1∂εLεh0|ε=0. (58)

Proof. Since we have a uniform spectral gap the resolvent (I −Lε)−1 is well
defined on the set B0 of elements of B with zero average and is uniformly
bounded in ε. We have the identity

hε = (I − Lε)−1(Lε − L0)h0 + h0.

By assumption, setting q = ∂εLεh0 we have

(Lε − L0)h0 = εq + o(ε)

where o(ε) is understood in the B-norm. Moreover, since (Lε − L0)h0 ∈ B0

and B is continuously embedded in L1 we also have q ∈ B0. Therefore we
have

hε = ε(I − Lε)−1q + o(ε).

Finally, we have

(I − Lε)−1q − (I − L0)−1q = (I − Lε)−1(Lε − L0)(I − L0)−1q.

The second hypothesis applied to φ = (I−L0)−1q shows that (Lε−L0)(I−
L0)−1q → 0 as ε → 0, and the conclusion follows by uniform boundedness
of (I − Lε)−1 as operators on B0. �

6.3. [Proof of Proposition 2.1] Uniqueness of stationary density
and a uniform spectral gap for uniformly expanding systems. We
prove Proposition 2.1 in a series of lemmas. Let [ω]n = ω0, . . . , ωn−1 be a
path of length n and consider the partition {gz,[ω]n(X)}z∈Zn of X, where Zn

is the labelling set for the nth-iterate of the random map. First we provide
distortion estimates for gz,[ω]n .

Lemma 6.3. There exists D > 0 such that for any n ∈ N, z ∈ Zn and
x, y ∈ X we have ∣∣∣∣∣g

′
z,[ω]n

(x)

g′z,[ω]n
(y)
− 1

∣∣∣∣∣ ≤ D|x− y|.
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Proof. Start with

log

∣∣∣∣∣g
′
z,[ω]n

(x)

g′z,[ω]n
(y)

∣∣∣∣∣ =

n−1∑
j=0

log

∣∣∣∣∣g
′
z,ωj (gz,[ω]j (x))

g′z,ωj (g
′
z,[ω]j

(y))

∣∣∣∣∣ ≤
n−1∑
j=0

∣∣∣∣∣g
′
z,ωj (gz,[ω]j (x))

g′z,ωj (g
′
z,[ω]j

(y))
− 1

∣∣∣∣∣
≤ D̃

n−1∑
j=0

|gz,[ω]j (x)− gz,[ω]j (y)| ≤ D̃
n−1∑
j=0

βj |x− y| ≤ D̃ 1

1− β
|x− y|.

The above inequality implies that∣∣∣∣∣g
′
z,[ω]n

(x)

g′z,[ω]n
(y)

∣∣∣∣∣ ≤ eD̃/(1−β).

Hence, there exists C > 0 independent of x, y ∈ X such that∣∣∣∣∣g
′
z,[ω]n

(x)

g′z,[ω]n
(y)
− 1

∣∣∣∣∣ ≤ C log

∣∣∣∣∣g
′
z,[ω]n

(x)

g′z,[ω]n
(y)

∣∣∣∣∣ ≤ CD̃ 1

1− β
|x− y|.

Now, we can take D = CD̃/(1− β). �

Lemma 6.4. There exists a D > 0 such that for any n we have

(1) (Lnω1) :=
∑

z∈Zn |g′z,[ω]n
(x)| ≤ D + 1;

(2) Lip(Lnω1) ≤ D(D + 1);
(3) ||LnωΦ||∞ ≤ (D + 1)||Φ||∞.

Proof. For (1) by Lemma 6.3 we have g′z,[ω]n
(x) ≤ (D+1)|gz,[ω]n(X)|. There-

fore,

Lnω1 =
∑
z∈Zn

|g′z,[ω]n
(x)| ≤ D + 1.

Note that (3) is implied by (1). Therefore, it remains to prove (2). For
x, y ∈ X we have

|(Lnω1)(x)− (Lnω1)(y)| ≤
∑
z∈Zn

|g′z,[ω]n
(x)− g′z,[ω]n

(y)|

≤
∑
z∈Zn

|g′z,[ω]n
(x)|

∣∣∣∣∣g
′
z,[ω]n

(y)

g′z,[ω]n
(x)
− 1

∣∣∣∣∣ ≤ D(D + 1)|x− y|
∑
z∈Zn

|gz,[ω]n(X)|.

�

Lemma 6.5. LPε admits a spectral gap on the space of Lipschitz continuous
functions.

Proof. Let [ω]n = ω0, . . . , ωn−1 be a word of length n and consider

|LnωΦ(x)− LnωΦ(y)| = |
∑
z∈Zn

(Φ ◦ gz,[ω]n |g
′
z,[ω]n

|)(x)− (Φ ◦ gz,[ω]n |g
′
z,[ω]n

|)(y)|

≤
∑
z∈Zn
{|Φ(gz,[ω]n(x))− Φ(gz,[ω]n(y))||g′z,[ω]n

(x)|

+ |Φ(gz,[ω]n(y))|||g′z,[ω]n
(x)| − |g′z,[ω]n

(y)||}

≤ Lip(Φ)βn|x− y|
∑
z∈Zn

|g′z,[ω]n
(x)|+ ||Φ||∞ Lip(Lnω1)|x− y|

≤ (D + 1)βn Lip(Φ)|x− y|+D(D + 1)||Φ||∞|x− y|.
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Therefore,

Lip(LnωΦ) ≤ (D + 1)βn Lip(Φ) +D(D + 1)||Φ||∞.

Now fix n1 large enough so that (D+1)βn1 < 1. Define κ := (D+1)
1
n1 β < 1.

We have

Lip(Ln1
ω Φ) ≤ κLip(Φ) +D(D + 1)‖Φ‖∞.

Using (3) of Lemma 6.4, for any n ≥ n1 we have

‖LnωΦ‖Lip ≤ κn‖Φ‖Lip +D1‖Φ‖∞, (59)

D1 := D(D+1)
1−κ +D(D + 1). Consequently, for any n ≥ n1

‖LnPεΦ‖Lip ≤ κn‖Φ‖Lip +D1‖Φ‖∞.
This implies that the operators LPε are quasi-compact on the space of Lip-
schitz continuous functions and their essential spectral radius is uniformly
bounded by κ. Moreover, any stationary density hε ∈ CLip. It remains to
show that the peripheral spectrum of LPε consists only of 1 and that 1 is a
simple eigenvalue. Indeed, if hε is a stationary density, then using the fact
that hε is a CLip function, there exists an open interval J ⊂ [0, 1], such that
hε|J > 0. Since all the maps Tω are piecewise onto and uniformly expanding
(supx,ω |g′z,ω| ≤ β < 1), there exists an n ∈ N such that LnPε(hε|J)(x) > 0.
Consequently, hε(x) = LnPε(hε)(x) ≥ LnPε(hε|J)(x) > 0. Thus, hε is strictly

positive12 on [0, 1]. This implies that hε is unique and that 1 is a simple
eigenvalue of LPε . The fact that no other eigenvalues of LPε are of modulus
1 follows from quasi-compactness of LPε on CLip and repeating the above
argument to show that any iterate of LPε has a unique invariant density. �

Lemma 6.6.

(a) LPε admit a uniform spectral gap on C1. In particular their essential
spectral radii on C1 is uniformly bounded by above by some κ ∈ (0, 1).

(b) There exists a C > 0, such that for any n ∈ N and Φ ∈ C1, we have

||LnPεΦ||C1 ≤ C||Φ||C1 .

Proof. By Lemma 6.5 the family of operators LPε admit a uniform spectral
gap on CLip. Moreover, the operators LPε preserve the space of C1 functions.
Indeed,

|(LPεΦ)(x)| = |
∑
z∈Z

∫
Ω

Φ ◦ gz,ω(x)|g′z,ω|dPε(ω)| ≤ D̃||Φ||C0 ;

and moreover,

|(LPεΦ)′(x)| =

|
∑
z∈Z

∫
Ω

Φ′ ◦ gz,ω(x)|g′z,ω(x)|g′z,ω + Φ ◦ gz,ω(x) sign(g′z,ω(x))g′′z,ω(x)dPε(ω)|

≤ (LPε |Φ′(x)|) +M‖Φ‖C0 .

Since for C1 functions the Lipschitz norm is the same as the C1-norm, this
implies that the family of operators LPε admit a uniform spectral gap on

12The argument about the strict positivity of hε is borrowed from [34].



Linear response for random dynamical systems 31

C1. The uniform upper bound on their spectral radii follows from (59). This
proves (a) of the Lemma and (b) is a consequence of (a). �

Next, before proving a spectral gap of LPε on C2, we prove that condi-
tion (2) of (A1) can be iterated.

Lemma 6.7. For any n and i = 2, 3 we have

sup
ε∈V

∑
z∈Zn

sup
x∈X

∫
Ωn
|g(i)
z,[ω]n

|dPnε ([ω]n) <∞.

Proof. We prove it by induction on n. For i = 2, and n = 1 the lemma is
true by assumption. Assume it is true for n. Note that

(gz,ω ◦ gzn,ωn)′′ = g′′z,ω ◦ gzn,ωn · g′2zn,ωn + g′z,ω · g′′zn,ωn
We have for the first term∑

z,zn

∫
Ωn

∫
Ω
g′′z,ω ◦ gzn,ωn · g′2zn,ωndP

n
ε (ω)dPε(ωn)

=
∑
zn

∫
Ω
g′2zn,ωn

(∑
z∈Zn

∫
Ωn
g′′z,ω ◦ gzn,ωndPnε (ω)

)
dPε(ωn).

The term inside the parenthesis is bounded by the induction hypothesis,
and the remaining integral is bounded. The second term can be managed
in the same way. The technique also works for the third derivative. Indeed,
for i = 3, we have

(gz,ω ◦ gzn,ωn)′′′ = g′′′z,ω ◦ gzn,ωn · g′3zn,ωn + 2g′zn,ωn · g
′′
zn,ωn · g

′′
z,ω ◦ gzn,ωn

+ g′′z,ω · g′′zn,ωn + g′z,ω · g′′′zn,ωn .
�

Remark 6.8. The bounds in Lemma 6.7 depend on n.

Lemma 6.9. LPε admits a uniform spectral gap on C2. In particular, for
any ε ∈ V , the random dynamical system (Ω, {Tω},Pε} admits a unique
stationary density hε ∈ C2.

Proof. For Φ ∈ C2(X), by definition we have

LnPεΦ =
∑
z∈Zn

∫
Ωn

Φ ◦ gz,[ωn]|g′z,[ωn]|dP
n
ε ([ωn]).

By Lebesgue differentiation theorem

(LnPεΦ)′ =
∑
z∈Zn

∫
Ωn

Φ′◦gz,[ω]n |g
′
z,[ω]n

|g′z,[ω]n
+Φ◦gz,[ω]n sign(g′z,[ω]n

)g′′z,[ω]n
dPnε ([ω]n).

(60)
Since gz,[ω]n is monotone for any z ∈ Zn, again by Lebesgue differentiation
theorem for the second derivative we have

(LPnε Φ)′′ =
∑
z∈Zn

∫
Ωn

Φ′′ ◦ gz,[ω]n |g
′
z,[ω]n

|(g′z,[ω]n
)2

+ 3 sign(g′z,[ω]n
)Φ′ ◦ gz,[ω]ng

′
z,[ω]n

g′′z,[ω]n
+ sign(g′z,[ω]n

)Φ ◦ gz,[ω]ng
′′′
z,[ω]n

dPnε ([ω]n).

(61)
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Using (60) (61) we obtain

‖LnPεΦ‖C2 ≤ sup
x

∑
z∈Zn

∫
Ωn
|Φ′′ ◦ gz,[ω]n ||g

′
z,[ω]n

|3 + 3|Φ′ ◦ gz,[ω]n ||g
′
z,[ω]n

||g′′z,[ω]n
|

+ |Φ ◦ gz,[ω]n ||g
′′′
z,[ω]n

|+ |Φ′ ◦ gz,[ω]n ||g
′
z,[ω]n

|2 + |Φ ◦ gz,[ω]n ||g
′′
z,[ω]n

|
+ |Φ ◦ gz,[ω]n ||g

′
z,[ω]n

|dPnε ([ω]n).

Therefore, using Lemma 6.4 and 6.7 we have

‖LnPεΦ‖C2 ≤ β2n(D + 1)‖Φ‖C2 +Mn||Φ||C1 .

Fix n2 large enough so that β2n2(D + 1) ≤ γ < 1. We have

‖Ln2
PεΦ‖C2 ≤ γ|Φ‖C2 +Mn2 ||Φ||C1 .

By using, (2) of Lemma 6.6, we iterate the above inequality (dropping n2

from the notation of LPε for simplicity) and get for any n ≥ 1

‖LnPεΦ‖C2 ≤ γn|Φ‖C2 +
C ·Mn2

1− γ
||Φ||C1 .

This implies that LPε is quasi-compact on C2 with γ as a uniform upper
bound on the essential spectral radius. The proof of spectral gap is analogous
to that in the proof of Lemma 6.5. �

6.4. Spectral gap for the transfer operator associated with Gauss-
Rényi random maps. Let G(x) = 1

x mod 1 and R(x) = 1
1−x mod 1.

The inverse branches of G and R are given by

G−1
n =

1

n+ x
,R−1

n (x) = 1− 1

n+ x
for any x ∈ (0, 1) .

Consequently we have

(G−1
n )′(x) = − 1

(n+ x)2
, (R−1

n )′(x) =
1

(n+ x)2
.

Below we will be interested in compositions G−1
n ◦G−1

k , G−1
n ◦R−1

k , R−1
n ◦G−1

k ,

R−1
n ◦ R−1

k .
Thus it is useful to have exact form of the above compositions and their

derivatives.

(G−1
n ◦ G−1

k )(x) =
1

n+ 1
k+x

=
k + x

n(k + x) + 1
, (62)

(R−1
n ◦ R−1

k )(x) = 1− 1

n+ 1− 1
k+x

= 1− k + x

(n+ 1)(k + x)− 1
. (63)

Remark 6.10. Notice that

(R−1
n ◦ G−1

k )(x) = 1− (G−1
n ◦ G−1

k )(x), (R−1
n ◦R−1

k )(x) = 1− (G−1
n ◦R−1

k )(x).

Consequently,

(R−1
n ◦ G−1

k )′(x) = −(G−1
n ◦ G−1

k )′(x), (R−1
n ◦ R−1

k )′(x) = −(G−1
n ◦ R−1

k )(x).
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In the light of remark 6.10 it is sufficient to consider the two cases G ◦ G
and R◦R. The cases R◦G and G◦R then satisfy the same type of estimates.
By the chain rule we have

(G−1
n ◦ G−1

k )′(x) =
1(

n+ 1
k+x

)2

1

(k + x)2
=

1

(n(k + x) + 1)2
, (64)

(R−1
n ◦ R−1

k )′(x) =
1(

n+ 1− 1
k+x

)2

1

(k + x)2
=

1

((n+ 1)(k + x)− 1)2
,

(65)

(G−1
n ◦ G−1

k )′′(x) = − 2n

(n(k + x) + 1)3
, (66)

(R−1
n ◦ R−1

k )′′(x) = − 2(n+ 1)

((n+ 1)(k + x)− 1)3
(67)

(G−1
n ◦ G−1

k )′′′(x) =
6n2

(n(k + x) + 1)4
(68)

(R−1
n ◦ R−1

k )′′′(x) = − 6(n+ 1)2

((n+ 1)(k + x)− 1)4
(69)

The following lemma is a straightforward consequence of (64) - (67).

Lemma 6.11. Let gn,k ∈ {Φ ◦ Ψ | Φ,Ψ ∈ {G−1
n ,R−1

k }}. Then for any
n, k ∈ N and x ∈ (0, 1) hold

|g(i)
n,k(x)| ≤ i!

n2ki+1
, for i = 1, 2, 3. (70)

Moreover, if gn,k = G−1
n ◦ G−1

n then

|g′n,k(x)| ≤ 1

4
for any n, k ∈ N and x ∈ (0, 1). (71)

Recall that the transfer operator associated to the random Gauss-Réyni
map has the following form

LPεf = (1− ε)2LG◦Gf + ε(1− ε)LG◦Rf + ε(1− ε)LR◦Gf + ε2LR◦Rf.

Lemma 6.12. LPε admits uniform spectral gap in Ci, i = 1, 2.

Proof. The proof is straightforward computation and uses the fact that in
our situation we can differentiate term by term in the series. For any Φ,Ψ ∈
{Gn,Rk} by definition and (70) we have

‖LΦ◦Ψf‖C0 ≤ ‖f‖C0

∞∑
n,k=1

‖g′n,k‖C0 ≤ ‖f‖C0

∞∑
n,k=1

1

n2k2
≤ π4

36
‖f‖C0 . (72)
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Below we will use the fact that derivatives of gn,k do not change their sign.
Thus we ignore the absolute values while taking derivatives from the expres-
sions of form |g′n,k|i.

‖(LΦ◦Ψf)′‖C0 ≤ ‖f ′‖C0

∞∑
n,k=1

‖(g′n,k)2‖
C0 + ‖f‖C0

∞∑
n,k=1

‖g′′n,k‖C0

≤ ‖g′n,k‖C0‖f ′‖C0

∞∑
n,k=1

1

n2k2
+ 2‖f‖C0

∞∑
n,k=1

1

n2k3
≤ ‖g′n,k‖C0

π4

36
‖f ′‖C0 +

π2

2
‖f‖C0 ,

(73)
where we used Lemma 6.11 and the fact ζ(3) =

∑
k k
−3 ≤ 3/2 in the last

two chain of inequalities. Finally, again by triangle inequality and Lemma
6.11 we have

‖(LΦ◦Ψf)′′‖C0 ≤ ‖f ′′‖C0

∞∑
n,k=1

‖g′n,k‖
3

C0 + 3‖f ′‖C0

∞∑
n,k=1

‖g′n,kg′′n,k‖C0

+ ‖f‖C0

∞∑
n,k=1

‖g′′′n,k‖C0 ≤
π4

36
‖g′n,k‖

2

C0‖f ′′‖C0 + 6ζ(4)ζ(5)‖f ′‖C0 + 6ζ(2)ζ(4)‖f‖C0 ,

which implies

‖(LΦ◦Ψf)′′‖C0 ≤
π4

36
‖g′n,k‖

2

C0‖f ′′‖C0 +
11π2

150
‖f ′‖C0 +

π6

90
‖f‖C0 , (74)

We now prove a uniform Lasota-Yorke type inequality for LΦ◦Ψ acting on
C2 for all possible choices Φ,Ψ ∈ {Gn,Rk}.

First consider the case gk,n = G−1
n ◦ G−1

k . Notice that g′n,k ≤ 1/4. The

equations (72) and (73) immediately imply that

‖LG◦Gf‖C2 ≤
1

16

π4

36
‖f ′′‖C0+

(
11π2

150
+
π4

36

)
‖f ′‖C0+

(
π6

90
+
π2

2
+
π4

36

)
‖f‖C0

This immediately implies that

‖LG◦Gf‖C2 ≤
1

16

π4

36
‖f ′′‖C0 +

158

45
‖f ′‖C0 +

170

9
‖f‖C0 . (75)

Also, in the light of Remark 6.10 we have

‖LG◦Rf‖C2 ≤
1

16

π4

36
‖f ′′‖C0 +

158

45
‖f ′‖C0 +

170

9
‖f‖C0 . (76)

When gk,n = R−1
n ◦ R−1

k we only have g′n,k ≤ 1. Thus the equations (72)

and (73) imply that

‖LR◦Rf‖C2 ≤
π4

36
‖f ′′‖C0 +

158

45
‖f ′‖C0 +

170

9
‖f‖C0 . (77)

Again, by Remark 6.10 we have

‖LR◦Rf‖C2 ≤
π4

36
‖f ′′‖C0 +

158

45
‖f ′‖C0 +

170

9
‖f‖C0 . (78)

Finally for LPε we have

‖LPεf
′′‖C0 ≤(1− ε)2‖LG◦Gf ′′‖C0 + ε(1− ε)‖LG◦Rf ′′‖C0

+ ε(1− ε)‖LR◦Gf ′′‖C0 + ε2‖LR◦Rf ′′‖C0 .
(79)
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Substituting the equations (75)-(77) into (79) implies that

‖LPεf
′′‖C0 ≤

π4(1 + 17ε)

576
‖f ′′‖C0 +

158

45
‖f ′‖C0 +

170

9
‖f‖C0 .

Now we choose ε > 0 small enough and M > 0 so that κ :=
π4(1 + 17ε)

576
< 1

and
‖LPεf

′′‖C0 ≤ κ‖f ′′‖C0 +M‖f‖C1 .

Thus LPε is quasi compact on C2 and the essential spectral radius is at
most κ. The proof of spectral gap on C2 is analogous to that in the proof
of Lemma 6.5. In a similar manner, using (72) and (73), one can obtain a
uniform Lasota-Yorke inequality and a uniform spectral gap on C1. �
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